

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

· · · · · · · · · · · · · · · · · · ·	
Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm^2 .

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

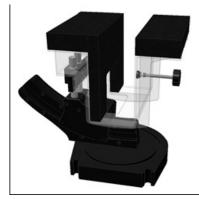
No. I14N01237-SAR Page 73 of 114

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat

No. I14N01237-SAR Page 74 of 114

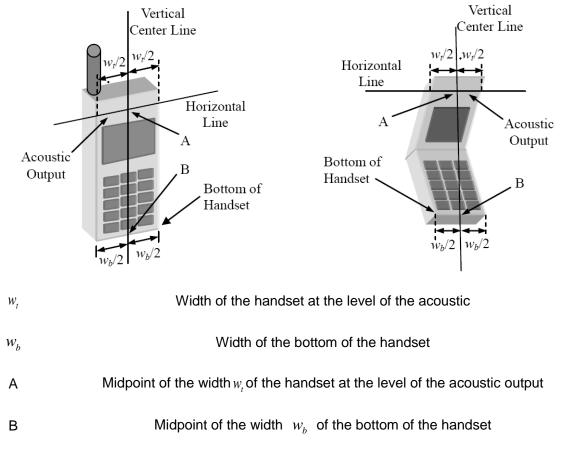
phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

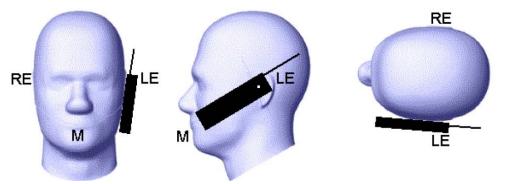
Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

Picture C.10: SAM Twin Phantom

The ELI4 phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6GHz. ELI4 is fully compatible with the latest standard IEC 62209-2 and all known tissue simulating liquids. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

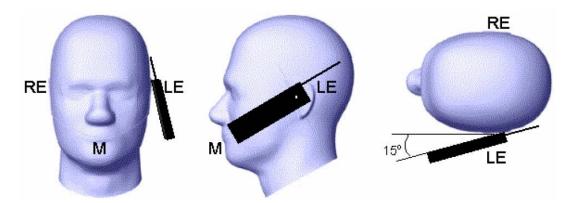
Shell Thickness2±0. l mmFilling VolumeApprox. 20 litersDimensions810 x l000 x 500 mm (H x L x W)AvailableSpecial


Picture C.10: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

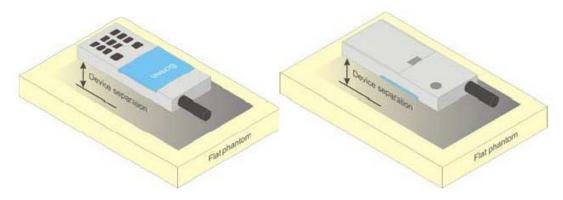
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.



Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

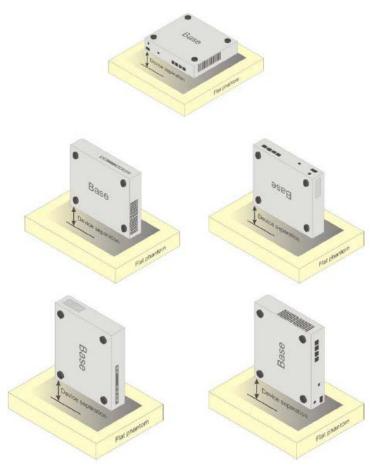
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

							•	
Frequency	835	835	1900	1900	2450	2450	5800	5800
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	\	١	\	\	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	١
Preventol	0.1	0.1	١	\	١	\	\	١
Cellulose	1.0	1.0	١	\	١	١	\	١
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	١	١
Diethylenglycol monohexylether	١	١	١	١	١	١	17.24	17.24
Triton X-100	١	١	١	\	١	\	17.24	17.24
Dielectric Parameters Target Value	ε=41.5 σ=0.90	ε=55.2 σ=0.97	ε=40.0 σ=1.40	ε=53.3 σ=1.52	ε=39.2 σ=1.80	ε=52.7 σ=1.95	ε=35.3 σ=5.27	ε=48.2 σ=6.00

Table E.1: Composition of the Tissue Equivalent Matter

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation						
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)		
3151	Head 850MHz	September. 06, 2014	850 MHz	ОК		
3151	Head 850MHz	September 06, 2014	900 MHz	ОК		
3151	Head 1800MHz	September.07, 2014	1800 MHz	ОК		
3151	Head 1900MHz	September 07, 2014	1900 MHz	ОК		
3151	Head 2000MHz	September 08, 2014	2000 MHz	ОК		
3151	Head 2100MHz	September 08, 2014	2100 MHz	ОК		
3151	Head 2450MHz	September 11, 2014	2450 MHz	ОК		
3151	Body 850MHz	September 12, 2014	850 MHz	ОК		
3151	Body 850MHz	September 12, 2014	900 MHz	ОК		
3151	Body 1800MHz	September 13, 2014	1800 MHz	ОК		
3151	Body 1900MHz	September. 13, 2014	1900 MHz	ОК		
3151	Body 2000MHz	September 14, 2014	2000 MHz	ОК		
3151	Body 2100MHz	September 14, 2014	2100 MHz	ОК		
3151	Body 2450MHz	September 15, 2014	2450 MHz	ОК		

ANNEX G Probe Calibration Certificate

Probe ES3DV3-SN:3151 Calibration Certificate

Add: No 51 Yumuu	CALIBRA	strict, Beijing, 100191, China	IC-MRA
Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	+86-10-62304633-2504	CALIBRATIO No. L0570
10000	L(South Bran		4-97077
CALIBRATION C	ERTIFICAT	TE	
Object	ES3D	V3 - SN:3151	
Calibration Procedure(s)	THE	DS-E-02-195	
		ation Procedures for Dosimetric E-field Probe	5
Calibration date:	Septer	mber 01, 2014	
pages and are part of the co			
All calibrations have been humidity<70%.		the closed laboratory facility: environmen	t temperature(22±3)°C ar
All calibrations have been		for calibration)	t temperature(22±3)*C an
All calibrations have been humidity<70%. Calibration Equipment used	I (M&TE critical f		
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	I (M&TE critical f	for calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibratio
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	I (M&TE critical f ID # 101919 101547 101548	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146)	Scheduled Calibratio
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	I (M&TE critical f ID # 101919 101547 101548 BT0520	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID #	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14 Jan -15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605 MY46110673	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781)	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-15 Feb-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	I (M&TE critical f ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605 MY46110673 Name	for calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 03-Sep-13(SPEAG,No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Scheduled Calibratio Jun-15 Jun-15 Jun-15 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-15 Feb-15

Certificate No: Z14-97077

Page 1 of 11

No. I14N01237-SAR Page 81 of 114

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z14-97077

Page 2 of 11

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Probe ES3DV3

SN: 3151

Calibrated: September 01, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z14-97077

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY – Parameters of Probe: ES3DV3 - SN: 3151

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^A	1.11	1.20	1.14	±10.8%
DCP(mV) ^B	103.4	103.3	102.9	

Modulation Calibration Parameters

UID	Communication		A	В	С	D	VR	UncE
	System Name		dB	dBõV		dB	mV	(k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	264.1	±2.3%
		Y	0.0	0.0	1.0		275.7	1
		z	0.0	0.0	1.0		268.7	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z14-97077

Page 4 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	41.5	0.92	6.04	6.04	6.04	0.41	1.49	±12%
900	41.5	0.97	6.17	6.17	6.17	0.38	1.55	±12%
1810	40.0	1.40	5.44	5.44	5.44	0.57	1.49	±12%
1900	40.0	1.40	5.16	5.16	5.16	0.74	1.25	±12%
2000	40.0	1.40	5.23	5.23	5.23	0.50	1.57	±12%
2100	39.8	1.49	5.25	5.25	5.25	0.74	1.24	±12%
2300	39.5	1.67	4.91	4.91	4.91	0.73	1.21	±12%
2450	39.2	1.80	4.71	4.71	4.71	0.82	1.16	±12%
2600	39.0	1.96	4.57	4.57	4.57	0.89	1.14	±12%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation

formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97077

Page 5 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY – Parameters of Probe: ES3DV3 - SN: 3151

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	55.2	0.99	6.14	6.14	6.14	0.34	1.78	±12%
900	55.0	1.05	6.08	6.08	6.08	0.51	1.43	±12%
1810	53.3	1.52	5.03	5.03	5.03	0.52	1.54	±12%
1900	53.3	1.52	4.77	4.77	4.77	0.48	1.66	±12%
2000	53.3	1.52	5.00	5.00	5.00	0.68	1.33	±12%
2100	53.2	1.62	5.04	5.04	5.04	0.73	1.32	±12%
2300	52.9	1.81	4.56	4.56	4.56	0.58	1.57	±12%
2450	52.7	1.95	4.42	4.42	4.42	0.67	1.39	±12%
2600	52.5	2.16	4.26	4.26	4.26	0.69	1.37	±12%

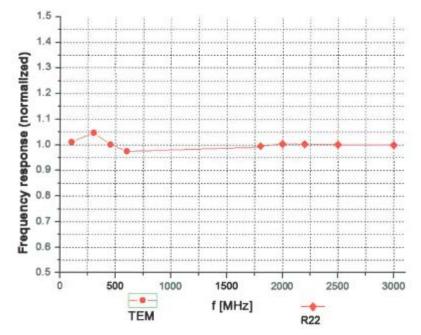
^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is

restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97077

Page 6 of 11

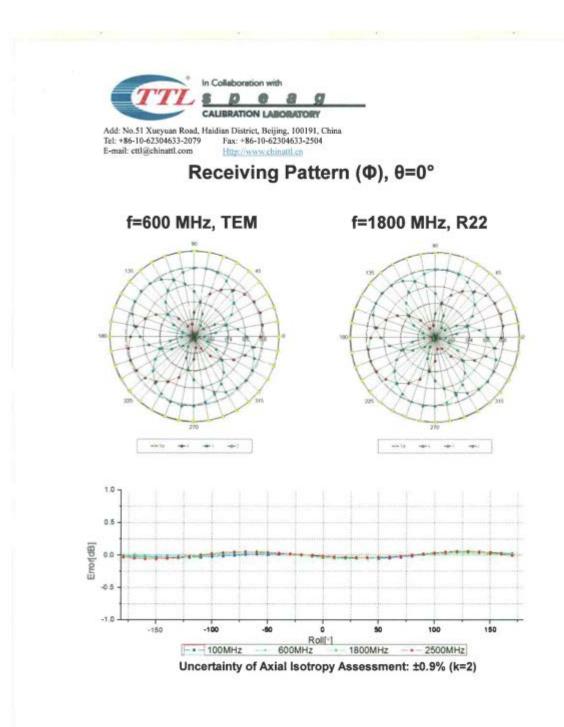




 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

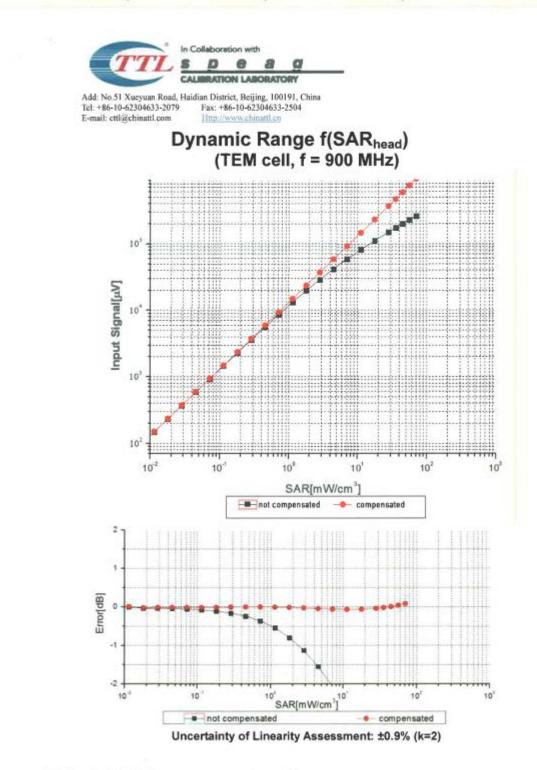
 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

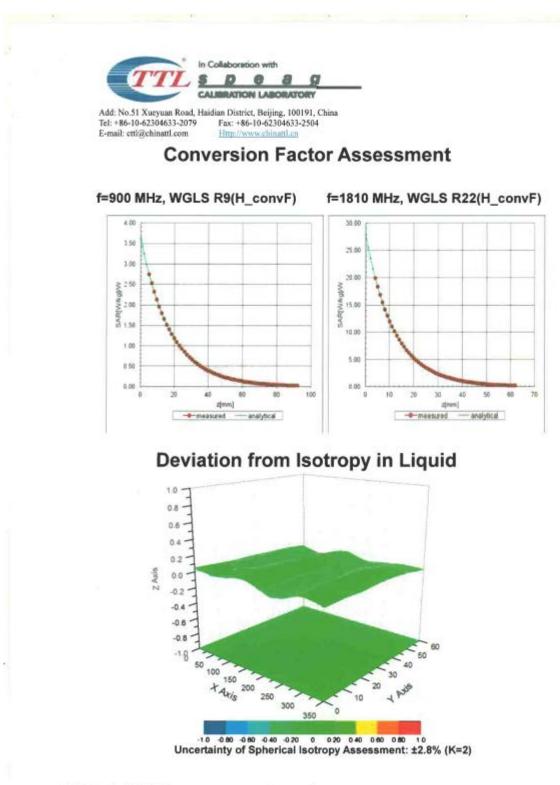
Certificate No: Z14-97077

Page 7 of 11



Certificate No: Z14-97077

Page 8 of 11



Certificate No: Z14-97077

Page 9 of 11

Certificate No: Z14-97077

Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Ilttp://www.chinattl.cn

DASY - Parameters of Probe: ES3DV3 - SN: 3151

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	85.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z14-97077

Page 11 of 11

ANNEX H Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

ughausstrasse 43, 8004 Zurich	, Switzerland	Hac MRA (CRU RATE) C S	Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditation Service	is one of the signatories	to the EA	No.: SCS 108
ultilateral Agreement for the re lient CTTL (Auden)	cognition of calibration of		. D835V2-4d069_Aug14
CALIBRATION C	ERTIFICATE		
Object	D835V2 - SN: 4d	069	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	August 28, 2014		
The measurements and the uncer	rtainties with confidence p	onel standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature (22 ± 3)*	nd are part of the certificate.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	tainties with confidence p ted in the closed laborator "E critical for calibration)	robability are given on the following pages ar y facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate. C and humidity < 70%.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards	tainties with confidence p ted in the closed laborator "E critical for calibration) ID #	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uncer NI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	tainties with confidence p ted in the closed laborator "E critical for calibration) ID # GB37480704	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	nd are part of the certificate. C and humidity < 70%.
The measurements and the uncer NI calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	tainties with confidence p ted in the closed laborator "E critical for calibration) ID #	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Ocl-14
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	tainties with confidence p ted in the closed laborator "E critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Ocl-14 Ocl-14
The measurements and the uncer All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	tainties with confidence p ted in the closed laborator "E critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	tainties with confidence p ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	tainties with confidence p ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 MY41022317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01928)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	tainties with confidence p ted in the closed laborator E critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	tainties with confidence p ted in the closed laborator (E critical for calibration) (B37282783 (B37480704) (US37292783) (MY41092317 (SN: 5058 (20k)) (SN: 5047.2 / 06327) (SN: 5047.2 / 06327) (SN: 3205) (SN: 601)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. E33-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-15
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	tainties with confidence p ted in the closed laborator E critical for calibration) B # B37282783 MY41092317 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 D #	coability are given on the following pages ar y facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	tainties with confidence p ted in the closed laborator (E critical for calibration) (D # (B837480704 US37282783 MY41092317 SN: 5058 (20k) SN: 601 (D # (D #) (D #) (D #) (D 0005) US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205, Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-15
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	tainties with confidence p ted in the closed laborator "E critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	tainties with confidence p ted in the closed laborator (E critical for calibration) (D # (BB37480704 US37292783 MY41032317 SN: 5068 (20k) SN:	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205, Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-14 Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D835V2-4d069_Aug14

Page 1 of 8

No. I14N01237-SAR Page 92 of 114

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS

GRA

s

- Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura Suiss Calibration Service
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069_Aug14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.58 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.55 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.33 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d069_Aug14

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 0.8 jΩ
Return Loss	- 29.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 1.4 jΩ
Return Loss	- 34.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.393 ns	al Delay (one direction) 1.393 ns
---	-----------------------------------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

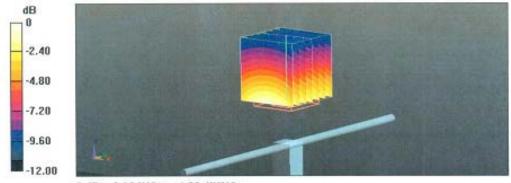
Manufactured by	SPEAG
Manufactured on	November 09, 2007

No. I14N01237-SAR Page 95 of 114

DASY5 Validation Report for Head TSL

Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

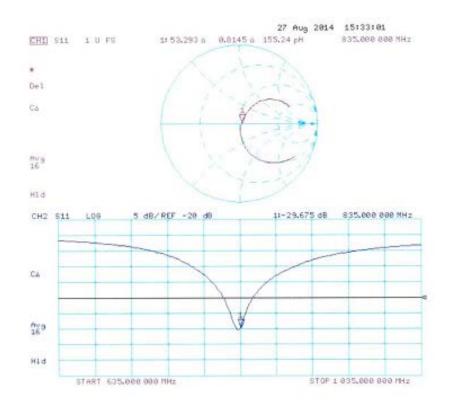

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d069

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.74 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.85 W/kg



0 dB = 2.85 W/kg = 4.55 dBW/kg

Certificate No: D835V2-4d069_Aug14

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d069_Aug14

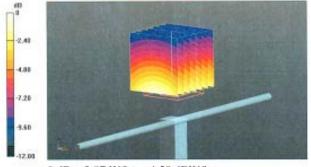
Page 6 of 8

No. I14N01237-SAR Page 97 of 114

DASY5 Validation Report for Body TSL

Date: 27.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

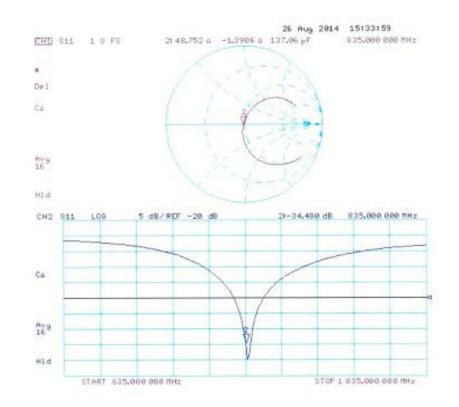

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d069

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 55.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.97 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 2.87 W/kg


0 dB = 2.87 W/kg = 4.58 dBW/kg

Certificate No: D835V2-4d069_Aug14

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d069_Aug14

Page 8 of 8

No. I14N01237-SAR Page 99 of 114

1900 MHz Dipole Calibration Certificate

Calibration Labor	ratory of
Schmid & Partner	
Engineering AG	
Zeughausstrasse 43, 800-	Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

S

С

CALIBRATION C	ERTIFICATE		» D1900V2-5d101_Jul
Dbject	D1900V2 - SN: 5	d101	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	we 700 MHz
Calibration date:	July 23, 2014		
	cted in the closed laborator	robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
the standard free constraints in the	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
ower meter EPM-442A			
wer meter EPM-442A wer sensor HP 8481A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
wer meter EPM-442A wer sensor HP 8481A wer sensor HP 8481A	GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator	GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Oct-14 Oct-14 Oct-14
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A aference 20 dB Attenuator (pe-N mismatch combination	GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Oct-14 Oct-14 Oct-14 Apr-15
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination aference Probe ES3DV3 AE4	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15
ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination laference Probe ES3DV3 AE4 econdary Standards	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Apr-15 Scheduled Check
ower meter EPM-442A tower sensor HP 8481A tower sensor HP 8481A leference 20 dB Attenuator ype-N mismatch combination laterance Probe ES3DV3 IAE4 secondary Standards IF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Oct-14 Oct-14 Oct-14 Apr-15 Dec-14 Apr-15
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards RF generator R&S SMT-06	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination laterence Probe ES3DV3 JAE4 Secondary Standards IF generator R&S SMT-06 fetwork Analyzer HP 8753E	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Dac-15 Dac-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Arimany Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards IF generator R&S SMT-06 Retwork Analyzer HP 8753E Calibrated by: Approved by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-89 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Dac-15 Dac-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards RF generator R&S SMT-06 Retwork Analyzer HP 6753E Calibrated by:	GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Jeton Kastrati	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-89 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) Function	Oct-14 Oct-14 Apr-15 Apr-15 Dac-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

No. I14N01237-SAR Page 100 of 114

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS CRUE Z

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101_Jul14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$39.5 \pm 6 \%$	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.25 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.35 W/kg

Certificate No: D1900V2-5d101_Jul14

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω + 6.3 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 6.5 jΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

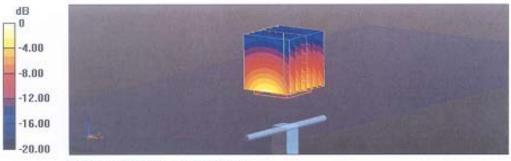
No. I14N01237-SAR Page 103 of 114

DASY5 Validation Report for Head TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

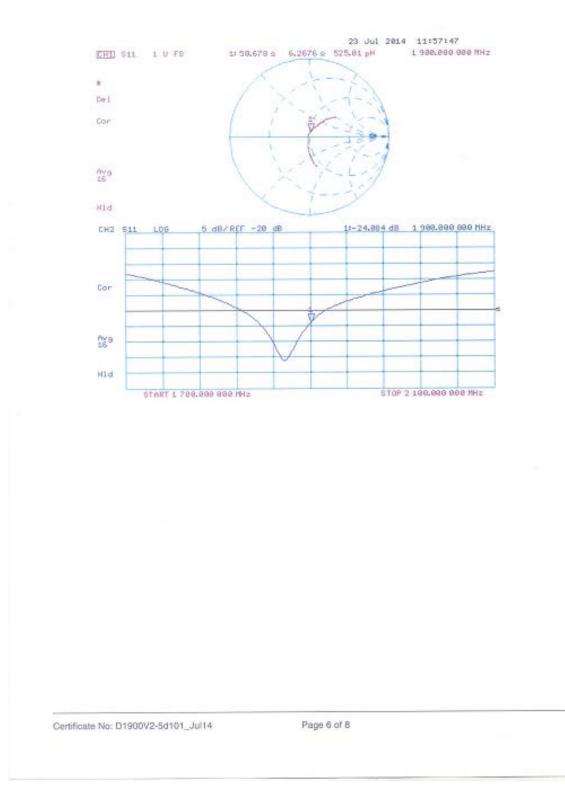

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.04 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 12.8 W/kg


0 dB = 12.8 W/kg = 11.07 dBW/kg

Certificate No: D1900V2-5d101_Jul14

Page 5 of 8

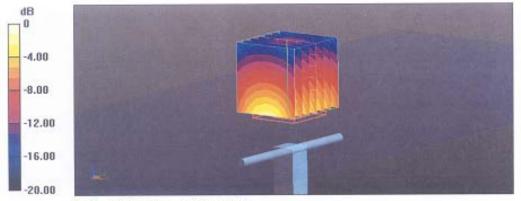
Impedance Measurement Plot for Head TSL

No. I14N01237-SAR Page 105 of 114

DASY5 Validation Report for Body TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

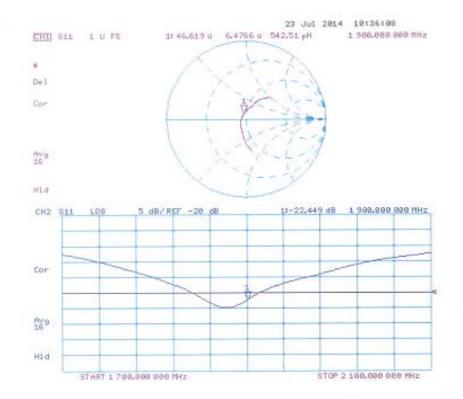
Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 95.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.35 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg


Certificate No: D1900V2-5d101_Jul14

Page 7 of 8

No. I14N01237-SAR Page 106 of 114

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d101_Jul14

Page 8 of 8

No. I14N01237-SAR Page 107 of 114

2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: D2450V2-853_Jul14

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL (Auden)

CALIBRATION CERTIFICATE D2450V2 - SN: 853 Object QA CAL-05.V9 Galibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 24, 2014 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) ID # Primary Standards GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power meter EPM-442A 09-Oct-13 (No. 217-01827) 021-14 Power sensor HP 6481A US37292783 Oct-14 09-Oct-13 (No. 217-01828) Power sensor HP 8481A MY41092317 Apr-15 03-Apr-14 (No. 217-01918) SN: 5058 (20k) Reference 20 dB Attenuator Apr-15 03-Apr-14 (No. 217-01921) SN: 5047.2 / 06327 Type-N mismatch combination Dec-14 30-Dec-13 (No. ES3-3205_Dec13) SN: 3205 Reference Probe ES3DV3 Apr-15 SN: 601 30-Apr-14 (No. DAE4-601_Apr14) DAE4 Scheduled Check Check Date (in house) ID ₩ Secondary Standards In house check: Oct-16 04-Aug-99 (in house check Oct-13) RF generator R&S SMT-06 100005 In house check: Oct-14 US37390585 54206 18-Oct-01 (in house check Oct-13) Network Analyzer HP 8753E Function Name Laboratory Technician Claudio Louber Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: July 24, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-853_Jul14

Page 1 of 8

No. I14N01237-SAR Page 108 of 114

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S Schw C Servi BRIX S Swiss

Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853_Jul14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

in tonormal parameters and	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$37.8\pm6~\%$	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)
SAP supresed over 10 cm ³ (10 c) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.26 W/kg

Body TSL parameters

The following parameters and calculations were applied.

te fellevillig personale and the	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-853_Jul14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 3.3 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 5.0 jΩ	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

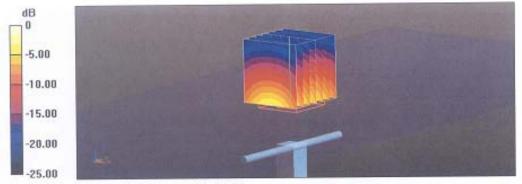
Manufactured by	SPEAG
Manufactured on	November 10, 2009

No. I14N01237-SAR Page 111 of 114

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

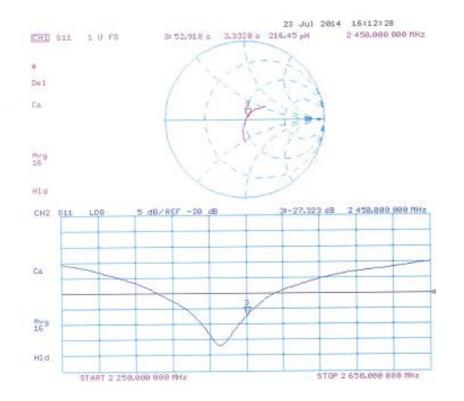

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.8; p = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 18.0 W/kg


0 dB = 18.0 W/kg = 12.55 dBW/kg

Certificate No: D2450V2-853_Jul14

No. I14N01237-SAR Page 112 of 114

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul14

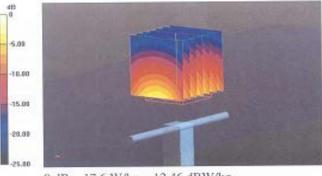
Page 6 of 8

No. I14N01237-SAR Page 113 of 114

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

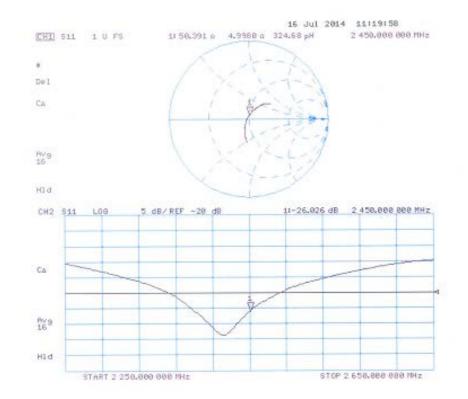
Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.00 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg


Certificate No: D2450V2-853_Jul14

Page 7 of 8

No. I14N01237-SAR Page 114 of 114

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul14

Page 8 of 8