

Date: 9.SEP.2015 14:36:36

Date: 9.SEP.2015 14:05:59

Fig.52 Maximum Average Output Power (802.11n-20MHz, Ch 1,MCS5)

Date: 9.SEP.2015 14:32:08

Date: 9.SEP.2015 14:36:10

Fig.54 Maximum Average Output Power (802.11n-20MHz, Ch 11,MCS5)

Date: 9.SEP.2015 14:06:32

Date: 9.SEP.2015 14:32:30

Fig.56 Maximum Average Output Power (802.11n-20MHz, Ch 6,MCS6)

Date: 9.SEP.2015 14:35:43

Date: 9.SEP.2015 14:07:00

Fig.58 Maximum Average Output Power (802.11n-20MHz, Ch 1,MCS7)

Date: 9.SEP.2015 14:34:44

Date: 9.SEP.2015 14:35:16

Fig.60 Maximum Average Output Power (802.11n-20MHz, Ch 11,MCS7)

Fig.62 Power Spectral Density (802.11b, Ch 6)

Date: 9.SEP.2015 10:36:04

Fig.64 Power Spectral Density (802.11g, Ch 1)

No. I15N00961-WLAN Page 65 of 104

Date: 9.SEP.2015 10:35:44

Date: 9.SEP.2015 10:35:09

Fig.66 Power Spectral Density (802.11g, Ch 11)

No. I15N00961-WLAN Page 66 of 104

Date: 9.SEP.2015 10:36:21

Date: 9.SEP.2015 10:36:43

No. I15N00961-WLAN Page 67 of 104

Date: 9.SEP.2015 10:37:03

Date: 9.SEP.2015 10:39:47

Fig.70 Occupied 6dB Bandwidth (802.11b, Ch 1)

Date: 9.SEP.2015 10:40:48

Date: 9.SEP.2015 10:41:37

Fig.72 Occupied 6dB Bandwidth (802.11b, Ch 11)

Spe	ectrun	n	٦												
Ref	Level	10.0	0 dBm	1			RBW :	100 kHz							
Att			30 dB	SWT	1 ms	•	VBW 🔅	300 kHz	N	lode Auto	Sweep	5			
TDF															
O 1Pk	< Max														
											D3[1]				-0.02 dB
0 dB	m											M2		1	5.5860 MHz
0.00				M1							M1[1]	T			-10.88 dBm
-10 (dBm	D1 .	10.75		ملير	unl\	mouth	ment	may	mentres	www	vedle	Munl B3	2.4	044020 GHz
		-	10.70	I I						V					
-20 0	dBm—			H							-		4		
				0									a a	6	
-30 (dBm—	<u> </u>	1 Strate	+				<u> </u>			+			man and a second	
m	mention	from	and the second s											n.	much
-40 0	dBm—										-				
E0.	-0														
-50 (JBIII-														
-60 (-IBro														
-00 (abiii														
-70 (dBm														
-80 (dBm—	<u> </u>						<u> </u>							
CE 2	2 4 1 2 6	247							601	nte				Snar	20.0 MHz
Ma	kor								571	P.3				opu	
Ne	Tunc	Pof	Tro	Others	luc	Т	Pore	2000		unction			Eupotion	Pocult	
1	NI	Rei	1	2 404402		, –		e dem		incuon			Function	Result	
	N2		1	2.416002			-10.6	75 dBm	<u> </u>						
2	192	N1	1	10993			-97	a db co	<u> </u>						
لئا	03	IN1	T	15.580	meta	-	-0	.02 uB							
[Л								M	easurin	g		444	09.09.2015 10:43:18

Date: 9.SEP.2015 10:43:18

Date: 9.SEP.2015 10:44:09

Fig.74 Occupied 6dB Bandwidth (802.11g, Ch 6)

Spe	ectrun	n	٦									
Ref	Level	10.0)0 dBm	1	RBW	100 kHz						
Att			30 dB	SWT 1 m	s 👄 VBW	300 kHz	M	lode Auto) Sweep			
TDF	-											
1Pl	k Max											
									D3[1]			0.00 dB
0 dB	m	<u> </u>			M2						15	5.9330 MHz
				M1. 1	T 6.	1.0			M1[1]	d les	-	10.33 dBm
10	dBm	D1 -	-10.13	D dBm	weather way	AN WANT	Andway	person	10-0-0-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	milling	2.45	40550 GHz
							Ĭ	ř.				
-20	dBm—			1					-	7		
20	dD ee		٦.									
-30	aвт—		م مريد								the second secon	
-40	aben-v	m									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	minun
	abiii											
-50	dBm—	<u> </u>										
-60	dBm—	+							-			
-70	dBm—											
	dBro											
-80	ивт—											
CF :	2.462 (GHz					691	pts			Span	30.0 MHz
Mai	rker]
No	Туре	Ref	Trc	Stimulus	Resp	onse	Fι	inction		Function	Result	
1	N1		1	2.454055 GH	lz -10.	33 dBm						
2	N2		1	2.457007 GH	lz -4.	13 dBm						
3	D3	N1	1	15.933 MH	- Iz	0.00 dB						
								М	easuring	-		09.09.2015
									casaringin			10:44:52

Date: 9.SEP.2015 10:44:52

Date: 9.SEP.2015 10:45:54

Fig.76 Occupied 6dB Bandwidth (802.11 n-20MHz, Ch 1)

Spe	ectrun	n	٦												
Ref Att	Level	10.0	0 dBm 30 dB	swt	1 ms		RBW VBW	100 ki 300 ki	Hz Hz I	Mode	Auto) Sweep			
TDF															
●1PI	< Max														
												D3[1]			-0.28 dB
0 dB	m	<u> </u>						-						1	7.3230 MHz
											- M	M1[1]			-13.25 dBm
-10 (dBm—	0.1	10.000	M1. A	July	hard	howly	mon	where	hund	m	andrah	ashenher	2.43 A	283600 GHZ
		- 10	13.080	asm—						W.			4	4	
-20 (dBm—			d											
	dD ee		s se	1										4	
-30 (ивт—		م م											~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-4111	ABIN_M	m	~~~											60	mound
	abin														
-50 (dBm—	<u> </u>						_							
-60 (dBm—	<u> </u>						+		+					
-70 (dBm—							1		+					
-80 (dBm—														
CF 2	2.437 (GHz							69	1 pts				Spar	n 30.0 MHz
Mai	rker														
No	Туре	Ref	Trc	Stimu	ılus		Resp	onse	F	unctio	n		Function	n Result	
1	N1		1	2.4283	6 GH	z	-13.	25 dBr	n						
2	N2		1	2.43947	5 GH	z	-7.	08 dBr	n						
3	D3	N1	1	17.32	з мн	z	-	0.28 d	в						
_											M	escuring		4444	09.09.2015
											14	casuring			10:46:46

Date: 9.SEP.2015 10:46:45

Date: 9.SEP.2015 10:47:32

Fig.78 Occupied 6dB Bandwidth (802.11 n-20MHz, Ch 11)

No. I15N00961-WLAN Page 72 of 104

Spe	ectrun	n	٦											
Ref Att	Level	-10. /100	00 dBi 10 d	m B SW DF	T 18.9	e F μs e V	RBW BW	100 kH 300 kH	z z Mode	Auto FFT				
O 1Rr	n AvgL	og 0												
	-									M1[1]			2.40	-55.63 dBm 3000000 GHz
-20 (dBm—								-					
-30 (dBm—						+				_			
-40 (dBm—						+							
-50 (dBm-			\vdash					M1					
-60 (dBm—				-		+							
-70 (dBm—						+							
-80 (dBm—						+				_			
-90 (dBm—						+							+
-100) dBm—						+							
CF 2	2.4 GH	L z						69	1 pts				Sp	an 2.0 MHz
Mai	rker								•					
No	Туре	Ref	Trc	Stin	ulus	Res	pons	e	Function		Fur	nction	Result	
1	N1		1		2.4 GHz	-55	5.58 d	Bm B	and Power					-43.85 dBm
									٩ (teasuring	CHARMEN IN COLUMN		444	09.09.2015

Date: 9.SEP.2015 11:07:26

Date: 9.SEP.2015 11:07:59

Fig.80 Band Edges (802.11b, Ch 11)

No. I15N00961-WLAN Page 73 of 104

Spec	ctrum	ı	ſ											
Ref L Att Coun	.evel	-10.	00 dBn 10 dB TI	ו א פא יז DF	Г 18.9	● RB µs ● VB	W 100 W 300	kHz kHz	Mode	Auto FFT				
●1Rm	AvgLo	g												
		_								M1[1]			2.4	-56.51 dBm 0000000 GHz
-20 dE	sm-													
-30 dE	Bm-							_						
-40 dE	Bm-							_				+		
-50 dE	Bm-							M		+				
-60 dE	Bm-	\sim					~	-			_	+		
-70 dE	Bm-											+		
-80 dE	Bm-							_						
-90 dE	Bm-							_				-		
-100 c	dBm-											+		
CF 2.	.4 GHz	2						691	ots				S	Dan 2.0 MHz
No	er Tvne	Ref	Trc	Stim	ulus	Respo	inse	Eu	nction		Ei	unction	Result	
1	N1		1	2.	4 GHz	-56.5	1 dBm	Ban	d Power				mosun	-45.33 dBm
)[) M	leasuring			444	09.09.2015

Date: 9.SEP.2015 11:06:51

Date: 9.SEP.2015 11:05:16

Fig.82 Band Edges (802.11g, Ch 11)

No. I15N00961-WLAN Page 74 of 104

Spectru	m	ſ												Ē	-
Ref Leve Att Count 10	-10. D/100	00 dBm 10 dB TI	N S SWT DF	18.9 µ	e RBN JS e VBN	₩ 100 ₩ 300	kHz kHz	Mode	Auto FFT						
●1Rm Avg	Log														٦
00 d0m									M1[1]				2.4	-56.41 dB 2000000 GF	m ₁z
-20 ubiii—															
-30 dBm—	1														-
-40 dBm—							+								-
-50 dBm—	+					_	M1			-				+	_
-60 dBm-		~~~								-	_				-
-70 dBm—	-						-								-
-80 dBm—				_			\rightarrow								_
-90 dBm—															_
-100 dBm-							\rightarrow		_						_
CF 2.4 G	lz						691 p	ots					Sp	oan 2.0 MHz	2]
Marker	1				_		_								4
1 NO Type	Ref	1		4 GHz	-56.4	nse I dBm	Fur	l Power			Fun	ction	Result	-46.96 dBm	
		- 1) M	leasuring				444	09.09.2015	٢

Date: 9.SEP.2015 11:06:29

Date: 9.SEP.2015 11:05:55

Fig.84 Band Edges (802.11 n-20MHz, Ch 11)

Fig.85 Conducted Spurious Emission (802.11b, Ch1, Center Frequency)

Fig.86 Conducted Spurious Emission (802.11b, Ch1, 30 MHz-3 GHz)

Fig.90 Conducted Spurious Emission (802.11b, Ch6, 3 GHz-18 GHz)

Fig.91 Conducted Spurious Emission (802.11b, Ch11, Center Frequency)

Fig.92 Conducted Spurious Emission (802.11b, Ch11, 30 MHz-3 GHz)

Fig.94 Conducted Spurious Emission (802.11g, Ch1, Center Frequency)

Fig.96 Conducted Spurious Emission (802.11g, Ch1, 3 GHz-18 GHz)

Fig.97 Conducted Spurious Emission (802.11g, Ch6, Center Frequency)

Fig.100 Conducted Spurious Emission (802.11g, Ch11, Center Frequency)

Fig.102 Conducted Spurious Emission (802.11g, Ch11, 3 GHz-18 GHz)

Fig.103 Conducted Spurious Emission (802.11n-20M, Ch1, Center Frequency)

Fig.104 Conducted Spurious Emission (802.11n-20M, Ch1, 30 MHz-3 GHz)

No. I15N00961-WLAN Page 86 of 104

Fig.108 Conducted Spurious Emission (802.11n-20M, Ch6, 3 GHz-18 GHz)

Fig.109 Conducted Spurious Emission (802.11n-20M, Ch11, Center Frequency)

Fig.110 Conducted Spurious Emission (802.11n-20M, Ch11, 30 MHz-3 GHz)

Fig.111 Conducted Spurious Emission (802.11n-20M, Ch11, 3 GHz-18 GHz)

Fig.112 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

No. I15N00961-WLAN Page 89 of 104

Fig.113 Radiated Spurious Emission (802.11b, Ch1, 1 GHz-18GHz)

Fig.114 Radiated Spurious Emission (802.11b, Ch6, 9 kHz-30MHz)

No. I15N00961-WLAN Page 90 of 104

FCC-RE1-30MHz-1GHz

Fig.115 Radiated Spurious Emission (802.11b, Ch6, 30MHz-1 GHz)

Fig.116 Radiated Spurious Emission (802.11b, Ch6, 1 GHz-18GHz)

No. I15N00961-WLAN Page 91 of 104

FCC-RE4-18-26.5GHz

Fig.118 Radiated Spurious Emission (802.11b, Ch11, 1 GHz-18 GHz)

FCC-RE2-Power-2.38GHz-2.43GHz

Fig.119 Radiated Emission Power (802.11b, Ch1, 2380GHz~2450GHz)

Fig.120 Radiated Emission Power (802.11b, Ch11, 2450GHz~2500GHz)

No. I15N00961-WLAN Page 93 of 104

Fig.122 Radiated Spurious Emission (802.11g, Ch6, 30MHz-1 GHz)

No. I15N00961-WLAN Page 94 of 104

Fig.124 Radiated Spurious Emission (802.11g, Ch6, 18 GHz-26.5GHz)

TTL

Fig.125 Radiated Spurious Emission (802.11g, Ch11, 1 GHz-18 GHz)

Fig.126 Radiated Emission Power (802.11g, Ch1, 2380GHz~2450GHz)

FCC-RE2-Power-2.45GHz-2.50GHz

Fig.128 Radiated Spurious Emission (802.11n, Ch1, 1 GHz-18GHz)

No. I15N00961-WLAN Page 97 of 104

FCC-RE1-30MHz-1GHz

Fig.129 Radiated Spurious Emission (802.11n, Ch6, 30MHz-1 GHz)

Fig.130 Radiated Spurious Emission (802.11n, Ch6, 1 GHz-18GHz)

No. I15N00961-WLAN Page 98 of 104

FCC-RE4-18-26.5GHz

Fig.131 Radiated Spurious Emission (802.11n, Ch6, 18 GHz-26.5GHz)

Fig.132 Radiated Spurious Emission (802.11n, Ch11, 1 GHz-18 GHz)

FCC-RE2-Power-2.38GHz-2.43GHz

Fig.133 Radiated Emission Power (802.11n, Ch1, 2380GHz~2450GHz)

Fig.134 Radiated Emission Power (802.11n, Ch11, 2450GHz~2500GHz)

No. I15N00961-WLAN Page 100 of 104

ESH2-Z5 Scan-FCC

Fig.135 AC Powerline Conducted Emission (Traffic, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.202000	40.1	GND	L1	10.0	23.4	63.5
0.358000	40.8	GND	L1	10.0	18.0	58.8
0.370000	40.4	GND	L1	10.0	18.1	58.5
0.458000	36.1	GND	L1	10.0	20.6	56.7
0.806000	35.6	GND	L1	10.1	20.4	56.0
0.906000	34.7	GND	L1	10.1	21.3	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.362000	30.2	GND	L1	10.0	18.5	48.7
0.370000	29.3	GND	L1	10.0	19.2	48.5
0.478000	24.5	GND	L1	10.0	21.9	46.4
0.806000	25.8	GND	L1	10.1	20.2	46.0
0.830000	25.7	GND	L1	10.0	20.3	46.0
1.534000	24.5	GND	L1	10.1	21.5	46.0

No. I15N00961-WLAN Page 101 of 104

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
11.578000	47.8	GND	L1	10.3	12.2	60.0
11.690000	48.3	GND	L1	10.3	11.7	60.0
11.782000	48.2	GND	L1	10.3	11.8	60.0
12.118000	46.9	GND	L1	10.4	13.1	60.0
12.234000	47.4	GND	L1	10.4	12.6	60.0
12.302000	47.3	GND	L1	10.4	12.7	60.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
10.530000	34.9	GND	L1	10.3	15.1	50.0
10.682000	35.3	GND	L1	10.4	14.7	50.0
11.302000	36.4	GND	L1	10.3	13.6	50.0
11.682000	37.3	GND	L1	10.3	12.7	50.0
11.782000	37.4	GND	L1	10.3	12.6	50.0
12.646000	36.1	GND	L1	10.4	13.9	50.0

No. I15N00961-WLAN Page 102 of 104

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	39.6	GND	Ν	10.1	26.4	66.0
0.170000	43.0	GND	Ν	10.1	21.9	65.0
0.354000	41.0	GND	L1	10.0	17.9	58.9
0.638000	42.2	GND	L1	10.0	13.8	56.0
1.570000	40.2	GND	L1	10.1	15.8	56.0
2.338000	37.9	GND	L1	10.1	18.1	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.354000	27.7	GND	L1	10.0	21.1	48.9
0.638000	31.5	GND	L1	10.0	14.5	46.0
0.798000	29.1	GND	L1	10.1	16.9	46.0
0.830000	27.5	GND	L1	10.0	18.5	46.0
1.602000	30.0	GND	L1	10.1	16.0	46.0
2.342000	27.9	GND	L1	10.1	18.1	46.0

No. I15N00961-WLAN Page 103 of 104

ESH2-Z5 Scan-FCC

MEASUREMENT RESULT: " QuasiPeak "

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
11.638000	48.2	GND	L1	10.3	11.8	60.0
11.670000	48.2	GND	L1	10.3	11.8	60.0
11.762000	48.4	GND	L1	10.3	11.6	60.0
11.810000	48.2	GND	L1	10.3	11.8	60.0
11.878000	47.8	GND	L1	10.4	12.2	60.0
12.246000	47.0	GND	L1	10.4	13.0	60.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.470000	31.6	GND	L1	10.0	14.9	46.5
6.410000	31.9	GND	L1	10.3	18.1	50.0
11.206000	36.6	GND	L1	10.3	13.4	50.0
11.654000	37.0	GND	L1	10.3	13.0	50.0
11.762000	37.6	GND	L1	10.3	12.4	50.0
12.474000	36.1	GND	L1	10.4	13.9	50.0

ANNEX C: Persons involved in this testing

Test Name	Tester		
Maximum Peak Output Power	Xu Ye, Tang Weisheng		
Peak Power Spectral Density	Xu Ye, Tang Weisheng		
Occupied 6dB Bandwidth	Xu Ye, Tang Weisheng		
Band Edges Compliance	Xu Ye, Tang Weisheng		
Transmitter Spurious Emission - Conducted	Xu Ye, Tang Weisheng		
Transmitter Spurious Emission - Radiated	Xu Ye, Tang Weisheng		
AC Powerline Conducted Emission	Xu Ye, Tang Weisheng		

END OF REPORT