

Date: 3.SEP.2014 15:27:41

Date: 3.SEP.2014 15:42:58

Fig. 60 Maximum Average Output Power (802.11n-20MHz, Ch 11,MCS7)

Date: 4.SEP.2014 15:09:15

Date: 4.SEP.2014 15:01:25

Fig. 62 Maximum Average Output Power (802.11n- 40MHz,Ch6,MCS0)

Date: 3.SEP.2014 15:43:51

Date: 4.SEP.2014 15:10:10

Fig. 64 Maximum Average Output Power (802.11n- 40MHz,Ch1,MCS1)

Date: 4.SEP.2014 15:02:30

Date: 3.SEP.2014 15:44:13

Fig. 66 Maximum Average Output Power (802.11n- 40MHz, Ch11, MCS1)

Date: 4.SEP.2014 15:10:59

Date: 4.SEP.2014 15:03:19

Fig. 68 Maximum Average Output Power (802.11n- 40MHz,Ch6,MCS2)

Date: 3.SEP.2014 15:44:33

Date: 4.SEP.2014 15:11:38

Fig. 70 Maximum Average Output Power (802.11n- 40MHz,Ch1,MCS3)

Date: 4.SEP.2014 15:03:59

Date: 3.SEP.2014 15:44:58

Fig. 72 Maximum Average Output Power (802.11n- 40MHz, Ch11, MCS3)

Date: 4.SEP.2014 15:12:29

Date: 4.SEP.2014 15:04:53

Fig. 74 Maximum Average Output Power (802.11n- 40MHz,Ch6,MCS4)

Date: 3.SEP.2014 15:45:17

Date: 4.SEP.2014 15:13:18

Fig. 76 Maximum Average Output Power (802.11n- 40MHz,Ch1,MCS5)

Date: 4.SEP.2014 15:05:39

Date: 3.SEP.2014 15:45:39

Fig. 78 Maximum Average Output Power (802.11n- 40MHz, Ch11, MCS5)

Date: 4.SEP.2014 15:13:55

Date: 4.SEP.2014 15:06:25

Fig. 80 Maximum Average Output Power (802.11n- 40MHz,Ch6,MCS6)

Date: 3.SEP.2014 15:46:05

Date: 4.SEP.2014 15:14:56

Fig. 82 Maximum Average Output Power (802.11n- 40MHz,Ch1,MCS7)

Date: 4.SEP.2014 15:07:00

Date: 3.SEP.2014 15:46:37

Fig. 84 Maximum Average Output Power (802.11n- 40MHz, Ch11, MCS7)

Date: 2.SEP.2014 09:15:27

Fig. 88 Power Spectral Density (802.11g, Ch 1)

Date: 2.SEP.2014 09:16:18

Fig. 90 Power Spectral Density (802.11g, Ch 11)

Date: 2.SEP.2014 09:17:36

Fig. 92 Power Spectral Density (802.11n-20MHz, Ch 6)

Date: 2.SEP.2014 09:20:22

Date: 2.SEP.2014 09:20:49

Date: 2.SEP.2014 09:26:41

Date: 2.SEP.2014 09:29:01

Fig. 98 Occupied 6dB Bandwidth (802.11b, Ch 6)

Date: 2.SEP.2014 09:30:29

Date: 2.SEP.2014 09:33:12

Fig. 100 Occupied 6dB Bandwidth (802.11g, Ch 1)

Spe	ectrun	n	٦							
Ref Att	Level	20.0	0 dBn 40 di	n B SWT 1 ms	 RBW 100 kHz VBW 300 kHz 	Mode Aut	o Sweep			
1P	k Max									
10 d	IBm			MI	Mundamburt	e may weathing	D3[1] M1[1]		1. 2.42	-0.01 dE F.6740 MH -0.95 dBn 97500 GH
-10	dBm	-UI -	1.030	GBM		Y		and and		
-20	dBm-	m	Nor	M					mour	mm
-30	dBm								-	
-40	dBm—									
-50	dBm—							-		
-60	dBm-							-		
-70	dBm					_				
CF :	2.437 (GHz		de la		691 pts		13 1	Span	30.0 MHz
Ma	rker									
No	Туре	Ref	Trc	Stimulus	Response	Function		Function	Result	
1	N1		1	2.42975 GHz	-0.95 dBm					
2	N2 D3	N1	1	2.435741 GHz 14.674 MHz	4.97 dBm -0.01 dB					
_		T				M	easuring		4/4	02.09.2014

Date: 2.SEP.2014 09:34:44

Date: 2.SEP.2014 09:35:55

Fig. 102 Occupied 6dB Bandwidth (802.11g, Ch 11)

Spe	ectrun	n							
Ref Att TDF	Level	20.0	0 dBr 40 di	n B SWT 1 ms	 RBW 100 kHz VBW 300 kHz 	Mode Au	to Sweep		
9 1P	k Max				10				
10 d 0 dB	IBm	D1 -	3.190	MI	hereturned	M2	D3[1] M1[1] Mpmmmm	Angellow 1	-0.64 dt 15.3260 MH; -3.19 dBn 2.4042720 GH;
-10	dBm	22		1		Y	-		
-20	dBm	over	w	1					Inchronenenen
-40	dBm—					_			
-50	dBm—					_			
-60	dBm					_			
-70	dBm					_			
CF :	2.412	GHz				691 pts	11.2	10	Span 30.0 MHz
Ma	rker						1117		
No	Туре	Ref	Trc	Stimulus	Response	Function		Function F	Result
1	N1		1	2.404272 GHz	-3.19 dBm				
2	N2 D3	N1	1	2.413259 GHz 15.326 MHz	2.82 dBm -0.64 dB		-		
	_	T					Measuring	Consumation (02.09.2014 09:37:24

Date: 2.SEP.2014 09:37:24

Date: 2.SEP.2014 09:38:47

Fig. 104 Occupied 6dB Bandwidth (802.11 n-20MHz, Ch 6)

Spec Ref L	ctrun .evel	n 20.0	0 dBn	n	RBW 100 kHz				
Att TDF			40 di	SWT 1 ms	VBW 300 kHz	Mode Aut	to Sweep		
1Pk	Max								
10 dB 0 dBm	m			M3 to	havelow	M2	D3[1] M1[1]	J	0.52 df 15.3690 MH -3.34 dBn 2.4542290 GH
-10 di	Bm	01 -	2,860	dBm to a start		Y		- and	
-20 di	Bm	~~	w						Intraveran
-40 di	Bm—								
-50 di	Bm—								
-60 di	Brn-					_			
-70 di	Bm—								
CF 2.	462 (GHz				691 pts		13 NJ	Span 30.0 MHz
Mark	(er						-11-		
No 1	Гуре	Ref	Trc	Stimulus	Response	Function		Function R	esult
1	N1		1	2.454229 GHz	-3.34 dBm		-		
3	N2 D3	N1	1	2.463259 GHz 15.369 MHz	0.52 dB				
		T					teasuring	QARABAR .	02.09.2014

Date: 2.SEP.2014 09:40:37

Date: 2.SEP.2014 09:42:39

Fig. 106 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

Spe	ectrun	n	٦						
Ref Att TDF	Level	20.0	0 dBn 40 di	n B SWT 1.1 m:	RBW 100 kH	iz Iz Mode At	uto Sweep		
D 1P	< Max								
10 d 0 dB	8m	D1 -	3 910		mulatedutited	M2	D3[1] M1[1] Jufferhal and file	2.	-0.45 dE 34.7320 MHz -4.28 dBm 4198940 GHz
-10 (dBm			1		-V			
-20	dBm	noun	ur	1				have	durnumer
-40 (dBm—					_			
-50 (dBm—								
-60	dBm					_			
-70 (dBm					_			
CF 2	2.437 (GHz		<u> </u>		691 pts		Sp	an 60.0 MHz
Mar	rker								
No	Туре	Ref	Trc	Stimulus	Response	Function	F	Function Result	
1	N1		1	2.419894 GHz	-4.28 dBm				
2	N2 D3	N7	1	2,440734 GHz 34,732 MHz	1.10 dBm -0.45 dB		-		
_		71	_			M	easuring 👔	LANDIA 🖬 🦇	82.09.2014

Date: 2.SEP.2014 09:44:43

Date: 2.SEP.2014 09:46:36

Fig. 108 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 9)

Ref Lo Att Count	evel t 100/	0.00 2 100	dBm 0 dB TI	SWT DF	18.9 į	JS 🖷	RBW VBW	100 kH 300 kH	z z Mode	Auto FFT				
1Rm	AvgLo	g												
										M1[1]				-45.44 dBr
-10 dB	m—			-		_			-	1			2.40	1000000 GH
-20 dB	m			-	-				_	_				
30 dB	m—								_	_		-		-
40 d8	m-			~	-	-	-		MI			-		
50 dB	m		-			_				-	i.	_		
60 dB	m				_				_	_		-		
70 dB	m				-				_			-		-
-80 dB	m—		-		-							-		
90 dB	m								_		_			-
CF 2.4	4 GHz	6	_			_			691 pts				Sp	an 2.0 MHz
Marke	er	0.0	T						5	r			0	
1	N1	Ket	1	stin	2.4 GH	z	-45.4	4 dBm	Band Powe	r	F	unction	Result	-31.71 dBm

Date: 2.SEP.2014 09:56:27

Date: 2.SEP.2014 09:58:05

Fig. 110 Band Edges (802.11b, Ch 11)

Ref Lo Att Count	evel : 100/	0.00 2 100	dBm 0 dB TE	SWT	18.9 į	15 .	RBW VBW	100 kH 300 kH	z z Mode /	uto FFT				
1Rm	AvgLo	g												
										M1[1]			and a	-48.11 dBr
-10 dB	m								-	1		-	2.4	0000000 GH
-20 dB	m			-					-		-	_	1	
-30 dB	m									_		+	-	
-40 dB	m—			-					MT	_	_			-
SO dB	m	-	~~			~	~	-	-	\rightarrow			-	
60 dB	m				_							_		
-70 dB	m-											_		
-80 dB	m			_	-							-	-	
90 dB	m			-						_	_	-		
CF 2.4	i GHz	ŝ	_						691 pts				S	pan 2.0 MHz
Marke	er		-			-	-			-				
NO T	N1	Ref	Trc	Stin	2.4 GH	2	-48.1	1 dBm	Function Band Power	r .	3	Functio	on Result	-37.28 dBm

Date: 2.SEP.2014 09:59:53

Date: 2.SEP.2014 09:59:01

Fig. 112 Band Edges (802.11g, Ch 11)

Ref Level 0.00 dBm Att 20 dB SWT 18.9 µs	 RBW 100 kHz VBW 300 kHz Mod 	le Auto FFT	
1Rm AvgLog			
		M1[1]	-46.93 dBn
-10 dBm-		-1-1-	2.4000000 GH
-20 dBm-			
-30 dBm			
-40 dBm	Mi		
50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
90 dBm			
CF 2.4 GHz	691 pts		Span 2.0 MHz
Marker			di n di
1 N1 1 2.4 GHz	-47.00 dBm Band Po	ower Fur	-36.73 dBm

Date: 2.SEP.2014 10:00:41

Date: 2.SEP.2014 10:02:43

Fig. 114 Band Edges (802.11 n-20MHz, Ch 11)

Ref Level 0.00 dBm Att 20 dB sw Count 100/100 TDE	T 18.9 µs	 RBW 100 kH VBW 300 kH 	z Z Mode Auto Fi	FT	
1Rm AvgLog					
			M1[1]	-55.24 dBn
-10 dBm			1		2.4000000 GH
-20 dBm					
-30 dBm			_		
-40 dBm			_		
-50 dBm			MI	-	
-60 dBm-					
-70 dBm	-				
-80 dBm					
-90 dBm-			_		
CF 2.4 GHz			691 pts		Span 2.0 MHz
Marker					
No Type Ref Trc Sti 1 N1 1 1	2.4 GHz	-55,16 dBm	Function Band Power	Functio	n Result -44.40 dBm

Date: 2.SEP.2014 10:01:21

Date: 2.SEP.2014 10:02:13

Fig. 116 Band Edges (802.11 n-40MHz, Ch 9)

Date: 2.SEP.2014 14:05:29

Ref Level 10.00 dBm	RBW 100 kHz			[~
Att 30 dB SWT 1	50 ms 🖷 VBW 300 kHz	Mode Auto Sweep		
TDF		11		
1Pk Max		1		1
0 d8m				
-10 dBm-01 -11.560 dBm				
20 dBm-			0	
-30 dBm	1 1 4 10 10 10 10 10 10 10 10	and the second		wanter which
40 dBm	want martin martine	and a the source of the second s	mound	
50 dBm-				_
60 dBm	-			
-70 dBm				
80 dBm				
Start 3.0 GHz	69	1 pts		Stop 18.0 GHz
		Measuring	ALALMAN AN A	82.09.2014

Date: 2.SEP.2014 10:09:48

Fig. 123 Conducted Spurious Emission (802.11b, Ch11, Center Frequency)

Date: 2.SEP.2014 11:23:40

Ref Level 10.00 dBm	RBW 100 kHz			1
Att 30 dB SWT 1	50 ms 🖷 VBW 300 kHz	Mode Auto Sweep		
TDF		10		
1Pk Max	1 1			
0 dBm				
-10 dBm-01 -11.370 dBm				
20 dBm			7	
30 dBm			de advante	mmm
40 dBm	a hu hu al hard and	Man Million Constraints	how	
50 dBm				
60 dBm				
70 dBm				
80 dBm				
Start 3.0 GHz	691	pts	S	top 18.0 GHz
T		Measuring	RARANAN 🖬 🚧	82.09.2014

IPk Max M1[1] 1.1 0 dBm 1.1 2.417 -10 dBm 1.1 1.1 -20 dBm 1.1 1.1 -20 dBm 1.1 1.1 -30 dBm 1.1 1.1 -50 dBm 1.1 1.1 -60 dBm 1.1 1.1 -70 dBm 1.1 1.1 -80 dBm 1.1 1.1	Ref Level Att TDF	10.00 dBm 30 dB	SWT 2	● RBV 9.7 ms ● VBV	V 100 kHz V 300 kHz	Mode Aut	to Sweep			
0 dBm 1.1 -10 dBm 1.1 -10 dBm 1.1 -20 dBm 01 -17.070 dBm -30 dBm -10 -50 dBm -10 -60 dBm -10 -70 dBm -10	1Pk Max									
0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 d						M	1[1]	N	11	1.34 dB 2.41760 G
-10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70	0 dBm		-	-				1	(
-10 dBm										
20 dBm 21 - 17.070 dBm 20 dBm -30 dBm	-10 dBm		-	-						
-20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -80 dBm		01 -17.070	dBm	-						
-30 dBm	-20 dBm		1					0		
199 dBm	-30 dBm			_						
49 dBm	3233118252								1 monte	to a state of the
-50 dBm	HAD dBitmond	1 wow Wadynes	a strates de	and a change of the	an Asia had a sure	Humber	C. Martine		Marana	anna charlen
-50 dBm	44 646									
-60 dBm	-50 dBm									
-70 dBm	-60 dBm									-
-70 dBm	15-17-17-17-18-5-1									
-80 dBm	-70 dBm								-	
-80 dBm	ener en cos									
	-80 dBm		(a)				-		-	
Start 30.0 MHz 691 pts Stop 3.	Start 30.0	MHz			691	pts		-		Stop 3.0 GH

Date: 2.SEP.2014 14:07:19

Fig. 129 Conducted Spurious Emission (802.11g, Ch6, Center Frequency)

Date: 2.SEP.2014 14:08:40

Ref Level 10.00 dBm	🖷 RBW	100 kHz		
Att 30 dB	SWT 150 ms 🖷 VBW 🗄	300 kHz Mode Aut	o Sweep	
TDF TDF				
TEK MOX				
0 dBm-				
-10 dBm				
20 dBm	m			
-30 dBm				1
How dem-	manderally amount	manufit madile and	helperson and helperson	and a construction of the course
-50 dBm				
-60 dBm				
-70 dBm				
80 dBm-				
Start 3.0 GHz		691 pts		Stop 18.0 GHz

Date: 2.SEP.2014 14:10:01

Fig. 140 Conducted Spurious Emission (802.11n-20M, Ch6, 3 GHz-18 GHz)

Fig. 141 Conducted Spurious Emission (802.11n-20M, Ch11, Center Frequency)

Ref Level 10.00 dBm	👄 RB	W 100 kHz	12 T		
Att 30 dB	SWT 150 ms 🖷 VB	W 300 kHz Mod	le Auto Sweep		
1Pk Max		1 1	10		1
0 dBm					
-10 dBm					
20 dBm 01 -17.260 d	Bm				
-30 dBm	edower hand here	merennoanter	masterature	and a have more thank	montim
-50 dBm					
60 dBm					
70 dBm					
-80 dBm	-				
Start 3.0 GHz		691 pts			Stop 18.0 GHz

Fig. 144 Conducted Spurious Emission (802.11n-40M, Ch3, Center Frequency)

Fig. 147 Conducted Spurious Emission (802.11n-40M, Ch6, Center Frequency)

Fig. 148 Conducted Spurious Emission (802.11n-40M, Ch6, 30 MHz-3 GHz)

Fig. 149 Conducted Spurious Emission (802.11n-40M, Ch6, 3 GHz-18 GHz)

Fig. 150 Conducted Spurious Emission (802.11n-40M, Ch9, Center Frequency)

Fig. 151 Conducted Spurious Emission (802.11n-40M, Ch9, 30 MHz-3 GHz)

Ref Level 10.00 dBm	🖷 RBW	100 kHz			
Att 30 dB	SWT 150 ms 🖷 VBW	300 kHz Mode	Auto Sweep		
TDF					
1PK Max					
0 dBm					<u>.</u>
10 dBm					
20 dBm 01 -21.800 dB	m				
30 dBm				a a success	Hen An west
unpetrondurtuettellennos	umulture	nautorabilitican	fundamental	averation the section of	00- V ~VIV
-50 dBm					
60 dBm					-
70 dBm					
80 dBm					
					10.0.014
start 3.0 GHZ		691 pts		Sto	p 18.0 GH2

Fig. 153 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 155 Radiated Spurious Emission (802.11b, Ch1, 1 GHz-18 GHz)

Fig. 156 Radiated Spurious Emission (802.11b, Ch6, 30MHz-1 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 157 Radiated Spurious Emission (802.11b, Ch6, 1 GHz-18 GHz)

Fig. 158 Radiated Spurious Emission (802.11b, Ch11, 30MHz-1 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 159 Radiated Spurious Emission (802.11b, Ch11, 1 GHz-18 GHz)

Fig. 160 Radiated Emission Power (802.11b, Ch1, 2380GHz~2450GHz)

Fig. 161 Radiated Emission Power (802.11b, Ch11, 2450GHz~2500GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 163 Radiated Spurious Emission (802.11g, Ch1, 1 GHz-18 GHz)

Fig. 164 Radiated Spurious Emission (802.11g, Ch6, 30MHz-1 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 165 Radiated Spurious Emission (802.11g, Ch6, 1 GHz-18 GHz)

Fig. 166 Radiated Spurious Emission (802.11g, Ch11, 30MHz-1 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 167 Radiated Spurious Emission (802.11g, Ch11, 1 GHz-18 GHz)

FCC-RE2-BAND Edge-Low Band FCC-Limit Linemy/ym Fewel timit-O -ra Frequency in MHz

Fig. 168 Radiated Emission Power (802.11g, Ch1, 2380GHz~2450GHz)

FCC-RE2-BAND Edge-High Band

Fig. 169 Radiated Emission Power (802.11g, Ch11, 2450GHz~2500GHz)

Fig. 171 Radiated Spurious Emission (802.11n-20M, Ch1, 1 GHz-18 GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 173 Radiated Spurious Emission (802.11n-20M, Ch6, 1 GHz-18 GHz)

Fig. 175 Radiated Spurious Emission (802.11n-20M, Ch11, 1 GHz-18 GHz)

FCC-RE2-BAND Edge-Low Band

Fig. 177 Radiated Emission Power (802.11n-20M, Ch11, 2450GHz~2500GHz)

FCC-RE2-1-18G-PEAK+AV

Fig. 179 Radiated Spurious Emission (802.11n-40M, Ch3, 1 GHz-18 GHz)

Fig. 181 Radiated Spurious Emission (802.11n-40M, Ch6, 1 GHz-18 GHz)


```
FCC-RE2-1-18G-PEAK+AV
```

Fig. 183 Radiated Spurious Emission (802.11n-40M, Ch9, 1 GHz-18 GHz)

FCC-RE2-BAND Edge-Low Band

Fig. 184 Radiated Emission Power (802.11n-40M, Ch3, 2380GHz~2450GHz)

Fig. 185 Radiated Emission Power (802.11n-20M, Ch9, 2450GHz~2500GHz)

No. I14N00955-WLAN Page129 of 131

Fig. 186 Radiated emission: 18 GHz - 26 GHz

No. I14N00955-WLAN Page130 of 131

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.642000	44.4	FLO	L1	10.0	11.6	56.0
0.698000	42.5	FLO	L1	10.0	13.5	56.0
0.750000	44.0	FLO	L1	10.0	12.0	56.0
0.802000	43.4	FLO	L1	10.1	12.6	56.0
0.862000	39.4	FLO	L1	10.0	16.6	56.0
0.906000	43.2	FLO	L1	10.1	12.8	56.0

MEASUREMENT RESULT: " QuasiPeak "

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.698000	29.5	FLO	L1	10.0	16.5	46.0
0.750000	31.4	FLO	L1	10.0	14.6	46.0
0.802000	33.0	FLO	L1	10.1	13.0	46.0
0.862000	27.6	FLO	L1	10.0	18.4	46.0
0.914000	25.1	FLO	L1	10.1	20.9	46.0
0.966000	23.0	FLO	L1	10.1	23.0	46.0

No. I14N00955-WLAN Page131 of 131

	MEASUREMENT	RESULT:	" QuasiPeak
--	-------------	----------------	-------------

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.750000	48.2	FLO	L1	10.0	7.8	56.0
0.782000	44.6	FLO	L1	10.1	11.4	56.0
0.810000	44.8	FLO	L1	10.1	11.2	56.0
0.826000	49.4	FLO	L1	10.0	6.6	56.0
0.886000	24.1	FLO	L1	10.1	31.9	56.0
0.914000	23.9	FLO	L1	10.1	32.1	56.0

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.678000	33.5	FLO	L1	10.0	12.5	46.0
0.730000	35.2	FLO	L1	10.0	10.8	46.0
0.754000	35.0	FLO	L1	10.1	11.0	46.0
0.782000	34.4	FLO	L1	10.1	11.6	46.0
0.834000	7.3	FLO	L1	10.0	38.7	46.0
0.886000	8.3	FLO	L1	10.1	37.7	46.0

*** END OF REPORT BODY ***