

FCC PART 22H, PART 24E

TEST REPORT

For

Shenzhen Sang Fei Consumer Communications Co., Ltd.

11 Science and Technology Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

FCC ID: VQRCTE133P97681EK

Report Type: Class II Permissive	Change	Product Type: GSM Mobile Phone						
Test Engineer:	Jack Zhao	Jack.zhao						
Report Number:	RSZ120813003-00A1							
Report Date:	2012-08-21							
	Alvin Huang	Di Hung						
Reviewed By:	RF Leader	0						
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn							

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government. * This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "★" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
	3
RELATED SUBMITTAL(S)/GRANT(S)	3
Test Facility	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	5
EQUIPMENT MODIFICATIONS	5
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §1.1307 & §2.1093 - RF EXPOSURE	7
APPLICABLE STANDARD	7
Test Result	7
FCC §2.1047 - MODULATION CHARACTERISTIC	8
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	9
APPLICABLE STANDARD	9
TEST PROCEDURE	9
TEST EQUIPMENT LIST AND DETAILS	9
	10
FCC §2.1049, §22.917, §22.905 & §24.238 - BANDWIDTH	12
Applicable Standard	12
TEST DATA	12
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	13
Applicable Standard	13
TEST DATA	13
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	14
APPLICABLE STANDARD	14
Test Procedure	14
TEST EQUIPMENT LIST AND DETAILS	14
	13
FCC §22.917(A) & §24.238(A) - BAND EDGES	17
Applicable Standard	17
I EST DATA	17
FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	18
APPLICABLE STANDARD	18
TEST DATA	18

FCC Part 22H/24E

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Shenzhen Sang Fei Consumer Communications Co., Ltd.'s product, model number: E133 (FCC ID: VQRCTE133P97681EK) or the "EUT" in this report was a GSM Mobile Phone, which was measured approximately: 10.5 cm (L) x 6.2 cm (W) x 1.4 cm (H), rated input voltage: DC 3.7 V Li-ion battery

* All measurement and test data in this report was gathered from production sample serial number: 1207038 (Assigned by Shenzhen BACL). The EUT was received on 2012-08-13.

Objective

This test report is prepared on behalf of *Shenzhen Sang Fei Consumer Communications Co., Ltd.* in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communication Commissions rules.

The objective is to determine the compliance of the EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

This is the CIIPC application of the device. The difference between the original device and the current one is the GSM Antenna.

For the change made to the device, the radiated power and field strength of spurious radiation were performed. All the other test data please refer to the report Number RSZ120711001-00C with FCC ID: VQRCTE133P97681EK, which was granted on 2012-08-08.

Related Submittal(s)/Grant(s)

Original submissions with FCC ID: VQRCTE133P97681EK which is granted on 2012-08-08.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2009.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp.(Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing according to TIA/EIA-603-C.

The GSM/PCS item test was performed with the EUT operating at normal mode.

The GPRS item test was performed with the EUT operating at testing mode.

EUT Exercise Software

No software was used.

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2012-04-11	2013-04-10

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307, §2.1093	RF Exposure (SAR)	Compliance*
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
\$ 2.1049; \$ 22.905 \$ 22.917; \$ 24.238	Occupied Bandwidth	Compliance**
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance**
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance**
\$ 2.1055 \$ 22.355; \$ 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance**

Note:

Compliance*: Please refer to SAR report released by BACL, report number: RSZ120813003-20A1 Compliance**: Please refer to the report Number RSZ120711001-00C with FCC ID: VQRCTE133P97681EK, which was granted on 2012-08-08.

FCC §1.1307 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC§1.1307 and §2.1093.

Test Result

Compliance, please refer to the SAR report: RSZ120813003-20A1.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

Test Equipment List and Details

Manufacturer	Description Model		Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2012-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2012-11-27
HP	Signal Generator	8657A	3217A04699	2011-12-19	2012-12-18
HP	Synthesized Sweeper	8341B	2624A00116	2012-05-17	2013-05-16
COM POWER	Dipole Antenna	AD-100	041000	N/A	N/A
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2013-02-10
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2012-04-11	2013-04-10

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Jack Zhao on 2012-07-19.

Conducted Power

Radiated Power

ERP & EIRP

GSM Mode:

ERP for Cellular Band (Part 22H)

Frequency	Receiver	TurnTable	Rx An	tenna		Substitute	d	Absolute	FCC P	art 22H	
(MHz)	Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
	Low Channel										
824.2	90.37	66	1.7	Н	22.5	0.69	0.0	21.81	38.45	16.64	
824.2	100.22	94	1.5	V	31.9	0.69	0.0	31.21	38.45	7.24	
				Midd	le Channe	1					
836.6	100.39	99	1.7	V	32.1	0.69	0.0	31.41	38.45	7.04	
836.6	90.62	73	1.8	Н	22.8	0.69	0.0	22.11	38.45	16.34	
			_	High	Channel				_		
848.8	100.81	46	1.5	V	32.5	0.69	0.0	31.81	38.45	6.64	
848.8	89.78	76	1.8	Н	22.0	0.69	0.0	21.31	38.45	17.14	

EIRP for PCS Band (Part 24E)

Frequency	Receiver	TurnTable	Rx An	tenna	Substituted FCC Part 2		art 24E					
(MHz)	Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)		
	Low Channel											
1850.2	92.19	52	1.6	V	21.3	1.03	9.4	29.67	33	3.33*		
1850.2	94.28	44	1.8	Н	20.2	1.03	9.4	28.57	33	4.43		
				Midd	le Channe	1						
1880.0	91.22	75	1.8	V	20.3	1.03	9.4	28.67	33	4.33		
1880.0	93.61	65	1.7	Н	19.6	1.03	9.4	27.97	33	5.03		
				High	h Channel							
1909.8	90.36	233	1.8	V	19.5	1.03	9.4	27.87	33	5.13		
1909.8	94.06	41	1.5	Н	20.0	1.03	9.4	28.37	33	4.63		

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain
Margin = Limit- Absolute Level

3) *Within measurement uncertainty!

FCC §2.1049, §22.917, §22.905 & §24.238 - BANDWIDTH

Applicable Standard

FCC §2.1049, §22.917, §22.905 and §24.238.

Test Data

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Data

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) - the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2012-11-30
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2012-11-27
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23
Mini-Circuits	Amplifier	ZVA-213+	N/A	2011-11-24	2012-11-23
HP	Signal Generator	8657A	3217A04699	2011-12-19	2012-12-18
HP	Amplifier	8447E	1937A01057	2011-11-24	2012-11-23
HP	Synthesized Sweeper	8341B	2624A00116	2012-05-17	2013-05-16
COM POWER	Dipole Antenna	AD-100	041000	N/A	N/A
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2013-02-10
Electro-Mechanics	Horn Antenna	3116	9510-2270	2011-10-14	2012-10-13
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2012-04-11	2013-04-10

Test Equipment List and Details

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Jack Zhao on 2012-08-14.

Test mode: Transmitting (worst case)

30 MHz ~ 10 GHz:

Cellular Band (Part 22H)

Frequency	Receiver	TurnTable	Rx An	tenna	-	Substitute	ed	Absolute	FCC P	art 22H	
(MHz)	Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
	Middle Channel										
2509.8	53.26	4	1.7	V	-43.1	1.46	10.7	-33.86	-13	20.86	
2509.8	54.25	84	1.8	Н	-46.5	1.46	10.7	-37.26	-13	24.26	
3346.4	45.39	141	1.7	V	-48.2	2.08	10.8	-39.48	-13	26.48	
3346.4	45.31	96	1.8	Н	-49.1	2.08	10.8	-40.38	-13	27.38	
1673.2	49.88	54	1.7	V	-50.6	0.97	9.4	-42.17	-13	29.17	
1673.2	44.33	227	1.8	Н	-58.7	0.97	9.4	-50.27	-13	37.27	
169.3	38.62	92	1.6	Н	-58.6	0.26	0.0	-58.86	-13	45.86	
515.5	38.19	73	1.8	V	-59.1	0.49	0.0	-59.59	-13	46.59	
317.1	37.26	41	1.7	V	-60.0	0.42	0.0	-60.42	-13	47.42	

30 MHz ~ 20 GHz:

PCS Band (Part 24E)

Frequency	Receiver	TurnTable	Rx An	tenna	-	Substitute	d	Absolute	FCC P	art 24E		
(MHz)	Reading (dBµV/m)	Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)		
	Middle Channel											
5550.6	50.23	323	1.8	Н	-42.2	3.94	11.7	-34.44	-13	21.44		
3700.4	54.16	106	1.7	V	-42.4	2.59	10.4	-34.59	-13	21.59		
5550.6	48.28	64	1.5	V	-42.9	3.94	11.7	-35.14	-13	22.14		
3700.4	52.97	55	1.9	Н	-44.2	2.59	10.4	-36.39	-13	23.39		
7400.8	38.67	73	1.7	Н	-49.1	3.21	11.9	-40.41	-13	27.41		
7400.8	39.69	57	1.5	V	-49.1	3.21	11.9	-40.41	-13	27.41		
311.2	39.65	41	1.8	V	-57.6	0.42	0.0	-58.02	-13	45.02		
516.7	39.33	78	1.7	V	-57.9	0.49	0.0	-58.39	-13	45.39		
165.1	38.69	138	1.8	Н	-58.6	0.26	0.0	-58.86	-13	45.86		

Note: 1) Absolute Level = SG Level - Cable loss + Antenna Gain 2) Margin = Limit- Absolute Level

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Data

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Data

Please refer to the report Number RSZ120711001-00C with FCC ID: VQRCTE133P97681EK, which was granted on 2012-08-08.

***** END OF REPORT *****