D3: DAE Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ### IMPORTANT NOTICE #### **USAGE OF THE DAE 3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: September 20, 2010 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BV-ADT (Auden) Certificate No: DAE3-579 Sep10 Accreditation No.: SCS 108 | Cheff DT ADT (Adden | | | | |--------------------------------------|--|--|------------------------| | CALIBRATION C | ERTIFICATE | | | | Object | DAE3 - SD 000 D | 03 AA - SN: 579 | | | Calibration procedure(s) | QA CAL-06.v22
Calibration proced | dure for the data acquisition electron | ics (DAE) | | Calibration date: | September 20, 20 | 110 | | | | | | (0) | | | | nal standards, which realize the physical units of a
obability are given on the following pages and are | | | All calibrations have been conducted | ed in the closed laboratory | facility: environment temperature (22 ± 3)°C and | humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 1-Oct-09 (No: 9055) | Oct-10 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V1.1 | SE UMS 006 AB 1004 | 07-Jun-10 (in house check) | In house check: Jun-11 | | | | | | | | | | | | | | | | | | Name | Function | Signature | | Calibrated by: | Dominique Steffen | Technician | 此 | | Approved by: | Fin Bomholt | R&D Director | i V Blunt | | | NE DESCRIPTION OF THE PROPERTY | | 4 CLOSOCE 1 | Certificate No: DAE3-579_Sep10 Page 1 of 5 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### **Glossary** DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV , 61nV , full range = -100...+300 mV Low Range: 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.327 ± 0.1% (k=2) | 404.379 ± 0.1% (k=2) | 404.160 ± 0.1% (k=2) | | Low Range | 3.98675 ± 0.7% (k=2) | 3.99301 ± 0.7% (k=2) | 3.94834 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 358.0 ° ± 1 ° | |---|---------------| | L : | | # **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200003.9 | 0.96 | 0.00 | | Channel X | + Input | 20003.19 | 3.09 | 0.02 | | Channel X | - Input | -19994.55 | 4.75 | -0.02 | | Channel Y | + Input | 199992.4 | -0.09 | -0.00 | | Channel Y | + Input | 19999.51 | 0.41 | 0.00 | | Channel Y | - Input | -19997.22 | 3.18 | -0.02 | | Channel Z | + Input | 200002.0 | 0.91 | 0.00 | | Channel Z | + Input | 20001.93 | 2.03 | 0.01 | | Channel Z | - Input | -19997.58 | 2.82 | -0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2000.0 | 0.02 | 0.00 | | Channel X | + Input | 199.82 | 0.12 | 0.06 | | Channel X | - Input | -200.46 | -0.56 | 0.28 | | Channel Y | + Input | 2000.3 | 0.47 | 0.02 | | Channel Y | + Input | 199.12 | -0.78 | -0.39 | | Channel Y | - Input | -201.36 | -1.16 | 0.58 | | Channel Z | + Input | 1999.9 | -0.07 | -0.00 | | Channel Z | + Input | 199.18 | -0.72 | -0.36 | | Channel Z | - Input | -201.47 | -1.47 | 0.73 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 7.07 | 5.75 | | | - 200 | -4.60 | -6.25 | | Channel Y | 200 | 9.48 | 9.62 | | | - 200 | -10.39 | -10.96 | | Channel Z | 200 | 8.79 | 8.42 | | | - 200 | -9.64 | -9.80 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.03 | 0.35 | | Channel Y | 200 | 1.14 | - | 2.31 | | Channel Z | 200 | 2.01 | 0.80 | _ | ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16343 | 16314 | | Channel Y | 16194 | 16427 | | Channel Z | 15816 | 16265 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.70 | -1.94 | 0.80 | 0.49 | | Channel Y | -1.55 | -2.12 | -0.66 | 0.27 | | Channel Z | 0.57 | -0.11 | 5.61 | 0.62 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 |