

# FCC TEST REPORT (RFID)

**REPORT NO.:** RF990129L10

MODEL NO.: F-08B

**RECEIVED:** Feb. 01, 2010 **TESTED:** Feb. 23, 2010 **ISSUED:** Feb. 24, 2010

**APPLICANT: FUJITSU LIMITED** 

ADDRESS: 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

**ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang,

Taipei Hsien 244, Taiwan, R.O.C.

**TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan

Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 22 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.





Report No.: RF990129L10 1 Report Format Version 3.0.1



# **Table of Contents**

| 1.    | CERTIFICATION                                                | 3    |
|-------|--------------------------------------------------------------|------|
| 2.    | SUMMARY OF TEST RESULTS                                      | 4    |
| 2.1   | MEASUREMENT UNCERTAINTY                                      | 4    |
| 3.    | GENERAL INFORMATION                                          | 5    |
| 3.1   | GENERAL DESCRIPTION OF EUT                                   | 5    |
| 3.2   | DESCRIPTION OF TEST MODES                                    | 6    |
| 3.2.1 | CONFIGURATION OF SYSTEM UNDER TEST                           | _    |
| 3.2.2 | TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL            | 6    |
| 3.3   | GENERAL DESCRIPTION OF APPLIED STANDARDS                     | 8    |
| 3.4   | DESCRIPTION OF SUPPORT UNITS                                 | 8    |
| 4.    | TEST TYPES AND RESULTS                                       | 9    |
| 4.1   | RADIATED EMISSION MEASUREMENT                                |      |
| 4.1.1 | LIMITS OF RADIATED EMISSION MEASUREMENT                      | 9    |
| 4.1.2 | TEST INSTRUMENTS                                             | _    |
| 4.1.3 | TEST PROCEDURES                                              | . 11 |
| 4.1.4 | DEVIATION FROM TEST STANDARD                                 | . 11 |
| 4.1.5 | TEST SETUP                                                   |      |
| 4.1.6 | EUT OPERATING CONDITIONS                                     | .12  |
| 4.1.7 | TEST RESULTS                                                 | .13  |
| 4.2   | FREQUENCY STABILITY                                          |      |
| 4.2.1 | LIMITS OF FREQUENCY STABILITY MEASUREMENT                    | .17  |
| 4.2.2 | TEST INSTRUMENTS                                             | .17  |
| 4.2.3 | TEST PROCEDURE                                               |      |
| 4.2.4 | DEVIATION FROM TEST STANDARD                                 |      |
| 4.2.5 | TEST SETUP                                                   |      |
| 4.2.6 | EUT OPERATING CONDITION                                      | .18  |
| 4.2.7 | TEST RESULTS                                                 | .19  |
| 5.    | PHOTOGRAPHS OF THE TEST CONFIGURATION                        | 20   |
| 6.    | INFORMATION ON THE TESTING LABORATORIES                      | .21  |
| 7.    | APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES |      |
|       | TO THE EUT BY THE LAB                                        | 22   |



#### 1. CERTIFICATION

**PRODUCT:** Mobile phone

MODEL: F-08B **BRAND: FOMA** 

**APPLICANT: FUJITSU LIMITED** 

**TESTED:** Feb. 23, 2010

**TEST SAMPLE:** ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.225),

ANSI C63.4-2003

The above equipment (model: F-08B) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

: Polly Chien / Specialist , DATE: Feb. 24, 2010 PREPARED BY

TECHNICAL
ACCEPTANCE
Responsible for RF

Long Chen / Senior Engineer

Long Chen / Senior Engineer

APPROVED BY

Gay Chang / Assistant Manager

Technical
Acceptance | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Feb. 24, 2010 |

Technical | Long Chen / Assistant Manager | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer | Date: Feb. 24, 2010 |

Technical | Long Chen / Senior Engineer |



# 2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

| APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.225)                                            |                                                                       |        |                                                                                     |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------|--|--|
| STANDARD<br>SECTION                                                                                  | TEST TYPE AND LIMIT                                                   | RESULT | REMARK                                                                              |  |  |
| 15.225 (a)                                                                                           | The field strength of any emissions within the band 13.553-13.567 MHz |        | Meet the requirement of limit.<br>Minimum passing margin is<br>-71.7dB at 13.56MHz. |  |  |
| The field strength of any emissions<br>15.225 (d) appearing outside of the 13.110-14.010<br>MHz band |                                                                       |        | Meet the requirement of limit.<br>Minimum passing margin is<br>-10.4dB at 53.23MHz. |  |  |
| 15.225 (e)                                                                                           | The frequency tolerance                                               | PASS   | Meet the requirement of limit.                                                      |  |  |

#### **2.1 MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| MEASUREMENT        | FREQUENCY       | UNCERTAINTY |
|--------------------|-----------------|-------------|
| Radiated emissions | 30MHz ~ 200MHz  | 3.34 dB     |
| Nadiated emissions | 200MHz ~1000MHz | 3.35 dB     |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



# 3. GENERAL INFORMATION

#### 3.1 GENERAL DESCRIPTION OF EUT

| EUT                 | Mobile phone            |
|---------------------|-------------------------|
| MODEL NO.           | F-08B                   |
| FCC ID              | VQK-F08B                |
| POWER SUPPLY        | 3.7Vdc (Li-ion battery) |
| TOWER GOLLET        | 5.4Vdc (Adapter)        |
| MODULATION TYPE     | ASK                     |
| OPERATING FREQUENCY | 13.56MHz                |
| ANTENNA TYPE        | Loop antenna            |
| DATA CABLE          | NA                      |
| I/O PORTS           | Refer to user's manual  |
| ACCESSORY DEVICES   | Battery                 |

#### NOTE:

1. The EUT is a Mobile phone. The functions of EUT listed as below:

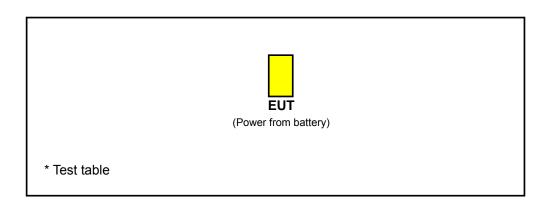
|           | TEST STANDARD REFERENCE REPO |               |
|-----------|------------------------------|---------------|
| RFID      | FCC Part 15                  | RF990129L10   |
| WCDMA 850 | FCC Part 22                  | RF990129L10-1 |

2. The EUT is powered by the following adapter and battery.

| ADAPTER (NOT FOR SALE) |                            |  |  |
|------------------------|----------------------------|--|--|
| <b>BRAND</b> SMK       |                            |  |  |
| INPUT POWER            | 100-240Vac, 0.12A, 50-60Hz |  |  |
| OUTPUT POWER           | 5.4Vdc, 700mA              |  |  |

| BATTERY |                 |  |  |  |
|---------|-----------------|--|--|--|
| BRAND   | Fujitsu Limited |  |  |  |
| MODEL   | CA54310-0005    |  |  |  |
| RATING  | 3.7Vdc, 770mAh  |  |  |  |

3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.




#### 3.2 DESCRIPTION OF TEST MODES

The EUT only have one channel.

| CHANNEL | FREQUENCY (MHz) |
|---------|-----------------|
| 1       | 13.56           |

# 3.2.1 CONFIGURATION OF SYSTEM UNDER TEST





#### 3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

| EUT<br>CONFIGURE<br>MODE | APPLICABLE TO |           | DESCRIPTION |
|--------------------------|---------------|-----------|-------------|
|                          | RE            | FT        | DESCRIPTION |
| -                        | V             | $\sqrt{}$ | -           |

Where **RE**: Radiated Emission **FT**: Frequency Tolerance

#### **RADIATED EMISSION TEST:**

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| EUT<br>CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION TYPE | AXIS OF EUT |
|--------------------------|----------------------|----------------|-----------------|-------------|
| -                        | 1                    | 1              | ASK             | Z           |

#### **FREQUENCY TOLERANCE:**

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

| EUT<br>CONFIGURE<br>MODE | AVAILABLE<br>CHANNEL | TESTED CHANNEL | MODULATION TYPE | AXIS OF EUT |
|--------------------------|----------------------|----------------|-----------------|-------------|
| -                        | 1                    | 1              | ASK             | Z           |

#### **TEST CONDITION:**

| APPLICABLE TO ENVIRONMENTAL CONDITIONS |                           | INPUT POWER | TESTED BY |
|----------------------------------------|---------------------------|-------------|-----------|
| RE                                     | 23deg. C, 68%RH, 1012 hPa | 3.7Vdc      | Brad Wu   |
| FT                                     | 20deg. C, 65%RH, 1011 hPa | 3.7Vdc      | Long Chen |



#### 3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RFID Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.225) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

**NOTE:** The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B. The test report has been issued separately.

#### 3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit.



#### 4. TEST TYPES AND RESULTS

#### 4.1 RADIATED EMISSION MEASUREMENT

#### 4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

| FREQUENCIES (MHz) | FIELD STRENGTH (microvolts/meter) | MEASUREMENT DISTANCE (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009 ~ 0.490     | 2400/F(kHz)                       | 300                           |
| 0.490 ~ 1.705     | 24000/F(kHz)                      | 30                            |
| 1.705 ~ 30.0      | 30                                | 30                            |
| 30 ~ 88           | 100                               | 3                             |
| 88 ~ 216          | 150                               | 3                             |
| 216 ~ 960         | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.



#### 4.1.2 TEST INSTRUMENTS

| DESCRIPTION & MANUFACTURER           | MODEL NO.                    | SERIAL NO.  | DATE OF CALIBRATION | DUE DATE OF CALIBRATION |
|--------------------------------------|------------------------------|-------------|---------------------|-------------------------|
| Test Receiver<br>ROHDE & SCHWARZ     | ESI7                         | 100033      | Jul. 06, 2009       | Jul. 05, 2010           |
| Spectrum Analyzer<br>ROHDE & SCHWARZ | FSP40                        | 100076      | May 26, 2009        | May 25, 2010            |
| BILOG Antenna<br>SCHWARZBECK         | VULB9168                     | 9168-160    | Apr. 27, 2009       | Apr. 26, 2010           |
| HORN Antenna<br>SCHWARZBECK          | 9120D                        | 9120D-209   | Jul. 01, 2009       | Jun. 30, 2010           |
| HORN Antenna<br>SCHWARZBECK          | BBHA 9170                    | BBHA9170243 | Dec. 25, 2009       | Dec. 24, 2010           |
| Loop Antenna                         | HFH2-Z2                      | 100070      | Jan. 14, 2009       | Jan. 13, 2011           |
| Preamplifier<br>Agilent              | 8449B                        | 3008A01964  | Nov. 09, 2009       | Nov. 08, 2010           |
| RF signal cable<br>HUBER+SUHNNER     | SUCOFLEX 104                 | 238141/4    | May 13, 2009        | May 12, 2010            |
| RF signal cable<br>HUBER+SUHNNER     | SUCOFLEX 104                 | 12738/6     | May 13, 2009        | May 12, 2010            |
| Software<br>ADT.                     | ADT_Radiated_<br>V7.6.15.9.2 | NA          | NA                  | NA                      |
| Antenna Tower<br>inn-co GmbH         | MA 4000                      | 013303      | NA                  | NA                      |
| Antenna Tower Controller inn-co GmbH | CO2000                       | 017303      | NA                  | NA                      |
| Turn Table<br>ADT.                   | TT100.                       | TT93021703  | NA                  | NA                      |
| Turn Table Controller<br>ADT.        | SC100.                       | SC93021703  | NA                  | NA                      |

NOTE:

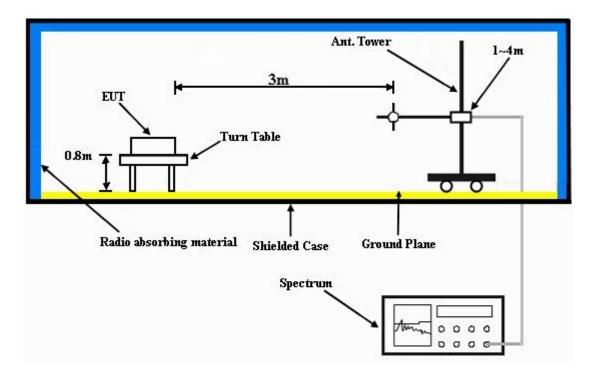
- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 988962.
- 5. The IC Site Registration No. is IC 7450F-3.



#### 4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

#### 4.1.4 DEVIATION FROM TEST STANDARD

No deviation



#### 4.1.5 TEST SETUP



For the actual test configuration, please refer to the attached file (Test Setup Photo).

#### 4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

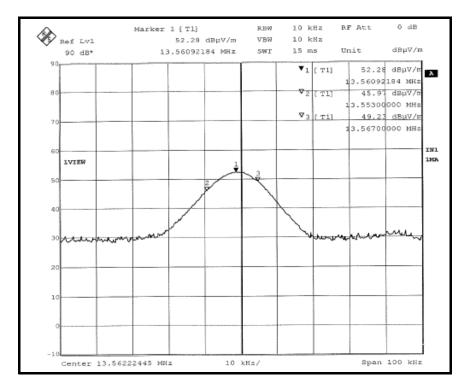


#### 4.1.7 TEST RESULTS

| EUT TEST CONDITION       |                             | MEASUREMENT DETAIL   |                    |  |
|--------------------------|-----------------------------|----------------------|--------------------|--|
| CHANNEL                  | Channel 1                   | FREQUENCY RANGE      | 13.553 ~ 13.567MHz |  |
| INPUT POWER              | 3.7\/dc                     | DETECTOR<br>FUNCTION | Quasi-Peak         |  |
| ENVIRONMENTAL CONDITIONS | 23deg. C, 68%RH<br>1012 hPa | TESTED BY            | Brad Wu            |  |

|     | ANTENNA POLARITY & TEST DISTANCE: LOOP ANTENNA OPEN AT 3m |                               |                   |                |                          |                            |                        |                                |  |  |
|-----|-----------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No. | Freq.<br>(MHz)                                            | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1   | 13.56                                                     | 52.3                          | 124.0             | -71.7          | 1.00                     | 158                        | 32.5                   | 19.8                           |  |  |

#### **REMARKS:**


- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz =

= 15848uV/m 30m = 84dBuV/m 30m =  $84+20log(30/3)^2$  3m

= 124dBuV/m

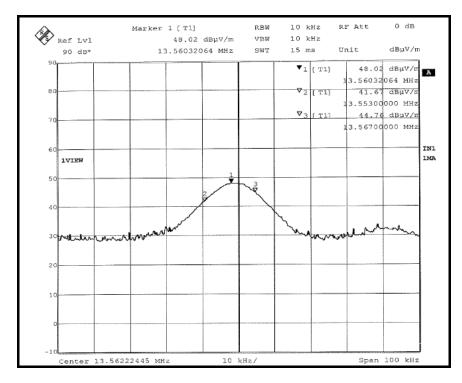




| EUT TEST CONDITION       |                             | MEASUREMENT DETAIL   |                    |  |
|--------------------------|-----------------------------|----------------------|--------------------|--|
| CHANNEL                  | Channel 1                   | FREQUENCY RANGE      | 13.553 ~ 13.567MHz |  |
| INPUT POWER              | 3.7Vdc                      | DETECTOR<br>FUNCTION | Quasi-Peak         |  |
| ENVIRONMENTAL CONDITIONS | 23deg. C, 68%RH<br>1012 hPa | TESTED BY            | Brad Wu            |  |

|     | ANTENNA POLARITY & TEST DISTANCE: LOOP ANTENNA CLOSE AT 3m |                               |                   |                |                          |                            |                        |                                |  |
|-----|------------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No. | Freq.<br>(MHz)                                             | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 13.56                                                      | 48.1 PK                       | 124.0             | -75.9          | 1.00                     | 82                         | 28.3                   | 19.8                           |  |

#### **REMARKS:**


- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m

30m 30m = 84dBuV/m  $= 84 + 20 \log(30/3)^2$ 3m

124dBuV/m





| EUT TEST CONDITION       |                             | MEASUREMENT DETAIL   |             |  |
|--------------------------|-----------------------------|----------------------|-------------|--|
| CHANNEL                  | Channel 1                   | FREQUENCY RANGE      | Below 30MHz |  |
| INPUT POWER              | 3.7Vdc                      | DETECTOR<br>FUNCTION | Quasi-Peak  |  |
| ENVIRONMENTAL CONDITIONS | 23deg. C, 68%RH<br>1012 hPa | TESTED BY            | Brad Wu     |  |

|     | ANTENNA POLARITY & TEST DISTANCE: LOOP ANTENNA OPEN AT 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                   |                |                          |                            |                        |                                |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| No. | Freq.<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |  |
| 1   | 13.553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.0                          | 69.5              | -23.6          | 1.00                     | 158                        | 26.2                   | 19.8                           |  |  |  |
| 2   | 13.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.3                          | 69.5              | -20.3          | 1.00                     | 158                        | 29.5                   | 19.8                           |  |  |  |
| 3   | 14.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.7                          | 69.5              | -32.9          | 1.00                     | 141                        | 16.8                   | 19.9                           |  |  |  |
| 4   | 27.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.0                          | 69.5              | -40.6          | 1.00                     | 157                        | 8.8                    | 20.2                           |  |  |  |
|     | ANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENNA POLA                     | ARITY & TES       | ST DISTANC     | E: LOOP A                | NTENNA CL                  | OSE AT 3m              | 1                              |  |  |  |
| No. | No.   ANTENNA POLARITY & TEST DISTANCE: LOOP ANTENNA CLOSE AT 3m   Freq. (MHz)   Emission Level (dBuV/m)   Limit (dBuV/m) (dB)   (dB)   (m) (Degree) (dBuV) (dB/m) (dB/m)   (dB/m) (dB/m) (dB/m) (dB/m)   (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB/m) (dB |                               |                   |                |                          |                            |                        |                                |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                             |                   |                | ()                       | ( 3 )                      | \ ' · · · /            | \ ' · · /                      |  |  |  |
| 1   | 13.553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.7                          | 69.5              | -27.9          | 1.00                     | 82                         | 21.9                   | 19.8                           |  |  |  |
| 1   | 13.553<br>13.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 69.5<br>69.5      | -27.9<br>-24.8 | ` ,                      | `                          |                        | ` ′                            |  |  |  |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.7                          |                   |                | 1.00                     | 82                         | 21.9                   | 19.8                           |  |  |  |

#### **REMARKS:**

- Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
   Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
   The other emission levels were very low against the limit.
   Margin value = Emission level Limit value.



| EUT TEST CONDITION       |                             | MEASUREMENT DETAIL   |               |  |
|--------------------------|-----------------------------|----------------------|---------------|--|
| CHANNEL                  | Channel 1                   | FREQUENCY RANGE      | Below 1000MHz |  |
| INPUT POWER              | 3.7Vdc                      | DETECTOR<br>FUNCTION | Quasi-Peak    |  |
| ENVIRONMENTAL CONDITIONS | 23deg. C, 68%RH<br>1012 hPa | TESTED BY            | Brad Wu       |  |

|       | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M                                                      |                                                    |                                  |                                |                            |                              |                                   |                                    |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|--------------------------------|----------------------------|------------------------------|-----------------------------------|------------------------------------|--|--|--|
| NO.   | FREQ. (MHz)                                                                                              | EMISSION<br>LEVEL<br>(dBuV/m)                      | LIMIT<br>(dBuV/m)                | MARGIN (dB)                    | ANTENNA<br>HEIGHT (m)      | TABLE<br>ANGLE<br>(Degree)   | RAW VALUE<br>(dBuV)               | CORRECTION<br>FACTOR<br>(dB/m)     |  |  |  |
| 1     | 59.06                                                                                                    | 20.8 QP                                            | 40.0                             | -19.2                          | 2.00 H                     | 13                           | 7.90                              | 12.90                              |  |  |  |
| 2     | 136.84                                                                                                   | 21.5 QP                                            | 43.5                             | -22.0                          | 2.00 H                     | 343                          | 8.80                              | 12.70                              |  |  |  |
| 3     | 269.05                                                                                                   | 23.1 QP                                            | 46.0                             | -22.9                          | 1.00 H                     | 139                          | 9.30                              | 13.80                              |  |  |  |
| 4     | 280.71                                                                                                   | 23.8 QP                                            | 46.0                             | -22.2                          | 1.00 H                     | 340                          | 10.00                             | 13.80                              |  |  |  |
| 5     | 799.84                                                                                                   | 26.3 QP                                            | 46.0                             | -19.7                          | 2.00 H                     | 109                          | 0.20                              | 26.10                              |  |  |  |
| 6     | 827.06                                                                                                   | 26.2 QP                                            | 46.0                             | -19.8                          | 2.00 H                     | 229                          | -0.40                             | 26.60                              |  |  |  |
|       |                                                                                                          | ANTENNA                                            | POLARITY                         | Y & TEST DI                    | STANCE: V                  | ERTICAL A                    | T 3 M                             |                                    |  |  |  |
|       | NO. FREQ. (MHz) EMISSION LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (dBuV) CORRECT FACTOR |                                                    |                                  |                                |                            |                              |                                   |                                    |  |  |  |
| NO.   | FREQ. (MHz)                                                                                              |                                                    |                                  | MARGIN (dB)                    | 7                          |                              |                                   | CORRECTION<br>FACTOR<br>(dB/m)     |  |  |  |
| NO.   | FREQ. (MHz)<br>53.23                                                                                     | LEVEL                                              |                                  | MARGIN (dB)                    | 7                          | ANGLE                        |                                   | FACTOR                             |  |  |  |
|       | ` ,                                                                                                      | LEVEL<br>(dBuV/m)                                  | (dBuV/m)                         | , ,                            | HEIGHT (m)                 | ANGLE<br>(Degree)            | (dBuV)                            | FACTOR<br>(dB/m)                   |  |  |  |
| 1     | 53.23                                                                                                    | LEVEL<br>(dBuV/m)<br>29.6 QP                       | (dBuV/m)<br>40.0                 | -10.4                          | HEIGHT (m)                 | ANGLE<br>(Degree)            | (dBuV)                            | FACTOR<br>(dB/m)<br>13.10          |  |  |  |
| 1 2   | <b>53.23</b> 294.32                                                                                      | LEVEL<br>(dBuV/m)<br>29.6 QP                       | (dBuV/m)<br>40.0<br>46.0         | <b>-10.4</b><br>-17.0          | 1.00 V                     | ANGLE<br>(Degree)<br>184     | (dBuV) 16.50 15.20                | FACTOR<br>(dB/m)<br>13.10<br>13.80 |  |  |  |
| 1 2 3 | <b>53.23</b> 294.32 461.53                                                                               | LEVEL<br>(dBuV/m)<br>29.6 QP<br>29.0 QP<br>30.9 QP | (dBuV/m)<br>40.0<br>46.0<br>46.0 | <b>-10.4</b><br>-17.0<br>-15.1 | 1.00 V<br>1.50 V<br>1.00 V | ANGLE (Degree)  184  85  346 | (dBuV)<br>16.50<br>15.20<br>11.30 | FACTOR (dB/m)  13.10  13.80  19.60 |  |  |  |

**REMARKS:** 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



#### 4.2 FREQUENCY STABILITY

#### 4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

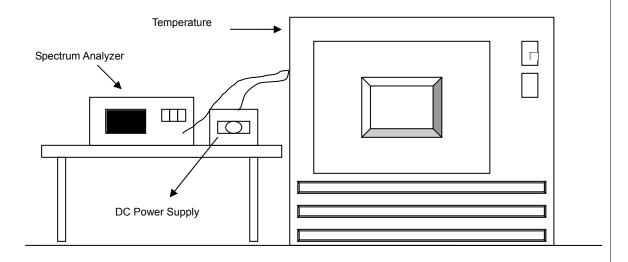
The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

#### 4.2.2 TEST INSTRUMENTS

| DESCRIPTION & MANUFACTURER                          | MODEL NO. | SERIAL NO. | DATE OF CALIBRATION | CALIBRATED<br>UNTIL |
|-----------------------------------------------------|-----------|------------|---------------------|---------------------|
| R&S SPECTRUM<br>ANALYZER                            | FSP40     | 100040     | Jul. 07, 2009       | Jul. 06, 2010       |
| WIT STANDARD<br>TEMPERATURE AND<br>HUMIDITY CHAMBER | TH-4S-C   | W981030    | Jun. 24, 2009       | Jun. 23, 2010       |

**NOTE:** The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.2.3 TEST PROCEDURE


- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.



### 4.2.4 DEVIATION FROM TEST STANDARD

No deviation

# 4.2.5 TEST SETUP



#### 4.2.6 EUT OPERATING CONDITION

Same as Item 4.1.6



# 4.2.7 TEST RESULTS

|                      | FREQUEMCY STABILITY VERSUS TEMP. |                       |                    |                       |                    |                       |                    |                       |                    |  |  |  |
|----------------------|----------------------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|--|--|--|
|                      |                                  | 0 MIN                 | NUTE               | 2 MIN                 | NUTE               | 5 MIN                 | NUTE               | 10 MINUTE             |                    |  |  |  |
| <b>TEMP</b> .<br>(℃) | POWER<br>SUPPLY<br>(Vdc)         | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift |  |  |  |
|                      |                                  | (MHz)                 | %                  | (MHz)                 | %                  | (MHz)                 | %                  | (MHz)                 | %                  |  |  |  |
| 50                   | 3.7                              | 13.560642             | 0.0047345          | 13.560641             | 0.0047271          | 13.560601             | 0.0044322          | 13.560638             | 0.0047050          |  |  |  |
| 40                   | 3.7                              | 13.560644             | 0.0047493          | 13.560626             | 0.0046165          | 13.560626             | 0.0046165          | 13.560608             | 0.0044838          |  |  |  |
| 30                   | 3.7                              | 13.560643             | 0.0047419          | 13.560614             | 0.0045280          | 13.560618             | 0.0045575          | 13.560592             | 0.0043658          |  |  |  |
| 20                   | 3.7                              | 13.560615             | 0.0045354          | 13.560582             | 0.0042920          | 13.560589             | 0.0043437          | 13.560581             | 0.0042847          |  |  |  |
| 10                   | 3.7                              | 13.560662             | 0.0048820          | 13.560632             | 0.0046608          | 13.560653             | 0.0048156          | 13.560651             | 0.0048009          |  |  |  |
| 0                    | 3.7                              | 13.560674             | 0.0049705          | 13.560671             | 0.0049484          | 13.560648             | 0.0047788          | 13.560666             | 0.0049115          |  |  |  |
| -10                  | 3.7                              | 13.560651             | 0.0048009          | 13.560613             | 0.0045206          | 13.560635             | 0.0046829          | 13.560631             | 0.0046534          |  |  |  |
| -20                  | 3.7                              | 13.560674             | 0.0049705          | 13.560672             | 0.0049558          | 13.560672             | 0.0049558          | 13.560659             | 0.0048599          |  |  |  |

| FREQUEMCY STABILITY VERSUS VOLTAGE |                          |                       |                    |                       |                    |                       |                    |                       |                    |
|------------------------------------|--------------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|
| <b>TEMP.</b><br>(°C)               | POWER<br>SUPPLY<br>(Vac) | 0 MINUTE              |                    | 2 MINUTE              |                    | 5 MINUTE              |                    | 10 MINUTE             |                    |
|                                    |                          | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift | Measured<br>Frequency | Frequency<br>Drift |
|                                    |                          | (MHz)                 | %                  | (MHz)                 | %                  | (MHz)                 | %                  | (MHz)                 | %                  |
| 20                                 | 3.1                      | 13.560610             | 0.0044985          | 13.560580             | 0.0042773          | 13.560583             | 0.0042994          | 13.560591             | 0.0043584          |
|                                    | 3.7                      | 13.560615             | 0.0045354          | 13.560582             | 0.0042920          | 13.560589             | 0.0043437          | 13.560581             | 0.0042847          |
|                                    | 4.3                      | 13.560653             | 0.0048156          | 13.560599             | 0.0044174          | 13.560615             | 0.0045354          | 13.560627             | 0.0046239          |



# 5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).



# 6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

#### **Hwa Ya EMC/RF/Safety Telecom Lab**:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.



# 7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--- END ---