

FCC TEST REPORT (PART 24)

REPORT NO .: RF140326C05-1

MODEL NO.: F-06F

FCC ID: VQK-F06F

RECEIVED: Mar. 26, 2014

- **TESTED:** Apr. 30 ~ May 08, 2014
- **ISSUED:** May 13, 2014

APPLICANT: FUJITSU LIMITED

- ADDRESS: 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

RELEAS	SE CONTROL RECORD	4
1	CERTIFICATION	5
2	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
2.2	TEST SITE AND INSTRUMENTS	7
3	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT	8
3.2	CONFIGURATION OF SYSTEM UNDER TEST	9
3.3	DESCRIPTION OF SUPPORT UNITS	9
3.4	TEST ITEM AND TEST CONFIGURATION	. 10
3.5	EUT OPERATING CONDITIONS	. 11
3.6	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 11
4	TEST TYPES AND RESULTS	. 12
4.1	OUTPUT POWER MEASUREMENT	. 12
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	. 12
4.1.2	TEST PROCEDURES	. 12
4.1.3	TEST SETUP	. 13
4.1.4	TEST RESULTS	. 14
4.2	FREQUENCY STABILITY MEASUREMENT	. 16
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	. 16
4.2.2	TEST PROCEDURE	. 16
4.2.3	TEST SETUP	. 16
4.2.4	TEST RESULTS	. 17
4.3	OCCUPIED BANDWIDTH MEASUREMENT	. 18
4.3.1	TEST PROCEDURES	. 18
4.3.2	TEST SETUP	. 18
4.3.3	TEST RESULTS	. 19
4.4	BAND EDGE MEASUREMENT	. 20
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	. 20
4.4.2	TEST SETUP	. 20
4.4.3	TEST PROCEDURES	. 20
4.4.4	TEST RESULTS	. 21
4.5	CONDUCTED SPURIOUS EMISSIONS	. 22
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	. 22
4.5.2	TEST PROCEDURE	. 22
4.5.3	TEST SETUP	. 22
4.5.4	TEST RESULTS	. 23
4.6	RADIATED EMISSION MEASUREMENT	. 29
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	. 29

4.6.2	TEST PROCEDURES	.29
4.6.3	DEVIATION FROM TEST STANDARD	.29
4.6.4	TEST SETUP	. 30
4.6.5	TEST RESULTS	. 31
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	.35
6	INFORMATION ON THE TESTING LABORATORIES	.36
7	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT BY THE LAB	.37

RELEASE CONTROL RECORD

RF140326C05-1 Orig	ginal release		May 13, 2014

CERTIFICATION 1

PRODUCT: Smart Phone MODEL: F-06F **BRAND:** FUJITSU **APPLICANT: FUJITSU LIMITED TESTED:** Apr. 30 ~ May 08, 2014 **TEST SAMPLE: ENGINEERING SAMPLE** STANDARDS: FCC Part 24, Subpart E

The above equipment (model: F-06F) has been tested by **Bureau Veritas Consumer** Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

: Celine Chou, DATE: May 13, 2014

May 13, 2014

Celine Chou / Specialist

APPROVED BY

, DATE :

Bruce Chen / Project Engineer

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 24 & Part 2						
STANDARD SECTION			REMARK				
2.1046 24.232	Equivalent isotropically radiated power	PASS	Meet the requirement of limit.				
2.1055 24.235	Frequency Stability	PASS	Meet the requirement of limit.				
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.				
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.				
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.				
2.1053 24.238	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is -24.17dB at 5550.60 & 5640.00MHz.				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Dedicted omissions	200MHz ~1000MHz	2.95 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.2 TEST SITE AND INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 29, 2013	Nov. 28, 2014
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Feb. 11, 2014	Feb. 10, 2015
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Feb. 25, 2014	Feb. 24, 2015
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-209	Sep. 12, 2013	Sep. 11, 2014
HORN Antenna SCHWARZBECK	BBHA 9170	148	Jul. 15, 2013	Jul. 14, 2014
Preamplifier Agilent	8449B	3008A01911	Aug. 22, 2013	Aug. 21, 2014
Preamplifier Agilent	8447D	2944A10638	Oct. 18, 2013	Oct. 17, 2014
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	248780/4 309222/4 274092/4	Aug. 26, 2013	Aug. 25, 2014
RF signal cable Worken	5D-FB	Cable-HYCH9-01	Aug. 11, 2013	Aug. 10, 2014
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Sep. 09, 2013	Sep. 08, 2014
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 215374.
- 5. The IC Site Registration No. is IC 7450F-9.

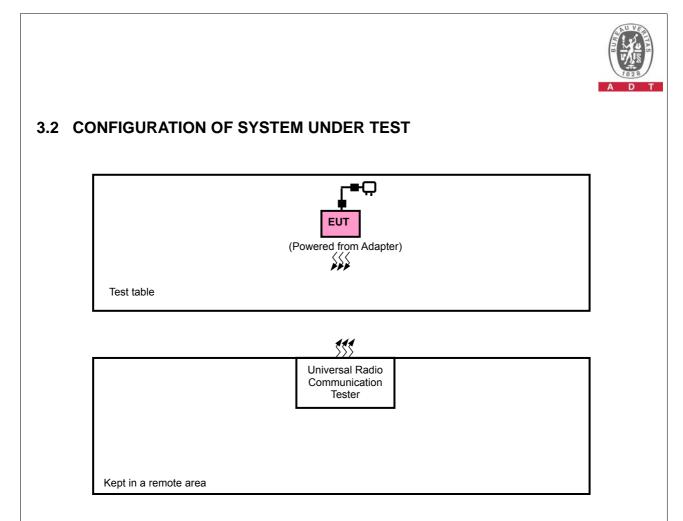
3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Smart Phone			
MODEL NO.	F-06F			
POWER SUPPLY	3.8Vdc (Battery) 5.0Vdc (Adapter or cradle or host equipment)			
MODULATION TYPE	GSM, GPRS: GMSK			
FREQUENCY RANGE	1850.2MHz ~ 1909.8MHz			
MAX. EIRP POWER	GSM: 314.775mW (24.98dBm)			
MULTI-SLOTS CLASS	33			
ANTENNA TYPE	$\lambda/4$ Monopole antenna with 0dBi gain			
I/O PORTS	Refer to users' manual			
DATA CABLE	N/A			
ACCESSORY DEVICES	Refer to Note as below			

NOTE:

1. The EUT contains the following accessories.


No.	Product	Brand	Model	Description
1	Battery	NTT docomo	F30	3.8Vdc, 2100mA , 8.0Wh Type: Li-on
2	Cradle	NTT docomo	F46	Input : 5.0Vdc, 1.5A Output : 5.0Vdc, 1.5A

2. SW version is R06.2e.

3. HW version is V2.1.0.

4. IMEI Code: 352295060013869.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	UNIVERSAL RADIO COMMUNICATION TESTER	R&S	CMU200	123112	NA
2	ADAPTER	NTT docomo	AC Adapter 04	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	NA

NOTE:

- 1. All power cords of the above support units are non shielded (1.8m).
- 2. Item 1 acted as a communication partner to transfer data.
- 3. Item 2 was provided by the client
- 4. 1.05m DC cable with 2 cores attached on adapter.

3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports The worst case was found when positioned on Y-plane. Following channel(s) was (were) selected for the final test as listed below:

GSM MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
-	EIRP	512 to 810	512, 661, 810	GSM
-	FREQUENCY STABILITY	512 to 810	661	GSM
-	OCCUPIED BANDWIDTH	512 to 810	512, 661, 810	GSM, GPRS
-	BAND EDGE	512 to 810	512, 810	GSM, GPRS
-	CONDCUDETED EMISSION	512 to 810	512, 661, 810	GSM, GPRS
-	RADIATED EMISSION BELOW 1GHz	512 to 810	810	GSM
-	RADIATED EMISSION ABOVE 1GHz	512 to 810	512, 661, 810	GSM

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	25deg. C, 68%RH	120Vac, 60Hz	Sun Lin
FREQUENCY STABILITY	24deg. C, 64%RH	3.8Vdc	Match Tsui
OCCUPIED BANDWIDTH	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
BAND EDGE	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
CONDCUDETED EMISSION	24deg. C, 64%RH	120Vac, 60Hz	Match Tsui
RADIATED EMISSION	25deg. C, 68%RH	120Vac, 60Hz	Sun Lin

3.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

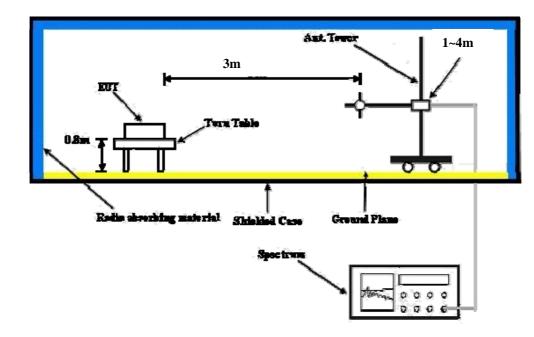
4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile and portable stations are limited to 2 watts EIRP

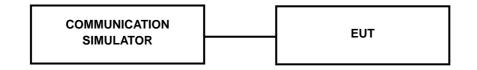
4.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with GSM link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.


4.1.3 TEST SETUP

EIRP MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band		GSM1900	
Channel	512	661	810
Frequency (MHz)	1850.2	1880.0	1909.8
GSM	29.97	30.06	30.16
GPRS 8	29.89	29.98	30.10
GPRS 10	26.68	26.77	26.88
GPRS 11	24.78	24.87	24.98
GPRS 12	23.51	23.60	23.71
GPRS 30	29.80	29.89	30.00
GPRS 31	26.68	26.77	26.88
GPRS 32	24.79	24.88	24.99
GPRS 33	23.50	23.59	23.70
DTM 9 (GPRS)	26.96	27.00	27.13
DTM 11 (GPRS)	25.05	25.14	25.25

EIRP POWER (dBm)

MOD	E	TX char	nel 512				
	AN	TENNA POL	ARITY & TES	T DISTANCE	: HORIZONT	AL AT 3 M	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1850.20	-17.90	15.02	7.35	22.37	33.00	-10.63
	A	NTENNA PO	LARITY & TE	ST DISTANC	E: VERTICA	LAT3M	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1850.20	-17.62	15.50	7.35	22.85	33.00	-10.15

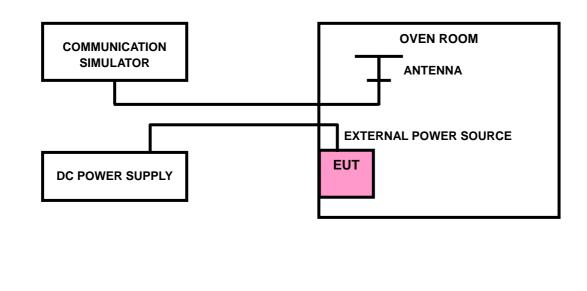
MOD	E	TX char	nel 661				
	AN	TENNA POL	ARITY & TES	T DISTANCE	: HORIZONT	AL AT 3 M	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1880.00	-17.24	15.94	7.30	23.24	33.00	-9.76
	A	NTENNA PO	LARITY & TE	ST DISTANC	E: VERTICA	LAT3M	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1880.00	-15.60	17.68	7.30	24.98	33.00	-8.02

MOD	E	TX char	nel 810				
	AN	TENNA POL	ARITY & TES	T DISTANCE	: HORIZONT	AL AT 3 M	
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1909.80	-17.34	15.95	7.26	23.21	33.00	-9.79
	A	IHz) (dBm) Value (dBm) Factor (dB) EIRP (dBm) Limit (dBm) Margin (dB) 30 -17.34 15.95 7.26 23.21 33.00 -9.79 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M Reading S.G. Power Correction					
No.	Freq. (MHz)	•			EIRP (dBm)	Limit (dBm)	Margin (dB)
1	1909.80	-18.32	15.12	7.26	22.38	33.00	-10.62

NOTE: Power Value (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 TEST SETUP

4.2.4 TEST RESULTS

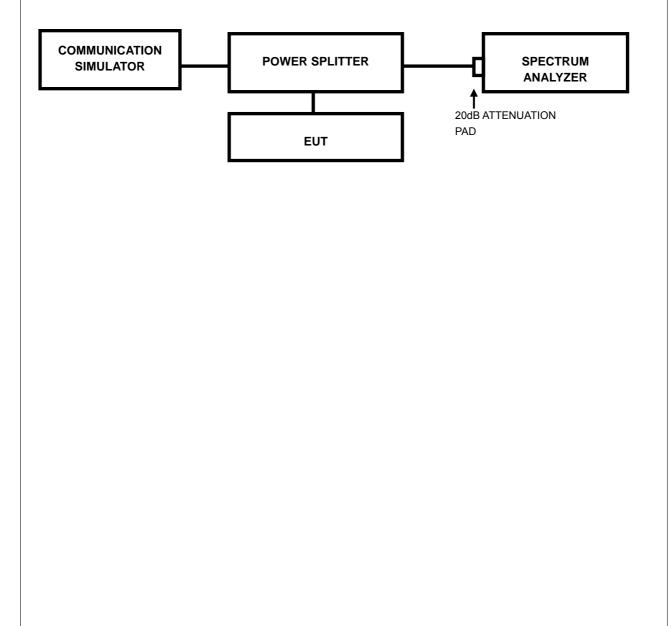
FREQUENCY ERROR vs. VOLTAGE

	FREQUENCY ERROR (ppm)	
VOLTAGE (Volts)	GSM	LIMIT (ppm)
4.29	-0.012	2.5
3.90	-0.011	2.5
3.51	-0.010	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.51Vdc to 4.29Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

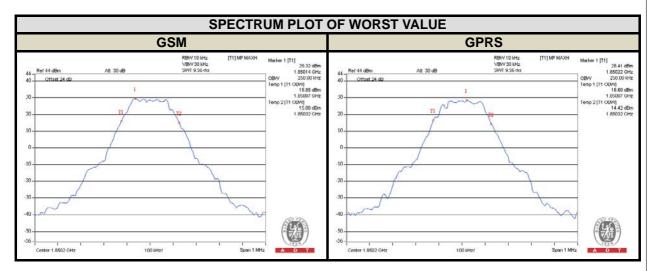
TEMP. (℃)	FREQUENCY ERROR (ppm)	
	GSM	LIMIT (ppm)
55	-0.019	2.5
50	-0.018	2.5
40	-0.014	2.5
30	-0.011	2.5
20	-0.011	2.5
10	-0.015	2.5
0	-0.021	2.5
-10	-0.022	2.5
-20	-0.022	2.5



4.3 OCCUPIED BANDWIDTH MEASUREMENT

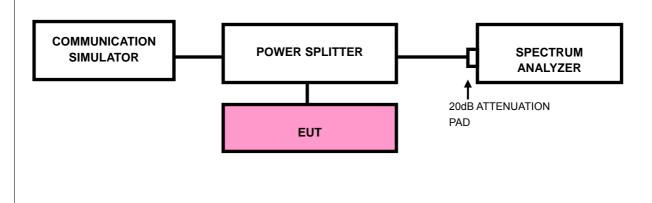
4.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


4.3.2 TEST SETUP

4.3.3 TEST RESULTS

	FREQ.	99% OCCUPIED BANDWIDTH (kHz)					
CHANNEL	(MHz)	GSM	GPRS				
512	1850.2	250.0	250.0				
661	1880.0	250.0	245.0				
810	1909.8	250.0	250.0				

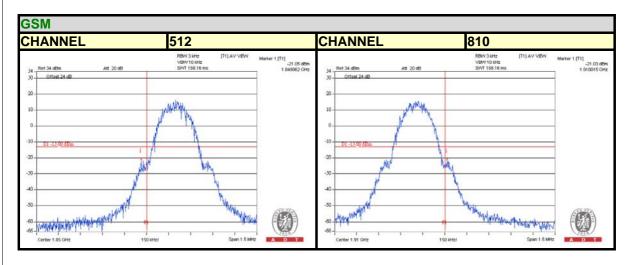


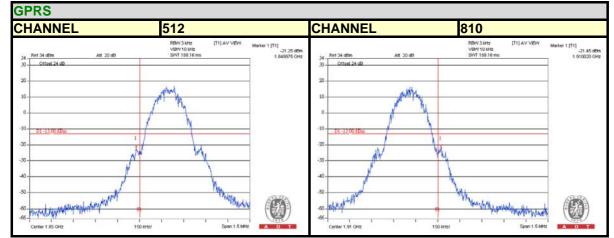
4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST SETUP

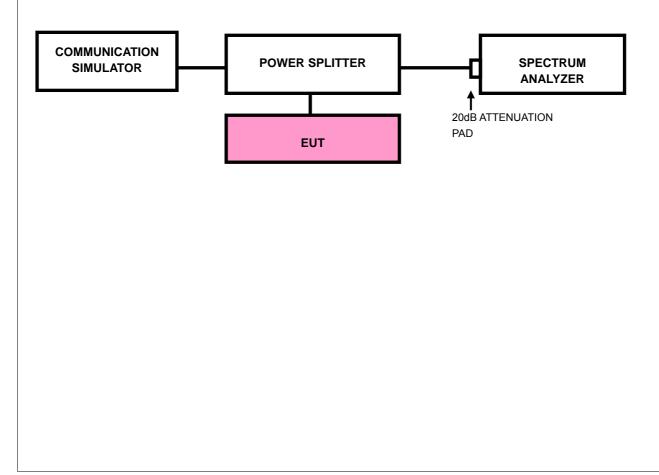



4.4.3 TEST PROCEDURES

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM).
- c. Record the max trace plot into the test report.

4.4.4 TEST RESULTS

4.5 CONDUCTED SPURIOUS EMISSIONS


4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.

4.5.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 9 kHz to 20GHz. 20dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

4.5.3 TEST SETUP

4.5.4 TEST RESULTS

ANNEL									_
REQUENC	CY RANGE	: 9kHz~30	SHz		FREQUEN	CY RANGE	: 3GHz~1	0GHz	
Ref 34 dBm Offset 24 dB	Att 20 dB	RBW1 MHz VBW3 MHz SWT 9,08 ms	[T1] MP VIEW		34 _ Ref 34 dBm 30 _ Offset 24 dB	Alti 20 dB	RBW 1 MHz VBW 3 MHz SWT 11.68 ms	[T1] MP VIEW	
					20				
DI -1300 dDm					0				
					-20		A A.m. to		
	100-100 pro Antarthy and	mulmorana	unan and a		40- Workland Non-Wellington	render halsen auf an thinke	putantosarosatine	allaconserver and	
				50 V P	-50				CU VD
I I Start 9 kHz	299.999	1 MHz/	1 I Stop 3 GHz		-50 -60 -66 - 1 - 1 - 1 - 1 - 1 - 1	1 1 1	1 1 MH12/	I I Stop 10 GHz	
	CY RANGE		1844		-60	1 1 1	i i MHz/	1 I Stop 10 GHz	A D
	820.97A		1844		-60	700	Netz/	Stop 10 GHz	A D
	CY RANGE	: 10GHz~2	20GHz		-60	1 1 1 7001	1 1 Nə4z/	1 i i Stop 10 OHz	
Ref 24 dBm Offset 24 dD	CY RANGE	: 10GHz~2	20GHz		-60	1 1 1 2001	Martez/	I I Stop 10 OHz	AD
Ref 24 dBm Offset 24 dD D1-13 00 dBm	All 1048	: 10GHz~2 RBW1 MHz SWT 25 ms	20GHz ITINE VEW		-60	1 1 1	1 1 Nəfty/	1 1 1 Stop 10 0Hz	
Ref 24 dBm Offset 24 dD	All 1048	: 10GHz~2	20GHz ITINE VEW		-60	1 1 1	Metz/	I I Stop 10 OHz	

ANNEL 6									
	Y RANGE				FREQUEN	CY RANGE		and Street and a party	
ef 34 dBm Offset 24 dB	Alt 20 dB	RBW 1 MHz VBW 3 MHz SWT 5 ma	[T1] MP VIEW		34 Ref 34 dBm 30 Offset 24 dB	Att 20 dB	RBW 1 MHz VBW 3 MHz SWT 11.68 ms	[T1] MP VIEW	
					20				
					0				
DI -13 00 dBm					-10- <u>DI-13:00 dBm</u> -20				
	ogen an and a stand a constant		antiment and		-30-	an Malan mathematica	haman	homestan	
					-50				G
l l Start 9 kHz	299.995		I I Stop 3 GHz	A D T	-66 - 1 1 Start 3 GHz	1 1 1 7001	1 I MHz/	Stop 10 GHz	A D
	Y RANGE	: 10GHz~2	20GHz						
ef 24 dBm Offset 24 dB	Alt 10 dB	VBW3 MHz SWT 25 mt							
DI -1300 dDm									
	putyware	Associate Manager and the	New words Advandance						
Henry Hores Andrews									
tart 10 GHz	1 1 1	1 1 1z/	Stop 20 GHz	A D T					
					•				

EQUEN	CY RANGE :	: 9kHz~30	Hz		FREQUENC	CY RANGE	: 3GHz~10)GHz	
Ref 34 dBm Offset 24 dB	Att 20 dB	RBW 1 MHz VBW 3 MHz SWT 5 ma	(T1) MP VIEW		34 - Ref 34 dBm 30 - Offset 24 dD	Att 20 dB	RBW 1 MHz VBW 3 MHz SWT 11.68 ms	[T1] MP VIEW	
					20-				
					10				
01-13:00 dBm					-10-			-	
					20-				
and the state of the		un and the second	- Antonio and the second		-30-	and Marine and Marine Street	Annalyperson	wanter and and serve	
					-50				(Sec.
1 1 Yort 9 kHz	299.9991	1. 11	Stop 3 GHz		-60	700 8	10 01	Stop 10 GHz	
			1844		Stort 3 GHZ	700 %		aup to onz	x U
		RBW 1 MHz VBW 3 MHz							
Ref 24 dBm Offset 24 dB	Att 10 dB	VBW/3 MHz SWT 25 mt		6					
UNSEL 24 OD									
01-13.00 dBm									
at manual mark	nonement and an and a second	a	Managermannan						
					1				
i i Start 10 GHz	1 I I 1 GHz	1: :1 d	Stop 20 GHz	A D T					

ANNEL	512						
	CY RANGE	: 9kHz~3GHz	2	FREQUENC	CY RANGE	: 3GHz~10GHz	
rf 34 dBm Offset 24 dD	Alt 20 dB	RBV1 MHz [7] VBV3 MHz SVVT 9.00 me		34 - Ref 34 dBm 30 - Offset 24 dD 20	Alt 20 dB	RBV1 IAHL [T1]MP V VBV7 3HL SVT 11.00 ms	
DI -13.00 dBm	ىرىپىرىيە ئەرەلىرىيە ئەرىيەتلەر ئەتلەر ئە سىرىپىرىيە ئەرەلىرىيە ئەرەلىرىيە ئەرەلىرىيە ئەرەلىرى ئەتلەر ئەتلەر ئەتلەر ئەتلەر ئەتلەر ئەتلەر ئەتلەر ئەتلەر ئە	understation of the second		20	n og som en der konstant och som konstant s	North that the second second on the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	C23.777	: 10GHz~200	Stop 3 GHz	Start 3 GHz	700	MHz/ Stop	10 GHz
1 24 dBm Offset 24 dD D1 - (3 00 dDm 		1000 3 MHz (100 3007 25 ms	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

ANNEL	661								
	CY RANGE	: 9kHz~30	Hz		FREQUENC	CY RANGE	: 3GHz~10	GHz	
ef 34 dBm	Att 20 dB	RBW 1 MHz VBW 3 MHz SWT 5 ma	(T1) MP VIEW	15	34 - Ref 34 dBm	Att 20 dB	RBW1 MHz VBW3 MHz SWT 11.68 mb	[T1] MP VIEW	
Offset 24 dB					30 Offset 24 dB				
					20-				
					10-				
					-10-				
D1-1300 dBm					-20-				
					-30-				
and and a start of the start of	الهال التعريط معامد معاميه	alle Audionomous	and man with the standing		40 month manufacture	about manhater and	Antonialistication	an prover her particular	
					-50				
					-60 -			(G
i i vrt 9 kHz	299.995	I I I	I I Stop 3 GHz	A D T	-66 - 1 1 1 Start 3 GHz	1 I I 700 M	i i i	Stop 10 GHz	
	CY RANGE	· 10GHz~	20GHz						
	011000	RBW 1 MHz	[T1] MP VIEW						
f 24 dBm Offset 24 dB	Att 10 dB	VBW/3 MHz SWIT 25 ms							
DI -1200 (Dec									
DI -13.00 dBm									
				i.					
	Michaelin	https://www.andianationaliticantic							
alantidosphat por an	ot allow the advect		all when the second						
				(S-3)					
art 10 GHz	1.0	Hz/	Stop 20 GHz	A D T					
					-				

ANNEL									
	CY RANGE	: 9kHz~3G			FREQUEN	CY RANGE			
	44.00	RBW 1 MHz VBW 3 MHz SWT 5 ms	[T1] MP VIEW		100000 B24 B4 (8000)	44 07 -	RBW 1 MHz VBW 3 MHz SWT 11.68 ms	[T1] MP VIEW	
rf 34 dBm Offset 24 dB	Att 20 dB	avvi 5 ms			34 - Ref 34 dBm 30 Offset 24 dB	Att 20 dB	3/VI 11.50 fts		
					20-				
					10-				
					0-				
DI -1300 dBm					-10-D1-1300 dDm				
01-10-00-00M					-20-				
					-30 -				
a na sa	المديدة والمحالية المحالية	you per the same have	man		40- Mahren manshard	and with the second second second	president and the second	whenever	
					-50				
				4	60-				
I I VI 9 kHz	1 1 1	91 MHz/	1 Stop 3 GHz	APT	-66 - Start 3 CHz	700	1 1	Stop 10 GHz	
	1000		1844		oren 3 GMZ	7001	11.67	300p 10 0H2	A
		: 10GHz~2							
f 24 dBm	Att 10 dB	VBVV 1 MHz VBVV 3 MHz SVVT 25 ms	fulline Agent						
Offset 24 dB									
01-13.00 dBm									
	Huthanhan	white an and the second	MAN JAMAN						
harrowski	portional		- Aver a second						
				(SU VP)					
ut 10 GHz	1 1 1	i i i	Stop 20 GHz	A D T					

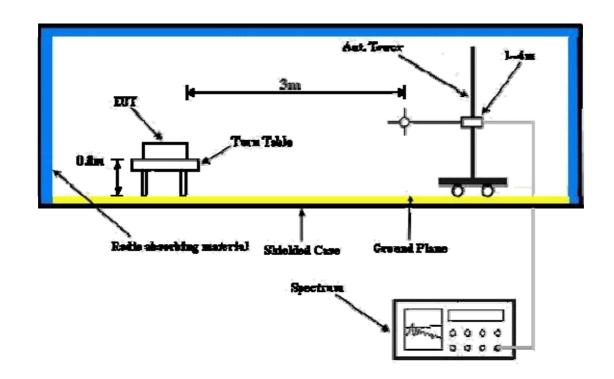
4.6 RADIATED EMISSION MEASUREMENT

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.

4.6.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.


NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.6.3 DEVIATION FROM TEST STANDARD

No deviation

4.6.4 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.5 TEST RESULTS

Below 1GHz

MODE	TX channel 810	FREQUENCY RANGE	Below 1000 MHz	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	INPUT POWER	120Vac, 60 Hz	
TESTED BY	Sun Lin			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	
1	37.77	-59.39	-41.46	-14.66	-56.12	-13.00	-43.12	
2	140.37	-53.94	-56.47	-3.08	-59.55	-13.00	-46.55	
3	263.17	-59.35	-62.35	-1.62	-63.97	-13.00	-50.97	
4	515.00	-59.95	-63.62	3.86	-59.76	-13.00	-46.76	
5	580.29	-65.01	-67.69	3.75	-63.94	-13.00	-50.94	
6	872.53	-64.34	-60.42	3.46	-56.96	-13.00	-43.96	
	AN	ITENNA POL	ARITY & TE	ST DISTANC	E: VERTICAL	AT 3 M		
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	
1	36.22	-44.81	-38.83	-15.55	-54.38	-13.00	-41.38	
2	62.64	-48.39	-52.45	-2.66	-55.11	-13.00	-42.11	
3	134.15	-46.69	-47.15	-3.27	-50.42	-13.00	-37.42	
4	204.10	-56.17	-55.90	-2.05	-57.95	-13.00	-44.95	
5	260.06	-55.18	-52.75	-1.46	-54.21	-13.00	-41.21	
6	872.53	-62.79	-58.72	3.46	-55.26	-13.00	-42.26	

REMARKS:

1. Power Value (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

Above 1GHz

MODE	TX channel 512	FREQUENCY RANGE	Above 1000 MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	INPUT POWER	120Vac, 60 Hz
TESTED BY	Sun Lin		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	
1	3700.40	-54.85	-49.83	4.89	-44.94	-13.00	-31.94	
2	5550.60	-52.85	-41.73	3.06	-38.67	-13.00	-25.67	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	No. Freq. (MHz) Reading (dBm) S.G Power Correction Factor (dB) EIRP (dBm) Limit (dBm) Margin (dB)							
1	3700.40	-55.05	-50.31	4.89	-45.42	-13.00	-32.42	
2	5550.60	-50.55	-40.23	3.06	-37.17	-13.00	-24.17	

REMARKS:

1. Power Value (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	IX channel 661	FREQUENCY RANGE	Above 1000 MHz
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH INPUT POWER		120Vac, 60 Hz
TESTED BY	Sun Lin		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	
1	3760.00	-52.95	-47.99	4.83	-43.16	-13.00	-30.16	
2	5640.00	-51.77	-40.41	2.96	-37.45	-13.00	-24.45	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	No. Freq. (MHz) Reading (dBm) S.G Power Correction Factor (dB) EIRP (dBm) Limit (dBm) Margin (d							
1	3760.00	-52.55	-47.82	4.83	-42.99	-13.00	-29.99	
2	5640.00	-50.35	-40.13	2.96	-37.17	-13.00	-24.17	

REMARKS:

1. Power Value (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

MODE	TX channel 810	FREQUENCY RANGE	Above 1000 MHz	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH INPUT POWER		120Vac, 60 Hz	
TESTED BY	Sun Lin			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	
1	3819.60	-53.57	-48.62	4.77	-43.85	-13.00	-30.85	
2	5729.40	-53.75	-42.31	2.89	-39.42	-13.00	-26.42	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No. Freq. (MHz) Reading (dBm) S.G Power Correction Factor (dB) EIRP (dBm) Limit (dBm) Margin (dBm)						Margin (dB)		
1	3819.60	-52.27	-47.42	4.77	-42.65	-13.00	-29.65	
2	5729.40	-51.95	-41.43	2.89	-38.54	-13.00	-25.54	

REMARKS:

1. Power Value (dBm) = S.G Power Value (dBm) + Correction Factor (dB).

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----