

FCC Test Report

FCC ID : VQK-F01H
Equipment : Mobile Phone
Model No. : F-01H
Brand Name : FUJITSU
Applicant : FUJITSU LIMITED
Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan
Standard : 47 CFR FCC Part 24 Subpart E
Received Date : Jun. 03, 2015
Tested Date : Jul. 16 ~ Jul. 27, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION.....	10
2.1	Testing Condition and Location Information.....	10
2.2	The Worst Test Modes and Channel Details	10
3	TEST RESULTS.....	11
3.1	Equivalent Isotropically Radiated Power	11
3.2	Radiated Emissions.....	14
3.3	Conducted Emissions.....	18
3.4	Band Edge	20
3.5	Occupied Bandwidth	21
3.6	Peak to Average Ratio	23
3.7	Frequency Stability	25
4	TEST LABORATORY INFORMATION	27

Release Record

Report No.	Version	Description	Issued Date
FG560301P24	Rev. 01	Initial issue	Aug. 07, 2015

Summary of Test Results

FCC Rules	Test Items	Measured	Result
2.1046 / 24.232(c)	Equivalent Isotropically Radiated Power	Power[dBm]: 24.45	Pass
2.1053 / 24.238(a)	Radiated Emissions	Meet the requirement of limit	Pass
2.1051 / 24.238(a)	Conducted Emissions	Meet the requirement of limit	Pass
2.1051 / 24.238(a)	Band Edge	Meet the requirement of limit	Pass
2.1049 / 24.238(a)	Occupied Bandwidth	Meet the requirement of limit	Pass
24.232(d)	Peak to average ratio	Meet the requirement of limit	Pass
2.1055 / 24.235	Frequency Stability	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name	FUJITSU
Model Name	F-01H
IMEI Code	354017060117450
H/W Version	v2.1.1
S/W Version	R019.1e

1.1.2 Specification of the Equipment under Test (EUT)

Operating band(MHz)	GSM: 1850.2-1909.8
Modulation	GSM / GPRS: GMSK
Multislot class	33 :GPRS 11: DTM

1.1.3 Maximum EIRP, Frequency Tolerance and Emission Designator

System	Modulation	Maximum EIRP(W)	Frequency Tolerance (ppm)	Emission Designator
GSM 1900	GMSK	0.279	0.012	247KGXW

1.1.4 Antenna Details

Type	Gain (dBi)	Connector	Remark
$\lambda/4$ Monopole	-1.61	No	---

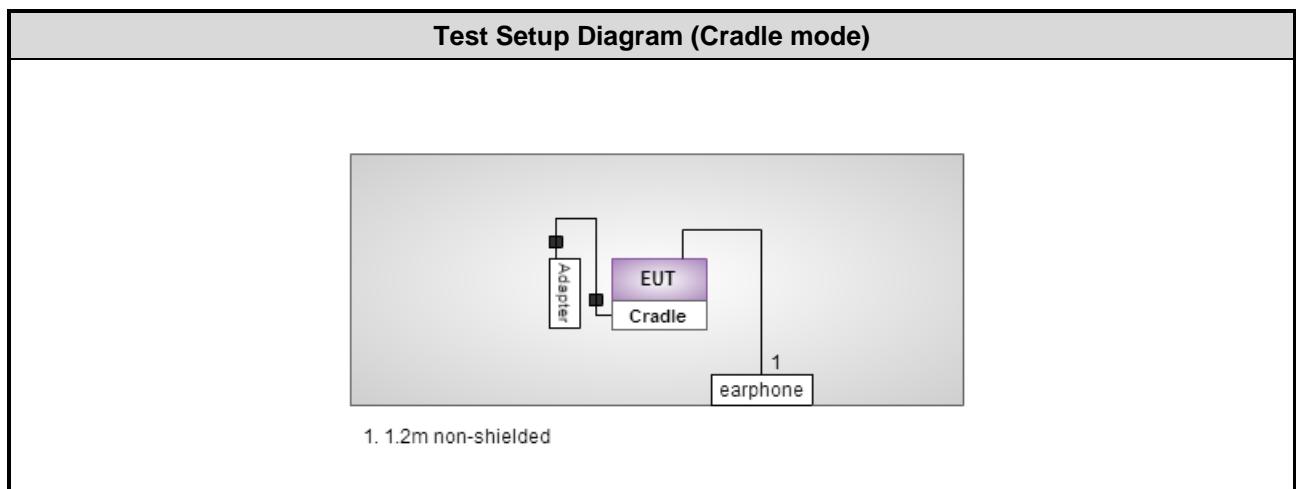
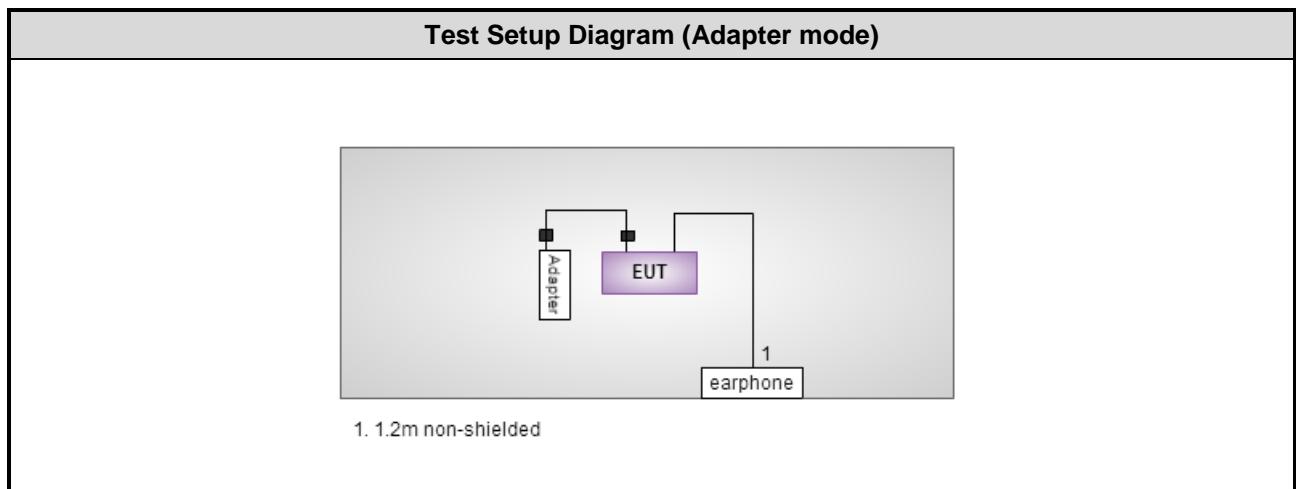
1.1.5 EUT Operational Condition

Supply Voltage	5.0Vdc from AC adapter 3.8Vdc from Battery		
Operational Voltage	<input checked="" type="checkbox"/> V _{nom} (3.9 V)	<input checked="" type="checkbox"/> V _{max} (4.29 V)	<input checked="" type="checkbox"/> V _{min} (3.51 V)
Operational Climatic	<input checked="" type="checkbox"/> T _{nom} (20°C)	<input checked="" type="checkbox"/> T _{max} (55°C)	<input checked="" type="checkbox"/> T _{min} (-30°C)

1.1.6 Accessories

No.	Equipment	Description
1	Cradle	Brand Name: Fujitsu Limited Model Name: F51 Input rating: 5Vdc, 1.5A Output rating: 5.0Vdc, 1.5A
2	Battery (Unremovable)	Brand Name: NTT Docomo Model Name: CA54310-0064 Power Rating: 3.8Vdc, 2330mAh, 8.9Wh

1.1.7 Operating Channel List



GSM & GPRS		
	Channel	Frequency (MHz)
Low	512	1850.2
Middle	661	1880.0
High	810	1909.8

1.2 Local Support Equipment List

Support Equipment List					
No.	Equipment	Brand	Model	S/N	Signal cable / Length (m)
1	Adapter	NTT docomo	AC Adaptor 04	---	---
2	Earphone	APPLE	MD827FE/A	6	1.2m non-shielded.

Note: Item 1 was provided by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber 2 / (03CH02-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Dec. 31, 2014	Dec. 30, 2015
Receiver	R&S	ESR3	101657	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Oct. 16, 2014	Oct. 15, 2015
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 14, 2014	Oct. 13, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Burgeon	BPA-530	100218	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Agilent	83017A	MY39501309	Sep. 29, 2014	Sep. 28, 2015
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 16, 2014	Dec. 15, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 16, 2014	Dec. 15, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 16, 2014	Dec. 15, 2015
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 16, 2014	Dec. 15, 2015
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 16, 2014	Dec. 15, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015
Radio Communication Analyzer	Anritsu	MT8820C	6201240341	Mar. 19, 2015	Mar. 17, 2016
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards.

47 CFR FCC Part 24 Subpart E

ANSI C63.4-2003

ANSI / TIA / EIA-603-C -2004

FCC KDB 971168 D01 Power Meas License Digital Systems v02r02

FCC KDB 412172 D01 Determining ERP and EIRP v01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Frequency error	±34.134 Hz
Conducted emission	±2.670 dB
Radiated emission ≤ 1GHz	±3.62 dB
Radiated emission > 1GHz	±5.60 dB
Temperature	±0.6 °C

2 Test Configuration

2.1 Testing Condition and Location Information

Test Item	Test Site	Ambient Condition	Tested By
RF conducted	TH01-WS	22°C / 63%	Felix Sung
Radiated Emissions	03CH02-WS	21°C / 65%	Felix Sung

➤ FCC site registration No.: 657002

➤ IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Channel
E.I.R.P	GSM	512, 661, 810
Radiated Emissions ≤ 1GHz	GSM	661
Radiated Emissions > 1GHz	GSM	512, 661, 810
Conducted Emissions	GSM	512, 661, 810
Band Edge	GSM	512, 810
Occupied Bandwidth	GSM	512, 661, 810
Frequency Stability	GSM	661

NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.
2. The EUT had been tested by following test configurations for spurious emission below 1GHz.
 - 1) Configuration 1 : Adapter mode
 - 2) Configuration 2 : Cradle mode

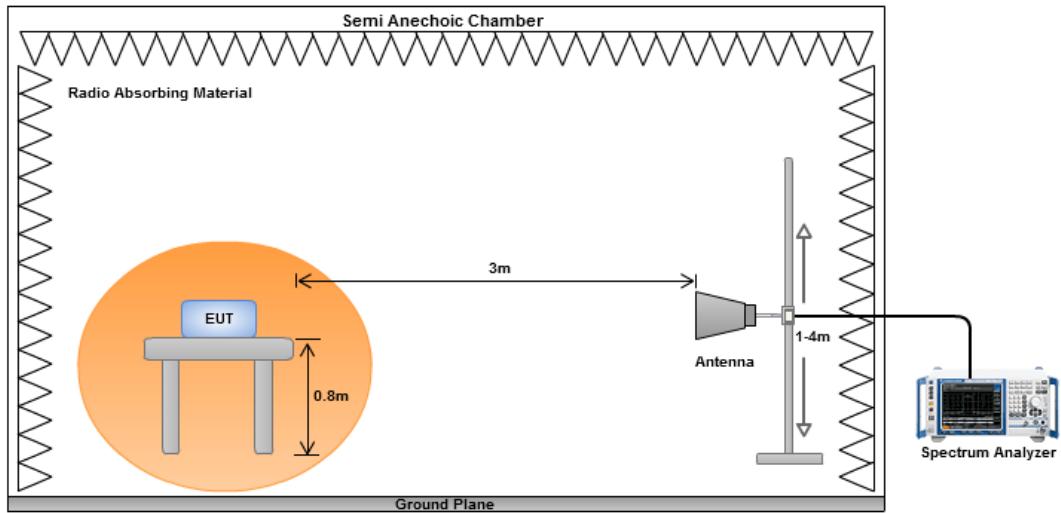
3 Test Results

3.1 Equivalent Isotropically Radiated Power

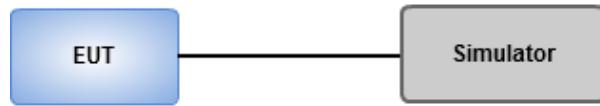
3.1.1 Limit of Equivalent Isotropically Radiated Power

Mobile and portable stations are limited to 2 watts EIRP.

3.1.2 Test Procedures


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. $E.I.R.P = \text{output power of step 4} + \text{gain of substitution antenna} - \text{cable loss of RF cable.}$

For Conducted power measurement


1. The EUT links up with simulator and is set to maximum output power level at low / middle / high channel.
2. Measure the output power of low / middle / high channel of the EUT

3.1.3 Test Setup

Equivalent Isotropically Radiated Power Measurement

Conducted Power Measurement

3.1.4 Test Result of Conducted Power (dBm)

Band		GSM1900		
Channel		512	661	810
Frequency (MHz)		1850.2	1880.0	1909.8
GSM		29.37	29.43	29.46
GPRS 8 (GMSK, 1 slot)		29.40	29.44	29.48
GPRS 10 (GMSK, 2 slots)		26.73	26.76	26.91
GPRS 11 (GMSK, 3 slots)		24.64	24.65	24.89
GPRS 12 (GMSK, 4 slots)		23.21	23.20	23.50
DTM5 (2Tx slots)	GSM (GMSK,1 Tx slot)	26.66	26.73	26.84
	GPRS (GMSK,1 Tx slot)	26.60	26.63	26.79
DTM9 (2Tx slots)	GSM (GMSK,1 Tx slot)	26.65	26.69	26.82
	GPRS (GMSK,1 Tx slot)	26.56	26.61	26.76
DTM11 (3Tx slots)	GSM (GMSK,1 Tx slot)	24.54	24.59	24.83
	GPRS (GMSK,2 Tx slotS)	24.51	24.55	24.80

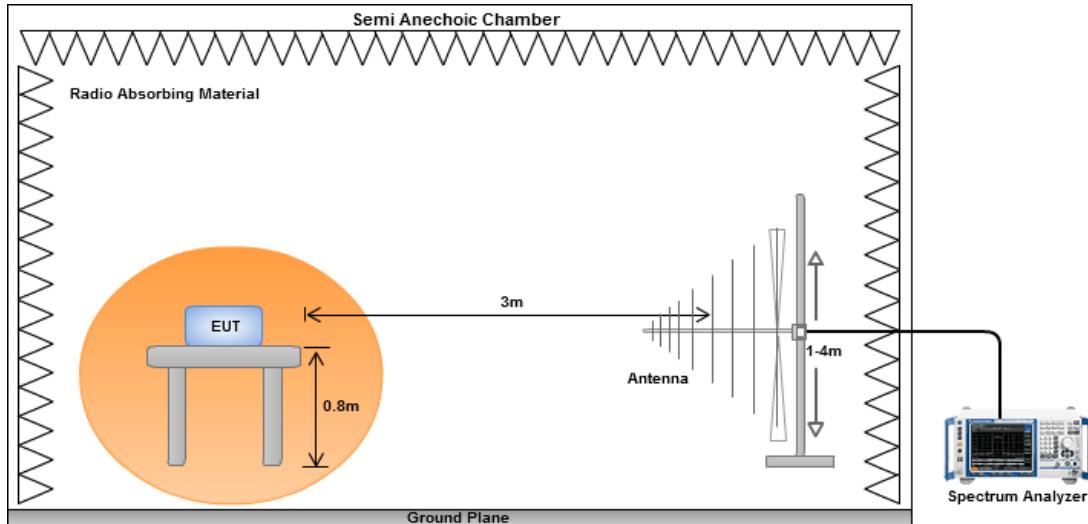
3.1.5 Test Result of Equivalent Isotropically Radiated Power (dBm)

Mode	GSM							
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)	
512	1850.2	24.14	33	-8.86	17.15	18.48	5.66	
661	1880.0	24.45	33	-8.55	17.04	18.7	5.75	
810	1909.8	24.25	33	-8.75	16.43	18.4	5.85	

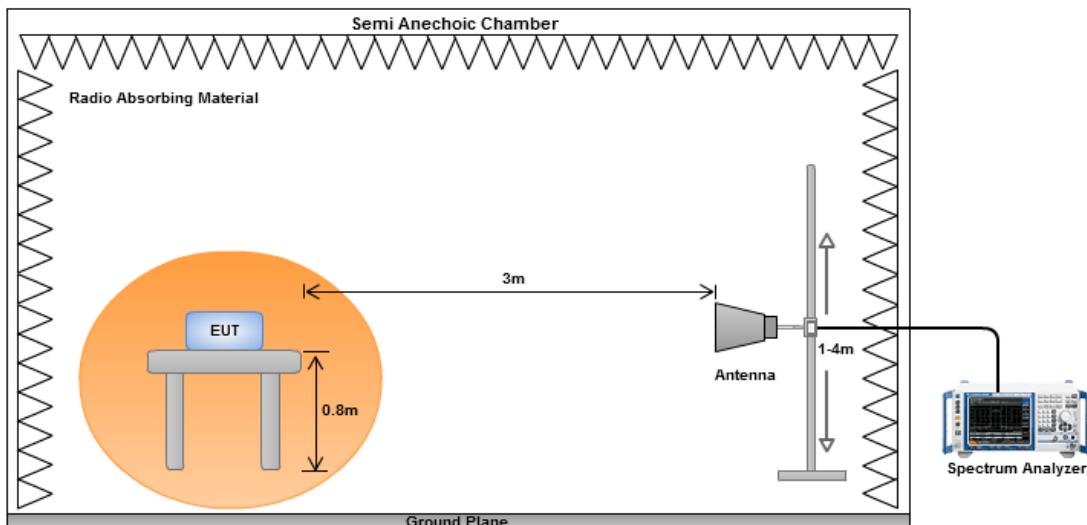
Note: EIRP = S.G Power value + Correction factor.

3.2 Radiated Emissions

3.2.1 Limit of Radiated Emissions


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.2.2 Test Procedures


1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
5. E.I.R.P = output power of step 4 + gain of substitution antenna – cable loss of RF cable.

3.2.3 Test Setup

Radiated Emissions below 1 GHz

Radiated Emissions above 1 GHz

3.2.4 Test Result of Radiated Emissions below 1GHz_Adapter mode

Mode	GSM, Channel: 661						
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
30.00	H	-61.41	-13.00	-48.41	-63.54	-47.03	-14.38
106.63	H	-55.72	-13.00	-42.72	-48.67	-55.67	-0.05
170.65	H	-56.84	-13.00	-43.84	-50.46	-57.57	0.73
447.10	H	-65.05	-13.00	-52.05	-62.91	-69.15	4.10
730.34	H	-54.56	-13.00	-41.56	-57.37	-58.10	3.54
746.83	H	-51.53	-13.00	-38.53	-54.77	-54.94	3.41
46.49	V	-54.22	-13.00	-41.22	-47.49	-42.84	-11.38
76.56	V	-51.59	-13.00	-38.59	-44.81	-48.34	-3.25
174.53	V	-51.08	-13.00	-38.08	-47.73	-52.38	1.30
274.44	V	-52.58	-13.00	-39.58	-49.26	-56.87	4.29
377.26	V	-63.18	-13.00	-50.18	-60.33	-67.53	4.35
747.80	V	-45.33	-13.00	-32.33	-49.66	-48.74	3.41

Note: EIRP = S.G Power value + Correction factor.

3.2.5 Test Result of Radiated Emissions below 1GHz_Cradle mode

Mode	GSM, Channel: 661						
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
30.97	H	-59.43	-13.00	-46.43	-61.67	-45.32	-14.11
106.63	H	-55.40	-13.00	-42.40	-48.35	-55.35	-0.05
186.17	H	-56.31	-13.00	-43.31	-48.57	-59.13	2.82
291.90	H	-63.03	-13.00	-50.03	-56.51	-67.26	4.23
730.34	H	-56.02	-13.00	-43.02	-58.83	-59.56	3.54
747.80	H	-54.52	-13.00	-41.52	-57.78	-57.93	3.41
46.49	V	-54.33	-13.00	-41.33	-47.60	-42.95	-11.38
105.66	V	-48.68	-13.00	-35.68	-42.60	-48.67	-0.01
140.58	V	-53.01	-13.00	-40.01	-49.43	-51.67	-1.34
195.87	V	-55.88	-13.00	-42.88	-52.14	-59.80	3.92
236.61	V	-59.61	-13.00	-46.61	-56.43	-63.99	4.38
747.80	V	-45.34	-13.00	-32.34	-49.67	-48.75	3.41

Note: EIRP = S.G Power value + Correction factor.

3.2.6 Test Result of Radiated Emissions above 1GHz

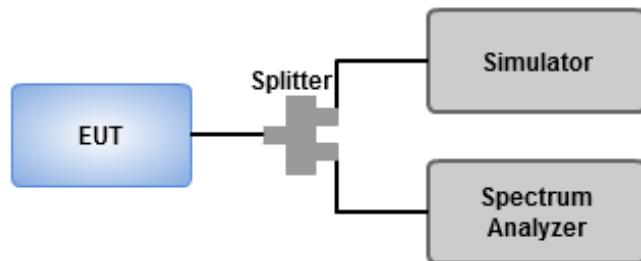
Mode	GSM, Channel: 512						
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
3700.40	H	-43.17	-13.00	-30.17	-57.29	-49.75	6.58
5550.60	H	-43.93	-13.00	-30.93	-62.61	-49.81	5.88
7400.00	H	-37.42	-13.00	-24.42	-58.76	-40.29	2.87
3700.40	V	-43.44	-13.00	-30.44	-57.08	-50.02	6.58
5550.60	V	-43.86	-13.00	-30.86	-61.12	-49.74	5.88
7400.00	V	-43.86	-13.00	-30.86	-63.63	-46.73	2.87

Mode	GSM, Channel: 661						
Frequency (MHz)	Antenna Polarity	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
3760.00	H	-41.84	-13.00	-28.84	-56.48	-48.42	6.58
5640.00	H	-43.32	-13.00	-30.32	-62.54	-49.17	5.85
7520.00	H	-40.56	-13.00	-27.56	-61.11	-43.52	2.96
3760.00	V	-43.85	-13.00	-30.85	-57.98	-50.43	6.58
5640.00	V	-44.14	-13.00	-31.14	-61.76	-49.99	5.85
7520.00	V	-37.46	-13.00	-24.46	-57.20	-40.42	2.96

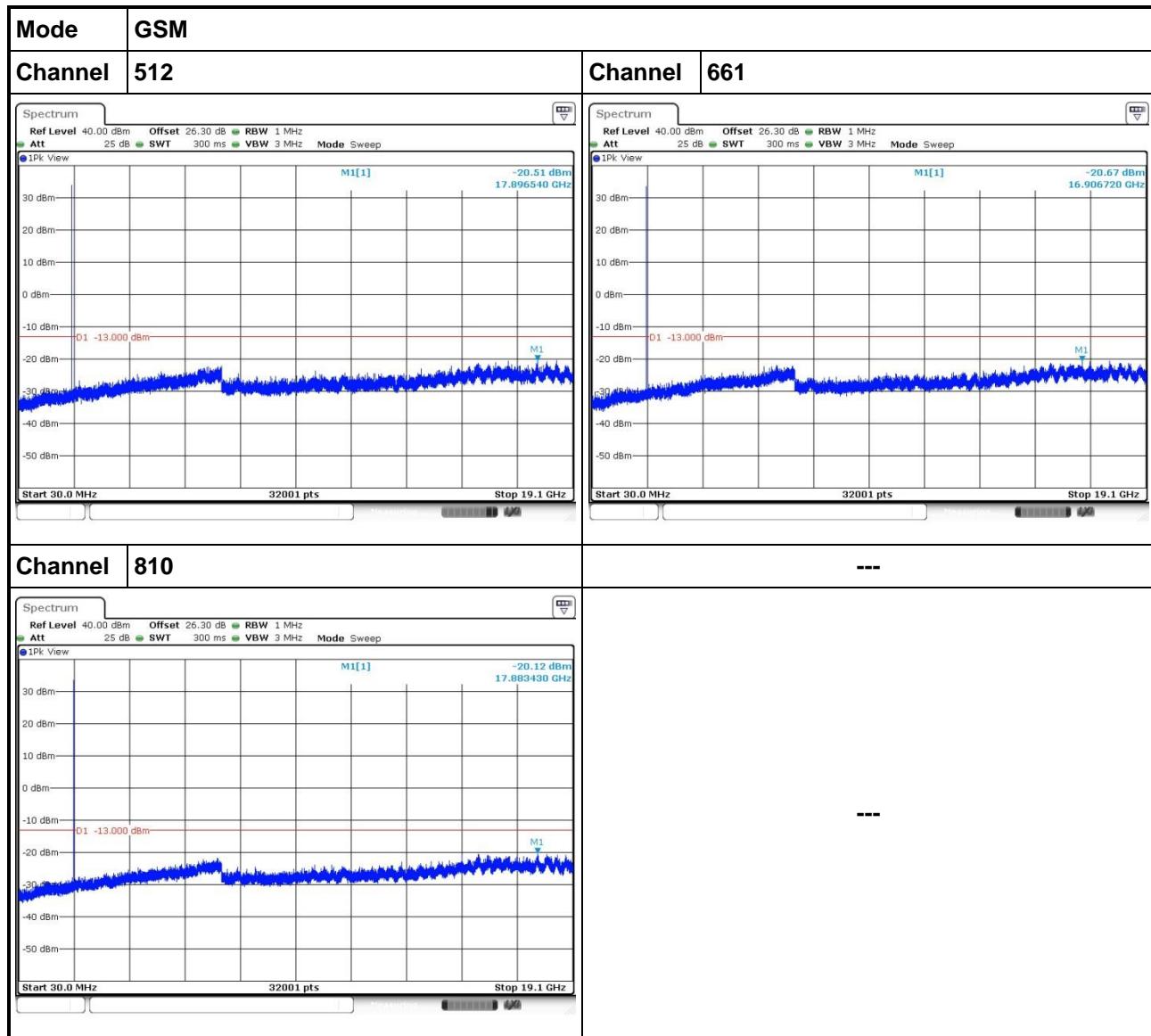
Mode	GSM, Channel: 810						
Frequency (MHz)	Antenna Polarity.	E.I.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
3819.60	H	-41.02	-13.00	-28.02	-55.98	-47.58	6.56
5729.40	H	-45.19	-13.00	-32.19	-64.26	-51.00	5.81
7639.20	H	-43.78	-13.00	-30.78	-63.99	-46.65	2.87
3819.60	V	-42.49	-13.00	-29.49	-56.94	-49.05	6.56
5729.40	V	-43.26	-13.00	-30.26	-61.12	-49.07	5.81
7639.20	V	-37.22	-13.00	-24.22	-57.02	-40.09	2.87

Note: EIRP = S.G Power value + Correction factor.

3.3 Conducted Emissions


3.3.1 Limit of Conducted Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

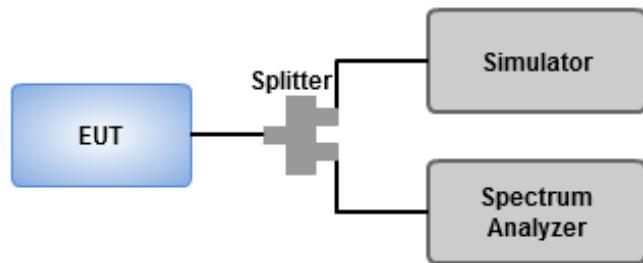

3.3.2 Test Procedures

1. Lowest, middle and highest operating channels are tested for this item.
2. Scan frequency range is from 30MHz~19.1GHz.
3. Set RBW = 1MHz, VBW = 3MHz, detector = Peak, sweep time = auto.
4. Record the max trace value and capture the test plot of each sub frequency band.

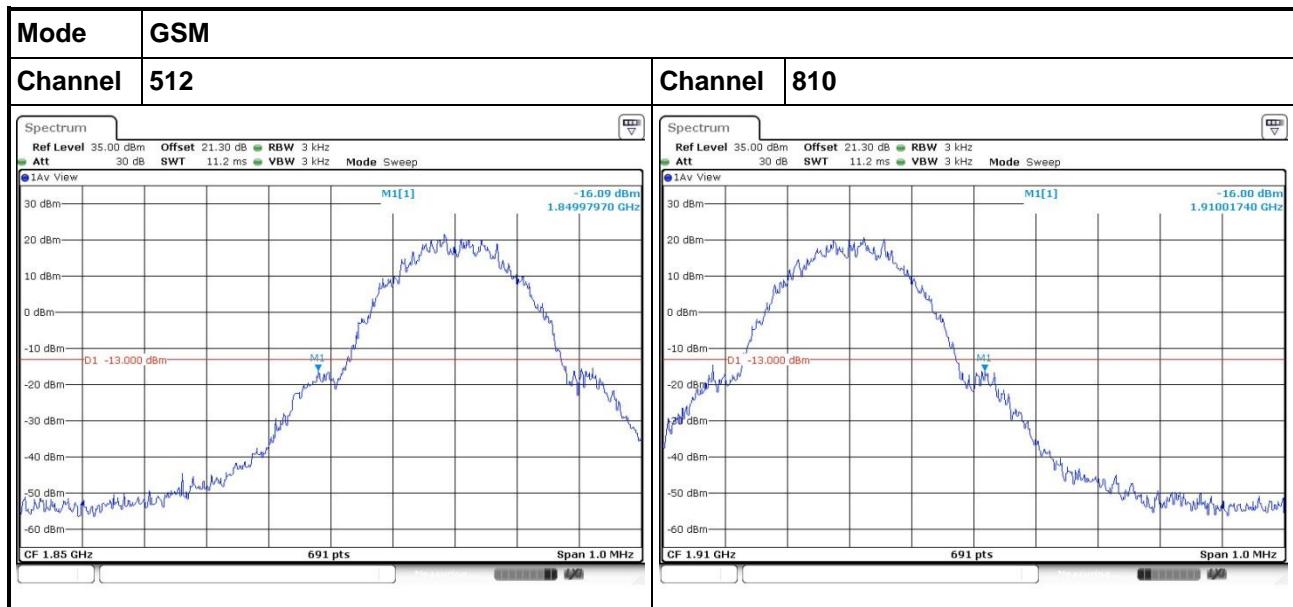
3.3.3 Test Setup

3.3.4 Test Result of Conducted Emissions

3.4 Band Edge


3.4.1 Limit of Band Edge

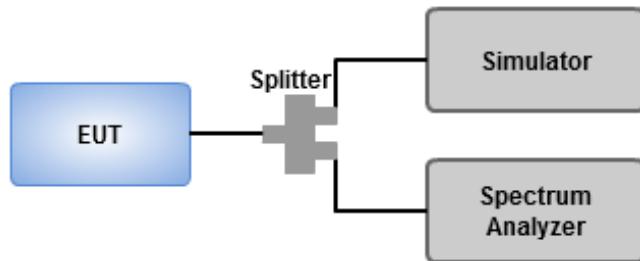
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.


3.4.2 Test Procedures

1. Lowest and highest operating channels are tested for this item.
2. The center frequency of spectrum analyzer will be set to 1850 and 1910 MHz.
3. Set RBW = 3kHz, VBW = 3 kHz, span = 1 MHz, detector = RMS, sweep time = auto.
4. Record the max trace value and capture the test plot.

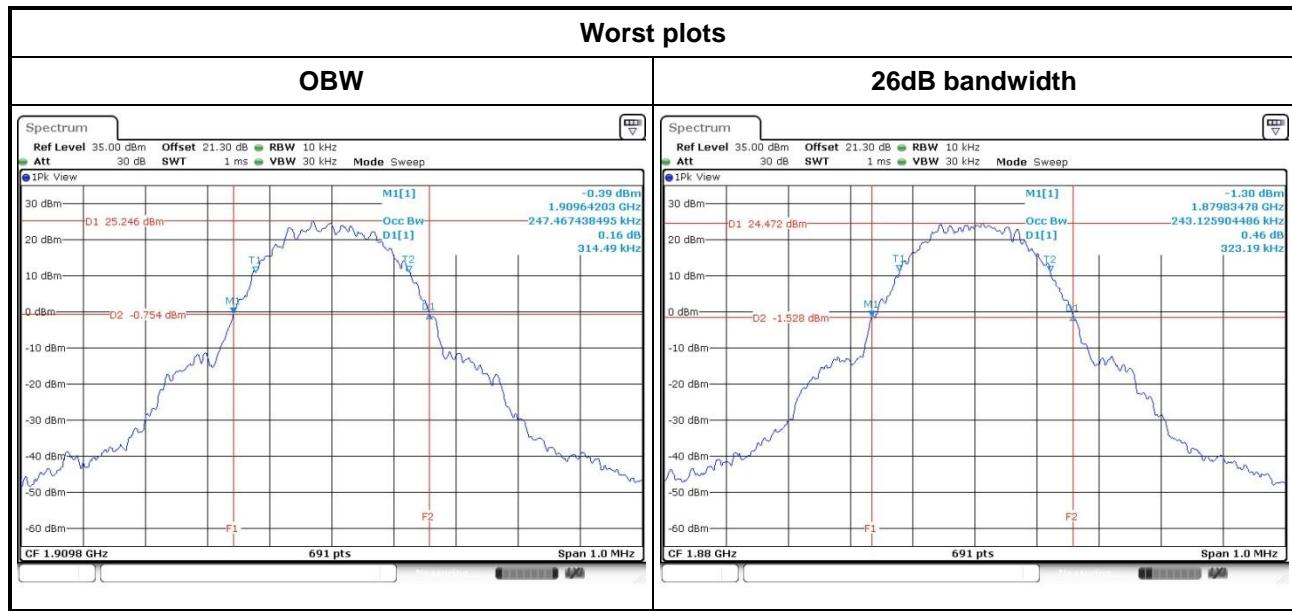
3.4.3 Test Setup

3.4.4 Test Result of Band Edge



3.5 Occupied Bandwidth and 26dBc Bandwidth

3.5.1 Test Procedures

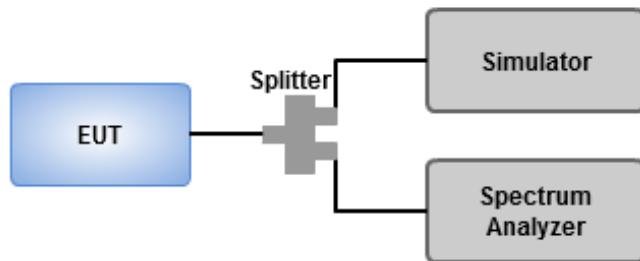

1. Set resolution bandwidth (RBW) = 10 kHz, Video bandwidth = 30kHz.
2. Detector = Peak, Trace mode = max hold.
3. Sweep = auto couple, Allow the trace to stabilize.
4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth.
5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 26dB relative to the maximum level measured in the fundamental emission.

3.5.2 Test Setup

3.5.3 Test Result of Occupied Bandwidth

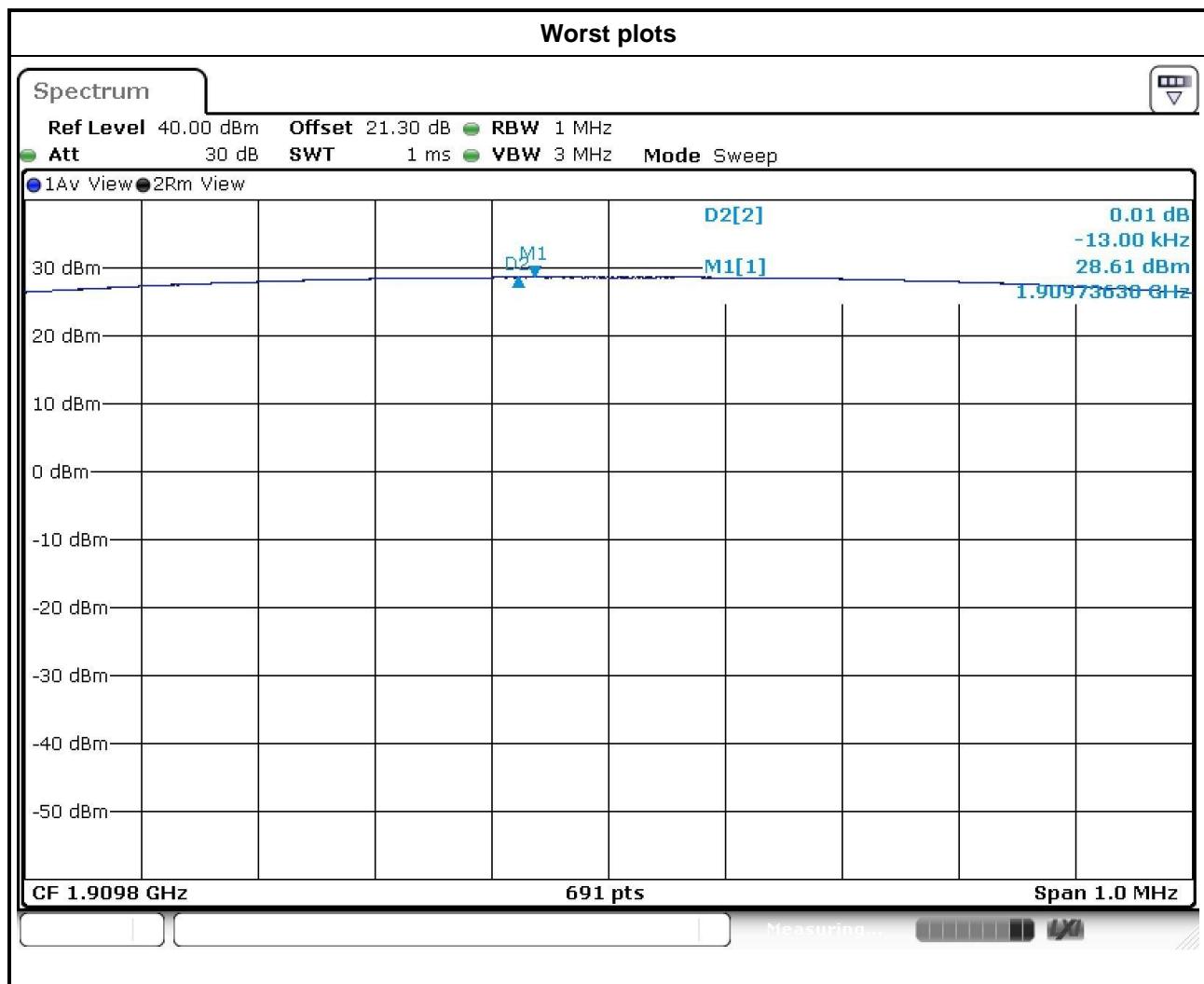
MODE	Channel	Frequency (MHz)	OBW (kHz)	26dB bandwidth(kHz)
512	1850.2	1850.2	241.68	315.94
661	1880.0	1880.0	243.13	323.19
810	1909.8	1909.8	247.47	314.49

3.6 Peak to Average Ratio


3.6.1 Limit of Peak to Average Ratio

Peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

3.6.2 Test Procedures

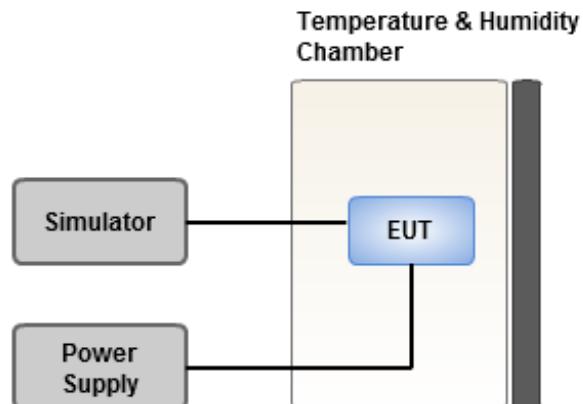

1. Set RBW=1MHz, RBW=3MHz, Peak detector in Trace 1
2. Set RBW=1MHz, RBW=3MHz, RMs detector in Trace 2
3. Trigger function is enabled for measuring singal at burst on time. Measure the difference between trace1 and trace 2.

3.6.3 Test Setup

3.6.4 Test Result of Peak to Average ratio

MODE	Channel	Frequency (MHz)	Peak to Average ratio (dB)
GSM	512	1850.2	0.01
GSM	661	1880.0	0.01
GSM	810	1909.8	0.01

3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.7.2 Test Procedures

1. EUT was placed at temperature chamber and connected to an external power supply.
2. Temperature and voltage condition shall be tested to confirm frequency stability.
3. Temperature range is from -30~55°C and voltage range is from lowest to highest working voltage.
4. Tem Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.7.3 Test Setup

3.7.4 Test Result of Frequency Stability

Temperature (°C)	Voltage (dc)	Frequency Drift (ppm)	Limit (ppm)
55	3.9	0.003	2.5
50	3.9	0.004	2.5
40	3.9	0.005	2.5
30	3.9	0.006	2.5
20	3.9	0.007	2.5
10	3.9	0.008	2.5
0	3.9	0.009	2.5
-10	3.9	0.010	2.5
-20	3.9	0.011	2.5
-30	3.9	0.012	2.5
20	4.29	0.006	2.5
20	3.51	0.008	2.5

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan,
R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd
St., Kwei Shan Hsiang, Tao
Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan Hsiang, Tao
Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==