

FCC and IC RADIO TEST REPORT

Applicant's company	Ralink Technology Corporation					
Applicant Address	, No.36, Taiyuan St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
FCC ID	VQF-RT3090BC4					
IC	7542A-RT3090BC4					
Manufacturer's company	Ralink Technology Corporation					
Manufacturer Address	5F., No.36, Taiyuan St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					

Product Name	802.11b/g/n 1T1R combo card			
	(Tested inside of HP Notebook PC, H110UI1)			
Brand Name	Ralink			
Model Name RT3090BC4				
Test Rule 47 CFR FCC Part 15 Subpart C § 15.247				
	IC RSS-210 Annex 8			
Test Freq. Range	2400 ~ 2483.5MHz			
Received Date	Nov. 15, 2009			
Final Test Date	May 03, 2010			
Submission Type	Class II Change			
Multiple Listing	Aultiple Listing Please refer to section 3.7			

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003, 47 CFR FCC Part 15 Subpart C and IC RSS-210 issue 7.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CEF	RTIFICATE OF COMPLIANCE	. 1
2.	SUN	Imary of the test result	. 2
3.	GEI	NERAL INFORMATION	. 3
	3.1.	Product Details	3
	3.2.	Accessories	5
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	6
	3.6.	5	
	3.7.		
	3.8.		
	3.9.		
	3.10	D. Test Configurations	9
4.	TES	T RESULT	12
	4.1.	AC Power Line Conducted Emissions Measurement	.12
	4.2.	Radiated Emissions Measurement	.16
	4.3.	Antenna Requirements	.23
5.	LIST	OF MEASURING EQUIPMENTS	24
6.	TES	T LOCATION	25
7.	TAF		26
AF	PEN	NDIX A. PHOTOGRAPHS OF EUT	A7
AF	PEN	NDIX B. TEST PHOTOS	B5
AF	PEN	NDIX C. CO-LOCATION TEST REPORT	C3
AF	PEN	NDIX D. RSS-GEN RECEIVER TEST REPORT	22

History of This Test Report

Original Issue Date: May 04, 2010

Report No.: FR9D0210-04AA, CR9D0210-04AA

- No additional attachment.
- Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Report No.: FR9D0210-04AA, CR9D0210-04AA

Certificate No.: CB9905001

1. CERTIFICATE OF COMPLIANCE

Product Name	:	802.11b/g/n 1T1R combo card
Brand Name	:	Ralink
Model Name	:	RT3090BC4
Applicant	:	Ralink Technology Corporation
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.247
		IC RSS-210 Annex 8

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 15, 2009 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

brolom Hsiau 2010. J.J.

Jordan Hsiao SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C and IC RSS-210 issue 7								
Part	Rule Section	Result	Under Limit						
4.1	15.207/RSS-Gen 7.2.2	AC Power Line Conducted Emissions	AC Power Line Conducted Emissions Complies 14.35 d						
-	15.247(b)(3)/A8.4	Maximum Conducted Output Power Complies -							
-	15.247(e)/A8.2	Power Spectral Density	Complies	-					
-	15.247(a)(2)/A8.2	6dB Spectrum Bandwidth	Complies	-					
4.2	15.247(d)/A8.5	Radiated Emissions	Complies	0.47 dB					
-	15.247(d)/A8.5	Band Edge Emissions	Complies	-					
4.3	15.203/RSS-Gen 7.1.4	Antenna Requirements	Complies	-					

Note:

The RF module is verified. Please reference Sporton project number: 9D0210-01.

The module inserts to Notebook, so this report tests above item.

The information for host Notebook:

Product Name: 11b/g/n 1T1R WLAN Mini Card

(Tested inside of HP Notebook PC, H110UI1)

ODM: Flextronics

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.8dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Channel Band Width (99%)	MCS0 (20MHz): 17.64 MHz ; MCS0 (40MHz): 36.16 MHz
Conducted Output Power	MCS0 (20MHz): 21.68 dBm ; MCS0 (40MHz): 17.07 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11b/g

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	DSSS for IEEE 802.11b ; OFDM for IEEE 802.11g
Data Modulation	DSSS (BPSK / QPSK / CCK) ; OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11) ; OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11
Channel Band Width (99%)	11b: 14.84 MHz ; 11g: 16.48 MHz
Conducted Output Power	11b: 20.89 dBm ; 11g: 21.93 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Antenna & Band width

Antenna	Single (TX)						
Band width Mode	20 MHz	40 MHz					
IEEE 802.11b	V	х					
IEEE 802.11g	V	х					
IEEE 802.11n	V	V					

						NCBPS NDBPS		Datarate(Mbps)				
MCS Index	Nss	Modulation	R	NBPSC						800nsGI		400nsGI
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.200	15
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.400	30
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.700	45
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.900	60
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.300	90
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.800	120
6	1	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.000	135
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.200	150
8	2	BPSK	1/2	1	104	216	52	108	13.0	27.0	14.444	30
9	2	QPSK	1/2	2	208	432	104	216	26.0	54.0	28.889	60
10	2	QPSK	3/4	2	208	432	156	324	39.0	81.0	43.333	90
11	2	16-QAM	1/2	4	416	864	208	432	52.0	108.0	57.778	120
12	2	16-QAM	3/4	4	416	864	312	648	78.0	162.0	86.667	180
13	2	64-QAM	2/3	6	624	1296	416	864	104.0	216.0	115.556	240
14	2	64-QAM	3/4	6	624	1296	468	972	117.0	243.0	130.000	270
15	2	64-QAM	5/6	6	624	1296	520	1080	130.0	270.0	144.444	300

IEEE 802.11n spec

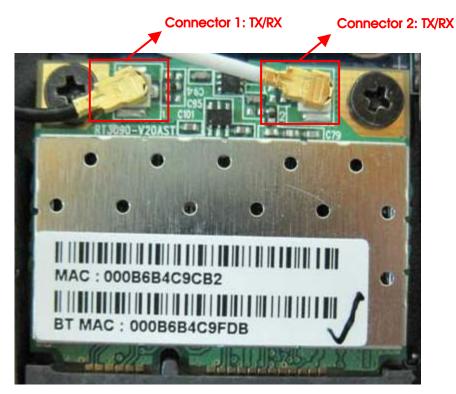
Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	guard interval

3.2. Accessories

N/A

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)		Remark			
Δ	YAGEO	P2885050C00002	DIEA Antonna	Deversed SMA		Nain		1.17	T)//D)/	
A	IAGEO	B2885050G00003 PIFA Antenna Reversed-SMA		Aux.	-0.85	TX/RX				
в			Reversed-SMA	Main	in 0.52	TX/RX				
D	ACON	APP6P-700419	PIFA Antenna	Reversed-SiviA	Aux.	-0.59	ΙΛ/ΚΛ			
с	Amphonol	FL5130-11-002-C			Main	0.30	TX/RX			
	Amphenol	FL3130-11-002-C	PIFA Antenna	I-PEX	Aux.	-0.20	17/87			


Note: The EUT has three types of antennas.

Due to Ant. A \sim Ant. C is the same type antenna, only the higher gain antenna "Ant. A" was tested and recorded in this report.

The EUT supports the antenna with TX/RX diversity function for WLAN and Bluetooth.

When Connector 1 is WLAN function, Connector 2 must be Bluetooth function.

Oppositely, if Connector 2 is WLAN function, Connector 1 must be Bluetooth function.

3.4. Table for Carrier Frequencies

For IEEE 802.11b/g, use Channel 1~Channel 11. There are two bandwidth systems for IEEE 802.11n.

For both 20MHz bandwidth systems, use Channel 1~Channel 11.

For both 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
0400 0482 EN4U-	3	2422 MHz	9	2452 MHz
2400~2483.5MHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz		

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	Normal Link	-	-	-
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-
Radiated Emissions 1GHz~10 th Harmonic	MCS0/20MHz	6.5 Mbps	1/6/11	А
	MCS0/40MHz	13.5 Mbps	3/6/9	А
	11b/BPSK	1 Mbps	1/6/11	А
	11g/BPSK	6 Mbps	1/6/11	Α

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	480872	IC 4086	-
CO04-HY	Conduction	Hwa Ya	480872	IC 4086	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: 9D0210-01 Below is the table for the change of the product with respect to the original one.

Description	Performance Checking
This Module is restricted only on the platform.	
The platform is a Notebook, which was defined as a mobile device.	
The information for host Notebook:	AC Conducted Emissions
Product Name: 11b/g/n 111R WLAN Mini Card	Radiated Emissions
(Tested inside of HP Notebook PC, H110UI1)	
ODM: Flextronics	

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID	
Modem	ACEEX	DM1414	IFAXDM1414	
Mouse	ICOOBY	AM\$0706W	DoC	
Notebook	HP	H110UI1	DOC	
Wireless AP	Planex	GW-AP54SGX	N/A	
Notebook	DELL	PP25L	E2K4965AGNM	

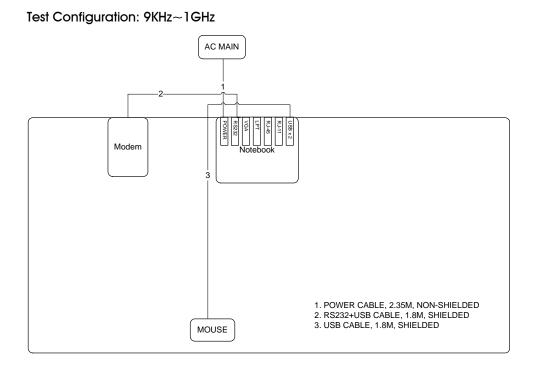
3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **Power Parameters of IEEE 802.11n**

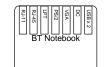
Test Software Version		QA	
Frequency	2412 MHz	2437 MHz	2462 MHz
MCS0 20MHz	13	١F	13
Frequency	2422 MHz	2437 MHz	2452 MHz
MCS0 40MHz	10	15	11

Power Parameters of IEEE 802.11b/g

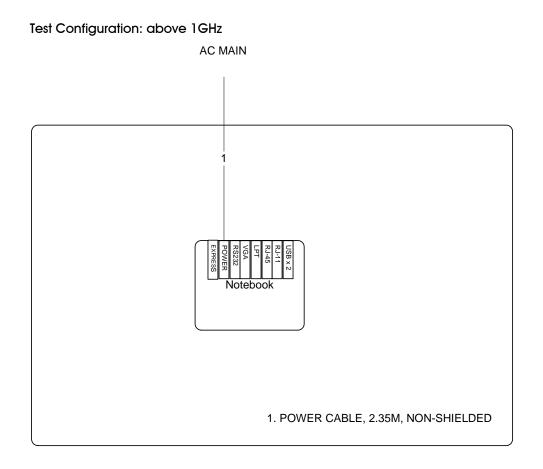
Test Software Version	QA				
Frequency	2412 MHz	2437 MHz	2462 MHz		
IEEE 802.11b	13	19	13		
IEEE 802.11g	14	1F	14		

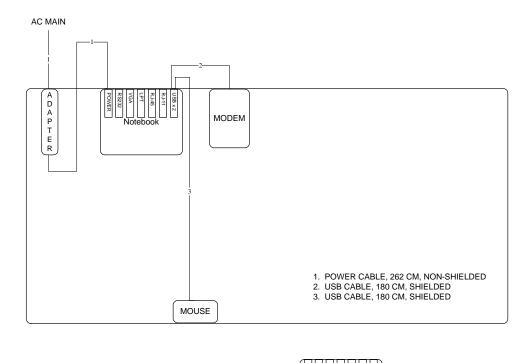

During the test, the following programs under WIN XP were executed:

Executed "QA" was executed the test program to control the EUT continuously transmit RF signal.



3.10. Test Configurations


3.10.1. Radiation Emissions Test Configuration


AP

3.10.2. AC Power Line Conduction Emissions Test Configuration

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

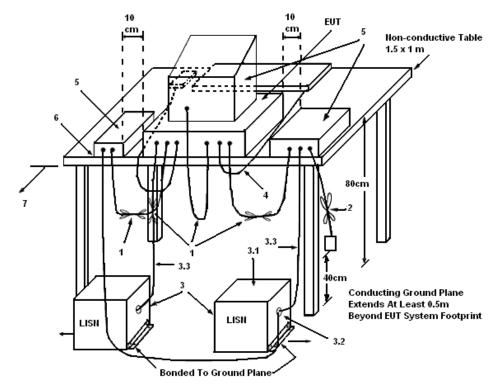
4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

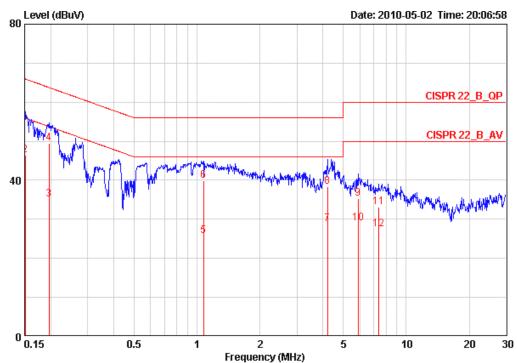
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

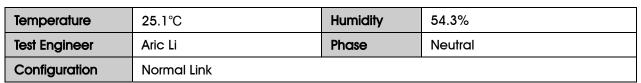
(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

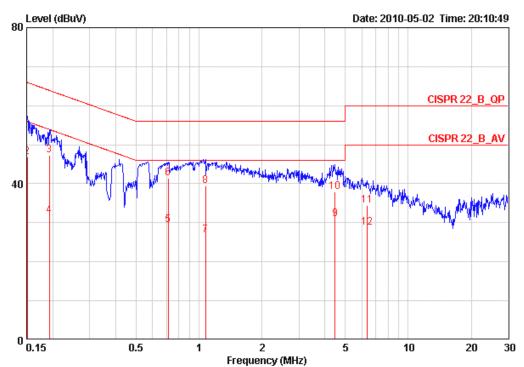
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	25 .1℃	Humidity	54.3%
Test Engineer	Aric Li	Phase	Line
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Lo <i>ss</i>	Remark
	MHz	dBu∛	dB	dBu∛	dBuV	dB	dB	
1	0.15080	24.26	-31.69	55.96	23.99	0.07	0.20	AVERAGE
2	0.15080	46.53	-19.42	65.96	46.26	0.07	0.20	QP
3	0.19654	35.05	-18.70	53.76	34.80	0.05	0.20	AVERAGE
4 0	0.19654	49.40	-14.35	63.76	49.15	0.05	0.20	QP
5	1.077	25.79	-20.21	46.00	25.58	0.03	0.18	AVERAGE
6	1.077	39.92	-16.08	56.00	39.71	0.03	0.18	QP
7	4.202	28.75	-17.25	46.00	28.34	0.11	0.30	AVERAGE
8	4.202	38.36	-17.64	56.00	37.95	0.11	0.30	QP
9	5.898	35.28	-24.72	60.00	34.77	0.21	0.30	QP
10	5.898	29.04	-20.96	50.00	28.53	0.21	0.30	AVERAGE
11	7.368	33.18	-26.82	60.00	32.54	0.27	0.38	QP
12	7.368	27.38	-22.62	50.00	26.74	0.27	0.38	AVERAGE

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBu∛	dB	dBu¥	dBu∛	dB	dB	
1	0.15080	22.37	-33.58	55.96	22.07	0.10	0.20	AVERAGE
2	0.15080	46.87	-19.08	65.96	46.57	0.10	0.20	QP
3	0.19242	47.30	-16.63	63.93	47.02	0.08	0.20	QP
4	0.19242	31.73	-22.20	53.93	31.45	0.08	0.20	AVERAGE
5	0.71219	29.52	-16.48	46.00	29.25	0.07	0.20	AVERAGE
6	0.71219	41.51	-14.49	56.00	41.24	0.07	0.20	QP
7	1.077	26.85	-19.15	46.00	26.60	0.07	0.18	AVERAGE
8	1.077	39.47	-16.53	56.00	39.22	0.07	0.18	QP
9	4.478	30.99	-15.01	46.00	30.52	0.17	0.30	AVERAGE
10	4.478	37.85	-18.15	56.00	37.38	0.17	0.30	QP
11	6.386	34.53	-25.47	60.00	33.89	0.27	0.37	QP
12	6.386	28.84	-21.16	50.00	28.20	0.27	0.37	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a)/2.2(a), then the 15.209(a)/2.2(b) limit in the table below has to be followed.

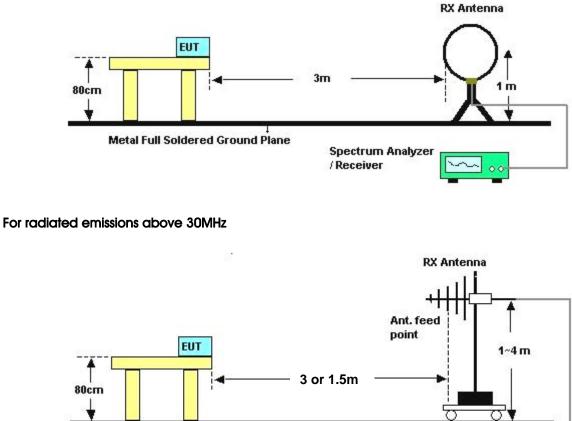
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start \sim Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.2.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.2.4. Test Setup Layout

For radiated emissions below 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	23°C	Humidity	56%
Test Engineer	Alan Huang	Configurations	Normal Link
Test Date	May 03, 2010		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8.

Temperature	23° C		Humid	ity	56%					
Test Engineer	Alan Hu	lang	Config	gurations	Normal Link					
orizontal										
97 97						Da	te: 20	10-05-03 Ti	me: 10:59:30	
7.3										
7.6										
7.9										
8.2								F	CC CLASS-B	
8.5									6dB	
8.8						6				
9.1	. hudere	3		Allandh	Mahrinadalaha	harman	hvubre	where and the struct	pprovations	
19.4	the for the second with the second se	had between the boll whe	40-04 Land Carles Con-							
9.7										

500.

Frequency (MHz)

600.

700.

800.

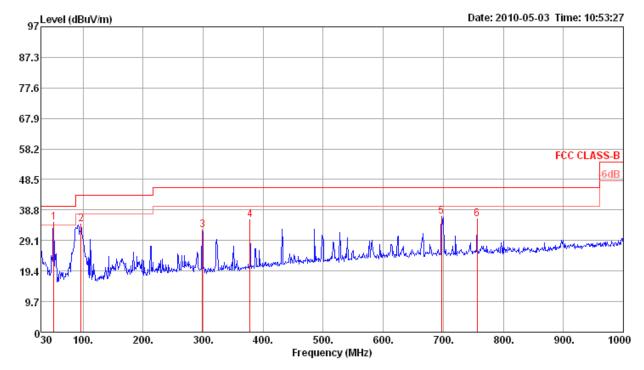
900.

1000

	Freq	Level	Limit Line	0ver Limit				Antenna Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB	dB/m	deg	cm		
1	30.00	27.90	40.00	-12.10	36.44	0.50	27.80	18.76	ø	100	Peak	HORIZONTAL
2	90.14	25.20	43.50	-18.30	42.76	1.10	27.64	8.98	0	100	Peak	HORIZONTAL
3	299.66	28.94	46.00	-17.06	40.38	2.10	26.90	13.36	0	100	Peak	HORIZONTAL
4	499.48	31.36	46.00	-14.64	39.14	2.70	28.09	17.61	0	100	Peak	HORIZONTAL
5	697.36	34.63	46.00	-11.37	40.24	3.31	28.00	19.08	0	100	Peak	HORIZONTAL
6	756.53	32.40	46.00	-13.60	37.23	3.47	27.77	19.47	0	100	Peak	HORIZONTAL

0₃₀

100.


200.

300.

400.

Vertical

	Freq	Level	Limit Line	0∨er Limit				ntenna Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu\∕/m	dB	dBu∨	dB	dB	dB/m	deg	cm		
1	51.34	34.97	40.00	-5.03	53.69	0.72	27.79	8.35	0	400	Peak	VERTICAL
2	96.93	34.22	43.50	-9.28	50.31	1.14	27.62	10.39	Ø	400	Peak	VERTICAL
3	298.69	32.38	46.00	-13.62	43.83	2.10	26.90	13.35	Ø	400	Peak	VERTICAL
4	378.23	35.53	46.00	-10.47	45.24	2.26	27.45	15.48	Ø	400	Peak	VERTICAL
5	697.36	36.83	46.00	-9.17	42.44	3.31	28.00	19.08	Ø	400	Peak	VERTICAL
6	756.53	35.99	46.00	-10.01	40.82	3.47	27.77	19.47	0	400	Peak	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.2.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	2	23°C			Humid	dity		56%			
Test Engineer	gineer Alan Huang Configurations				าร	IEEE 802.11b CH 6					
Test Date	/	Apr. 30,	2010								
Horizontal											
Freq L	evel	Limit Line		Read Level		PreampA Factor		T/Pos	A/Pos	Rema rk	Pol/Phase
MHz dB	uV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	deg	Cm		
1 p 4873.80 5 2 a 4873.95 5	6.24 3.34	74.00 54.00	-17.76 -0.66	53.63 50.73	4.33 4.33	35.20 35.20	33.48 33.48	289 289		Peak Average	HORIZONTAL HORIZONTAL

Vertical

Freq Leve	Limit Over l Line Limit				T/Pos	A/Pos	Remark	Pol/Phase
MHz dBuV/	n dBuV/m dB	dBuV	dB	dB dB/m	deg	Cm		
<u>1 а 4873.95 53.5</u> 2 р 4874.20 59.1	<u>3 54.00 -0.47</u> 2 74.00 -14.88				100 100		Average Peak	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.3. Antenna Requirements

4.3.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.3.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Apr. 15, 2010	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 23, 2010	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2010	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2010	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	Jun. 11, 2009	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 07, 2009	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 23, 2010	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jul. 21, 2009	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5 GHz - 40 GHz	Apr. 06, 2009*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100305	9 kHz - 40 GHz	Feb. 03, 2010	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 28, 2008*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Sep. 26, 2009	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 28, 2010	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jan.16, 2010	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Jan. 05, 2010	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Jan. 05, 2010	Radiation (03CH03-HY)
Turn Table	HD	D\$ 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Note: *Calibration Interval of instruments listed above is two year.

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085
	1		

7. TAF CERTIFICATE OF ACCREDITATION

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix