

RF EXPOSURE TEST REPORT

Test Report No. 15192522H-A-R1

Customer	Murata Manufacturing Co., Ltd.		
Description of EUT	Communication Module		
Model Number of EUT	2FJ		
FCC ID	VPYLB2FJ1		
Test Regulation	FCC47CFR 2.1093		
Test Result	Complied		
Issue Date	October 21, 2024		
Remarks	 For Permissive change This is a SAR report which one of the RF exposures. *The highest reported SAR Standalone 0.16 W/kg 		

Representative test engineer	Approved by
T. Nakagawa	S. Matsuyama
Tomohisa Nakagawa	Satofumi Matsuyama
Engineer	Engineer
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed i	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
Report Cover Pa	ge - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers RF exposure technical requirements.
- It does not cover administrative issues such as Manual or non-RF exposure test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15192522H-A

This report is a revised version of 15192522H-A. 15192522H-A is replaced with this report.

Revision	Test report No.	Date	Page Revised Contents
- (Original)	15192522H-A	October 15, 2024	-
1	15192522H-A-R1	October 21, 2024	Section 9.1
			Table Test exemption
			-Modified tune up limit of BT BR.
			8.50 dBm → 8.65 dBm
			7.08 mW → 7.33 mW

AAN	Asymmetric Artificial Network	GPS	Global Positioning System
AC	Alternating Current	Hori.	Horizontal
AM	Amplitude Modulation	ICES	Interference-Causing Equipment Standard
AMN	Artificial Mains Network	1020	Input/Output
Amp, AMP	Amplifier	IEC	International Electrotechnical Commission
ANSI	American National Standards Institute	IEEE	Institute of Electrical and Electronics Engineers
Ant, ANT	Antenna	IF	Intermediate Frequency
AIII, AINT AP	Access Point	ILAC	
			International Laboratory Accreditation Conference Innovation, Science and Economic Development
ASK	Amplitude Shift Keying	ISED	Canada
Atten., ATT	Attenuator	ISN	Impedance Stabilization Network
AV	Average	ISO	International Organization for Standardization
BPSK	Binary Phase-Shift Keying	JAB	Japan Accreditation Board
BR	Bluetooth Basic Rate	LAN	Local Area Network
BT	Bluetooth	LCL	Longitudinal Conversion Loss
BT LE	Bluetooth Low Energy	LIMS	Laboratory Information Management System
BW	BandWidth	LISN	Line Impedance Stabilization Network
C.F	Correction Factor	MRA	Mutual Recognition Arrangement
Cal Int	Calibration Interval	N/A	Not Applicable
CAV	CISPR AV	NIST	National Institute of Standards and Technology
CCK	Complementary Code Keying	NS	No signal detect.
CDN	Coupling Decoupling Network	NSA	Normalized Site Attenuation
Ch., CH	Channel	OBW	Occupied BandWidth
CISPR	Comite International Special des Perturbations Radioelectrigues	OFDM	Orthogonal Frequency Division Multiplexing
Corr.	Correction	PER	Packet Error Rate
CPE	Customer premise equipment	PK	Peak
CW	Continuous Wave	PLT	long-term flicker severity
DBPSK	Differential BPSK	POHC(A)	Partial Odd Harmonic Current
		Pol.,	
DC	Direct Current	Pola.	Polarization
DET	Detector	PR-ASK	Phase Reversal ASK
D-factor	Distance factor	P _{ST}	short-term flicker severity
Dmax	maximum absolute voltage change during an observation period	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	QP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	QPSK	Quadrature Phase Shift Keying
DUT	Device Under Test	r.m.s., RMS	Root Mean Square
EDR	Enhanced Data Rate	RBW	Resolution BandWidth
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	RE	Radio Equipment
EM clamp	Electromagnetic clamp	REV	Reverse
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency
EMI	ElectroMagnetic Interference	RFID	Radio Frequency Identifier
EMS	ElectroMagnetic Susceptibility	RNSS	Radio Navigation Satellite Service
EN	European Norm	RSS	Radio Standards Specifications
e.r.p., ERP	Effective Radiated Power	Rx	Receiving
ETSI	European Telecommunications Standards Institute	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise +
EU	European Union	S/N	Distortion) Signal to Noise ratio
EUT	Equipment Under Test		Spectrum Analyzer
Fac.	Factor	SA, S/A SG	Signal Generator
			Signal Generator Site-Voltage Standing Wave Ratio
FCC	Federal Communications Commission	SVSWR	
FHSS	Frequency Hopping Spread Spectrum	THC(A)	Total Harmonic Current
FM	Frequency Modulation	THD(%)	Total Harmonic Distortion
Freq.	Frequency	TR, T/R	Test Receiver
FSK	Frequency Shift Keying	Тх	Transmitting
Fund	Fundamental	VBW	Video BandWidth
FWD	Forward	Vert.	Vertical
		JAC AND	
GFSK	Gaussian Frequency-Shift Keying	WLAN	Wireless LAN
	Gaussian Frequency-Shift Keying Global Navigation Satellite System	xDSL	Generic term for all types of DSL technology

Reference: Abbreviations (Including words undescribed in this report)

Contains		
Section 1	Customer information	5
Section 2	Equipment under test (EUT)	5
2.1	Identification of EUT	5
2.2	Product description	5
2.3	Radio Specification	5
2.4	Software information	6
2.5	Tune-up tolerance information	6
2.6	Antenna information	7
Section 3	Definitions	
Section 4	Test standard information	
4.1	Test specification	
4.2	Published RF exposure KDB procedures and companion procedures	
4.3	Work Procedures	10
4.4	Addition to Standard	
4.5	Reference	
Section 5	Limits	
5.1	Exposure limit for SAR (FCC)	11
5.2	For PD (Above 6 GHz) (FCC)	11
Section 6	Location	11
Section 7	Test result	12
7.1	Verdict	12
7.2	Stand-alone SAR result	12
7.3	Simultaneous transmission SAR result	
Section 8	Uncertainty	12
8.1	0.3GHz - 6GHz range	12
Section 9	RF Exposure Conditions	13
9.1	SAR-based Exemption - FCC section 1.1307	13
9.2	Test position	13
Section 10	Dielectric Property	14
10.1	Dielectric Property for SAR	14
Section 11	SAR Measurements	15
11.1	Measurement configuration for SAR	15
Section 12	SAR System check	17
Section 13	SAR requirement	18
13.1	Common	
13.2	Channel Selection Requirement	18
13.3	Repeated measurement	18
Section 14		
14.1	Channel Selection Requirement	19
14.2	802.11b DSSS SAR Test Requirements	19
14.3	2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements	19
14.4	U-NII1 and U-NII-2A SAR Test Exclusion Requirements	20
14.5	SAR Test Requirements for OFDM Configurations	20
14.6	U-NII 6-7 GHz Interim Procedures	20
Section 15	Test instrument	21
Appendix 2	I Dielectric Property result	22
Appendix 2	2 System performance check result	22
Appendix 3		
Appendix 4		
Appendix 5		
Appendix 6		26
Appendix 7		
Appendix 8		
Appendix 9	Photo of setup and host device	59

Section 1 Customer information

Company Name	Murata Manufacturing Co., Ltd.		
Address	1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan		
Telephone Number	+81-50-1737-2801		
Contact Person	Kenji Hayashikoshi		

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- Appendix Antenna location

Section 2 Equipment under test (EUT)

2.1 Identification of EUT

Description	Communication Module
Model Number	2FJ
Serial Number	8
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 9, 2024 for SAR
	June 6, 2024 for power measurement
Test Date	September 30, 2024 for SAR
	June 6, 2024 for power measurement

EUT operates only with the specified Digital Camera.

Therefore the test was performed with the Digital Camera (Host) in which the distance to the exterior surface is shortest.

2.2 Product description

General Specification

Rating	Typ: DC 3.3 V / Min: DC 3.0 V / Max: DC 3.6 V
Body-worn accessory	
Battery option	\boxtimes None \Box ()

2.3 Radio Specification

WLAN (IEEE802.11b/11g/11n-20)

······································			
Equipment Type	Transceiver		
Frequency of Operation	2412 MHz to 2462 MHz		
Type of Modulation	DSSS, OFDM		
Antenna Gain	1.33 dBi		

Bluetooth (BR/EDR/Low Energy)

Equipment Type	Transceiver		
Frequency of Operation	2402 MHz to 2480 MHz		
Type of Modulation	BT: FHSS (GFSK, π/4 DQPSK, 8 DPSK)		
	BT LE: GFSK		
Antenna Gain	1.33 dBi		

2.4 Software information

IDTI

The power value of the EUT was set for testing as follows (setting value might be different from product specification value).

Software: Power settings:	Written in FW for SAR setting file are 2FJ certification.hcd and 2FJ certification_BLE.hcd
[WLAN] Software: Power settings:	Tera term version 4.106.0.0 shown in appendix of power measurement

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

2.5 Tune-up tolerance information

If not specified, listed values are maximum power level. For WLAN Maximum tune-up tolerance limit is defined by a customer as duty100%.

2.5.1 WLAN

Band [GHz]	BW [MHz]	Output Power [dBm]	Output Power [mW]
2.4	20	10.5	11.22

2.5.2 BT

Mode	Output Power [dBm]	Output Power [mW]
BT BR	8.65	7.33
BT EDR	8.65	7.33
BT LE	8.65	7.33

2.6 Antenna information

Antenna location information is shown in appendix.

2.6.1 Antenna configuration

The EUT has an antenna, which transmits WLAN/BT

2.6.2 Simultaneous transmission combinations

This device does not have a concurrent transmission, only supported single transmission.

2.6.3 Antenna location

Position	[mm]
Front	137.3
Rear	34.4
Left	6.8
Right	140.0
Тор	44.2
Bottom	19.8

2.6.4 Antenna gain

Antenna gain 1.33 dBi for WLAN/BT

Section 3 Definitions

This may contain the definitions which are not used in this report.

This may contain the definitions which are	
Specific Absorption Rate (SAR)	The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:
	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$
Power density (PD) or Sav	The energy per unit time and unit area crossing a surface of area A characterized by the normal unit vector \mathbf{n}^{2} and averaging time.
	$S_{av} = \frac{1}{AT} \iint (E \times H) \cdot \hat{n} dA dT$
Absorbed power density (APD)	The APD (absorbed power density) shall be derived from the measured SAR values using the formulas in the Compliance Assessment of the Epithelial.
	APD 1cm²(W/m²) = 10(kg/m²) × SAR_1g(W/kg) APD 4cm²(W/m²) = 20(kg/m²) ×SAR_8g(W/kg)
Reported SAR / PD (IPD or APD)	Measured SAR / PD (IPD or APD) is scaled to the maximum tune-up tolerance limit and the maximum duty by the following formulas.
	Reported SAR, PD = Measured SAR, or PD × scale factor for power × scaled factor for duty(if needed)
	× Compensatefactor(if needed) Where:
	Scaled factor for $duty = \frac{1}{Duty}$
	Compensate factor = $10^{\frac{measurement uncert.[dB]}{10}} - 1 + 0.7$
Maximum Tune-up tolerance limit, Tune up limit or Tune-up limit	Maximum power including tolerance power specified by customer.

Symbol	Quantity	Unit	Dimensions		
E	Electric field	volt per meter	V / m		
f	Frequency	hertz	Hz		
Н	Magnetic field	ampere per meter	A/m		
λ	Wavelength	meter	m		
S	Local power density	watt per square meter	W / m ²		
PD	Spatial-average power density	watt per square meter	W / m ² or mW / cm ²		
SAR	Specific Absorption Rate	watt per square meter	W / kg		

Section 4 Test standard information

4.1 Test specification

⊠FCC47CFR 2.1093	RF Exposure Procedures and Equipment Authorization Policies for Portable Devices
□RSS-102 Issue 6	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
□RSS-102 Issue 5 Amendment 1	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

4.2 Published RF exposure KDB procedures and companion procedures

Name of documents	Title
□KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and
	Portable Devices
KDB 447498 D04(v01)	Interim General RF Exposure Guidance
□KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
□KDB 648474 D04(v01r04)	SAR Evaluation Considerations for Wireless Handsets
□KDB 941225 D01(v03r01)	3G SAR Measurement Procedures
□KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices
□KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router
	Capabilities
□KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
□KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet
	Computers
⊠KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100MHz to 6 GHz
KDB 248227 D01(v02r02)	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters
□KDB 680106 D01(v04)	Equipment authorization of wireless power transfer device
□SPR-APD Issue 1	Supplementary Procedure for Assessing Specific Absorption Rate (SAR) and
	Absorbed Power Density (APD) Compliance of Portable Devices in the 6 GHz
	Band (5925-7125 MHz)
□RSS-102.SAR.MEAS	Measurement Procedure for Assessing Specific Absorption Rate (SAR)
	Compliance in Accordance with RSS-102
□Authority inquiry response	Included in the submission document.

4.3 Work Procedures

Name of documents	Title or details
⊠C/N: Work Instructions- ULID-003598	UL Japan, Inc.'s SAR Measurement Equipment Calibration and Inspection Work Procedure
⊠C/N: Work Instructions- ULID-003599	UL Japan, Inc.'s SAR Measurement Work Procedure
⊠IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
□IEC/IEEE 62209-1528 Edition 1.0 2020-10	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)
⊠ IEC 62209-1	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)
C/N: Work Instructions- ULID-003619	UL Japan, Inc.'s Power Density Measurement Procedure
□IEC/IEEE 63195-1:2021	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure
□IEC/IEEE 63195-2:2021	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 2: Computational procedure

4.4 Addition to Standard

No addition, exclusion nor deviation has been made from the standard.

4.5 Reference

Schmid & Partner Engineering AG, DASY Manual TCB workshop slide decks.

Section 5 Limits

General Population / Uncontrolled Environments limit is applied.

5.1 Exposure limit for SAR (FCC)

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body)	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/	Uncontrolled Exposure (W/kg)						
Spatial Average Spatial Peak Spatial Peak							
(averaged over the whole body	(hands/wrists/feet/ankles averaged over 10g)						
0.08	1.6	4.0					

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. because of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

5.2 For PD (Above 6 GHz) (FCC)

Frequency Range [MHz]	Power Density [mW/cm ²]	Average Time [Minutes]
(A) Limits For Occupational / Controlled Environments		
1,500 – 100,000	5	6
(B) Limits For General Population / Uncontrolled Environments		
1,500 – 100,000	1	30
Note: 1.0 mW/cm ² is 10 W/m ²		

Note: 1.0 mW/cm² is 10 W/m²

Section 6 Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002

Section 7 Test result

7.1 Verdict

Complied Higest result are next section.

7.2 Stand-alone SAR result

RF Exposure C	onditions	Highest Reported exposure value					
		WWAN	2.4 GHz	2.4 GHz	(5 to 6) GHz	(6 to 10) GHz	RFID
			(Including BT LE)	(BT BR/EDR)			
Standalone Tx	Head	N/A	N/A	N/A	N/A	N/A	N/A
(1-g SAR)	Body	N/A	0.162	0.077	N/A	N/A	N/A
(W/kg)	Hotspot	N/A	N/A	N/A	N/A	N/A	N/A
Standalone Tx (10-g SAR) (W/kg)	Limbs	N/A	N/A	N/A	N/A	N/A	N/A
Standalone Tx (Power density) (W/m ²)		N/A	N/A	N/A	N/A	N/A	N/A

Details are shown in appendix.

7.3 Simultaneous transmission SAR result

Not applicable because of no combination transmitters simutanoeusly.

Section 8 Uncertainty

8.1 0.3GHz - 6GHz range

	U	ncert.		Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description	Va	value		Dist.		1g	10g	(1g)	(10g)
Measurement System Errors									
Probe Calibration	±	13.10	%	Ν	2	1	1	±6.6%	±6.55%
Probe Calibration Drift	±	1.7	%	R	√3	1	1	±1.0%	±1.0%
Probe Linearity	±	4.7	%	R	√3	1	1	±2.7%	±2.7%
Broadband Signal	±	2.6	%	R	√3	1	1	±1.5%	±1.5%
Probe Isotropy	±	7.6	%	R	√3	1	1	±4.4%	±4.4%
Other Probe *Electronic	±	1.2	%	Ν	1	1	1	±1.2%	±1.2%
RF Ambient	±	1.8	%	Ν	1	1	1	±1.8%	±1.8%
Probe Positioning	±	0.005	mm	Ν	1	0.29	0.29	±0.2%	±0.2%
Data Processing	±	2.3	%	N	1	1	1	±2.3%	±2.3%
Phantom and Device Errors									
Conductivity (meas.) ^{DAK}	±	10.0	%	Ν	1	0.78	0.71	±7.8%	±7.1%
Conductivity (temp.) ^{BB}	±	10.0	%	R	√3	0.78	0.71	±4.5%	±4.1%
Phantom Permittivity	±	14.0	%	R	√3	0.25	0.25	±2.0%	±2.0%
Distance DUT - TSL	±	2.0	%	N	1	2	2	±4.0%	±4.0%
Device Positioning (+/- 0.5mm)	±	1.0	%	Ν	1	1	1	±1.0%	±1.0%
Device Holder	±	3.6	%	Ν	1	1	1	±3.6%	±3.6%
DUT Modulation ^m	±	2.4	%	R	√3	1	1	±1.4%	±1.4%
Time-average SAR	±	1.7	%	R	√3	1	1	±1.0%	±1.0%
DUT drift	±	2.5	%	Ν	1	1	1	±2.5%	±2.5%
Val Antenna Unc. ^{val}	±	0.0	%	Ν	1	1	1	±0.0%	±0.0%
Unc. Input Power ^{val}	±	0.0	%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR results									
Deviation to Target	±	1.9	%	Ν	1	1	0.84	±1.9%	±1.6%
SAR scaling ^p	±	0.0	%	R	√3	1	1	±0.0%	±0.0%
Combined Std. Uncertainty								±14.5%	±14.0%
Expanded STD Uncertainty (x=2)								±29.1%	±28.0%

Section 9 RF Exposure Conditions

9.1 SAR-based Exemption - FCC section 1.1307

Exception condition as per section 1.1307 (b)(3)(i)(B)

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th}(mW) = \begin{cases} ERP_{20dm} (d/20 \ cm)^x & d \le 20 \ cm \\ ERP_{20cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -log_{10}\left(\frac{60}{ERP_{20dm}\sqrt{f}}\right)$$
 and f is in GHz;

And

$$ERP_{20cm}(mW) = \begin{cases} 2040 \ f & 0.3 \ GHz \le f < 1.5 \ GHz \\ 3060 & 1.5 \ GHz \le f \le 6 \ GHz \end{cases}$$

d = the separation distance in cm.

In the table below, when the minimum test separation distance is < 5 mm, a distance, 5 mm, is applied to determine SAR test exclusion¹.

when 10-g extremity SAR applies, SAR test exemption is considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

As per section 1.1307 (b)(2)

Separation distance is the minimum distance in any direction from any part of a radiating structure and any part of the body of a nearby person.

Radiating structure is an unshielded RF current-carrying conductor that generates an RF reactive near electric or magnetic field and/or radiates an RF electromagnetic wave. It is the component of an RF source that transmits, generates, or reradiates an RF fields, such as an antenna, aperture, coil, or plate.

Table Test exemption

RAT	Frequency	Output Power Ant Gain ERP			Separation Distances / Pth / Jadge							
	[MHz]	dBm	mW	dBi	dBm	mW	Front	Rear	Left	Right	Тор	Bottom
							137.3 mm /	34.4 mm /	6.8 mm /	140 mm /	44.2 mm /	19.8 mm /
							1498.61 mW /	108.36 mW /	5.00 mW /	1555.03 mW /	174.37 mW /	37.98 mW /
BT BR	2402.00	8.65	7.33	1.33	7.84	6.08	Excluded	Excluded	Required	Excluded	Excluded	Excluded
							137.3 mm /	34.4 mm /	6.8 mm /	140 mm /	44.2 mm /	19.8 mm /
							1498.10 mW /	108.19 mW /	4.98 mW /	1554.53 mW /	174.13 mW /	37.90 mW /
WLAN 2.4	2412.00	10.50	11.22	1.33	9.69	9.31	Excluded	Excluded	Required	Excluded	Excluded	Excluded

9.2 Test position

According to the previous considerations, following position is required.

The test was conservatively performed with test distance 0 mm.

Table Test position

Position	Separation distance	Test is
Front	0 mm	
Rear	0 mm	
Left	0 mm	\boxtimes
Right	0 mm	
Тор	0 mm	
Bottom	0 mm	

¹ TCB workshop slide deck October 2021.

Section 10 Dielectric Property

10.1 Dielectric Property for SAR

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

+/- 5 % tolerances are required for εr and σ and below table is the target value of the simulated tissue liquid.

For SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013 or IEC/IEEE 62209-1528, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ε r and σ may be relaxed to \pm 10%.

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Tissue dielectric parameters are typically re-measured every three to four days or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Measured value is rounded off on the test plot data, so some differences might be observed. However, differences don't affect the result of SAR. Results are listed in appendix.

Table standard pa	arameters on the I	EC 62209-1 ²
Frequency	Relative	Conductivity
MHz	permittivity ɛ r	S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1500	40.4	1.23
1640	40.2	1.31
1750	40.1	1.37
1800	40.0	1.40
1900	40.0	1.40
2000	40.0	1.40
2100	39.8	1.49

Table standard parameters on the IEC 62209-1²

Frequency	Relative	Conductivity
MHz	permittivity ɛ r	S/m
2300	39.5	1.67
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48

Table standard parameters on the IEC/IEEE 62209-15283,

Frequency	Real part of the complex relative	Conductivity, σ
MHz	permittivity, <i>ɛ</i> r	S/m
6000	35.1	5.48
6500	34.5	6.07
7000	33.9	6.65
7500	33.3	7.24
8000	32.7	7.84
8500	32.1	8.46
9000	31.6	9.08
9500	31.0	9.71
10000	30.4	10.40

Frequency MHz	Real part of the complex relative permittivity, <i>ɛ</i> r	Conductivity, σ S/m
4	55.0	0.75
13	55.0	0.75
30	55.0	0.75

² TCB workshop April 2019, Tissue Simulating Liquids (TSL)

³ TCB workshop October 2020, for U-NII 6-7GHz Measurement considerations.

Section 11 SAR Measurements

11.1 Measurement configuration for SAR

11.1.1 SAR evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point, central position of flat phantom or found highest point based on fast scan was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was based on standard's grids size.

Step 3: Around this point found in the Step 2 (area scan), zoom scan is conducted based on the standard's grids size.

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

Step 4: Re-measurement of the point of SAR at the same location as in Step 1.

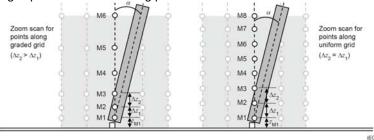
Confirmation after SAR testing

It was checked that the power drift [W/kg] is within +/-5 %. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY system calculation power drift value [dB] = $10 \log \left(\frac{Wa}{Wb}\right)$

Before SAR testing	: Wb [W/kg]
After SAR testing	: Wa [W/kg]

Limit of power drift[W] = +/- 5 % X[dB] = $10\log[P] = 10\log(1.05/1) = 10\log(1.05) -10\log(1) = 0.212 dB$


· · · ·			≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement poin	nt (geometric cente	5 mm ± 1 mm	½·δ·ln(2) mm ± 0.5 mm		
Maximum probe angle from probe axis to phantom	surface normal at	30° ± 1°	20° ± 1°		
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}		≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm		
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
			6 – 7 GHz: ≤ 8.57 mm		
			When the x or y dimension of	the test device, in the measurement plane orientation,	
				measurement resolution must be ≤ the corresponding x	
			or y dimension of the test device withat least one measurement point on the test		
			device.		
Maximum zoom scan spatial resolution: Δx_{zoom} , Δy_{zoom}			≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm	
			2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm	
				6 – 7 GHz: ≤ 3.4 mm	
Maximum zoom scan spatial resolution, normal to	uniform grid: Δz _z	_{nom} (n)	≤ 5 mm	3– 4 GHz: ≤ 4 mm	
phantom surface				4– 5 GHz: ≤ 3 mm	
				5– 6 GHz: ≤ 2 mm	
				6– 7 GHz: ≤ 1.6 mm	
	graded grid	Δz _{zoom} (1): between 1 st two points closestto phanto	om≤4mm	3 – 4 GHz: ≤ 3 mm	
		surface		4 – 5 GHz: ≤ 2.5 mm	
				5 – 6 GHz: ≤ 2 mm	
				6 – 7 GHz: ≤ 1.7 mm	
		Δz _{zoom} (n>1): between subsequentpoints	≤ 1.5·Δz _{zoom} (n-1) mm		
Minimum zoomscan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm	
				4 – 5 GHz: ≥ 25 mm	
				5 – 7 GHz: ≥ 22 mm	

Additional Requirements⁴

Unless the following criteria are met, zoom-scan measurement shall be successively repeated using smaller increments, at 2 mm or less from phantom surface

- maximum 1 g SAR < 0.1 W/kg, or
- both of the following are met:
 - shortest transverse distances d_x and d_y between SAR peak location and -3 dB points shall be larger than Δx_{Zoom} and Δy_{Zoom} , respectively.
 - at the SAR peak location, the ratio of SAR values from the first two z-axis, M1 to M2 points is \leq 30 %.

Fig explanation of measuring point for z direction

⁴ TCB workshop slide deck, November 2019

Section 12 SAR System check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, for FCC typically every three to four days, for ISED every 24 h when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm ± 0.5 cm for SAR measurements

 \leq 3 GHz and \geq 10.0 cm ± 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The reference transmitter was mounted on the small tripod so that the transmitter feed point was positioned below the center marking of the flat phantom section and the transmitter was oriented parallel to the body axis (the long side of the phantom).

Table: The standard measuring distance

Frequency range	Distance between dipole or CLA
13 MHz	0 mm
0.3 GHz to 1 GHz	15 mm
1 GHz to 6 GHz	10 mm
6 GHz to 10 GHz	5 mm

The scan step was conducted based on the previous section specified.

Distance between probe sensors and phantom surface was set to 1.4 mm.

The transmitter input power (forward power) was 1W, 100 mW, 250 mW or 17 dBm (50.11 mW), this is not adjustable, so measured value is listed in the table of SPC.

The results are normalized to 1 W input power other than 1 W input power.

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles or CLA, refer to appendix. The target SAR values are quoted from "SAR for nominal Head TSL parameters" on calibration record. The scaled SAR value shall not deviate from the targets by more than ± 10 %. System check results are listed on appendix.

Section 13 SAR requirement

13.1 Common

This procedure covers every condition, so some conditions are not applicable.

When reported SAR value is exceed 1.2 W/kg (if any), device holder perturbation verification is required; however, since distance between device holder and antenna of EUT is enough, it was not conducted.

The sample calculations are shown in definition.

Next section describes the general RF exposure evaluation requirements and serves as an entry point. If the more specific RF exposure guidance existed, it takes procced than this.

When 10-g extremity SAR applies, flowing SAR thresholds are considered by applying a factor of 2.5 to the SARbased exemption thresholds.

13.2 Channel Selection Requirement

This test reduction process provides for the use of test data for one specific channel, while referencing to those data for demonstrating compliance in other required channels for each test position of an exposure condition, within the operating mode of a frequency band. This is limited specifically to when the reported 1-g or 10-g SAR for the midband or highest output power channel meets any of the following conditions:

- 1. SAR ≤ 0.8 W/kg for 1-g, or SAR ≤ 2.0 W/kg for 10-g, when the transmission band span is ≤ 100 MHz
- 2. SAR ≤ 0.6 W/kg for 1-g, or SAR ≤ 1.5 W/kg for 10-g, when the transmission band span is between 100 MHz and 200 MHz
- 3. SAR \leq 0.4 W/kg for 1-g, or SAR \leq 1.0 W/kg for 10-g, when the transmission band span is \geq 200 MHz

SAR measurement standards such as IEEE Std 1528-2013 requires the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

13.3 Repeated measurement

According to KDB 865664 D01.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10 % from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is

≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Repeat measurements are not required because of maximum measured SAR value is < 0.8 W/kg

Section 14 WLAN SAR requirement

This porcdure covers every condition, so some conditions are not applicable.

14.1 Channel Selection Requirement

According to KDB 248227 D01, the initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected, i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- 1. The channel closest to mid-band frequency is selected for SAR measurement.
- 2. For channels with equal separation from mid-band frequency; for example, high and low channels or two midband channels, the higher frequency (number) channel is selected for SAR measurement.

14.2 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1. When the reported SAR of the highest measured maximum output power channel (see 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

14.3 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

- 1. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- 2. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

14.4 U-NII1 and U-NII-2A SAR Test Exclusion Requirements

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.
- 3. The two U-NII bands may be aggregated to support a 160 MHz channel on channel number. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

14.5 SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and aggregated frequency band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 band are supported and the aggregated band option of previous one is used, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

14.6 U-NII 6-7 GHz Interim Procedures⁵

Evaluate SAR using 6-7 GHz parameters per IEC/IEEE 62209-1528: 2020, for the highest SAR test configurations evaluate incident PD using the mill wave near-field probe and total-field/power-density reconstruction method (2 mm closest meas. plane).

Per procedures of KDB Pubs. 447498 and 248227, and applicable product-specific procedures among KDB Pubs. 648474 (handsets/phablets), 616217 (tablets/ laptops), 941225 (D06 hotspots, D07 UMPCs).

For the interim procedures specified KDB Pub. 447498 D01 v06, start instead with a minimum of 5 test channels across the full band, then adapt and apply conducted power.

Test channel is selected based on SAR testing result.

⁵ TCB workshop slide decks, October 2020

Section 15 Test instrument

Power me	Power measurement								
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval		
AT	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	2024/01/25	12		
AT	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	2024/01/31	12		
AT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	2024/05/22	12		
AT	141830	Power sensor	Anritsu Corporation	MA2411B	738285	2024/05/22	12		
AT	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	2023/11/29	12		

SAR measurement

LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
141482	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	509	2024/08/09	12
141597	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3825	2024/07/10	12
142484	Device holder	Schmid & Partner Engineering AG	Mounting device for transmitter	-	2023/11/17	12
141471	Dielectric assessment kit	Schmid & Partner Engineering AG	DAKS-3.5	0008	2024/04/16	12
141182	Dielectric assessment software	Schmid & Partner Engineering AG	DAK	-	-	-
141574	Digital thermometer	LKM electronic	DTM3000	-	2024/08/24	12
141457	Dipole Antenna	Schmid & Partner Engineering AG	D2450V2	713	2022/09/12	36
141808	Dual Power Meter	Keysight Technologies	E4419B	MY4510206 0	2024/08/20	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600- 10000V6	SL AAH U16 BC	-	-
221492	Power sensor	Keysight Technologies Inc	E9300H	MY6208000 2	2024/08/20	12
249557	RF Power Source	Schmid & Partner Engineering AG	POWERSOUR CE1	4357	2024/05/27	12
142248	SAR robot	Schmid & Partner Engineering AG	TX60 Lspeag	F13/5PP1D1 /A/01	2024/04/30	12
141904	Spectrum Analyzer	Keysight Technologies	N9030A	US5135021 5	2023/11/08	12
244703	Thermo-Hygrometer	A & D	AD-5648A	1001	2024/01/25	12
142057	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	2024/05/31	12
251453	Analyzer, Network	Rohde & Schwarz	ZNL14	200030	2024/07/12	12
141338	Attenuator	Weinschel Associates	WA1-20-33	100130	2024/04/03	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

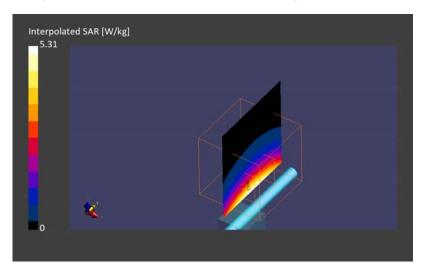
The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Appendix 1 Dielectric Property result

Date	Tem	Humidity	Frequency	Permittivity Conductivity						Note
				Measured	Target	Delta	Measured	Target	Delta	
	[deg. C]	[RH %]	[MHz]	٤'	٤'	[%]	σ [S/m]	σ [S/m]	[%]	
2024/9/30	21.0	51	2402	40.18	39.28	2.29	1.82	1.76	3.49	
2024/9/30	21.0	51	2412	40.17	39.27	2.30	1.83	1.77	3.43	
2024/9/30	21.0	51	2437	40.11	39.22	2.28	1.85	1.79	3.30	
2024/9/30	21.0	51	2450	40.09	39.20	2.28	1.86	1.80	3.34	SPC
2024/9/30	21.0	51	2462	40.08	39.18	2.30	1.87	1.81	3.12	


Appendix 2 System performance check result.

		Feed	Meas val	Meas val	Normval	Norm val	Target val	Target val			
	Freq	pow er	1gSAR	10gSAR	1gSAR	10gSAR	1gSAR	10gSAR	1g	10g	
Date	[MHz]	[mW]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	dev	dev	
2024/9/30	2450	50.12	2.65	1.23	52.87	24.54	52.30	24.50	1.10%	(0.17%

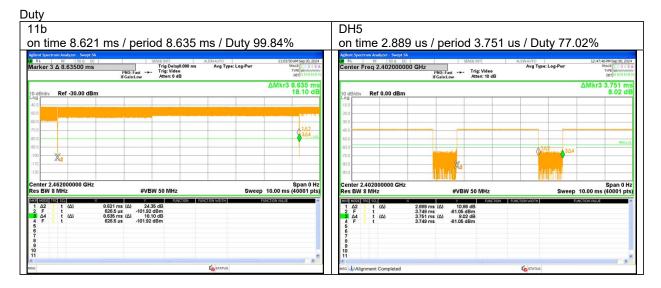
Appendix 3 System performance check Plot 2450.000 MHz, CW, 2024-09-30, 08:45

ons				
Conversion Factor	r TSL Per	mittivity	TSL Condu	ctivity [S/m]
7.58	40.1		1.86	
		Probe, Calibra	ation Date	DAE, Calibration Date
	0 2.45 240930,		3825, 2024-	
2024-09-30		07-10		08-09
	-		-	
				1.5
	N/A		1.5	
	Y		Y	
	VMS + 6p		VMS + 6p	
	Measured		Measured	
	-		-	
	Area Scan		Zoom Scan	
	2024-09-30, 08:40		2024-09-30	, 08:45
	2.77		2.65	
	1.31		1.23	
	1.44		1.36	
	-		0.01	
	Disabled		Disabled	
	No correction		No correction	on
	-		83.3	
	-		9.1	
	Conversion Factor 7.58 TSL, Measured) - HBBL-600-1000 2024-09-30 	Conversion Factor TSL Per 7.58 40.1 TSL, Measured Date .) - HBBL-600-10000 2.45 240930, 2024-09-30	Conversion Factor TSL Permittivity 7.58 40.1 TSL, Measured Date Probe, Calibra) - HBBL-600-10000 2.45 240930, 2024-09-30 EX3DV4 - SN 07-10 - - Area Scan 07-10 3.0 10.0 x 80.0 N/A N/A Y VMS + 6p Measured - - - Area Scan 2024-09-30, 08:40 2.77 1.31 1.44 - Disabled -	Conversion Factor TSL Permittivity TSL Condu 7.58 40.1 1.86 TSL, Measured Date Probe, Calibration Date) - HBBL-600-10000 2.45 240930, 2024-09-30 EX3DV4 - SN3825, 2024- 07-10 - - Area Scan Zoom Scan 40.0 x 80.0 30.0 x 30.0 10.0 x 10.0 5.0 x 5.0 x 3.0 1.4 N/A Yes N/A Yes VMS + 6p VMS + 6p Measured Measured - - Area Scan Zoom Scan 2024-09-30, 08:40 2024-09-30 2.77 2.65 1.31 1.23 1.44 1.36 - 0.01 Disabled Disabled No correction No correction - 83.3 - 9.1

During the test, temperature fluctuation is within 2 degree Celsius.

Appendix 4 Power measurement and duty result

Power

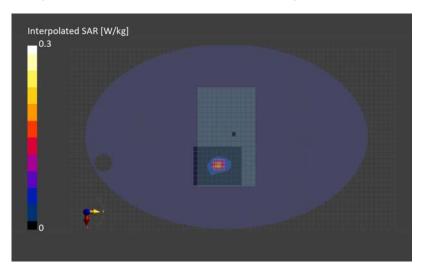

BT

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.3 Measurement Room June 6, 2024 20 deg. C / 50 % RH Yuichiro Yamazaki Тх DH5 Module No 8

1	Freq.	Reading	Cable	Atten.	Result	
I			Loss	Loss	(Time average)	
I	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
ſ	2402	-1.71	0.50	9.52	8.31	6.78
I	2441	-1.83	0.50	9.52	8.19	6.59
t	2480	-1.97	0.50	9.52	8.05	6.38

11b	1Mbps			Module No.	8	
Freq.	Reading	Cable	Atten.	Result		Power
		Loss	Loss	(Time average)		setting
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]
2412	0.37	0.50	9.52	10.39	10.94	43
2437	0.34	0.50	9.52	10.36	10.86	44
2462	0.42	0.50	9.52	10.44	11.07	44

Sample Calculation: Result (Burst average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

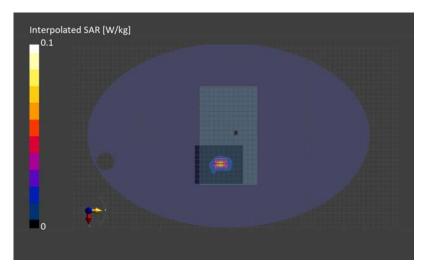

Appendix 5 SAR measurement result

Test Position	Dist.	Mode	Freq.	Tune-up upper	Measured average	Power Scaled	Duty	Duty Scaled	1g meas.	Reported	Plot No.
restPosition	(mm)	wode	(MHz)	Power(dBm)	Power(dBm)	factor	(%)	factor	SAR	SAR	PIOLINO.
Left	0	11b	2412	10.50	10.39	1.026	99.84	1.002	0.158	0.162	WL
			2437	10.50	10.36	1.033	99.84	1.002	0.126	0.130	
			2462	10.50	10.44	1.014	99.84	1.002	0.110	0.112	
Left	0	BT DH5	2402	8.65	8.31	1.081	77.02	1.298	0.055	0.077	BT
			2441	8.65	8.19	1.112	77.02	1.298			
			2480	8.65	8.05	1.148	77.02	1.298			

Appendix 6 Measurement plot

Plot No. WL							
SAR1 Exposure Conditions	5						
Position, Test Distance [mm]		MHz]	Conversion	Factor	TSL Permit		TSL Conductivity [S/m]
EDGE LEFT, 0.00	2412.000		7.58		40.2		1.83
Hardware Setup							
	TSL, Measured	Date		Probe	, Calibration	Date	DAE, Calibration Date
ELI V5.0 (20deg probe tilt) -	HBBL-600-1000	0 2.45	240930,	EX3D	V4 - SN3825	5, 2024	- DAE4 Sn509, 2024-
1203	2024-09-30			07-10			08-09
h							
Scans Setup		-			-		
Scan		Area S	Scan		Zoc	om Sca	n
Grid Extents [mm]		75.0 x	100.0				0 x 30.0
Grid Steps [mm]		10.0 x	10.0		5.0	x 5.0 x	: 1.5
Sensor Surface [mm]		3.0			1.4		
Graded Grid		N/A			Yes	6	
Grading Ratio		N/A			1.5		
MAIA		Y			Y		
Surface Detection		VMS -	+ 6p		VM	S + 6p	
Scan Method		Meası	ured		Me	asured	
Measurement Results		-			-		
Scan		Area S	Scan		Zoo	om Sca	n
Date		2024-0	09-30, 15:27		202	24-09-3	0, 15:34
psSAR1g [W/Kg]		0.158			0.1	58	
psSAR8g [W/Kg]		0.078			0.0	74	
psSAR10g [W/Kg]		0.070			0.0	66	
Power Drift [dB]		-0.02			-0.0	00	
Power Scaling		Disabl	led		Dis	abled	
TSL Correction		No co	rrection		No	correct	lion
M2/M1 [%]		-			77.	-	
Dist 3dB Peak [mm]		-			7.7		

During the test, temperature fluctuation is within 2 degree Celsius.



Plot No. BT SAR1 Exposure Conditions

SART Exposure Conditions								
Position, Test Distance [mm]	Frequency [MHz]	Conversion Facto	or TSL Permittivity	TSL Conductivity [S/m]				
EDGE LEFT, 0.00	2402.000	7.58	40.2	1.82				
Hardware Setup	Hardware Setup							
Phantom	TSL, Measured Date	Pro	be, Calibration Date	DAE, Calibration Date				
ELI V5.0 (20deg probe tilt) -	HBBL-600-10000 2.45	240930, EX3	3DV4 - SN3825, 2024	- DAE4 Sn509, 2024-				
1203	2024-09-30	07-	10	08-09				

-	-
Area Scan	Zoom Scan
75.0 x 100.0	30.0 x 30.0 x 30.0
10.0 x 10.0	5.0 x 5.0 x 1.5
3.0	1.4
N/A	Yes
N/A	1.5
Y	Y
VMS + 6p	VMS + 6p
Measured	Measured
-	-
Area Scan	Zoom Scan
2024-09-30, 12:46	2024-09-30, 12:53
0.058	0.055
0.028	0.024
0.025	0.021
-0.09	0.11
Disabled	Disabled
No correction	No correction
-	78.8
-	7.7
	75.0 x 100.0 10.0 x 10.0 3.0 N/A Y VMS + 6p Measured - Area Scan 2024-09-30, 12:46 0.058 0.028 0.025 -0.09 Disabled

During the test, temperature fluctuation is within 2 degree Celsius.

Appendix 7 Probe calibration record EX3DV4 – SN:3825

	vice is one of the signato e recognition of calibratic		reditation No.: SCS 0108
nt UL Japan He Ise, Japan	ead Office	Certificate No.	X-3825_Jul24
CALIBRATION C	ERTIFICATE		
Dbject	EX3DV4 - SN:38	25	
Calibration procedure(s)	QA CAL-25.v8	QA CAL-12.v10, QA CAL-14.v7, edure for dosimetric E-field probes	
Calibration date	July 10, 2024		
The measurements and the All calibrations have been co	uncertainties with confidence inducted in the closed laboration	national standards, which realize the physical e probability are given on the following pages atory facility: environment temperature (22±3 1)	and are part of the certificate.
The measurements and the in All calibrations have been co Calibration Equipment used	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration	e probability are given on the following pages atory facility: environment temperature (22 ± 3	and are part of the certificate. 8)°C and humiditý < 70%.
The measurements and the I All calibrations have been co Calibration Equipment used rimary Standards	uncertainties with confidence inducted in the closed laboration	e probability are given on the following pages atory facility: environment temperature (22±3	and are part of the certificate.
The measurements and the I All calibrations have been co Calibration Equipment used trimary Standards Yower meter NRP2 Yower sensor NRP-Z91	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration ID SN: 104778 SN: 103244	e probability are given on the following pages atory facility: environment temperature (22±3 a) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25
The measurements and the in NI calibrations have been co Calibration Equipment used rimary Standards ower meter NRP2 ower sensor NRP-Z91 DCP DAK-3.5 (weighted)	uncertainties with confidenc nducted in the closed labora (M&TE critical for calibration ID SN: 104778 SN: 103244 SN: 1249	e probability are given on the following pages atory facility: environment temperature (22±3 a) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK3.5-1249_Oct23)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Oct-24
The measurements and the in All calibrations have been co Calibration Equipment used trimary Standards tower meter NRP2 tower sensor NRP-Z91 DCP DAK-3.5 (weighted) DCP DAK-12	ID ID ID ID ID ID ID ID ID ID ID ID ID I	e probability are given on the following pages atory facility: environment temperature (22±3 b) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036/04037) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Mar-25 Oct-24 Oct-24
The measurements and the in All calibrations have been co Calibration Equipment used trimary Standards fower meter NRP2 fower sensor NRP-291 OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) ToCP DAK-3.5 (weighted)	ID ID SN: 104778 SN: 103244 SN: 1249 SN: 016 SN: CC2552 (20x)	e probability are given on the following pages atory facility: environment temperature (22±3 1) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK12-1016_Oct23) 26-Mar-24 (No. 217-04046)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Oct-24 Oct-24 Mar-25
The measurements and the I NI calibrations have been co Calibration Equipment used irrimary Standards ower meter NRP2 ower sensor NRP-Z91 VCP DAK-3.5 (weighted) VCP DAK-12 leference 20 dB Attenuator VAE4	ID ID ID ID ID ID ID ID ID ID ID ID ID I	e probability are given on the following pages atory facility: environment temperature (22±3 b) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036/04037) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23)	and are part of the certificate.)°C and humidity < 70%. Scheduled Calibration Mar-25 Oct-24 Oct-24
The measurements and the in All calibrations have been co Calibration Equipment used Primary Standards Yower meter NRP2 Yower sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Teleference 20 dB Attenuator DAE4 Teleference Probe EX3DV4	ID ID SN: 104778 SN: 104778 SN: 103244 SN: 1016 SN: 2252 (20x) SN: 660	e probability are given on the following pages atory facility: environment temperature (22±3 a) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. 217-04046) 23-Feb-24 (No. 246-660_Feb24)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Oct-24 Oct-24 Mar-25 Feb-25
The measurements and the I NI calibrations have been co Calibration Equipment used irimary Standards ower meter NRP2 tower sensor NRP-Z91 VCP DAK-3.5 (weighted) VCP DAK-3.5 (weighted)	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1046 SN: 1249 SN: 1016 SN: C2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874	e probability are given on the following pages atory facility: environment temperature (22±3)) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK3-5-1249_Oct23) 05-Oct-23 (OCP-DAK3-5-1249_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. DAE4-660_Feb24) 03-Jun-24 (No. EX3-7349_Jun24) Check Date (in house) 06-Apr-16 (in house check Jun-24)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Oct-24 Oct-24 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26
The measurements and the in All calibrations have been co Calibration Equipment used Primary Standards Yower meter NRP2 Yower sensor NRP-291 OCP DAK-35 (weighted) OCP DAK-12 Teleference 20 dB Attenuator DAE4 Teleference Probe EX3DV4 Secondary Standards Yower meter E4419B Yower sensor E4412A	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087	e probability are given on the following pages atory facility: environment temperature (22±3) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036/04037) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. 217-04046) 23-Feb-24 (No. EX3-7349_Jun24) Ocheck Date (in house) Och-Apr-16 (in house check Jun-24) Och-Apr-16 (in house check Jun-24)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Mar-25 Oct-24 Oct-24 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26
The measurements and the in All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP2 Power sensor NRP-291 DCP DAK-35 (weighted) DCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe EX3DV4 Secondary Standards Power sensor E44198 Power sensor E4412A	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: OU110210	e probability are given on the following pages atory facility: environment temperature (22±3)) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK12-1016 Oct23) 05-Oct-23 (OCP-DAK12-1016 Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. DAE4-660_Feb24) 03-Jun-24 (No. EX3-7349_Jun24) Check Date (in house 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-25 Oct-24 Mar-25 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26 In house check: Jun-26
The measurements and the in All calibrations have been co Calibration Equipment used inimary Standards fower meter NRP2 fower sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-42 leference 20 dB Attenuator NE4 leference Probe EX3DV4 Secondary Standards fower meter E4419B fower sensor E4412A fower sensor E4412A for generator HP 8648C	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087	e probability are given on the following pages atory facility: environment temperature (22±3) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036/04037) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 05-Oct-23 (OCP-DAK3.5-1249_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. 217-04046) 23-Feb-24 (No. EX3-7349_Jun24) Ocheck Date (in house) Och-Apr-16 (in house check Jun-24) Och-Apr-16 (in house check Jun-24)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-25 Oct-24 Oct-24 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26
The measurements and the	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: 1249 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: G841293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477	e probability are given on the following pages atory facility: environment temperature (22±3 atory facility: environment temperature (22±3 atory facility: environment temperature (22±3 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK12-1016_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. DAE4-660_Feb24) 03-Jun-24 (No. EX3-7349_Jun24) Check Date (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 04-Aug-99 (in house check Jun-24) 31-Mar-14 (in house check Oct-22)	and are part of the certificate. and are part of the certificate. Scheduled Calibration Mar-25 Oct-24 Mar-25 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26
The measurements and the in All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-12 Reference 20 dB Attenuator DAE4 Reference Probe EX3DV4 Secondary Standards Power meter E4419B Power sensor E4412A Reference T4412A Reference T4412A Refere	uncertainties with confidenc nducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 104778 SN: 103244 SN: 1249 SN: 1249 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	e probability are given on the following pages atory facility: environment temperature (22±3 1) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK12-1016_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. DAE4-660_Feb24) 03-Jun-24 (No. EX3-7349_Jun24) Check Date (in house) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24)	and are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-25 Mar-25 Oct-24 Oct-24 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26 In house check: Jun-26
The measurements and the in All calibrations have been co Calibration Equipment used Primary Standards Power meter NRP2 Power sensor NRP-Z91 OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) OCP DAK-3.5 (weighted) Power sensor E4412A Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A Pig epenrator HP 8648C	uncertainties with confidenc inducted in the closed labora (M&TE critical for calibration SN: 104778 SN: 103244 SN: 103244 SN: 1016 SN: CC2552 (20x) SN: 660 SN: 7349 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	e probability are given on the following pages atory facility: environment temperature (22±3 atory facility: environment temperature (22±3 b) Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 05-Oct-23 (OCP-DAK12-1016_Oct23) 05-Oct-23 (OCP-DAK12-1016_Oct23) 26-Mar-24 (No. 217-04046) 23-Feb-24 (No. 217-04046) 23-Feb-24 (No. DAE4-666_Feb24) 03-Jun-24 (No. EX3-7349_Jun24) Check Date (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 06-Apr-16 (in house check Jun-24) 04-Aug-99 (in house check Jun-24) 31-Mar-14 (in house check Oct-22) Function	and are part of the certificate. and are part of the certificate. Scheduled Calibration Mar-25 Oct-24 Mar-25 Oct-24 Mar-25 Feb-25 Jun-25 Scheduled Check In house check: Jun-26 In house check: Jun-26 In house check: Jun-26 In house check: Jun-26 In house check: Oct-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900MHz in TEM-cell; f > 1800MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
calibration range expressed in RMS voltage across the diode.

• ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3825_Jul24

Page 2 of 22

Parameters of Probe: EX3DV4 - SN:3825

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.42	0.39	0.44	±10.1%
DCP (mV) B	99.7	102.4	99.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	142.6	±0.8%	±4.7%
•		Y	0.00	0.00	1.00		131.4		
		Z	0.00	0.00	1.00		118.9		
10352	Pulse Waveform (200Hz, 10%)	X	36.00	98.00	23.00	10.00	60.0	±2.6%	±9.6%
		Y	20.00	90.82	20.62		60.0		
		Z	20.00	93.01	22.53		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.51	20.05	6.99	80.0	±1.4%	±9.6%
		Y	20.00	93.60	20.87		80.0		
		Z	20.00	93.44	21.48		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	93.30	19.41	3.98	95.0	±1.3%	±9.6%
		Y	20.00	100.68	22.94		95.0		
		Z	20.00	95.24	20.84		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	95.95	19.39	2,22	120.0	±1.3%	±9.6%
		Y	20.00	111.58	26.70		120.0	ļ	
		Z	20.00	98.11	20.84	1	120.0	1	
10387	QPSK Waveform, 1 MHz	X	1.59	64.51	14.09	1.00	150.0	±1.9%	±9.6%
		Y	1.67	67.13	15.39	1	150.0	1	
		Z	1.68	64.94	14.48	1	150.0		
10388	QPSK Waveform, 10 MHz	X	2.07	66.43	14.77	0.00	150.0	±1.0%	±9.6%
		Y	2.17	68.12	15.92	1	150.0		
		Z	2.19	67.15	15.12	1	150.0]	
10396	64-QAM Waveform, 100 kHz	X	2.87	69.45	18.01	3.01	150.0	±0.7%	±9.6%
		Y	2.84	71.29	19.16		150.0		
		Z	3.12	70.21	18.40		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.42	66.46	15.30	0.00	150.0	±1.0%	±9.6%
		Y	3.47	67.25	15.85		150.0]	
		Z	3.52	66.86	15.53	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.85	65.37	15.28	0.00	150.0	±2.3%	±9.6%
		Y	4.77	65.78	15.56	1	150.0		
		Z	4.97	65.60	15.44	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and Is expressed for the square of the field value.

Certificate No: EX-3825 Jul24

Page 3 of 22

July 10, 2024

Parameters of Probe: EX3DV4 - SN:3825

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
х	49.5	365.98	34.83	12.45	0.63	5,03	1.27	0.27	1.01
٧	37.7	272.22	33.50	12.20	0.18	5.05	1.95	0.00	1.01
z	55.1	410.27	35.32	16.65	0.69	5.06	0.91	0.41	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-31.6°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3825_Jul24

Page 4 of 22

July 10, 2024

Parameters of Probe: EX3DV4 - SN:3825

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (<i>k</i> = 2)
750	41.9	0.89	9.96	9.79	9.05	0.33	1.27	±11.0%
835	41.5	0.90	9.37	9.21	8.51	0.33	1.27	±11.0%
900	41.5	0.97	9.42	9.26	8.56	0.33	1.27	±11.0%
1750	40.1	1.37	8.24	8.10	7.49	0.33	1.27	±11.0%
1900	40.0	1.40	7.99	7.85	7.26	0.33	1.27	±11.0%
2450	39.2	1.80	7.58	7.45	6.89	0.34	1.27	±11.0%
2600	39.0	1.96	7.67	7.53	6.97	0.34	1.27	±11.0%
3500	37.9	2.91	6.91	6.79	6.28	0.34	1.27	±13.1%
3700	37.7	3.12	6.93	6.81	6.30	0.34	1.27	±13.1%
3900	37.5	3.32	6.79	6.67	6.17	0.35	1.27	±13.1%
4600	36.7	4.04	6.35	6.24	5.77	0.35	1.27	±13.1%
5250	35.9	4.71	5.64	5.55	5.13	0.31	1.27	±13.1%
5600	35.5	5.07	5.11	5.02	4.64	0.28	1.27	±13.1%
5800	35.3	5.27	5.12	5.04	4.66	0.26	1.27	±13.1%
5850	35.2	5.32	5.14	5.06	4.67	0.26	1.27	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz. ^F The probes are calibrated using issue simulating liquids (TSL) that deviate for *e* and *σ* by less than ±5% from the target values (typically belter than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied. ^O Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary. ^H The stated uncertainty is the total calibration uncertainty (*k* = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 5.0 (FC/IEEE 6220.1528-200.1528-

Table 9 of IEC/IEEE 62209-1528:2020.

Certificate No: EX-3825 Jul24

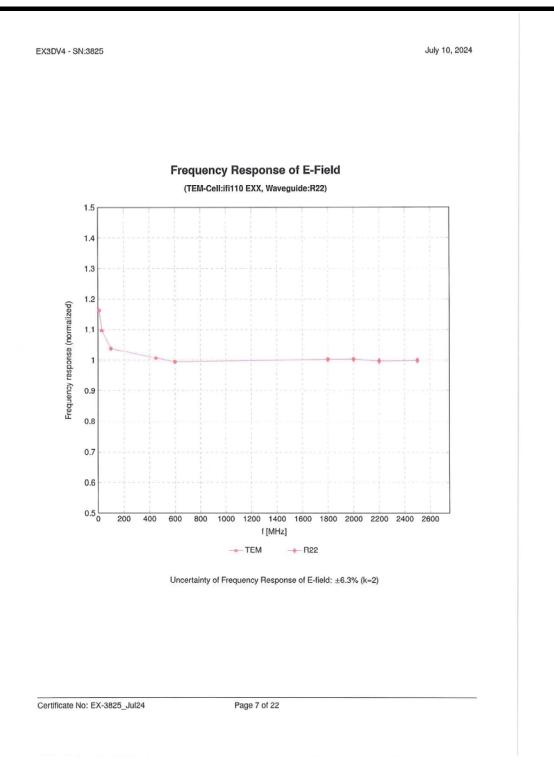
Page 5 of 22

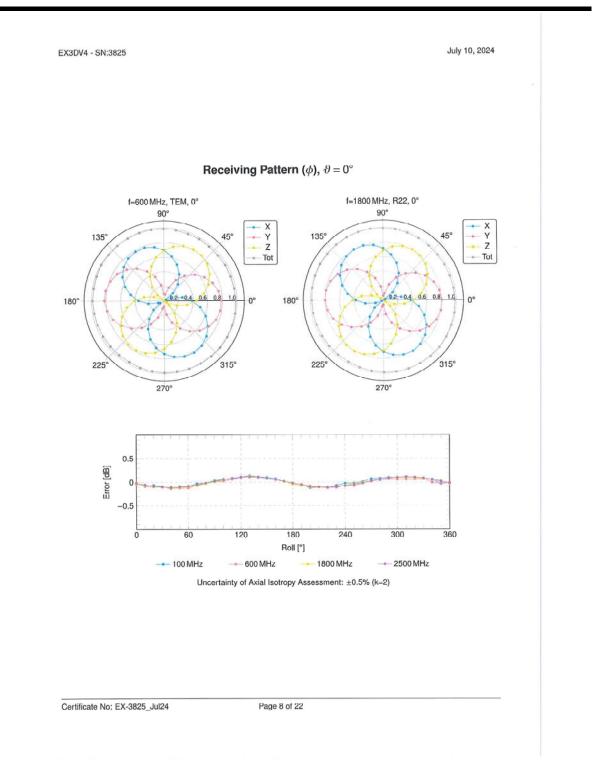
July 10, 2024

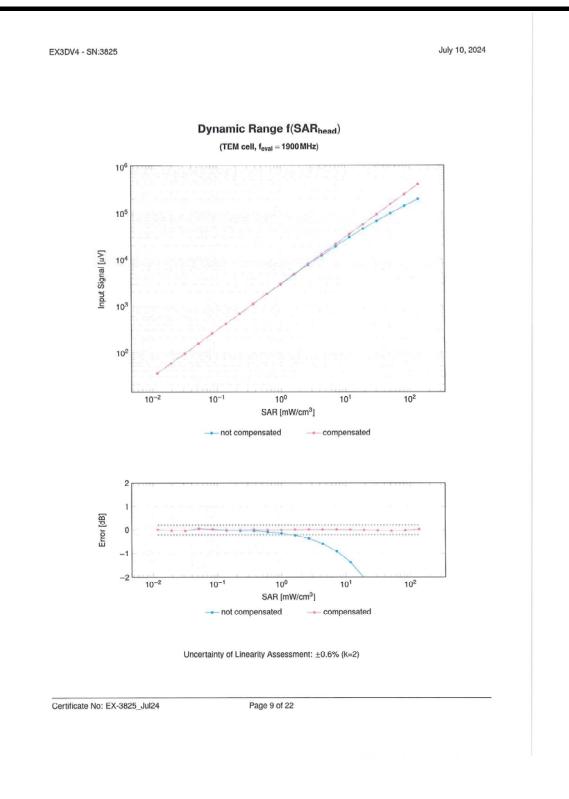
July 10, 2024

Parameters of Probe: EX3DV4 - SN:3825

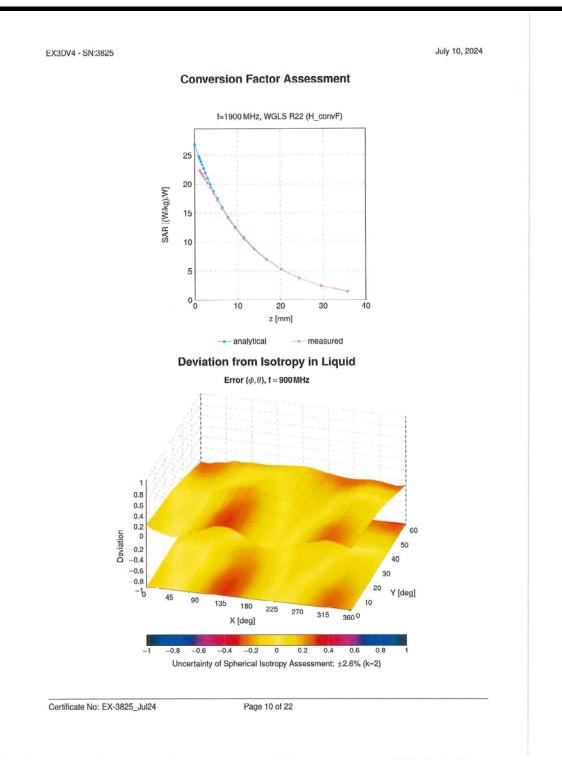
Calibration Parameter Determined in Head Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.45	5.36	4.95	0.20	1.27	±18.6%


^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^T The probes are calibrated using lissue simulating liquids (TSL) that deviate for *z* and *σ* by less than $\pm10\%$ from the target values (typically better than $\pm6\%$) and are valid for TSL with deviations of up to $\pm10\%$. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm10\%$ for frequencies below 3GHz; below $\pm2\%$ for frequencies between 3–6 GHz; and below $\pm4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary. ^H The stated uncertainty is the total calibration uncertainty (*k* = 2) of Norm-ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 3 of ICH/IEEE 62074.


Table 9 of IEC/IEEE 62209-1528:2020.

Certificate No: EX-3825_Jul24


Page 6 of 22

Test Report No. 15192522H-A-R1 Page 37 of 60

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
0		CW	CW	0.00	±4.7
0010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
0011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
0012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
0013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
0021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
0023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
0024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
0025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
0026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9,55	±9,6
0027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9,6
0028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
0029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
0030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
0031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
0032	CAA	IEEE 802,15,1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
0033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
0034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
0035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
0036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
0037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
0038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
0039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
0039	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10042	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
0048	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
0049	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
	DAC		GSM	6.52	±9.6
10058	CAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFI 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10059	CAB	IEEE 802.110 WIFI 2.4 GHz (DSSS, 21Mbps)	WLAN	2.83	±9.6
10060 10061	CAB	IEEE 802,11b WIFI 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	3.60	±9.6
		IEEE 802.11a/h WiFi 5 GHz (OSDM, 6 Mbps)	WLAN	8.68	±9.6
10062	CAE		WLAN	8.63	±9.6
10063	CAE	IEEE 802,11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	9.09	±9.6
10064	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)			±9.6
10066	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	
10067	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN		±9.6
10068	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAE	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAH	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10110	CAH				

Certificate No: EX-3825_Jul24

Page 11 of 22

July 10, 2024

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAE	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8,10	±9,6
10115	CAE	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAE	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9,6
10117	CAE	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAE	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAE	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TOD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TOD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5,75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD		±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.79 5.73	±9.6 ±9.6
10169 10170	CAF CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10170	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 10-QAM)	LTE-FDD	6,49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9,21	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9,48	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TOD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5,73	±9,6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAE	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAE	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8,13	±9.6
10198	CAE	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAE	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAE	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAE	IEEE 802,11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAE	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAE	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	CAE	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

Certificate No: EX-3825_Jul24

Page 12 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E <i>k</i> = 2
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
0228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
0229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
0230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6
0232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9,6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9,82	±9,6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 ±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9,30	±9.6 ±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	10,09	±9.6 ±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	9,29	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9,81	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	10.17	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9,24	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	10.14	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TOD	9.20	±9.6
10255 10256	CAG	LTE-TDD (SC-FDMA, 30% RB, 1.4 MHz, 16-QAM)	LTE-TOD	9.96	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9,98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3,91	±9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±9,6
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FOD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC)	WIMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX		±9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 ±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols)			
10306	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols)	WIMAX	14.67	±9.6

Certificate No: EX-3825_Jul24

Page 13 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10307	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
0309	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6
0310	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WIMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9,6
10313	AAA	iDEN 1:3	IDEN	10.51	±9.6
0314	AAA	iDEN 1:6	IDEN	13.48	±9.6
10315	AAB	IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAE	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
0353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
0354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
0355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
0356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5,10	±9.6
	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
0388			Generic	6.27	±9.6
0396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
0399	AAA	64-QAM Waveform, 40 MHz	WLAN	8.37	±9.6
0400	AAF	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
0401	AAF	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)		8.53	±9.6
10402	AAF	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN CDMA2000	3.76	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)		3.76	±9.6 ±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	5.22	
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000		±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	±9.6
10422	AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAD	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAD	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAD	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAD	IEEE 802,11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAD	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3,1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6
10449	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10450	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10451	AAE	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10453	AAE	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	+9.6
10456	AAD	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
		CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10458	AAA		CDMA2000	8.25	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers) UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.0
10460	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10461			LTE-TDD	8.30	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,82	±9.6 ±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)			
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.32	±9.6
10466		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10467	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

Certificate No: EX-3825_Jul24

Page 14 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.57	±9.6
0472	AAG	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
0473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
0475	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8,32	±9.6
0478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
0480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1,4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
0488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
0489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
0492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
0493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7,67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe-2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8,55	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7,99	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,6,5)	LTE-TDD	8.49	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8,51	+9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-GAW, 0L Subframe=2,3,4,7,8,9)	LTE-TOD	7.74	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, 0L Subirante=2,3,4,7,6,9) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10513		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10514 10515	AAG AAA	LEE 802.11b WiFi 2.4 GHz (DSSS, 2Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 3.5 Mbbs, 35bc duty cycle)	WLAN	1.58	±9.6
10517	AAA	IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10518	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520		IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8,12	±9.6
10520	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522		IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524		IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525		IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526		IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAD	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528		IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	<u>+</u> 9.6
10529		IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8,36	±9.6
10531		IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAD	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533		IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8,38	±9.6
10534		IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535		IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536		IEEE 802,11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537		IEEE 802,11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538		IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6
10540	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6

Certificate No: EX-3825_Jul24

Page 15 of 22

July 10, 2024

	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
UID 10541	AAD	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
0541	AAD	IEEE 802.11ac WiFi (40 MHz, MCS7, Solid auty Syste)	WLAN	8,65	±9.6
0542	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
0543	AAD	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8,47	±9.6
0545	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8,55	±9.6
0545	AAD	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
0547	AAD	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
0548	AAD	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
0550	AAD	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
0551	AAD	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
0552	AAD	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
0553	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
0554	AAE	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
0555	AAE	IEEE 802,11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
0556	AAE	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
0557	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
0558	AAE	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
0560	AAE	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
0561	AAE	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
0562	AAE	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
0563	AAE	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
0564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
0565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
0566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8,13	±9.6
0566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OF DM, 10 Mbps, 30pc duty cycle)	WLAN	8.00	±9.6
0568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9,6
10569	AAA	IEEE 802,11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8,10	+9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
0571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9,6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8,70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8,76	±9.6
10581	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9,6
10583	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8,70	±9.6
10586	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAD	IEEE 802.11a/h Wirl 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAD	IEEE 802,11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8,63	±9.6
10592	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
10594	AAD	EEE 802,11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAD	IEEE 802,11n (ITT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
0596	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9,6
10602	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10602	AAD	IEEE 802,11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8,76	±9.6
10605	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9,6
10606	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
	1 000				
10607	AAD	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6

Certificate No: EX-3825_Jul24

Page 16 of 22

July 10, 2024

1115	D.u.	O	Group	PAR (dB)	$Unc^E k = 2$
UID	Rev	Communication System Name IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
10609	AAD AAD	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10610		IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8,70	±9.6
10611	AAD AAD	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.77	±9.6
10612	AAD	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.94	±9.6
0613	AAD	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.59	±9.6
0614			WLAN	8.82	±9.6
0615	AAD	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
0616	AAD	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8,81	±9.6
10617	AAD	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.58	±9.6
0618	AAD		WLAN	8.86	±9.6
0619	AAD	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.87	±9.6
10620	AAD	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.77	±9.6
10621	AAD	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
10622	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, sope duty cycle)	WLAN	8.82	±9.6
10623	AAD		WLAN	8,96	±9.6
0624	AAD	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
0625	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.83	±9.6
0626	AAD	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.88	±9.6
0627	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)		8.71	+9.6
0628	AAD	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN		
10629	AAD	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN WLAN	8.85	±9.6 ±9.6
10630	AAD	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)			±9.6
0631	AAD	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	
10632	AAD	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8,74	±9.6
10633	AAD	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN		±9,6
10634	AAD	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
10635	AAD	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8,81	±9.6
10636	AAE	IEEE 802.11ac WIFI (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAE	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10638	AAE	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
10639	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
10640	AAE	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAE	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
10642	AAE	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAE	IEEE 802.11ac WiFI (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
10644	AAE	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
10645	AAE	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9,11	±9.6
10646	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
10652	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
10653	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
10655	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
10671	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
10673	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
10674	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10675	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10676	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
10678	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
10680	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
10682	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
10683	AAC	IEEE 802,11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8,26	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10685	AAC				

Certificate No: EX-3825_Jul24

Page 17 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
0687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8,45	±9.6
0688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
0689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8,55	±9.6
0690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
0691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
0692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
0693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
0694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
0695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
0696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
0697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
0698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
0699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8,82	±9.6
0700	AAC	IEEE 802,11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
0701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6
0702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duly cycle)	WLAN	8,70	±9.6
0703	AAC	IEEE 802,11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
0704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
0705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
0706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
0707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
0708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
0709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
0710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
0711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
0712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
0713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9,6
10714	AAC	IEEE 802,11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8,26	±9.6 ±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6 ±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN WLAN	8.76	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.55	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.70	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
10724 10725	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.74	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 30pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 80pc duty cycle)	WLAN	8.67	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.42	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCSU, 99pc duty cycle)	WLAN	8.46	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802,11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
0743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9,16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8,93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6
10751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6

Certificate No: EX-3825_Jul24

Page 18 of 22

July 10, 2024

UID	Bev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9,6
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	WLAN	8,94	±9.6
0755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duly cycle)	WLAN	8.64	±9.6
0756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
0757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9,6
0758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
0759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
0760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
0761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
0762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
0763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	±9.6
0764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.54	±9.6
0765	AAC	IEEE 802,11ax (160 MHz, MCS10, 99pc duty cycle)	WLAN	8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.51	±9,6
10767	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
0769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
0770	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
0772	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
0773	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAF	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10778	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10781	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8,38	±9.6
10782	AAE	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAG	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	8.40	±9.6
10786	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10788	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.33	±9.6
10789	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10790	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz)	5G NR FR1 TDD	7.83	+9.6
10791	AAG	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz)	5G NR FR1 TDD	7.92	+9.6
10792	AAE	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10793 10794	AAE	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10795	AAE	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10795	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAE	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8,37	±9.6
10809	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9,6
10810	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10812	AAF	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10817	AAG	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
0818	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8,30	±9.6
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6

Certificate No: EX-3825_Jul24

Page 19 of 22

July 10, 2024

					Unc ^E $k = 2$
UID	Rev	Communication System Name	Group	PAR (dB) 8.40	±9.6
10829	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.63	±9.6
10830	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,73	±9.6
10831	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.74	+9.6
10832	AAE	5G NR (CP-OFDM, 1 RB, 20MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	+9.6
10833	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10834 10835	AAE	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
	AAF	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.66	±9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.68	±9.6
10837	AAF	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7,70	±9.6
10839 10840	AAF	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.6
10841	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	±9.6
10843	AAD	5G NR (CP-OFDM, 50% RB, 15MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,34	±9.6
10846	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,34	±9,6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8,36	±9.6
10856	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.35	±9.6
10858	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.36	±9.6
10859	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.34	±9.6
10860	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10861	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.40	±9.6
10863	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10864	AAE	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10866	AAF	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAF	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10869	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	±9.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.65	±9.6
10875	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8.39	±9.6
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD 5G NR FR2 TDD	8.41	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.12	+9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10881	AAE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10882		5G NR (DFI-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	6.57	±9.6
10883	AAE		5G NR FR2 TDD	6.53	±9.6
10884 10885	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	+9.6
10885	AAE	5G NR (DFT-S-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)	5G NR FR2 TDD	6.65	±9.6
10886	AAE	5G NR (DP-0FDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10888	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	8,35	±9.6
10889	AAE	5G NR (CP-OFDM, 100% H2, 30 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.02	±9.6
108890	AAE	5G NR (CP-OFDM, 1103, 50 MHz, 16QAM, 120 KHz)	5G NR FR2 TDD	8.40	±9.6
10891	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.13	±9.6
10892	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10897	AAE	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.66	±9.6
10898	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10899	AAB	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67	±9.6
10900	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10901	AAB	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10902	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10903	AAD	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10904	AAC	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9,6
10905	AAD	5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10906		5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10907	AAE	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.78	±9.6
10908	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10909	AAB	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.96	±9.6
10910		5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6

Certificate No: EX-3825_Jul24

Page 20 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAC	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,85 5,83	±9.6 ±9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10917	AAD	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10918 10919	AAE AAC	5G NR (DFT-s-OFDM, 100% RB, 3 Minz, QFSK, 30 kHz) 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,84	±9.6
10924	AAD	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAD	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5,94	±9.6
10928	AAD	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52 5.52	±9.6 ±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	+9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 KHz)	5G NR FR1 FDD	5.51	±9.6
10935 10936	AAD	5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9,6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAD	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81 5.85	±9.6 ±9.6
10945	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD 5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MRz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5,94	±9,6
10950	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10951	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8,61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33 9.32	±9.6
10960	AAE	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	9.32	±9.6
10961	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9,36	±9.6
10962		5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 KHz)	5G NR FR1 TDD	9.55	±9.6
10963		5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 13 KHz)	5G NR FR1 TDD	9.29	±9.6
10964		5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 KHz)	5G NR FR1 TDD	9.37	±9.6
10966		5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967		5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968		5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972		5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD		±9.6
10973		5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD		±9.6
10974		5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD		±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9,6
10979	AAA	ULLA HDR4	ULLA	8,58	±9.6
10980		ULLA HDR8	ULLA	10.32	±9.6
10981		ULLA HDRp4	ULLA	3.19	±9.6 ±9.6
10982		ULLA HDRp8			

Certificate No: EX-3825_Jul24

Page 21 of 22

July 10, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10983	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAB	5G NB DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAB	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAB	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8,46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8,76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8,96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAB	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAB	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAB	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAB	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAB	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAB	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAB	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAB	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8,27	±9.6
11021	AAB	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8,46	±9.6
11022	AAB	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAB	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAB	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAB	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAB	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3825_Jul24

Page 22 of 22

Appendix 8 Dipole / Verification source calibration record

D2450V2 - SN:713

ughausstrasse 43, 8004 Zurich,	Switzerland	C S	Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accreditation e Swiss Accreditation Service is altilateral Agreement for the reco	s one of the signatorie	s to the EA	ccreditation No.: SCS 0108
ent UL Japan Head (-		: D2450V2-713_Sep22
ALIBRATION CI	ERTIFICATE		
bject	D2450V2 - SN:71	13	
alibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
alibration date:	September 12, 2	022	
he measurements and the uncerta	ainties with confidence p ed in the closed laborato	onal standards, which realize the physical un robability are given on the following pages an γ facility: environment temperature (22 ± 3)°(nd are part of the certificate.
ne measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE	ainties with confidence p ed in the closed laborato	robability are given on the following pages an	nd are part of the certificate.
ne measurements and the uncerta	ainties with confidence p ed in the closed laborato critical for calibration)	robability are given on the following pages an y facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate. C and humidity < 70%.
e measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
e measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91	ainties with confidence p and in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23
e measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 peference 20 dB Attenuator	ainties with confidence p and in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
e measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator r/pe-N mismatch combination	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03526)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
e measurements and the uncerta I calibrations have been conducte alibration Equipment used (M&TE timary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator r/pe-N mismatch combination oference Probe EX3DV4	ainties with confidence p and in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 seference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4	ainties with confidence p ainties with confidence p d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)	Ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22
an measurements and the uncertain I calibrations have been conducted alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 over sensor NRP-Z91 oference 20 dB Attenuator r/pe-N mismatch combination oference Probe EX3DV4 AE4 econdary Standards ower meter E4419B	ainties with confidence p ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20)	ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22
alibrations have been conducte alibration Equipment used (M&TE imany Standards ower meter NRP ower sensor NRP-Z91 over sensor NRP-Z91 eference 20 dB Attenuator /pe-N mismatch combination eference Probe EX3DV4 AE4 acondary Standards ower meter E4419B ower sensor HP 8481A	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
a measurements and the uncertain l calibrations have been conducted alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 over sensor NRP-Z91 oference 20 dB Attenuator ope-N mismatch combination oference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	ad are part of the certificate. C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 eference 20 dB Attenuator <i>ype-N</i> mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
alibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 over sensor NRP-Z91 oference 20 dB Attenuator r/pe-N mismatch combination eference Probe EX3DV4 AE4 acondary Standards ower meter E4419B ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer Agilent E8358A	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 7549 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. 217-03528) 31-Dec-21 (No. 217-03528) 31-Dec-21 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
a measurements and the uncertain a calibrations have been conducted alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 oference 20 dB Attenuator orpe-N mismatch combination oference Probe EX3DV4 AAE4 econdary Standards ower meter E44198 ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 atwork Analyzer Agilent E8358A	ainties with confidence p ainties with confidence p id in the closed laborator critical for calibration) ID # SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 10372 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	ad are part of the certificate. C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In hous
I calibrations have been conducte alibration Equipment used (M&TE imary Standards ower meter NRP ower sensor NRP-Z91 eference 20 dB Attenuator <i>ype-N</i> mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	A are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-22 In house check: Oct-22

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- s С S
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713 Sep22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.19 W/kg

ody TSL parameters The following parameters and calculations were applied.				
	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.15 W/kg

Certificate No: D2450V2-713_Sep22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.9 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 4.7 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.160 ns		
	Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

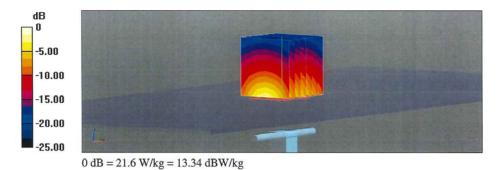
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 12.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

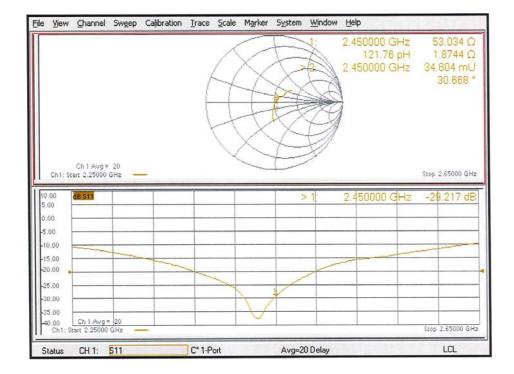
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ _r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.4 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.0 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 21.6 W/kg

Certificate No: D2450V2-713_Sep22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-713_Sep22

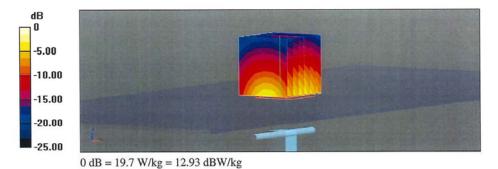
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 12.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

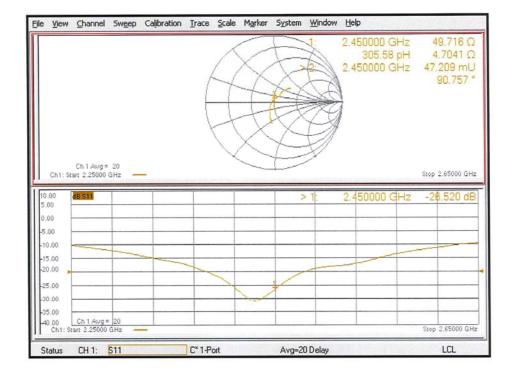
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 51; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.3 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 24.2 W/kg SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.15 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.3% Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: D2450V2-713_Sep22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-713_Sep22

Page 8 of 8

D2450V2 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D2450V2
Manufacture	Schmid & Partner Engineering AG	Serial	713
Tested by	Hisayoshi Sato (2023)	Tested by	Tomohisa Nakagawa (2024)

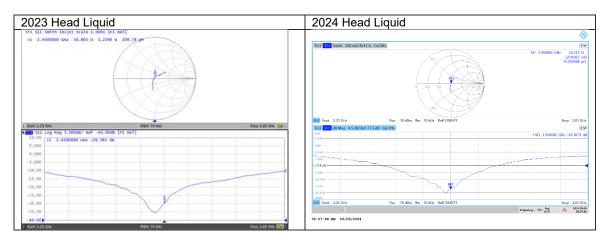
1. Test environment

Date	August 1, 2023	Date	September 6, 2024
Ambient Temperature	22.5 deg.C	Ambient Temperature	21 deg.C
Relative humidity	40 %RH	Relative humidity	58 %RH

2. Equipment used

2023
2020

2023						
LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
88581	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/07/18	12
142060	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CB	1333	2023/05/10	12
142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2023/05/10	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	-	-		
150815	Network Analyzer	Keysight Technologies Inc	E5071C	MY46523746	2022/08/23	12
141991	2.4mm Calibration Kit	CUSTOM. Inc	85056A	MY44300225	2022/08/18	12
2024						
LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
251453	Analyzer, Network	Rohde & Schwarz	ZNL14	200030	2024/07/12	12
251454	RF Device, Passive, Calibration Kit	Rohde & Schwarz	ZN-Z135	101032	2024/06/21	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-
142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2024/05/31	12
141574	Digital thermometer	LKM electronic	DTM3000	-	2024/08/24	12
244705	Thermo-Hygrometer	A & D	AD-5648A	1002	2024/01/25	12


3. Test Result

		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed poin	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2022/9/12	53.03	1.87	-	-	-	-
Calibration(ULJ)	2023/8/1	50.87	3.23	-2.17	1.36	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2024/9/6	52.23	0.23	-0.81	-1.64	+/- 5 Ω +/- 5 jΩ	Complied

		Head	Deviation	Deviation	Tolerance	Tolerance	
Return loss	cal day	[dB]	[%]	[dB]	[%]	[+/- dB]	Result
Calibration (SPEAG)	2022/9/12	-29.22	-	-	-	-	-
Calibration(ULJ)	2023/8/1	-29.58	1.25	-0.37	+/- 20.00	5.84	Complied
Calibration(ULJ)	2024/9/6	-33.19	12.18	-3.97	+/- 20.00	5.92	Complied

Tolerance: According to the KDB 865664 D1

Measurement Plots

