

Г

RADIO TEST REPORT

Test Report No. 15192509H-A-R2

Customer	Murata Manufacturing Co., Ltd.
Description of EUT	Communication Module
Model Number of EUT	2FJ
FCC ID	VPYLB2FJ1
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	May 28, 2024
Remarks	Wireless LAN (2.4 GHz band) and Bluetooth Low Energy part(s)

Representative Test Engineer	Approved By
PRQUERI	T. Shimada
Shousei Hamaguchi	Takumi Shimada
Engineer	Engineer
	ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed in	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	
Report Cover Pag	e - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15192509H-A

This report is a revised version of 15192509H-A-R1. 15192509H-A-R1 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15192509H-A	May 20, 2024	-
1	15192509H-A-R1	May 27, 2024	Section 3.2 FCC Part 15.31 (e) -Correction of sentence. This EUT provides the stable voltage constantly to RF Module regardless of input voltage. \rightarrow The stable voltage was provided to the EUT during the tests. FCC Part 15.203/212 Antenna requirement -Correction of sentence. It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. \rightarrow The antenna is not removable from the EUT.
2	15192509H-A-R2	May 28, 2024	Section 3.2 FCC Part 15.31 (e) -Correction of sentence. The stable voltage was provided to the EUT during the tests. → The RF Module has its own regulator. The RF Module is constantly provided voltage through the regulator regardless of input voltage.

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard	
AC	Alternating Current	IEC	International Electrotechnical Commission	
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers	
AM	Amplitude Modulation	IF	Intermediate Frequency	
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference	
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada	
Ant, ANT	Antenna	ISO	International Organization for Standardization	
AP	Access Point	JAB	Japan Accreditation Board	
ASK	Amplitude Shift Keying	LAN	Local Area Network	
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System	
AV	Average	MCS	Modulation and Coding Scheme	
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement	
BR	Bluetooth Basic Rate	N/A	Not Applicable	
BT	Bluetooth	NIST	National Institute of Standards and Technology	
BT LE	Bluetooth Low Energy	NS	No signal detect.	
BW	BandWidth	NSA	Normalized Site Attenuation	
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program	
CCK	Complementary Code Keying	OBW	Occupied Band Width	
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing	
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter	
CW	Continuous Wave	PCB	Printed Circuit Board	
DBPSK	Differential BPSK	PER	Packet Error Rate	
DC	Direct Current	PHY	Physical Layer	
D-factor	Distance factor	PK	Peak	
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise	
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence	
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density	
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation	
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak	
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying	
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width	
EN	European Norm	RDS	Radio Data System	
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment	
EU	European Union	RF	Radio Frequency	
EUT	Equipment Under Test	RMS	Root Mean Square	
Fac.	Factor	RSS	Radio Standards Specifications	
FCC	Federal Communications Commission	Rx	Receiving	
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer	
FM	Frequency Modulation	SG	Signal Generator	
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio	
•				
FSK	Frequency Shift Keying	TR	Test Receiver	
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting	
GNSS	Global Navigation Satellite System	VBW	Video BandWidth	
GPS	Global Positioning System	Vert.	Vertical	
Hori.	Horizontal	WLAN	Wireless LAN	

CONTENTS

PAGE

SECTION 1: Customer Information SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
Conducted Emission	
99 % Occupied Bandwidth and 6 dB Bandwidth	21
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Conducted Emission	
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	67

SECTION 1: Customer Information

Company Name	Murata Manufacturing Co., Ltd.
Address	1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan
Telephone Number	+81-50-1737-2801
Contact Person	Kenji Hayashikoshi

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Communication Module
Model Number	2FJ
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	March 29, 2024
Test Date	April 2 to 24, 2024

2.2 Product Description

General Specification

Rating	Typ: DC 3.3 V / Min: DC 3.0 V / Max: DC 3.6 V
Operating temperature	-30 deg. C to 70 deg. C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain ^{a)}	1.33 dBi

Bluetooth (BR/EDR/Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	BT: FHSS (GFSK, π/4 DQPSK, 8 DPSK)
	BT LE: GFSK
Antenna Gain ^{a)}	1.33 dBi

* WLAN and Bluetooth do not transmit simultaneously.

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	30.07 dB, 0.15000 MHz, L, QP	Complied	-
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)	See data.	Complied	Conducted
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak Output Bower	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)		Complied	Conducted
Output Power					
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied	Conducted
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission Restricted	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	3.9 dB 2483.5 MHz, AV, Vertical	Complied	Conducted (below 30 MHz)/ Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10			(above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-00 * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Item	Frequency range	Unit	Calculated Uncertainty (+/-)
AMN (LISN)	0.15 MHz to 30 MHz	dB	3.3

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	MHz		3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz	<u>.</u>	dB	5.0
	6 GHz to 18 GHz		dB	5.2
1 m	10 GHz to 18 GHz 18 GHz to 26.5 GHz		dB	5.3
			dB	5.2
	26.5 GHz to 40 GHz		dB	4.7
0.5 m	26.5 GHz to 40 GHz		dB	4.8

Radiated emission

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, No.4, and No.5 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

[WLAN]

Mode		Remarks*			
IEEE 802.11b (11	1b)	11 Mbps, PN9			
IEEE 802.11g (11	1g)	24 Mbps, PN9			
IEEE 802.11n (11	1n-20)	MCS 5, PN9			
*The worst condit	tion was determined based on	the test result of Maximum Peak Output Power (Low			
Channel)					
*Power of the EUT was set by the software as follows;					
Power Setting:	etting: 11b: 10.5 dBm				
11g 11n-20: 10.25 dBm Software: Software: MFG Tool Version 7.95.75		n 7 05 75			
		e location: Driven by connected PC)			
*This setting of so	oftware is the worst case.				
Any conditions ur	nder the normal use do not ex	ceed the condition of setting.			

In addition, end users cannot change the settings of the output power of the product.

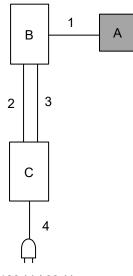
Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009,

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Conducted Emission,	Tx 11n-20 *1)	2412 MHz
Radiated Spurious Emission (Below 1 GHz)		
Conducted Spurious Emission		
6dB Bandwidth,	Tx 11b	2412 MHz
Maximum Peak Output Power,	Tx 11g	2437 MHz
Power Density,	Tx 11n-20	2462 MHz
99% Occupied Bandwidth		
Radiated Spurious Emission (Above 1 GHz)	Tx 11b	2412 MHz
	Tx 11n-20 *2)	2437 MHz
	-	2462 MHz

*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

*2) Since 11g and 11n-20 have the same modulation method and no differences in transmitting specification, test was performed on the representative mode that had the highest peak output power.


[BT LE]					
Mode		Remarks*			
Bluetooth Low Er	nergy (BT LE)	1M-PHY Uncoded PHY (1M-PHY),			
		Maximum Packet Size, PRBS9			
*Power of the EU	T was set by the	software as follows;			
Power Setting:	Config:0029				
Software:	Cybluetool 0.1	.97.1			
	(Date: April 2,	2024, Storage location: Driven by connected PC)			
*This setting of software is the worst case.					
Any conditions ur	nder the normal	use do not exceed the condition of setting.			
In addition, end u	sers cannot cha	nge the settings of the output power of the product.			

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency				
Conducted Emission,	Tx BT LE, 1M-PHY *1)	2440 MHz				
Radiated Spurious Emission (Below 1 GHz)						
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE, 1M-PHY	2402 MHz				
Maximum Peak Output Power,		2440 MHz				
Power Density,		2480 MHz				
6dB Bandwidth,						
99% Occupied Bandwidth,						
Conducted Spurious Emission						
*1) Conducted emissions and Spurious emission	*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the					
channel that had the highest power during the antenna terminal test, as preliminary testing indicated						
that changing the operating frequency had no s	significant impact on the e	emissions in those frequency				
bands.						

4.2 Configuration and Peripherals

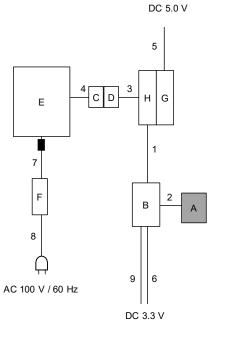
Conducted Emission test

AC 120 V / 60 Hz

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

*As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT and Support Equipment


No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2FJ	No.12 *1)	Murata Manufacturing	EUT
	Module		No.121 *2)	Co., Ltd.	
В	Jig Board	WLAN JIG for 2FJ*1)	-	Murata Manufacturing	-
		P2ML10082 *2)		Co., Ltd.	
С	DC Power Supply	PMC35-2A	RM00298	Kikusui Electronics	-
				Corp.	

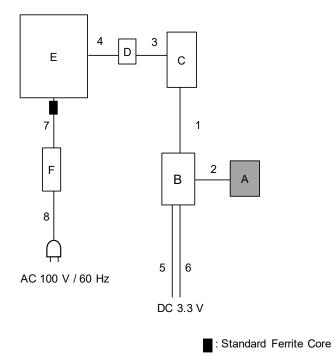
*1) Used for WLAN only

*2) Used for BT LE only

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Flat Cable	0.1	Unshielded	Unshielded	-
2	DC Cable	2.6	Unshielded	Unshielded	-
3	DC Cable	2.6	Unshielded	Unshielded	-
4	AC Cable	1.8	Unshielded	Unshielded	-

Antenna Terminal Conducted Tests (WLAN)

: Standard Ferrite Core

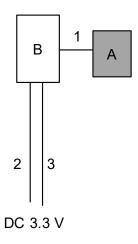

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial Number	Manufacturer	Remarks
A	Communication Module	2FJ	No.12	Murata Manufacturing Co., Ltd.	EUT
В	Jig Board	P2ML9389	P11063752-006A- 5	Murata Manufacturing Co., Ltd.	-
С	RS-232C to USB Connector	0065252	-	SANWA SUPPLY INC.	-
D	RS-232C Crossover Connector	KRS-403XF1K	-	BUFFALO INC.	-
Е	Laptop PC	CF-MX4	5FKSA17992	PANASONIC	-
F	AC Adapter	CF-AA62J2C	62J2CM 2152251438SB	Panasonic	-
G	Jig Board	Armadillo-X1	-	Murata Manufacturing Co., Ltd.	-
Н	Jig Board	P2ML6714	-	Murata Manufacturing Co., Ltd.	-

Description of EUT and Support Equipment

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.15	Unshielded	Unshielded	-
2	Flat Cable	0.10	Unshielded	Unshielded	-
3	RS-232C Cable	1.50	Shielded	Shielded	-
4	USB Cable	1.00	Shielded	Shielded	-
5	DC Cable	1.30	Unshielded	Unshielded	-
6	DC Cable	2.30	Unshielded	Unshielded	-
7	DC Cable	1.60	Unshielded	Unshielded	-
8	AC Cable	0.80	Unshielded	Unshielded	-
9	DC Cable	0.40	Unshielded	Unshielded	-

Antenna Terminal Conducted Tests (BT LE)


* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment No. Item Model number Serial Number

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2FJ	No.121	Murata Manufacturing	EUT
	Module			Co., Ltd.	
В	Jig Board	P2ML10082	-	Murata Manufacturing	-
				Co., Ltd.	
С	Jig Board	P2ML1188	-	Murata Manufacturing	-
				Co., Ltd.	
D	RS-232C to	BSUSRC06	0065252	BUFFALO INC.	-
	USB Connector				
Е	Laptop PC	CF-MX4	5FKSA17992	PANASONIC	-
F	AC Adapter	CF-AA62J2C	62J2CM2152251438SB	Panasonic	-

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.15	Unshielded	Unshielded	-
2	Flat Cable	0.10	Unshielded	Unshielded	-
3	RS-232C Cable	1.50	Shielded	Shielded	-
4	USB Cable	1.00	Shielded	Shielded	-
5	DC Cable	0.40	Unshielded	Unshielded	-
6	DC Cable	2.30	Unshielded	Unshielded	-
7	DC Cable	1.60	Unshielded	Unshielded	-
8	AC Cable	0.80	Unshielded	Unshielded	-

Radiated Emission test

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Communication	2FJ	No.12 *1)	Murata Manufacturing	EUT
	Module		No.121 *2)	Co., Ltd.	
В	Jig Board	WLAN JIG for 2FJ*1)	-	Murata Manufacturing	-
	-	P2ML10082 *2)		Co., Ltd.	

*1) Used for WLAN only *2) Used for BT LE only

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Flat Cable	0.1	Unshielded	Unshielded	-
2	DC Cable	2.6	Unshielded	Unshielded	-
3	DC Cable	2.6	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

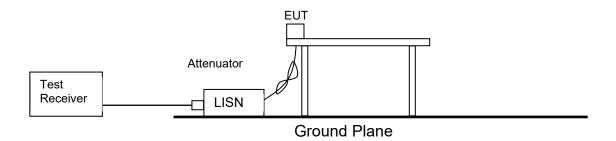
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

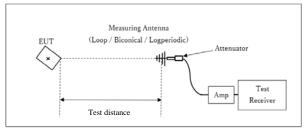
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

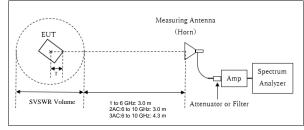
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			11.12.2.5.2	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

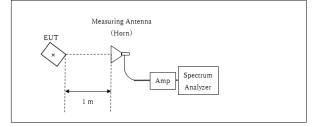
r : Radius of an outer periphery of EUT

 \times : Center of turn table

Test Distance: 3 m

[1 GHz to 6 GHz] Distance Factor: 20 x log (4.0 m / 3.0 m) = 2.5 dB * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m


[6 GHz to 10 GHz] For 3AC Distance Facstor: 20 x log (5.0 m / 3.0 m) = 4.44 dB * Test Distance: (4.3 + SVSWR Volume /2) - r = 5.0 m

SVSWR Volume : 1.4 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

For 2AC Distance Facstor: 20 x log (3.75 m / 3.0 m) = 1.94 dB * Test Distance: (3.0 + SVSWR Volume /2) - r = 3.75 m

SVSWR Volume : 1.5 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.54 dB *Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	10 kHz	30 kHz				

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

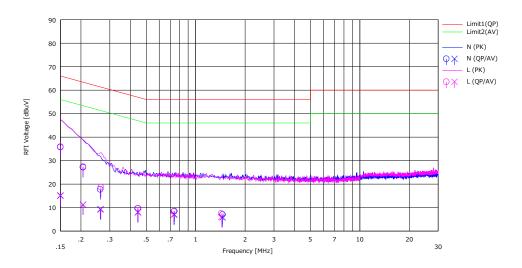
*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz).

5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.


Test Data	: APPENDIX
Test Result	: Pass

APPENDIX 1: Test Data

Conducted Emission

Test place	Ise EMC Lab. No.3 Semi Anechoic Chamber
Date	April 24, 2024
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx 11n-20 2412 MHz

Limit : FCC_Part 15 Subpart C(15.207)

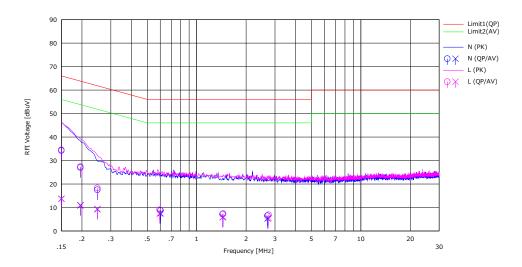
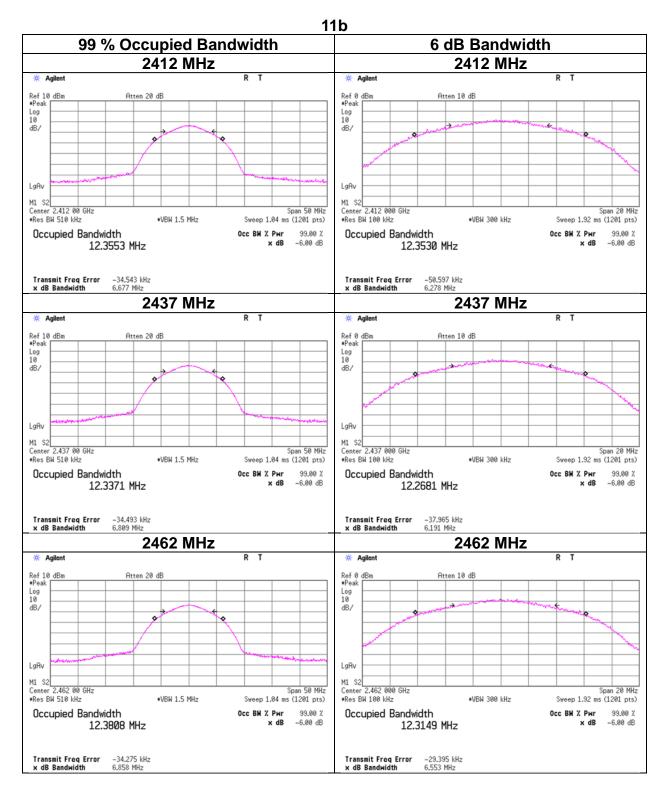

	E	Rea	ding	LICN	LOSS	Res	ults	Lir	nit	Ma	rgin		
No.	Freq.	(QP)	(AV)	LISN	LUSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	22.60	1.90	0.05	13.08	35.73	15.03	66.00	56.00	30.27	40.97	Ν	
2	0.20610	14.00	-1.90	0.04	13.08	27.12	11.22	63.36	53.36	36.24	42.14	Ν	
3	0.26220	4.60	-3.90	0.04	13.09	17.73	9.23	61.36	51.36	43.63	42.13	Ν	
4	0.44410	-3.50	-520	0.05	13.10	9.65	7.95	56.98	46.98	47.33	39.03	Ν	
5	0.74160	-4.70	-6.10	0.05	13.13	8.48	7.08	56.00	46.00	47.52	38.92	Ν	
6	1.45900	-620	-7.40	0.06	13.19	7.05	5.85	56.00	46.00	48.95	40.15	Ν	
7	0.15000	22.80	2.10	0.05	13.08	35.93	15.23	66.00	56.00	30.07	40.77	L	
8	0.20610	14.30	-1.90	0.04	13.08	27.42	11.22	63.36	53.36	35.94	42.14	L	
9	0.26475	5.50	-3.90	0.05	13.09	18.64	9.24	61.28	51.28	42.64	42.04	L	
10	0.44665	-3.50	-520	0.06	13.10	9.66	7.96	56.94	46.94	47.28	38.98	L	
11	0.73565	-4.90	-620	0.06	13.13	8.29	6.99	56.00	46.00	47.71	39.01	L	
12	1.43200	-580	-7.30	0.06	13.19	7.45	5.95	56.00	46.00	48.55	40.05	L	

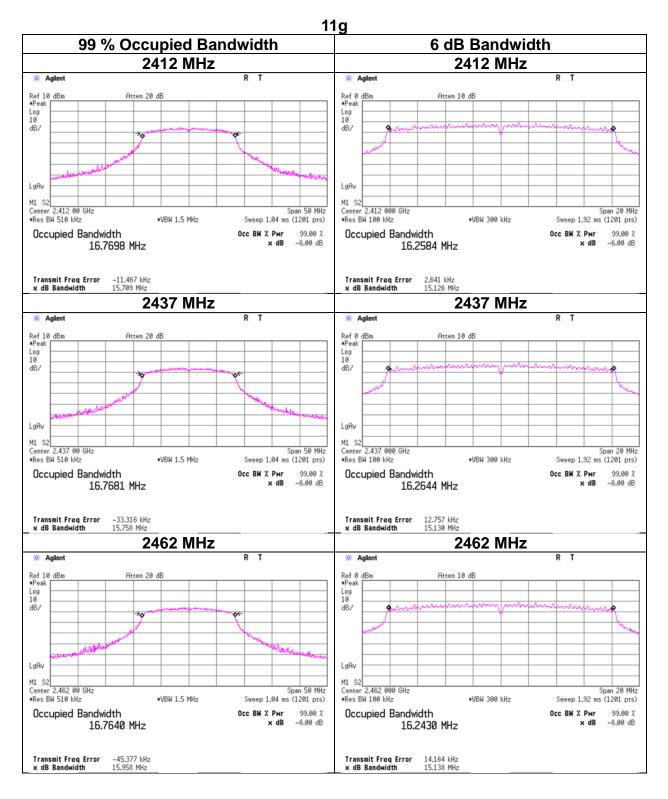
CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

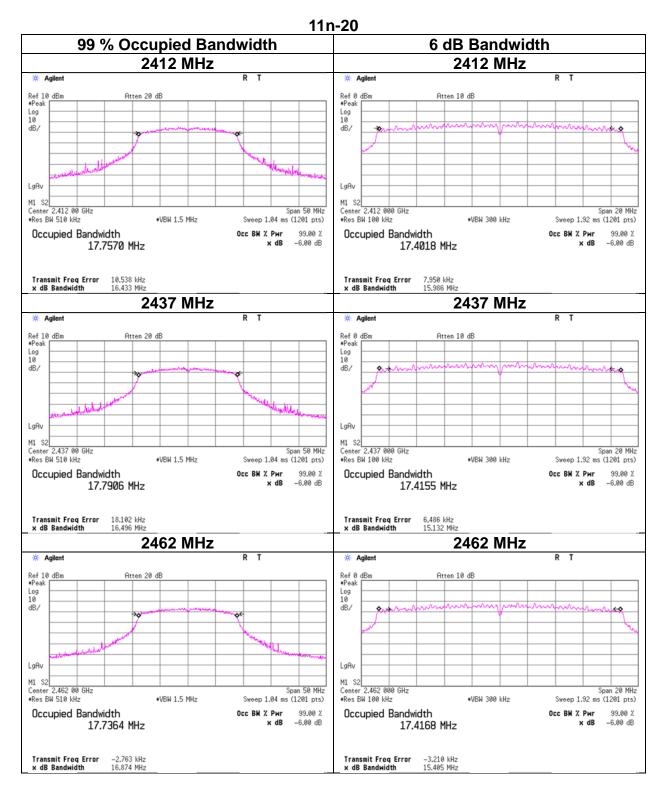
Conducted Emission

Test place	Ise EMC Lab. No.3 Semi Anechoic Chamber
Date	April 24, 2024
Temperature / Humidity	21 deg. C / 50 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 2440 MHz

Limit : FCC_Part 15 Subpart C(15.207)

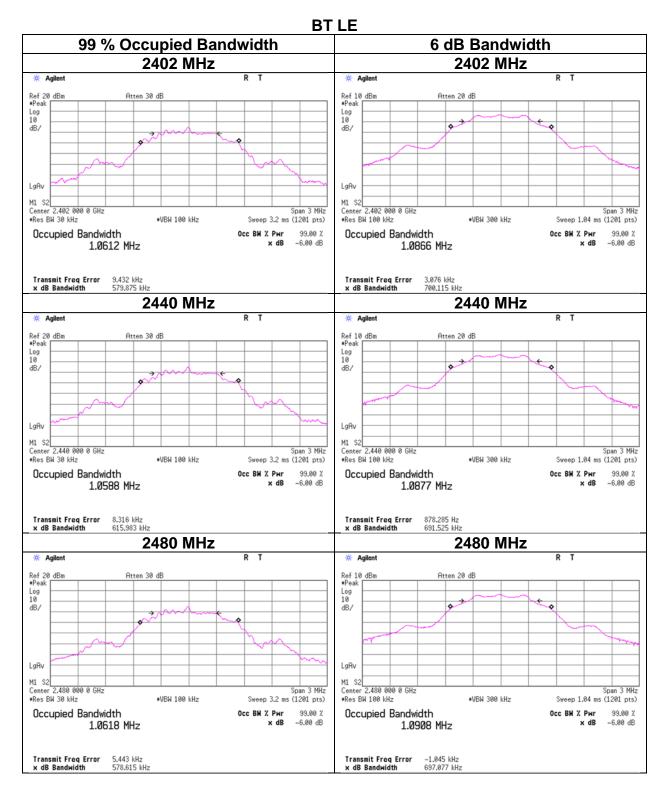



	Face	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Ma	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LU35	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	21.10	0.50	0.05	13.08	34.23	13.63	66.00	56.00	31.77	42.37	Ν	
2	0.19590	13.90	-2.30	0.04	13.08	27.02	10.82	63.78	53.78	36.76	42.96	Ν	
3	0.24860	4.40	-3.90	0.04	13.08	17.52	9.22	61.80	51.80	44.28	42.58	Ν	
4	0.60220	-4.50	-5.70	0.05	13.12	8.67	7.47	56.00	46.00	47.33	38.53	Ν	
5	1.44100	-6.10	-7.40	0.06	13.19	7.15	5.85	56.00	46.00	48.85	40.15	Ν	
6	2.70100	-6.90	-8.00	0.07	13.26	6.43	5.33	56.00	46.00	49.57	40.67	Ν	
7	0.15000	21.40	0.60	0.05	13.08	34.53	13.73	66.00	56.00	31.47	42.27	L	
8	0.19590	14.20	-2.10	0.04	13.08	27.32	11.02	63.78	53.78	36.46	42.76	L	
9	0.24860	5.20	-3.70	0.04	13.08	18.32	9.42	61.80	51.80	43.48	42.38	L	
10	0.59540	-420	-5.70	0.06	13.12	8.98	7.48	56.00	46.00	47.02	38.52	L	
11	1.45000	-5.90	-7.30	0.06	13.19	7.35	5.95	56.00	46.00	48.65	40.05	L	
12	2.74600	-6.50	-7.90	0.08	13.26	6.84	5.44	56.00	46.00	49.16	40.56	L	


CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 3, 2024
Temperature / Humidity	23 deg. C / 47 % RH
Engineer	Shousei Hamaguchi
Mode	Тх

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	12355.3	6.278	> 0.5000
	2437	12337.1	6.191	> 0.5000
	2462	12380.8	6.553	> 0.5000
11g	2412	16769.8	15.126	> 0.5000
	2437	16768.1	15.130	> 0.5000
	2462	16764.0	15.138	> 0.5000
11n-20	2412	17757.0	15.986	> 0.5000
	2437	17790.6	15.132	> 0.5000
	2462	17736.4	15.405	> 0.5000



Test place	lse EMC Lab. No.8 Measurement Room
Date	April 3, 2024
Temperature / Humidity	23 deg. C / 47 % RH
Engineer	Shousei Hamaguchi
Mode	Tx BT LE

Frequency	99% Occupied	6dB Bandwidth	Limit for		
	Bandwidth		6dB Bandwidth		
[MHz]	[kHz]	[MHz]	[MHz]		
2402	1061.2	0.700	> 0.5000		
2440	1058.8	0.692	> 0.5000		
2480	1061.8	0.697	> 0.5000		

Test place Ise EMC Lab. No.8 Measurement Room April 2, 2024 26 deg. C / 34 % RH Date Temperature / Humidity . Engineer Shousei Hamaguchi Tx 11b Mode

					Cond	ducted P	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	-6.13	0.50	19.74	14.11	25.76	30.00	1000	15.89	1.33	15.44	34.99	36.02	4000	20.58	
2437	-6.44	0.50	19.74	13.80	23.99	30.00	1000	16.20	1.33	15.13	32.58	36.02	4000	20.89	
2462	-6.35	0.50	19.74	13.89	24.49	30.00	1000	16.11	1.33	15.22	33.27	36.02	4000	20.80	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2412 MI	Hz	
Rate	Reading	Remark
[Mbps]	[dBm]	
1	1.06	
2	1.08	
5.5	1.46	
11	2.10	*

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

Test place Date Temperature / Humidity Engineer Mode Tx 11g

Ise EMC Lab. No.8 Measurement Room April 2, 2024 26 deg. C / 34 % RH Shousei Hamaguchi

					Con	ducted P	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	-0.45	0.50	19.74	19.79	95.28	30.00	1000	10.21	1.33	21.12	129.42	36.02	4000	14.90	
2437	-0.72	0.50	19.74	19.52	89.54	30.00	1000	10.48	1.33	20.85	121.62	36.02	4000	15.17	
2462	-0.78	0.50	19.74	19.46	88.31	30.00	1000	10.54	1.33	20.79	119.95	36.02	4000	15.23	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2412 M	Hz	
Rate	Reading	Remark
[Mbps]	[dBm]	
6	-1.05	
9	-1.03	
12	-1.44	
18	-1.22	
24	-0.92	*
36	-1.09	
48	-1.25	
54	-1.02	

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.8 Measurement Room April 2, 2024 26 deg. C / 34 % RH Shousei Hamaguchi Tx 11n-20

					Cond	ducted P	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
2412	-0.41	0.50	19.74	19.83	96.16	30.00	1000	10.17	1.33	21.16	130.62	36.02	4000	14.86	
2437	-0.69	0.50	19.74	19.55	90.16	30.00	1000	10.45	1.33	20.88	122.46	36.02	4000	15.14	
2462	-0.94	0.50	19.74	19.30	85.11	30.00	1000	10.70	1.33	20.63	115.61	36.02	4000	15.39	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

2412 MHz									
MCS	Reading	Remark							
Number									
0	-1.31								
1	-1.29								
2	-1.26								
3	-1.09								
4	-1.27								
5	-0.62	*							
6	-1.19								
7	-1.28								

*: Worst MCS

All comparison were carried out on same frequency and measurement factors.

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 2, 2024Temperature / Humidity26 deg. C / 34 % RHEngineerShousei HamaguchiModeTx BT LE

					Cond	ducted P	ower			e.i.	.r.p. for l	RSS-247		
Freq.	Reading	Cable	Atten.	Res	Result Limit		Margin	Antenna	Result		Limit		Margin	
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-11.69	0.50	19.74	8.55	7.16	30.00	1000	21.45	1.33	9.88	9.73	36.02	4000	26.14
2440	-11.60	0.50	19.74	8.64	7.31	30.00	1000	21.36	1.33	9.97	9.93	36.02	4000	26.05
2480	-11.61	0.50	19.74	8.63	7.29	30.00	1000	21.37	1.33	9.96	9.91	36.02	4000	26.06

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 2, 2024
Temperature / Humidity	26 deg. C / 34 % RH
Engineer	Shousei Hamaguchi
Mode	Tx

11b	1 Mbps							
Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2412	-9.99	0.50	19.74	10.25	10.59	0.00	10.25	10.59
2437	-10.12	0.50	19.74	10.12	10.28	0.00	10.12	10.28
2462	-10.23	0.50	19.74	10.01	10.02	0.00	10.01	10.02

11g	6 Mbps
iig	

Free	д.	Reading	Cable	Atten.	Re	sult	Duty	Result		
			Loss	Loss	(Time average)		factor	(Burst power average		
[MH	z]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
241	2	-9.80	0.50	19.74	10.44	11.07	0.05	10.49	11.19	
243	7	-9.81	0.50	19.74	10.43	11.04	0.05	10.48	11.17	
246	2	-9.84	0.50	19.74	10.40	10.96	0.05	10.45	11.09	

11n-20 MCS 0

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time average)		factor	(Burst power average		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2412	-10.02	0.50	19.74	10.22	10.52	0.06	10.28	10.67	
2437	-10.03	0.50	19.74	10.21	10.50	0.06	10.27	10.64	
2462	-10.13	0.50	19.74	10.11	10.26	0.06	10.17	10.40	

Sample Calculation:

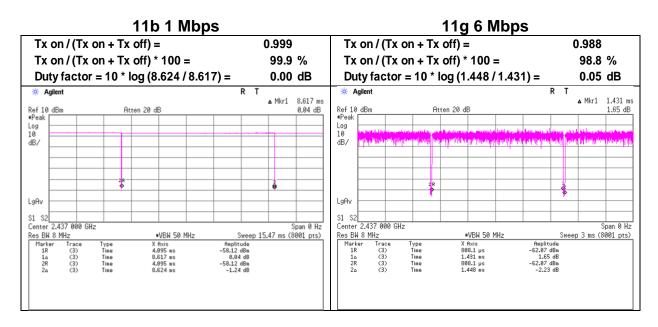
Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

The average output power was measured with the lowest order modulation and lowest data rate configuration in each IEEE 802.11 mode based on KDB 248227 D01.

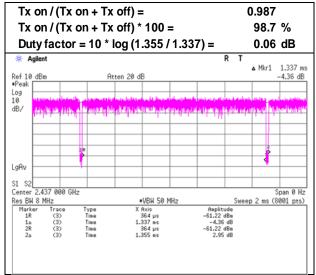
<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.8 Measurement Room April 3, 2024 23 deg. C / 47 % RH Shousei Hamaguchi Tx

BT LE

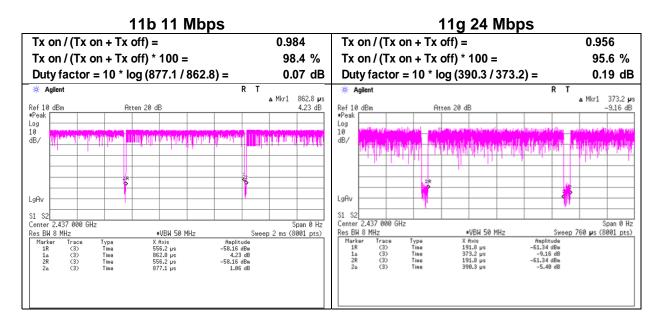

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time average)		factor	(Burst power average)		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2402	-14.22	0.50	19.74	6.02	4.00	1.84	7.86	6.11	
2440	-14.18	0.50	19.74	6.06	4.04	1.84	7.90	6.17	
2480	-14.34	0.50	19.74	5.90	3.89	1.84	7.74	5.94	

Sample Calculation:


Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

Burst rate confirmation

Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 3, 2024
Temperature / Humidity	23 deg. C / 47 % RH
Engineer	Shousei Hamaguchi
Mode	Тх


11n-20 MCS 0



* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Burst rate confirmation

Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 3, 2024
Temperature / Humidity	23 deg. C / 47 % RH
Engineer	Shousei Hamaguchi
Mode	Tx

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Radiated Spurious Emission

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11b 2412 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

Mode

Polarity	Frequency	Reading (QP / PK)	Reading	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	43.9	34.9	27.8	5.5	32.2	0.1	45.0	36.0	73.9	53.9	28.9	17.9	*1)
Hori.	3618.0	47.0	43.6	29.0	7.6	31.7	-	51.9	48.5	73.9	53.9	22.0	5.4	
Hori.	4824.0	41.4	32.1	31.4	7.6	31.2	-	49.2	39.9	73.9	53.9	24.7	14.0	Floor noise
Hori.	7236.0	42.1	34.8	35.7	8.1	33.5	-	52.4	45.1	73.9	53.9	21.5	8.8	Floor noise
Vert.	2390.0	43.2	34.8	27.8	5.5	32.2	0.1	44.4	35.9	73.9	53.9	29.6	18.0	*1)
Vert.	3618.0	44.6	39.6	29.0	7.6	31.7	-	49.5	44.5	73.9	53.9	24.4	9.4	
Vert.	4824.0	41.4	32.1	31.4	7.6	31.2	-	49.2	39.9	73.9	53.9	24.7	14.0	Floor noise
Vert.	7236.0	42.1	34.8	35.7	8.1	33.5	-	52.4	45.1	73.9	53.9	21.5	8.8	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

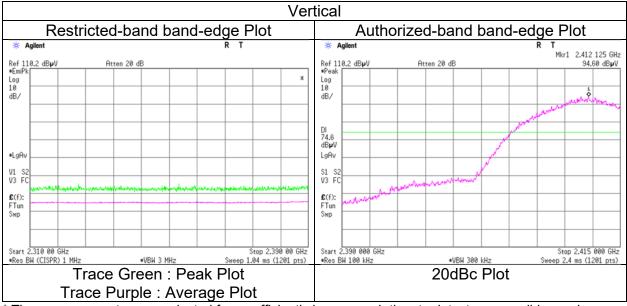
*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	93.5	27.8	5.5	32.2	94.6	-	-	Carrier
Hori.	2400.0	49.0	27.8	5.5	32.2	50.2	74.6	24.4	
Hori.	9648.0	43.2	35.8	8.7	34.1	53.6	74.6	21.0	
Vert.	2412.0	94.6	27.8	5.5	32.2	95.7	-	-	Carrier
Vert.	2400.0	48.5	27.8	5.5	32.2	49.6	75.7	26.1	
Vert.	9648.0	41.5	35.8	8.7	34.1	51.9	75.7	23.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB 20log (3.75 m / 3.0 m) = 1.94 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.3 Date April 22, 2024 Temperature / Humidity 21 deg. C / 51 % RH Engineer Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11b 2412 MHz

Mode

Horizontal Restricted-band band-edge Plot Authorized-band band-edge Plot Agile т Agilen Mkr1 2.411 458 GHz Ref 110.3 dBµV •EmiPk Atten 20 dB Ref 110.3 dBµV ●Peak Atten 20 dB 93.50 dBµV * Log 10 dB/ Log 10 dB/ ô DI 73.5 dB**µ**V LgAv •LgAv V1 S2 V3 FC S1 S2 V3 FC £(f): FTun £(f): FTun Swp Swp Stop 2.390 00 GHz Sweep 1.04 ms (1201 pts) Stop 2.415 000 GHz Start 2.310 00 GHz •Res BW (CISPR) 1 MHz Start 2.390 000 GHz •Res BW 100 kHz •VBW 3 MHz •VBW 300 kHz Sweep 2.4 ms (1201 pts) Trace Green : Peak Plot 20dBc Plot Trace Purple : Average Plot

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11b 2437 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	3655.6	46.4	43.6	29.1	7.6	31.6	-	51.4	48.6	73.9	53.9	22.5	5.3	
Hori.	4874.0	40.9	31.9	31.4	7.6	31.2	-	48.7	39.7	73.9	53.9	25.2	14.2	Floor noise
Hori.	7311.0	42.2	34.9	35.6	8.1	33.5	-	52.5	45.2	73.9	53.9	21.4	8.7	Floor noise
Vert.	3655.6	45.1	39.8	29.1	7.6	31.6	-	50.1	44.8	73.9	53.9	23.9	9.1	
Vert.	4874.0	40.9	31.9	31.4	7.6	31.2	-	48.7	39.7	73.9	53.9	25.2	14.2	Floor noise
Vert.	7311.0	42.2	34.9	35.6	8.1	33.5	-	52.5	45.2	73.9	53.9	21.4	8.7	Floor noise

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

20dBc Data	Sheet								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2437.0	92.6	27.8	5.5	32.2	93.7	-	-	Carrier
Hori.	9748.0	42.2	36.0	8.7	34.1	52.9	73.7	20.8	
Vert.	2437.0	93.2	27.8	5.5	32.2	94.2	-	-	Carrier
Vert.	9748.0	41.9	36.0	8.7	34.1	52.6	74.2	21.7	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 6 GHz 6 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 20log (3.75 m / 3.0 m) = 1.94 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11b 2462 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	43.8	35.8	27.7	5.6	32.2	0.1	44.9	37.0	73.9	53.9	29.1	16.9	*1)
Hori.	3693.0	46.1	41.7	29.1	7.5	31.6	-	51.2	46.8	73.9	53.9	22.8	7.1	
Hori.	4924.0	40.0	31.7	31.5	7.6	31.1	-	48.0	39.7	73.9	53.9	26.0	14.3	Floor noise
Hori.	7386.0	41.9	34.7	35.6	8.1	33.5	-	52.1	44.9	73.9	53.9	21.8	9.0	Floor noise
Vert.	2483.5	44.1	35.8	27.7	5.6	32.2	0.1	45.2	37.0	73.9	53.9	28.7	16.9	*1)
Vert.	3693.0	44.0	39.6	29.1	7.5	31.6	-	49.0	44.6	73.9	53.9	24.9	9.3	
Vert.	4924.0	40.0	31.7	31.5	7.6	31.1	-	48.0	39.7	73.9	53.9	26.0	14.3	Floor noise
Vert.	7386.0	41.9	34.7	35.6	8.1	33.5	-	52.1	44.9	73.9	53.9	21.8	9.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2462.0	94.6	27.7	5.5	32.2	95.7	-	-	Carrier
Hori.	9848.0	43.7	36.2	8.8	34.1	54.6	75.7	21.1	
Vert.	2462.0	94.1	27.7	5.5	32.2	95.2	-	-	Carrier
Vert.	9848.0	42.2	36.2	8.8	34.1	53.1	75.2	22.1	

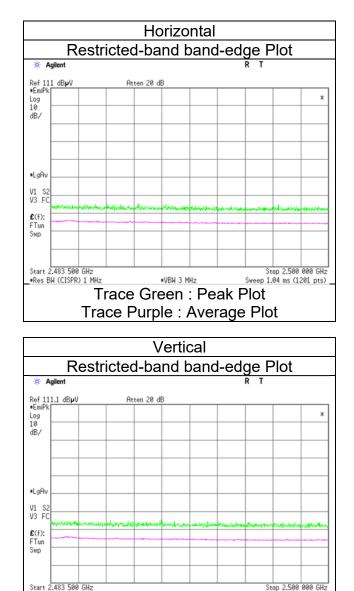
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 6 GHz

20log (4 m / 3.0 m) = 2.5 dB 20log (3.75 m / 3.0 m) = 1.94 dB

6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB


UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan / +81-596-24-8999

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11b 2462 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

•VBW 3 MHz

Trace Green : Peak Plot

Sweep 1.04 ms (1201 pts)

Final result of restricted band edge was shown in tabular data.

Res BW (CISPR) 1 MH

Test place	lse EMC Lab.	
Semi Anechoic Chamber	No.3	No.2
Date	April 22, 2024	April 23, 2024
Temperature / Humidity	21 deg. C / 51 % RH	21 deg. C / 46 % RH
Engineer	Shousei Hamaguchi	Shousei Hamaguchi
	(1 GHz to 6 GHz)	(6 GHz to 26.5 GHz)

Mode

Tx 11n-20 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	50.7	22.8	-	10.8	6.9	28.5	-	12.0	-	40.0	-	28.0	-	
Hori.	87.0	22.6	-	7.9	7.3	28.4	-	9.3	-	40.0	-	30.7	-	
Hori.	154.3	21.4	-	15.2	7.8	28.2	-	16.2	-	43.5	-	27.3	-	
Hori.	212.0	30.2	-	11.5	8.2	27.9	-	22.0	-	43.5	-	21.5	-	
Hori.	236.9	27.9	-	11.9	8.3	27.8	-	20.3	-	46.0	-	25.7	-	
Hori.	270.3	21.1	-	13.2	8.5	27.7	-	15.1	-	46.0	-	30.9	-	
Hori.	2390.0	56.6	45.9	27.8	5.5	32.2	0.4	57.7	47.4	73.9	53.9	16.2	6.5	*1)
Hori.	3618.0	46.2	43.9	29.0	7.6	31.7	-	51.2	48.8	73.9	53.9	22.8	5.1	
Hori.	4824.0	41.4	32.1	31.4	7.6	31.2	-	49.2	39.9	73.9	53.9	24.7	14.0	Floor noise
Hori.	7236.0	42.1	34.8	35.7	8.1	33.5	-	52.4	45.1	73.9	53.9	21.5	8.8	Floor noise
Vert.	50.7	22.8	-	10.8	6.9	28.5	-	12.0	-	40.0	-	28.0	-	
Vert.	87.0	35.9	-	7.9	7.3	28.4	-	22.6	-	40.0	-	17.4	-	
Vert.	154.3	21.4	-	15.2	7.8	28.2	-	16.2	-	43.5	-	27.3	-	
Vert.	212.0	33.1	-	11.5	8.2	27.9	-	24.9	-	43.5	-	18.6	-	
Vert.	236.9	29.2	-	11.9	8.3	27.8	-	21.6	-	46.0	-	24.4	-	
Vert.	270.3	24.5	-	13.2	8.5	27.7	-	18.5	-	46.0	-	27.5	-	
Vert.	2390.0	58.1	47.9	27.8	5.5	32.2	0.4	59.3	49.4	73.9	53.9	14.7	4.5	*1)
Vert.	3618.0	44.6	39.6	29.0	7.6	31.7	-	49.5	44.5	73.9	53.9	24.4	9.4	
Vert.	4824.0	41.4	32.1	31.4	7.6	31.2	-	49.2	39.9	73.9	53.9	24.7	14.0	Floor noise
Vert.	7236.0	42.1	34.8	35.7	8.1	33.5	-	52.4	45.1	73.9	53.9	21.5	8.8	Floor noise

(Below 1 GHz)

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

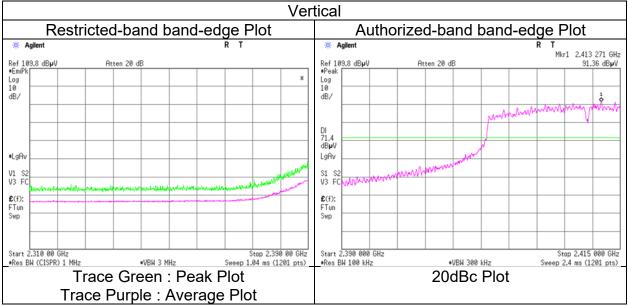
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	89.5	27.8	5.5	32.2	90.6	-	-	Carrier
Hori.	2400.0	56.7	27.8	5.5	32.2	57.8	70.6	12.7	
Hori.	9648.0	42.3	35.8	8.7	34.1	52.7	70.6	17.9	
Vert.	2412.0	91.4	27.8	5.5	32.2	92.5	-	-	Carrier
Vert.	2400.0	57.7	27.8	5.5	32.2	58.8	72.5	13.6	
Vert.	9648.0	41.0	35.8	8.7	34.1	51.4	72.5	21.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

 1 GHz - 6 GHz
 20log (4 m / 3.0 m) = 2.5 dB
 6 GHz - 10 GHz
 20log (3.75 m / 3.0 m) = 1.94


 20log (3.75 m / 3.0 m) = 1.94 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.3 Date April 22, 2024 Temperature / Humidity 21 deg. C / 51 % RH Engineer Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11n-20 2412 MHz

Mode

Horizontal Restricted-band band-edge Plot Authorized-band band-edge Plot Agilen т Agilen Mkr1 2.413 292 GHz Ref 107.6 dBµV •EmiPk Atten 20 dB Ref 107.6 dBµV ●Peak Atten 20 dB 89.46 dBµV * Log 10 dB/ Log 10 \$ dB/ North Mar DI 69.5 dB**µ**V LgAv LgAv mM V1 S2 V3 FC S1 S2 V3 FC £(f): FTun £(f): FTun Śнр Śнр Stop 2,390,00 GHz Stop 2 415 000 GHz Start 2 310 00 GHz Start 2 390 000 GHz Res BW (CISPR) 1 MHz VBW 3 MHz Sweep 1.04 ms (1201 pts) •VBW 300 kHz Res BW 100 kHz Sweep 2.4 ms (1201 pts) Trace Green : Peak Plot 20dBc Plot Trace Purple : Average Plot

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11n-20 2437 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	3655.6	46.2	42.1	29.1	7.6	31.6	-	51.2	47.1	73.9	53.9	22.7	6.8	
Hori.	4874.0	40.9	31.9	31.4	7.6	31.2	-	48.7	39.7	73.9	53.9	25.2	14.2	Floor noise
Hori.	7311.0	42.2	34.9	35.6	8.1	33.5	-	52.5	45.2	73.9	53.9	21.4	8.7	Floor noise
Vert.	3655.6	44.4	39.5	29.1	7.6	31.6	-	49.4	44.5	73.9	53.9	24.5	9.4	
Vert.	4874.0	40.9	31.9	31.4	7.6	31.2	-	48.7	39.7	73.9	53.9	25.2	14.2	Floor noise
Vert.	7311.0	42.2	34.9	35.6	8.1	33.5		52.5	45.2	73.9	53.9	21.4	8.7	Floor noise

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

20dBc Data	Sheet								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2437.0	90.4	27.8	5.5	32.2	91.5	-	-	Carrier
Hori.	9748.0	42.4	36.0	8.7	34.1	53.1	71.5	18.4	
Vert.	2437.0	90.7	27.8	5.5	32.2	91.8	-	-	Carrier
Vert.	9748.0	41.2	36.0	8.7	34.1	51.9	71.8	19.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 6 GHz 6 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 20log (3.75 m / 3.0 m) = 1.94 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11n-20 2462 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.9	47.2	27.7	5.6	32.2	0.4	59.0	48.6	73.9	53.9	14.9	5.3	*1)
Hori.	3693.0	45.1	41.0	29.1	7.5	31.6	-	50.1	46.0	73.9	53.9	23.8	7.9	
Hori.	4924.0	40.0	31.7	31.5	7.6	31.1	-	48.0	39.7	73.9	53.9	26.0	14.3	Floor noise
Hori.	7386.0	41.9	34.7	35.6	8.1	33.5	-	52.1	44.9	73.9	53.9	21.8	9.0	Floor noise
Vert.	2483.5	59.4	48.5	27.7	5.6	32.2	0.4	60.5	50.0	73.9	53.9	13.4	3.9	*1)
Vert.	3693.0	44.3	39.3	29.1	7.5	31.6	-	49.3	44.4	73.9	53.9	24.6	9.6	
Vert.	4924.0	40.0	31.7	31.5	7.6	31.1	-	48.0	39.7	73.9	53.9	26.0	14.3	Floor noise
Vert.	7386.0	41.9	34.7	35.6	8.1	33.5	-	52.1	44.9	73.9	53.9	21.8	9.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

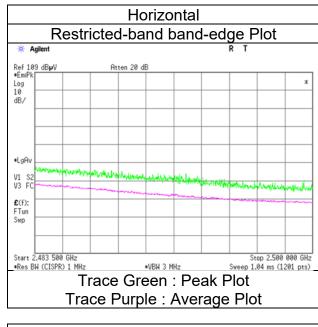
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2462.0	90.0	27.7	5.5	32.2	91.1	-	-	Carrier
Hori.	9848.0	43.5	36.2	8.8	34.1	54.4	71.1	16.7	
Vert.	2462.0	91.2	27.7	5.5	32.2	92.3	-	-	Carrier
Vert.	9848.0	42.3	36.2	8.8	34.1	53.2	72.3	19.1	

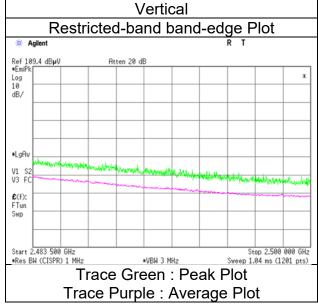
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 6 GHz 6 GHz - 10 GHz

20log (4 m / 3.0 m) = 2.5 dB 20log (3.75 m / 3.0 m) = 1.94 dB


10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz) Tx 11n-20 2462 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test place
Semi Anechoic Chamber
Date
Temperature / Humidity
Engineer

Ise EMC Lab. No.3 April 14, 2024 21 deg. C / 40 % RH Shousei Hamaguchi (1 GHz to 10 GHz) Tx BT LE 2402 MHz

No.3 April 15, 2024 20 deg. C / 51 % RH Tomoya Sone (Above 10 GHz)

Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	42.1	33.7	27.5	5.5	32.2	1.8	42.9	36.3	73.9	53.9	31.0	17.6	*1)
Hori.	4804.0	41.3	33.7	31.4	7.6	31.2	1.8	49.1	43.4	73.9	53.9	24.8	10.5	-
Hori.	7206.0	41.5	33.6	35.6	10.7	32.0	-	55.8	47.9	73.9	53.9	18.1	6.0	Floor noise
Hori.	9608.0	40.4	33.2	35.6	11.2	32.6	-	54.6	47.4	73.9	53.9	19.3	6.5	Floor noise
Vert.	2390.0	42.8	33.8	27.5	5.5	32.2	1.8	43.6	36.4	73.9	53.9	30.4	17.5	*1)
Vert.	4804.0	41.4	34.9	31.4	7.6	31.2	1.8	49.2	44.6	73.9	53.9	24.7	9.3	
Vert.	7206.0	41.5	33.6	35.6	10.7	32.0	-	55.8	47.9	73.9	53.9	18.1	6.0	Floor noise
Vert.	9608.0	40.4	33.2	35.6	11.2	32.6	-	54.6	47.4	73.9	53.9	19.3	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

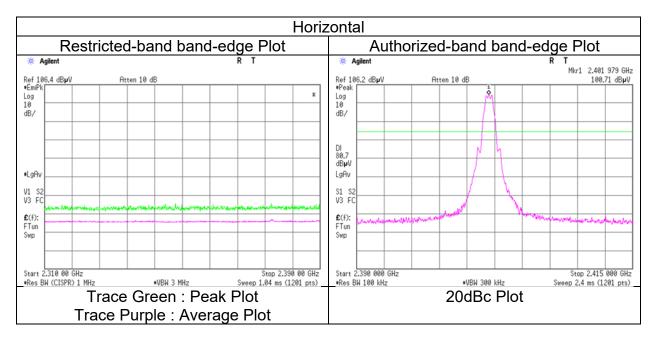
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz. *1) Not Out of Band emission(Leakage Power)

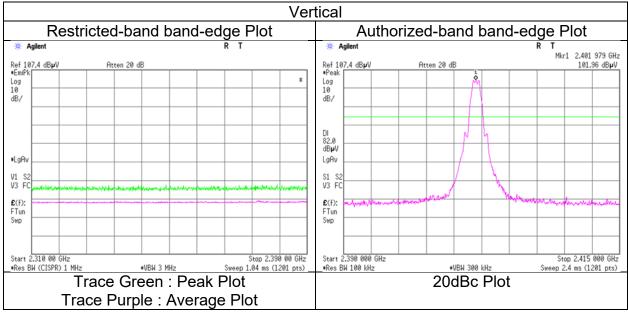
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	100.7	27.5	5.5	32.2	101.5	-	-	Carrier
Hori.	2400.0	45.5	27.5	5.5	32.2	46.2	81.5	35.3	
Vert.	2402.0	102.0	27.5	5.5	32.2	102.8	-	-	Carrier
Vert.	2400.0	46.7	27.5	5.5	32.2	47.5	82.8	35.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (4 m / 3.0 m) = 2.5 dB 20log (5 m / 3.0 m) = 4.44 dB


6 GHz- 10 GHz


10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.54 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.3 April 14, 2024 Date Temperature / Humidity 21 deg. C / 40 % RH Engineer Shousei Hamaguchi (1 GHz to 10 GHz) Tx BT LE 2402 MHz

Mode

The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test place	lse EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	April 14, 2024	April 15, 2024
Temperature / Humidity	21 deg. C / 40 % RH	20 deg. C / 51 % RH
Engineer	Shousei Hamaguchi	Tomoya Sone
	(1 GHz to 10 GHz)	(Above 10 GHz)
		(Below 1 GHz)

Mode

Tx BT LE 2440 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	49.0	23.6	-	11.5	7.2	32.2	-	10.2	-	40.0	-	29.8	-	
Hori.	62.3	26.5	-	7.5	7.4	32.2	-	9.2	-	40.0	-	30.8	-	
Hori.	80.0	27.3	-	6.8	7.7	32.2	-	9.6	-	40.0	-	30.4	-	
Hori.	288.0	27.5	-	13.5	9.6	32.0	-	18.6	-	46.0	-	27.4	-	
Hori.	552.0	22.8	-	17.8	11.2	32.1	-	19.8	-	46.0	-	26.3	-	
Hori.	824.0	22.6	-	21.0	12.6	31.4	-	24.8	-	46.0	-	21.2	-	
Hori.	4880.0	43.0	35.7	31.4	7.6	31.2	1.8	50.9	45.4	73.9	53.9	23.0	8.5	
Hori.	7320.0	41.6	33.3	35.6	10.7	32.1	-	55.8	47.5	73.9	53.9	18.1	6.4	Floor noise
Hori.	9760.0	40.7	33.0	35.9	11.3	32.7	-	55.2	47.5	73.9	53.9	18.7	6.4	Floor noise
Vert.	49.0	23.7	-	11.5	7.2	32.2	-	10.3	-	40.0	-	29.7	-	
Vert.	62.3	27.5	-	7.5	7.4	32.2	-	10.2	-	40.0	-	29.8	-	
Vert.	80.0	27.7	-	6.8	7.7	32.2	-	10.0	-	40.0	-	30.0	-	
Vert.	288.0	27.6	-	13.5	9.6	32.0	-	18.7	-	46.0	-	27.3	-	
Vert.	552.0	22.8	-	17.8	11.2	32.1	-	19.8	-	46.0	-	26.3	-	
Vert.	824.0	22.6	-	21.0	12.6	31.4	-	24.8	-	46.0	-	21.2	-	
Vert.	4880.0	41.3	35.0	31.4	7.6	31.2	1.8	49.2	44.7	73.9	53.9	24.7	9.2	
Vert.	7320.0	41.6	33.3	35.6	10.7	32.1	-	55.8	47.5	73.9	53.9	18.1	6.4	Floor noise
Vert.	9760.0	40.7	33.0	35.9	11.3	32.7	-	55.2	47.5	73.9	53.9	18.7	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:	1 GHz - 6 GHz	20log (4 m / 3.0 m) = 2.5 dB
	6 GHz - 10 GHz	20log (5 m / 3.0 m) = 4.44 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.54 dB

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Ise EMC Lab. No.3 April 14, 2024 21 deg. C / 40 % RH Shousei Hamaguchi (1 GHz to 10 GHz) Tx BT LE 2480 MHz

No.3 April 15, 2024 20 deg. C / 51 % RH Tomoya Sone (Above 10 GHz)

Mode

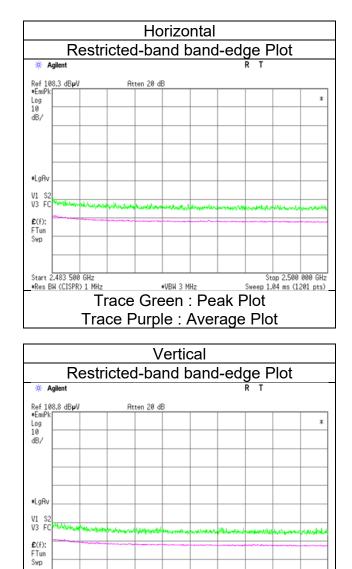
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	50.2	39.0	27.4	5.6	32.2	1.8	50.9	41.5	73.9	53.9	23.0	12.4	*1)
Hori.	4960.0	42.2	35.1	31.6	7.6	31.1	1.8	50.3	45.0	73.9	53.9	23.6	8.9	
Hori.	7440.0	40.5	33.4	35.5	10.7	32.1	-	54.5	47.4	73.9	53.9	19.4	6.5	Floor noise
Hori.	9920.0	41.6	33.0	36.1	11.3	32.8	-	56.3	47.7	73.9	53.9	17.6	6.2	Floor noise
Vert.	2483.5	50.8	39.0	27.4	5.6	32.2	1.8	51.5	41.6	73.9	53.9	22.4	12.3	*1)
Vert.	4960.0	40.9	34.1	31.6	7.6	31.1	1.8	48.9	44.0	73.9	53.9	25.0	9.9	
Vert.	7440.0	40.5	33.4	35.5	10.7	32.1	-	54.5	47.4	73.9	53.9	19.4	6.5	Floor noise
Vert.	9920.0	41.6	33.0	36.1	11.3	32.8	-	56.3	47.7	73.9	53.9	17.6	6.2	Floor noise

 vert.
 9920.0
 41.6
 33.0
 30.1
 11.3
 32.8
 30.3
 41.7
 /

 Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
 Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

 *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
 *QP detector was used up to 1GHz.

 *1) Not Out of Band emission(Leakage Power)
 *


Distance factor:	1 GHz - 6 GHz	20log (4 m / 3.0 m) = 2.5 dB
	6 GHz - 10 GHz	20log (5 m / 3.0 m) = 4.44 dB
	10 GHz - 26.5 GHz	20log (1.0 m / 3.0 m) = -9.54 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

Ise EMC Lab. No.3 April 14, 2024 21 deg. C / 40 % RH Shousei Hamaguchi (1 GHz to 10 GHz) Tx BT LE 2480 MHz

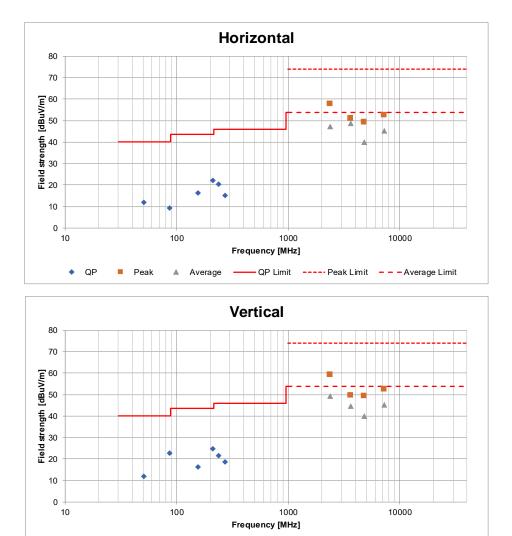
Trace Green : Peak Plot <u>Trace Purple : Average Plot</u> * The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

•VBW 3 MHz

Stop 2.500 000 GHz Sweep 1.04 ms (1201 pts)

Final result of restricted band edge was shown in tabular data.

Start 2.483 500 GHz •Res BW (CISPR) 1 MHz


Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.3 April 22, 2024 21 deg. C / 51 % RH Shousei Hamaguchi (1 GHz to 6 GHz)

Tx 11n-20 2412 MHz

No.2 April 23, 2024 21 deg. C / 46 % RH Shousei Hamaguchi (6 GHz to 26.5 GHz) (Below 1 GHz)

Mode

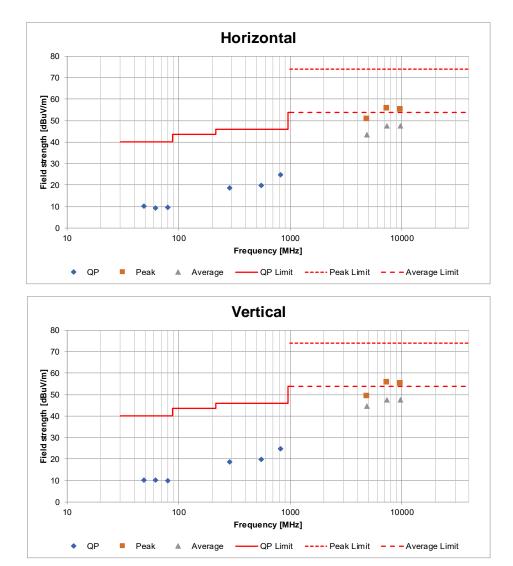
*These plots data contain sufficient number to show the trend of characteristic features for EUT.

QP Limit ---- Peak Limit - - - Average Limit

Average

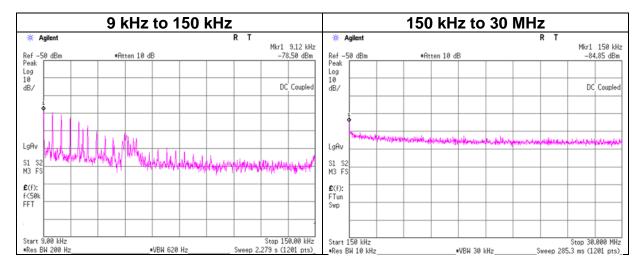
QP

Peak


Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.3 April 14, 2024 21 deg. C / 40 % RH Shousei Hamaguchi (1 GHz to 10 GHz)

Tx BT LE 2440 MHz


No.3 April 15, 2024 20 deg. C / 51 % RH Tomoya Sone (Above 10 GHz and Below 1 GHz)

Mode

*These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 3, 2024Temperature / Humidity23 deg. C / 47 % RHEngineerShousei HamaguchiModeTx 11n-20 2412 MHz

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.12	-78.5	0.00	9.7	2.0	1	-66.8	300	6.0	-5.6	48.4	54.0	
150.00	-84.9	0.01	9.7	2.0	1	-73.2	300	6.0	-11.9	24.0	35.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test place Date Temperature / Humidity Engineer	Ise EMC Lab. No.8 Measurement Room April 3, 2024 23 deg. C / 47 % RH Shousei Hamaguchi
Engineer	Shousel Hamaguchi
Mode	Tx BT LE 2402 MHz

	9 kHz to 150 kHz												150) kH	z to	30	MH	z		
₩ A	🔆 Agilent 🛛 🛛 🦷 R T									* A	gilent							RΤ		
	-							Mkr1 4	5.07 kHz		-								Mkr1	150 kHz
	60 dBm		#Atten 20 d	dB				-86	.12 dBm	Ref -5	0 dBm		#At	ten 20 d	lΒ				-78.	97 dBm
Peak										Peak										
Log 10										Log 10										
dB/								DC	Coupled	dB/									DC	Coupled
407										uD)										
			1													_				
			ō l								" ANNANKAN	n alay water from the	indu/www.integritery	Mandayaatt	wall water hand be	How shall going	+ MAR AND AND	al way and the		A sumply and
	P-Welling	WWWWWWWW	MMu.	1																
LgAv	1.00.01	teller an a subble de	iyyy mymy	which which the	all the head of the second	her the state	and all the second	-	Hand Hand	LgAv						-	-	-		
S1 S2					'	r		1.00		S1 S2										
M3 FS										S1 S2 M3 FS						-				
110 1 0										no no										
£(f):				-						£(f):							-			
f<50k										FTun										
FFT										Swp										
									1											
	L																			
	9.00 kHz			UDU coo			~ ~ ~		0.00 kHz		50 kHz								Stop 30.	
#Kes E	3W 200 Hz			#VBW 620	HZ		Sweep 2	.279 s (12	201 pts)_	#Res E	W 10 kHz	2			#VBW 30	kHz		Sweep 28	5.3 ms (12	01 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
45.07	-86.1	0.00	9.7	2.0	1	-74.4	300	6.0	-13.2	34.5	47.7	
150.00	-79.0	0.01	9.7	2.0	1	-67.3	300	6.0	-6.0	24.0	30.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Engineer Shousei Hamaguchi	Test place	Ise EMC Lab. No.8 Measurement Room
Mode Tx BT LE 2440 MHz	Date	April 3, 2024

	9 kHz to 150 kHz							150 kHz to 30 MHz													
🔆 🔆 A	gilent							RΤ			* *	gilent							RΤ		
										51.06 kHz											150 kHz
Ref -5	0 dBm		#At	ten 20 d	B				-8	2.85 dBm	Ref -5	0 dBm		#At	ten 20 c	B				-79	0.86 dBm
Peak Log											Peak Log										
10											10						_	_	_		
dB/									DC	Coupled	d₿/									DC	Coupled
											-										
				ļ																	
				\$								Maria di Sana									
				k .								. LANSING M	MANNAM	ed they are firsted	f for the local design of the set	handfarad	interesting the state	ange that the	num harmantap	productor	MATHINGS
	Pro Ashalas	Maria	in all	MALL																	
LgAv	.	Hal with the Ma	MANAMIN	T' MAL	AN WARNA	where where	www.w.blalatt	an Anna Mala	auto a	hannel	LgAv										
			1.1		la contrata	1. 5. 5.	an de de la	all a start	an a thur have	2. M.	-										
S1 S2											S1 S2						_	_	_		
M3 FS											M3 FS										
£(f):											£(f):			-		-	-	-	_		
f<50k											FTun										
FFT											Swp										
										1											
	.00 kHz									50.00 kHz		50 kHz									.000 MHz
#Res B	W 200 Hz				∎VBW 620	Hz		Sweep 2	.279 s (1	201 pts)_	#Res E	W 10 kHz	2			#VBW 30	kHz		Sweep 28	5.3 ms (1	201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
51.06	-82.9	0.00	9.7	2.0	1	-71.2	300	6.0	-9.9	33.4	43.3	
150.00	-79.9	0.01	9.7	2.0	1	-68.2	300	6.0	-6.9	24.0	30.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 3, 2024Temperature / Humidity23 deg. C / 47 % RHEngineerShousei HamaguchiModeTx BT LE 2480 MHz

			9 k	ĸHz	to 1	50	kHz				150 kHz to 30 MHz										
— 🔆 A	Agilent							RΤ		-	₩ A	gilent							RΤ		
Ref -5	50 dBm		#At	ten 20 d	В					29.44 kHz 3.89 dBm	Ref -5			#At	ten 20 c	В					200 kHz 0.56 dBm
Peak Log 10											Peak Log 10										
dB/									D	C Coupled	dB/									D	Coupled
		1									ł	Williamontal	Verviewika w	. A Ansel and	6.5% (6 x a. er	and the set of	. Maria and all	41 a 46 a 48 b 1 4 4	+12+110+2+4++1	a ana aka	والمراجع المراجع
LgAv	MAYAN WALA	WWWWW	And production	WW	wed have two	aller and the second second	h. wh. or	de la milión	مد. ما با	a hilis an	LgAv				1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		Notes over a fut	and the second	فر مله يحد المريد م	1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	and the second station of the second station
S1 S2 M3 FS			· '1		1.16.1	A Ashiri i	n na	a manalishaa.	a anywr wan	alikharitati na	S1 S2 M3 FS										
m5 F5 £(f):											M3 F5 £(f):										
f<50k FFT											FTun Swp										
	9.00 kHz									50.00 kHz		50 kHz					<u> </u>				1.000 MHz
	9.00 kHz 3W 200 Hz	:			⊭VBW 620	Hz		Sweep 2		50.00 kHz .201 pts)_		.50 kHz W 10 kHz				#VBW 30	kHz		Sweep 28		

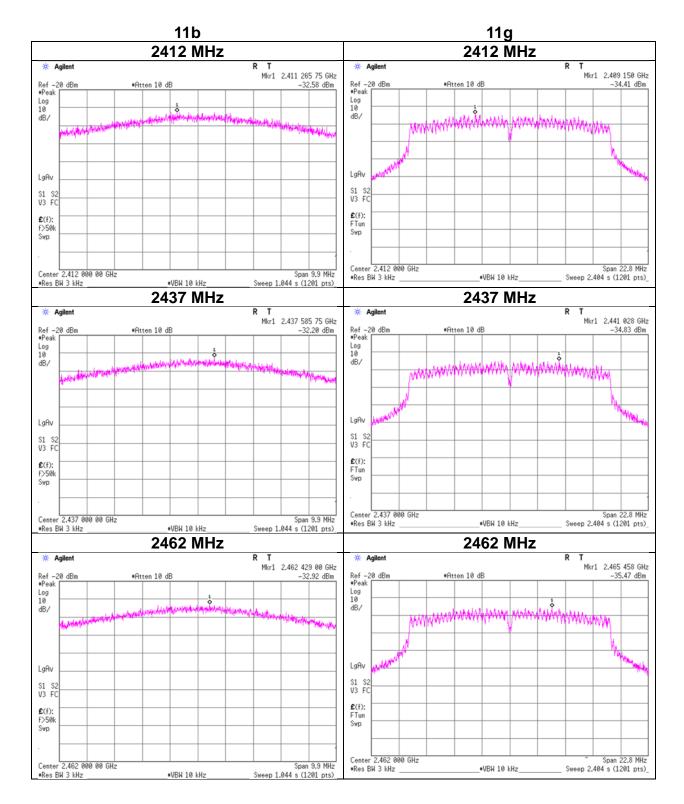
ſ	Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	29.44	-83.9	0.00	9.7	2.0	1	-72.2	300	6.0	-10.9	38.2	49.1	
- [200.00	-80.6	0.01	9.7	2.0	1	-68.9	300	6.0	-7.6	21.5	29.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 3, 2024Temperature / Humidity23 deg. C / 47 % RHEngineerShousei HamaguchiModeTx

11b


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-32.58	1.39	19.74	-11.45	8.00	19.45
2437	-32.20	1.40	19.74	-11.06	8.00	19.06
2462	-32.92	1.40	19.74	-11.78	8.00	19.78

11g

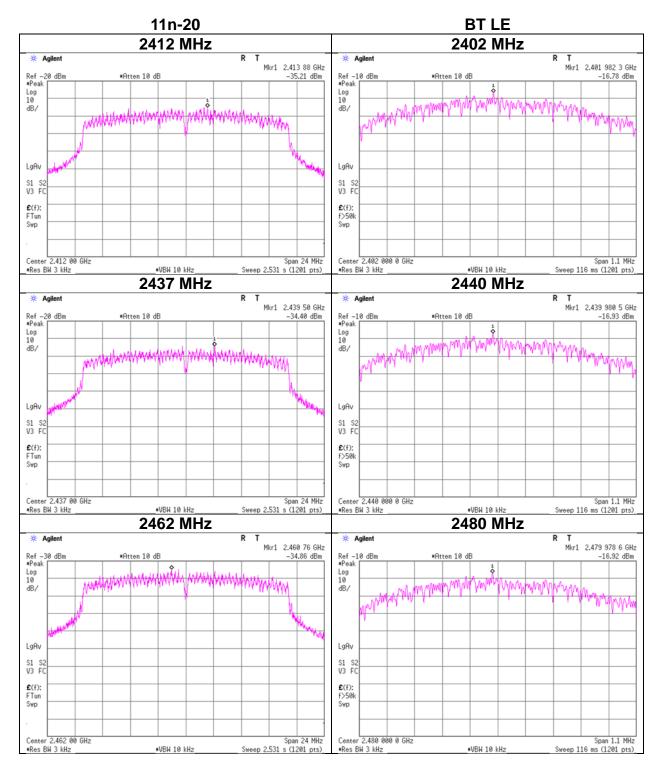
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-34.41	1.39	19.74	-13.28	8.00	21.28
2437	-34.83	1.40	19.74	-13.69	8.00	21.69
2462	-35.47	1.40	19.74	-14.33	8.00	22.33

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 3, 2024Temperature / Humidity23 deg. C / 47 % RHEngineerShousei HamaguchiModeTx

11n-20


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-35.21	1.39	19.74	-14.08	8.00	22.08
2437	-34.40	1.40	19.74	-13.26	8.00	21.26
2462	-34.86	1.40	19.74	-13.72	8.00	21.72

BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-16.78	1.39	9.98	-5.41	8.00	13.41
2440	-16.93	1.40	9.98	-5.55	8.00	13.55
2480	-16.92	1.41	9.98	-5.53	8.00	13.53

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

APPENDIX 2: Test Instruments

Test Equipment (1/2)

Test Item		Description	Manufacturer	Model	Serial	Last Calibration	Cal Int
CE	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/	-/00640	Date 07/25/2023	12
				sucoform141-PE/ 421-010/			
				RFM-E321(SW)			
CE	141290	Attenuator (13dB)	JFW Industries, Inc.	50FP-013H2 N	-	12/07/2023	12
CE	141357	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-729	07/05/2023	12
CE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
CE	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	-	-
CE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
CE	142008	AC3_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
CE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
CE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141317	Coaxial Cable	UL Japan	-	-	09/12/2023	12
RE	141323	Coaxial Cable	UL Japan	-	-	09/10/2023	12
RE	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+ BBA9106	1915	03/15/2024	12
RE	141427	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103B+ BBA9106	08031	07/11/2023	12
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/23/2023	12
RE	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/20/2023	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	557	05/17/2023	12
RE	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/19/2023	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RE	141579	Pre Amplifier	Keysight Technologies Inc		3008A02142	02/17/2024	12
RE	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2024	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/17/2024	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/17/2024	12
RE	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
RE	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/26/2024	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/20/2023	12
RE	142004	AC2_Semi Anechoic Chamber (NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142006	AC2_Semi Anechoic Chamber (SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	10/20/2023	12
RE	142008	AC3_Semi Anechoic Chamber (NSA)	ТDК	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142013	AC3_Semi Anechoic Chamber (SVSWR)	ТDК	Semi Anechoic Chamber 3m	DA-10005	10/18/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	178648	EMI measurement	TSJ	TEPTO-DV	-	-	-
		program	(Techno Science Japan)				
RE	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	-	-
RE	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/12/2024	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	688	08/10/2023	12
RE	240023	Microwave Cable	Huber+Suhner	SF126E/ 11PC35/11PC35/ 1000MM,5000MM	537060/126E / 537075/126E	09/08/2023	12
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	245787	Double Ridge Horn Antenna	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 C	689	03/06/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/ 11PC35/1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12
AT	141244	Attenuator (10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/17/2024	12
AT	141312	Attenuator	Weinschel Associates	WA56-10	56100304	05/18/2023	12
AT	141327	Coaxial Cable	UL Japan	-	-	02/09/2024	12
AT	141420	Attenuator	Weinschel Associates	WA56-10	56100307	05/18/2023	12
AT	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900530	01/31/2024	12
AT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/26/2023	12
AT	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/26/2023	12
AT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
AT	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/14/2024	12
AT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12

Test Equipment (2/2)

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

- AT: Antenna Terminal Conducted test
- **CE: Conducted Emission**
- **RE: Radiated Emission**