

RADIO TEST REPORT

Test Report No.: 13629400H-A

Applicant	: Murata Manufacturing Co., Ltd.
Type of EUT	: Sensor tag
Model Number of EUT	: LBBC0ZZ2AM-690
FCC ID	: VPYLB2AM
Test regulation	: FCC Part 15 Subpart C: 2021
Test Result	: Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.

Date of test:

Representative test engineer:

January 14, to January 25, 2021

Hiroki Numata Engineer Consumer Technology Division

Approved by:

Takayuki Shimada Leader Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan. There is no testing item of "Non-accreditation".

	Test report No. Page Issued date FCC ID	: 13629400H-A : 2 of 38 : January 28, 2021 : VPYLB2AM
--	--	--

REVISION HISTORY

Original Test Report No.: 13629400H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13629400H-A	January 28, 2021	-	-
		2021		

Test report No.	: 13629400H-A : 3 of 38
Page Issued date	: 5 01 58 : January 28, 2021
FCC ID	: VPYLB2AM

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	РК	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
II ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISED	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
LAN			

	Test report No. Page Issued date FCC ID	: 13629400H-A : 4 of 38 : January 28, 2021 : VPYLB2AM
CONTENTS		PAGE
SECTION 1: Customer information		5
SECTION 2: Equipment under test (EUT)		
SECTION 3: Test specification, procedures & results		
SECTION 4: Operation of EUT during testing		
SECTION 5: Radiated Spurious Emission		
SECTION 6: Antenna Terminal Conducted Tests		14
APPENDIX 1: Test data		
6 dB Bandwidth and 99 % Occupied Bandwidth		15
Maximum Peak Output Power		
Average Output Power		19
Radiated Spurious Emission		
Conducted Spurious Emission		
Power Density		
APPENDIX 2: Test instruments		
APPENDIX 3: Photographs of test setup		
Radiated Spurious Emission		
Worst Case Position		
Antenna Terminal Conducted Tests		

Test report No.	: 13629400H-A
Page	: 5 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

SECTION 1: Customer information

Company Name	:	Murata Manufacturing Co., Ltd.
Address	:	1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan
Telephone Number	:	+81-75-955-6736
Facsimile Number	:	+81-75-955-6634
Contact Person	:	Motoo Hayashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Туре	:	Sensor tag
Model Number	:	LBBC0ZZ2AM-690
Serial Number	:	Refer to SECTION 4.2
Rating	:	Typ: DC 3.0 V (Min: DC 2.3 V to Max: DC 3.0 V)
Receipt Date	:	December 22, 2020 (for Antenna Terminal Conducted test)
		January 13, 2021 (for Radiated Spurious Emission)
Country of Mass-production	:	Japan
Condition	:	Production model
Modification	:	No Modification by the test lab.

2.2 Product Description

Model: LBBC0ZZ2AM-690 (referred to as the EUT in this report) is a Sensor tag .

Radio Specification

Radio Type	:	Transceiver
Frequency of Operation	:	2405 MHz - 2480 MHz
Modulation	:	O-QPSK
Antenna type	:	Monopole Pattern Antenna
Antenna Gain	:	0.3 dBi
Clock frequency (Maximum)	:	32 MHz

Test report No. Page	: 13629400H-A : 6 of 38
Issued date FCC ID	: January 28, 2021 : VPYLB2AM

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart C FCC Part 15 final revised on January 12, 2021 and effective February 11, 2021
Title	:	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

* The revision does not affect the test result conducted before its effective date.

Test report No.	: 13629400H-A
Page	: 7 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

3.2 **Procedures and results**

Item	Test Procedure	Specification	Worst margin	Results	Remarks
	FCC: ANSI C63.10-2013	FCC: Section 15.207			
Conducted Emission	6. Standard test methods		N/A	N/A	*1)
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
	FCC: KDB 558074 D01	FCC: Section			
6dB Bandwidth	15.247	15.247(a)(2)		Complied	Conducted
odB Bandwidin	Meas Guidance v05r02	a)		a)	Conducted
	ISED: -	ISED: RSS-247 5.2(a)]	<i>.</i>	
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)	See data.	Complied b)	Conducted
output i onei	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)		0)	
Power Density	FCC: KDB 558074 D01 15.247	FCC: Section 15.247(e)		Complied c)	Conducted
r o n or D onong	Meas Guidance v05r02				Conducted
	ISED: -	ISED: RSS-247 5.2(b)			
а · г · ·	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)			Conducted
Spurious Emission Restricted Band Edges	Meas Guidance v05r02		4.9 dB	Complied#	(below 30 MHz)/
		ISED: RSS-247 5.5	2483.500 MHz, PK, Vert.	d), e)	Radiated
	ISED: RSS-Gen 6.13	RSS-Gen 8.9			(above 30 MHz)
		RSS-Gen 8.10			*2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test was not performed on since the EUT does not have AC Power ports.

*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

c) Refer to APPENDIX 1 (data of Power Density)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

CompliedThe data of this test item has enough margin, more than the measurement uncertainty.Complied#The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

The test was performed with the New Battery and the stable voltage was supplied to the RF part during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Test report No.	: 13629400H-A
Page	: 8 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth				a)	
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.4 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.6 dB

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

Test report No. Page	: 13629400H-A : 9 of 38
Issued date FCC ID	: January 28, 2021 : VPYLB2AM
теењ	

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967
ISED Lab Company Number: 2973C / CAB identifier: JP0002
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

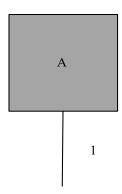
* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

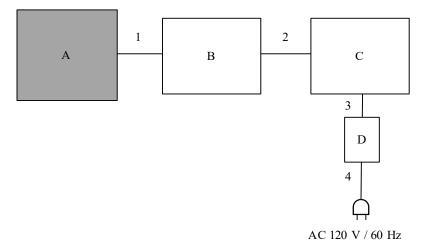
Refer to APPENDIX.

Test report No.	: 13629400H-A : 10 of 38
Page Issued date	: January 28, 2021
 FCC ID	: VPYLB2AM

SECTION 4: Operation of EUT during testing


4.1 **Operating Mode(s)**

Test Item		Mode	Tested frequency		
6dB Bandwidth		Zigbee_Transmitting (Tx)	2405 MHz		
99% Occupied Ban	dwidth		2440 MHz		
Maximum Peak Ou	tput Power		2480 MHz		
Power Density					
Spurious Emission	(Conducted / Radiated)				
*The worst condition	on was determined based on th	e test result of Maximum Peak Output	Power (Mid Channel)		
*Power of the EUT	was set by the software as following	lows;			
- Power Setting:	7 dBm				
- Software:	EMI_Test_Tool.exe (Ver.1.8	3)			
	(Date: 2021.01.14, Storage lo	ocation: Driven by connected PC)			
*This setting of sof	tware is the worst case.				
Any conditions und	Any conditions under the normal use do not exceed the condition of setting.				
In addition, end use	ers cannot change the settings of	of the output power of the product.			


Test report No. Page	: 13629400H-A : 11 of 38
Issued date FCC ID	: January 28, 2021 : VPYLB2AM

4.2 Configuration and peripherals

Radiated Emission test

Antenna Terminal Conducted test

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
٨	Sensor tag	LBBC0ZZ2AM-690	001 *1)	Murata Manufacturing	EUT
A			002 *2)	Co., Ltd.	
В	Jig	Telin	-	-	-
С	Laptop PC	CF-NX2ADHCS	3JKSA53576	Panasonic	-
D	AC Adapter	CF-AA6412CM2	6412CM213208672A	Panasonic	-

*1) Used for Antenna Terminal conducted test

*2) Used for Radiated Emission test

List of cables used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Signal Cable(Jig)	0.15	Unshielded	Unshielded	-
2	USB Cable	1.00	Shielded	Shielded	-
3	DC Cable	0.90	Unshielded	Unshielded	-
4	AC Cable	0.80	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 13629400H-A
Page	: 12 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

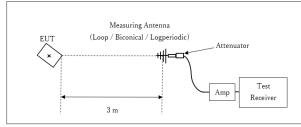
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz			20 dBc
Instrument used	Test Receiver	Spectrum Ana	Spectrum Analyzer		
Detector	QP	РК	AV *1)	Peak with Duty	РК
				Factor	
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 3 MHz	VBW: 300 kHz
			VBW: 3 MHz		
			Detector:		
			Power Averaging		
			(RMS)		
			Trace: 100 traces		
			11.12.2.5.2		
			The duty cycle was		
			less than 98% for		
			detected noise, a		
			duty factor was		
			added to the		
			11.12.2.5.1 results.		

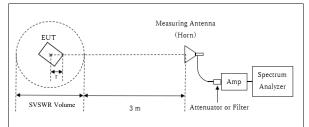
*1) Average Power Measurement was performed based on ANSI C63.10-2013.

Test Distance: 3 m

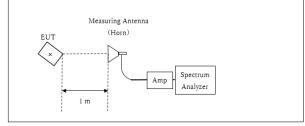

SVSWR Volume : 2.0 m

4.)

r = 0.0m


Figure 2: Test Setup

Below 1 GHz


imes : Center of turn table

1 GHz - 10 GHz

r : Radius of an outer periphery of EUT × : Center of turn table

$10 \; GHz - 26.5 \; GHz$

and it was the rather conservative condition.

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-

* The test was performed with r = 0.0 m since EUT is small

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

 \times : Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 30 MHz - 26.5 GHz
Test data	: APPENDIX
Test result	: Pass

Page: 14 of 38Issued date: January 28, 2021FCC ID: VPYLB2AM	Issued date : January 2	28, 2021
---	-------------------------	----------

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

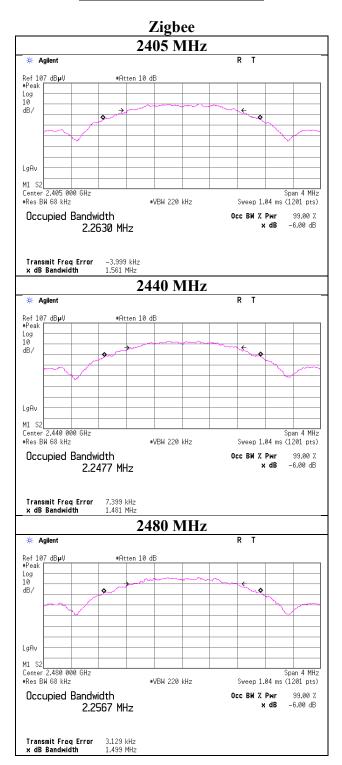
The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	4 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				
 *1) Peak hold was applied as Worst-case measurement. *2) Reference data *3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013". *4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. *5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit. 							

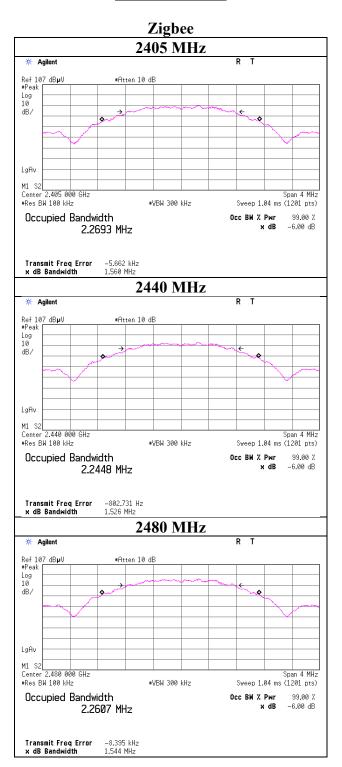
The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data	: APPENDIX
Test result	: Pass

Test report No. Page Issued date FCC ID	: 13629400H-A : 15 of 38 : January 28, 2021 : VPYLB2AM	
FUUD	; vr i LD2AM	


APPENDIX 1: Test data

6 dB Bandwidth and 99 % Occupied Bandwidth


Report No. Test place Data	13629400H Ise EMC Lab. No.2 Measurement Room
Date Temperature / Humidity Engineer	January 25, 2021 22 deg. C / 34 % RH Kiyoshiro Okazaki
Mode	Tx Zigbee

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
Zigbee	2405	2263.0	1.560	> 0.5000
	2440	2247.7	1.526	> 0.5000
	2480	2256.7	1.544	> 0.5000

99 % Occupied Bandwidth

6 dB Bandwidth

Test report No.	: 13629400H-A
Page	: 18 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

Maximum Peak Output Power

Report No.	13629400Н
Test place	Ise EMC Lab. No.6 Measurement Room
Date	January 15, 2021
Temperature / Humidity	22 deg. C / 42 % RH
Engineer	Kiyoshiro Okazaki
Mode	Tx Zigbee

				Conducted Power						6	e.i.r.p. foi	RSS-247	7	
Freq.	Reading	Cable	Atten.	Res	sult	Liı	nit	Margin	Antenna	Res	sult	Liı	nit	Margin
	_	Loss	Loss					_	Gain					_
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2405	-5.15	0.10	10.04	4.99	3.16	30.00	1000	25.01	0.30	5.29	3.38	36.02	4000	30.73
2440	-4.97	0.10	10.04	5.17	3.29	30.00	1000	24.83	0.30	5.47	3.52	36.02	4000	30.55
2480	-4.83	0.10	10.04	5.31	3.40	30.00	1000	24.69	0.30	5.61	3.64	36.02	4000	30.41

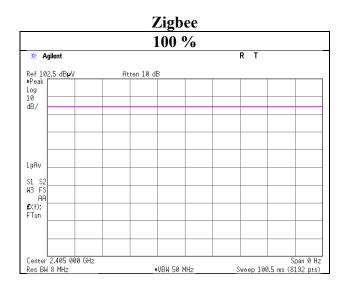
Sample Calculation: Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

<u>Average Output Power</u> (Reference data for RF Exposure)

Report No.	13629400H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	January 15, 2021
Temperature / Humidity	22 deg. C / 42 % RH
Engineer	Kiyoshiro Okazaki
Mode	Tx Zigbee

Zigbee

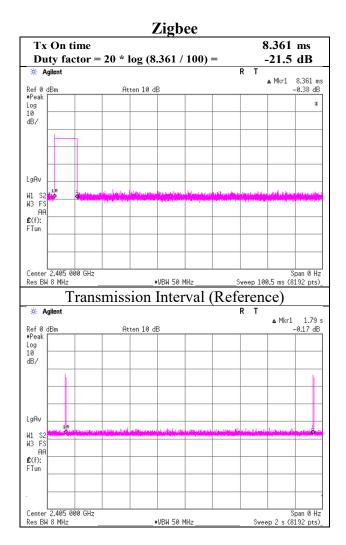
Γ	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
			Loss	Loss	(Time average)		factor	(Burst pow	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2405	-5.75	0.10	10.04	4.39	2.75	0.00	4.39	2.75
	2440	-5.61	0.10	10.04	4.53	2.84	0.00	4.53	2.84
	2480	-5.45	0.10	10.04	4.69	2.94	0.00	4.69	2.94


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator I Result (Burst power average) = Time average + Duty factor

Test report No.	: 13629400H-A
Page	: 20 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

Burst rate confirmation


Report No.	13629400H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	January 14, 2021
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Junya Okuno
Mode	Tx Zigbee

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Duty Factor (for Peak with Duty factor)

Report No. Test place	13629400H Ise EMC Lab. No.6 Measurement Room
Date	January 14, 2021
Temperature / Humidity	23 deg. C / 34 % RH
Engineer	Hiroki Numata
Mode	Tx Zigbee

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test report No.	: 13629400H-A
Page	: 22 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

Radiated Spurious Emission

Report No.	13629400H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	January 14, 2021
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Junya Okuno
	(30 MHz - 26.5 GHz)
Mode	Tx Zigbee 2405 MHz

[PK/QP]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	30.000	QP	21.6	18.4	7.1	32.0	-	15.2	40.0	24.9	
Hori.	102.500	QP	21.0	10.5	8.0	31.9	-	7.6	43.5	35.9	
Hori.	268.320	QP	20.5	12.8	9.4	31.8	-	10.9	46.0	35.2	
Hori.	550.498	QP	26.2	17.9	11.0	31.9	-	23.1	46.0	22.9	
Hori.	582.125	QP	28.7	18.7	11.1	32.0	-	26.6	46.0	19.5	
Hori.	614.184	QP	28.3	19.3	11.3	32.0	-	26.9	46.0	19.1	
Hori.	2390.000	PK	45.7	27.8	5.5	31.8	-	47.2	73.9	26.7	
Hori.	4810.000	PK	49.0	31.6	7.7	31.2	-	57.1	73.9	16.8	
Hori.	7215.000	PK	41.8	36.5	8.9	32.4	-	54.8	73.9	19.1	
Hori.	9620.000	PK	40.4	38.0	9.6	32.6	-	55.4	73.9	18.5	Floor noise
Vert.	30.000	QP	21.7	18.4	7.1	32.0	-	15.3	40.0	24.8	
Vert.	102.500	QP	21.0	10.5	8.0	31.9	-	7.6	43.5	35.9	
Vert.	268.320	QP	20.4	12.8	9.4	31.8	-	10.8	46.0	35.3	
Vert.	550.498	QP	20.7	17.9	11.0	31.9	-	17.6	46.0	28.4	
Vert.	582.125	QP	20.8	18.7	11.1	32.0	-	18.7	46.0	27.4	
Vert.	614.184	QP	21.4	19.3	11.3	32.0	-	20.0	46.0	26.0	
Vert.	2390.000	PK	44.5	27.8	5.5	31.8	-	45.9	73.9	28.0	
Vert.	4810.000	PK	47.4	31.6	7.7	31.2	-	55.5	73.9	18.4	
Vert.	7215.000	PK	43.0	36.5	8.9	32.4	-	56.0	73.9	17.9	
Vert.	9620.000	PK	40.5	38.0	9.6	32.6	-	55.5	73.9	18.4	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

20dBc Data Sheet

Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
			Factor						
[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
2405.000	PK	97.1	27.8	5.5	31.8	98.6	-	-	Carrier
2400.000	PK	54.7	27.8	5.5	31.8	56.2	78.6	22.4	
2405.000	PK	96.5	27.8	5.5	31.8	98.0	-	-	Carrier
2400.000	PK	52.5	27.8	5.5	31.8	54.0	78.0	24.0	
	[MHz] 2405.000 2400.000 2405.000	1 2	[MHz] [dBuV] 2405.000 PK 97.1 2400.000 PK 54.7 2405.000 PK 96.5	Image: Market	Image: Marcological system Factor Factor [dB] 2405.000 PK 97.1 27.8 5.5 2400.000 PK 54.7 27.8 5.5 2405.000 PK 96.5 27.8 5.5	Image: Factor Factor Factor [MHz] [dBuV] [dB/m] [dB] [dB] 2405.000 PK 97.1 27.8 5.5 31.8 2400.000 PK 54.7 27.8 5.5 31.8 2405.000 PK 96.5 27.8 5.5 31.8	Image: Image of the state of the s	Image: Market	Image: Market

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5dB

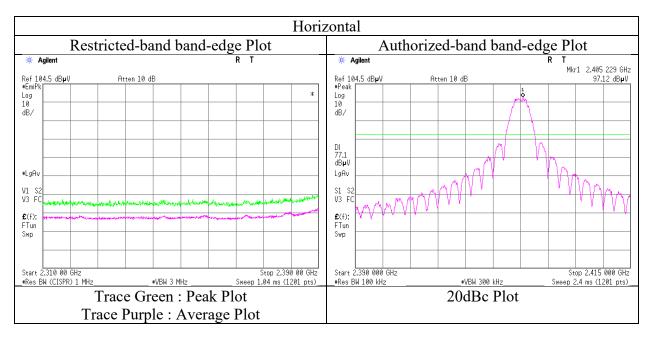
Test report No.	: 13629400H-A
Page	: 23 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

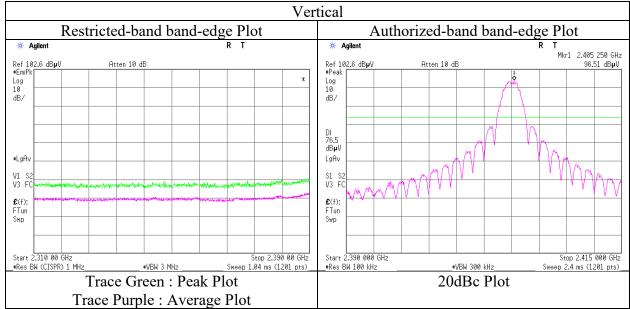
Radiated Spurious Emission

Report No.	13629400H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	January 14, 2021
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Junya Okuno
	(30 MHz - 26.5 GHz)
Mode	Tx Zigbee 2405 MHz

[AV]

PK With Duty factor or AV


Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	PK	45.7	27.8	5.5	31.8	-21.5	25.7	53.9	28.2	*
Hori.	4810.000	PK	49.0	31.6	7.7	31.2	-21.5	35.6	53.9	18.3	*
Hori.	7215.000	PK	41.8	36.5	8.9	32.4	-21.5	33.3	53.9	20.6	*
Hori.	9620.000	AV	32.6	38.0	9.6	32.6	-	47.6	53.9	6.3	Floor Noise
Vert.	2390.000	PK	44.5	27.8	5.5	31.8	-21.5	24.4	53.9	29.5	*
Vert.	4810.000	PK	47.4	31.6	7.7	31.2	-21.5	34.0	53.9	19.9	*
Vert.	7215.000	PK	43.0	36.5	8.9	32.4	-21.5	34.5	53.9	19.4	*
Vert.	9620.000	AV	32.5	38.0	9.6	32.6		47.6	53.9	6.3	Floor Noise


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor *Above noise was synchronized with carrier frequency.

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 13629400H Test place Semi Anechoic Chamber No.4 Date Temperature / Humidity Engineer Mode

Ise EMC Lab. January 14, 2021 22 deg. C / 35 % RH Junya Okuno (1 GHz - 10 GHz) Tx Zigbee 2405 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Radiated Spurious Emission

Report No.	13629400H
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.4
Date	January 14, 2021
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Junya Okuno
	(30 MHz - 26.5 GHz)
Mode	Tx Zigbee 2440 MHz

[PK/QP]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	30.000	QP	21.6	18.4	7.1	32.0	-	15.2	40.0	24.9	
Hori.	125.328	QP	20.6	13.3	8.2	31.9	-	10.2	43.5	33.3	
Hori.	265.000	QP	20.6	12.6	9.3	31.8	-	10.7	46.0	35.3	
Hori.	547.908	QP	29.6	17.8	11.0	31.9	-	26.5	46.0	19.6	
Hori.	580.381	QP	35.5	18.7	11.1	32.0	-	33.3	46.0	12.7	
Hori.	612.271	QP	30.7	19.3	11.3	32.0	-	29.3	46.0	16.8	
Hori.	4880.000	PK	47.9	31.6	7.7	31.2	-	56.0	73.9	17.9	
Hori.	7320.000	PK	44.8	36.6	8.9	32.4	-	57.9	73.9	16.1	
Hori.	9760.000	PK	39.5	38.4	9.6	32.7	-	54.9	73.9	19.0	Floor noise
Vert.	30.000	QP	21.6	18.4	7.1	32.0	-	15.2	40.0	24.9	
Vert.	125.328	QP	20.5	13.3	8.2	31.9	-	10.1	43.5	33.4	
Vert.	265.000	QP	20.6	12.6	9.3	31.8	-	10.7	46.0	35.3	
Vert.	547.908	QP	20.7	17.8	11.0	31.9	-	17.6	46.0	28.5	
Vert.	580.381	QP	20.8	18.7	11.1	32.0	-	18.6	46.0	27.4	
Vert.	612.271	QP	21.2	19.3	11.3	32.0	-	19.8	46.0	26.3	
Vert.	4880.000	PK	44.6	31.6	7.7	31.2	-	52.7	73.9	21.2	
Vert.	7320.000	PK	44.7	36.6	8.9	32.4	-	57.8	73.9	16.1	
Vert.	9760.000	PK	39.5	38.4	9.6	32.7	-	55.0	73.9	19.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

(AV)

PK With Duty factor or AV

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4880.000	PK	47.9	31.6	7.7	31.2	-21.5	34.5	53.9	19.4	*
Hori.	7320.000	PK	44.8	36.6	8.9	32.4	-21.5	36.4	53.9	17.6	*
Hori.	9760.000	AV	32.4	38.4	9.6	32.7	-	47.8	53.9	6.1	Floor Noise
Vert.	4880.000	PK	44.6	31.6	7.7	31.2	-21.5	31.2	53.9	22.7	*
Vert.	7320.000	PK	44.7	36.6	8.9	32.4	-21.5	36.3	53.9	17.6	*
Vert.	9760.000	AV	32.3	38.4	9.6	32.7	-	47.7	53.9	6.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor

*Above noise was synchronized with carrier frequency.

Distance factor:

 $1 \text{ GHz} - 10 \text{ GHz} \qquad 20 \log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB} \\ 10 \text{ GHz} - 26.5 \text{ GHz} 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{dB}$

Test report No.	: 13629400H-A
Page	: 26 of 38
Issued date	: January 28, 2021
FCC ID	: VPYLB2AM

Radiated Spurious Emission

Report No. Test place	13629400H Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	January 14, 2021	January 14, 2021
Temperature / Humidity	23 deg. C / 34 % RH	22 deg. C / 35 % RH
Engineer	Hiroki Numata	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
		(30 MHz - 1000 MHz)
Mode	Tx Zigbee 2480 MHz	

[PK/QP]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	30.000	QP	21.6	18.4	7.1	32.0	-	15.2	40.0	24.9	
Hori.	125.014	QP	20.5	13.3	8.2	31.9	-	10.1	43.5	33.5	
Hori.	514.329	QP	28.2	17.8	10.8	31.9	-	24.9	46.0	21.1	
Hori.	547.084	QP	30.0	17.8	11.0	31.9	-	26.9	46.0	19.2	
Hori.	578.712	QP	35.0	18.6	11.1	32.0	-	32.8	46.0	13.3	
Hori.	610.852	QP	31.8	19.3	11.3	32.0	-	30.4	46.0	15.7	
Hori.	2483.500	PK	66.8	27.7	5.6	31.8	-	68.2	73.9	5.7	
Hori.	4960.000	PK	47.6	31.6	7.5	31.2	-	55.5	73.9	18.4	
Hori.	7440.000	PK	46.4	36.7	8.7	32.5	-	59.3	73.9	14.6	
Hori.	9920.000	PK	41.6	38.6	9.5	32.7	-	56.9	73.9	17.0	
Hori.	12400.000	PK	43.0	39.0	-1.6	32.8	-	47.6	73.9	26.3	
Vert.	30.000	QP	21.7	18.4	7.1	32.0	-	15.3	40.0	24.8	
Vert.	125.014	QP	20.5	13.3	8.2	31.9	-	10.1	43.5	33.5	
Vert.	514.329	QP	21.2	17.8	10.8	31.9	-	17.9	46.0	28.1	
Vert.	547.084	QP	21.8	17.8	11.0	31.9	-	18.7	46.0	27.4	
Vert.	578.712	QP	26.4	18.6	11.1	32.0	-	24.2	46.0	21.9	
Vert.	610.852	QP	24.0	19.3	11.3	32.0	-	22.6	46.0	23.5	
Vert.	2483.500	PK	67.6	27.7	5.6	31.8	-	69.0	73.9	4.9	
Vert.	4960.000	PK	46.0	31.6	7.5	31.2	-	53.9	73.9	20.0	
Vert.	7440.000	PK	47.9	36.7	8.7	32.5	-	60.8	73.9	13.1	
Vert.	9920.000	PK	41.7	38.6	9.5	32.7	-	57.0	73.9	16.9	
Vert.	12400.000	PK	41.0	39.0	-1.6	32.8	-	45.6	73.9	28.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor:	1 GHz - 10 GHz	$20\log(4 \text{ m}/3.0 \text{ m}) = 2.5 \text{ dB}$
	$10~\mathrm{GHz}$ - $26.5~\mathrm{GHz}$	$20\log(1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

(AV)

PK With Duty factor

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	PK	66.8	27.7	5.6	31.8	-21.5	46.7	53.9	7.2	*
Hori.	4960.000	PK	47.6	31.6	7.5	31.2	-21.5	34.0	53.9	19.9	*
Hori.	7440.000	PK	46.4	36.7	8.7	32.5	-21.5	37.8	53.9	16.1	*
Hori.	9920.000	PK	41.6	38.6	9.5	32.7	-21.5	35.4	53.9	18.5	*
Hori.	12400.000	PK	43.0	39.0	-1.6	32.8	-21.5	26.1	53.9	27.8	*
Vert.	2483.500	PK	67.6	27.7	5.6	31.8	-21.5	47.5	53.9	6.4	*
Vert.	4960.000	PK	46.0	31.6	7.5	31.2	-21.5	32.4	53.9	21.5	*
Vert.	7440.000	PK	47.9	36.7	8.7	32.5	-21.5	39.3	53.9	14.6	*
Vert.	9920.000	PK	41.7	38.6	9.5	32.7	-21.5	35.5	53.9	18.4	*
Vert.	12400.000	PK	41.0	39.0	-1.6	32.8	-21.5	24.1	53.9	29.9	*

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor *Above noise was synchronized with carrier frequency.

ioove noise was synemonized white earlier nequeix

Distance factor:

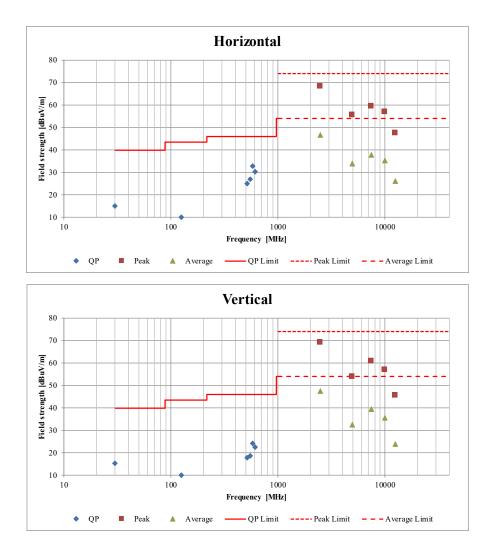
1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5dB

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No.13629400HTest placeIse EMC Lab.Semi Anechoic ChamberNo.4DateJanuary 14, 2021Temperature / Humidity23 deg. C / 34 % RHEngineerHiroki Numata
(1 GHz - 10 GHz)ModeTx Zigbee 2480 MHz

Horizontal Restricted-band band-edge Plot 🔆 Agilent RΤ Ref 102.7 dBµV #EmiPk Atten 10 dB Log 10 dB/ * #LaAv V1 S2 V3 FC **£**(f): FTun Swp Start 2.483 500 GHz Stop 2.500 000 GHz ∗VBW 3 MHz Sweep 1.04 ms (1201 pts) #Res BW (CISPR) 1 MHz Trace Green : Peak Plot Trace Purple : Average Plot Vertical Restricted-band band-edge Plot 🔆 Aailent RΤ Ref 102.7 dBµV #EmiPk Atten 10 dB Log 10 dB/ * #LgAv V1 S2 V3 FC €(f): FTun Swp Stop 2.500 000 GHz Sweep 1.04 ms (1201 pts) Start 2.483 500 GHz ∗VBW 3 MHz #Res BW (CISPR) 1 MHz Trace Green : Peak Plot Trace Purple : Average Plot

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.


UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

<u>Radiated Spurious Emission</u> (Plot data, Worst case)

Report No. Test place	13629400H Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	January 14, 2021	January 14, 2021
Temperature / Humidity	23 deg. C / 34 % RH	22 deg. C / 35 % RH
Engineer	Hiroki Numata	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz) (30 MHz - 1000 MHz)

Mode

Tx Zigbee 2480 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

Conducted Spurious Emission

Report No.	13629400H
Test place	Ise EMC Lab. No.6 Measurement Room
Date	January 25, 2021
Temperature / Humidity	22 deg. C / 34 % RH
Engineer	Kiyoshiro Okazaki
Mode	Tx Zigbee 2405 MHz
	0

		9 kHz - 150 kHz												15	0 kF	Iz -	30 N	/Hz			
- * A	Agilent							RТ			* *	gilent							RT		
	50 dBm	1	#At	ten 10 d	B		1	1		12.64 kHz 7.10 dBm		j0 dBm	1	#At	ten 10 d	B		1			722 kHz 0.28 dBm
Log 10 dB/									D	C Coupled	Log 10 dB/									DC	Coupled
LgAv S1 S2 M3 FS		Yanin Kuta	Www.wyw	an and the second s	hat you wante	i waqan daga	tilleren anderen andere Anderen anderen a	Wellerster Pre	Walana		LgAv S1 S2 M3 FS		Yolandahaya	Manahaattah	ayasing and yalasi	llheetd lawyr oge	Anglingh, cheyddro	Angles, s., raja	ngeldeen Beelder	(And And Mark	Marane Jir Tyrafyrdi
£ (f): f<50k FFT											€(f): FTun Swp										
	9.00 kHz 3W 200 Hz	:			≠VBW 620	 Hz		Sweep 2.		50.00 kHz .201 pts)		L 150 kHz 3W 9.1 kH	z			 ∎VBW 27	kHz		Sweep 34	Stop 30 4.8 ms (1	.000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
12.64	-97.10	0.10	9.84	2.0	1	-85.2	300	6.0	-23.9	45.5	69.4	
722.00	-90.28	0.12	9.84	2.0	1	-78.3	30	6.0	2.9	30.4	27.5	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Conducted Spurious Emission

Report No.	13629400Н
Test place	Ise EMC Lab. No.6 Measurement Room
Date	January 25, 2021
Temperature / Humidity	22 deg. C / 34 % RH
Engineer	Kiyoshiro Okazaki
Mode	Tx Zigbee 2440 MHz

			9	kHz	z - 15	50 k	Hz							15	0 kF	Iz -	30 N	/Hz			
- * *	Agilent							RΤ			* /	gilent							RΤ		
	50 dBm		#At	ten 10 d	В	1	1			12.88 kHz 7.38 dBm		i0 dBm		#At	ten 10 d	В					250 kHz 3.64 dBm
Log 10 dB/									D	Coupled	Log 10 dB/									DC	Coupled
LgAv S1 S2 M3 FS	1 Marylay	Mulaim yaja	Nythemilye	(/n].nm/(A)	ennal Yayim	Marria	lun nin a.	al flering and			LgAv S1 S2 M3 FS		dapenda ket te serve de	eyyadamaran	yhan ta dan yapah fi	Hire-Laurethay		a kangkalangan	neutilion kann	kan de finisk	ter ware by the
m3 ⊢5 £(f): f<50k FFT											m3 F3 £(f): FTun Swp										
	9.00 kHz 3W 200 Hz				⊧VBW 620	Hz		Sweep 2.		50.00 kHz .201 pts)		150 kHz W 9.1 kH	z			₩VBW 27	kHz		Sweep 344		.000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
12.88	-97.38	0.10	9.84	2.0	1	-85.4	300	6.0	-24.2	45.4	69.6	
250.00	-88.64	0.11	9.84	2.0	1	-76.7	300	6.0	-15.4	19.6	35.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Conducted Spurious Emission

Report No.	13629400Н
Test place	Ise EMC Lab. No.6 Measurement Room
Date	January 25, 2021
Temperature / Humidity	22 deg. C / 34 % RH
Engineer	Kiyoshiro Okazaki
Mode	Tx Zigbee 2480 MHz

			9	kHz	z - 1:	50 k	Hz							15	0 kF	Iz -	30 N	/Hz			
_ ₩ A	\gilent							RΤ		-	*	gilent							RΤ		-
	50 dBm		#A1	ten 10 d	В					15.11 kHz 7.51 dBm	Ref -5 Peak			#At	ten 10 d	B					175 kHz 3.64 dBm
Log 10 dB/									D	Coupled	Log 10 dB/									DC	Coupled
LgAv S1 S2 M3 FS		hud sovietie	Micropolitica	hodaklonivar	hanhay/4/4	limiyyaraay	Martikatar	y water which		har and the state of the state	LgAv S1 S2 M3 FS		an a	Mulau kan haratapat	aradyan, difer		Mapatranian		in she in the	helsenger det	MALANINH
£ (f): f<50k FFT											£ (f): FTun Swp										
	L 9.00 kHz 3W 200 Hz	:			⊧VBW 620	Hz		Sweep 2		50.00 kHz .201 pts)		L 150 kHz W 9.1 kH	z			#VBW 27	kHz		Sweep 34		.000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
15.11	-97.51	0.10	9.84	2.0	1	-85.6	300	6.0	-24.3	44.0	68.3	
175.00	-89.64	0.11	9.84	2.0	1	-77.7	300	6.0	-16.4	22.7	39.1	

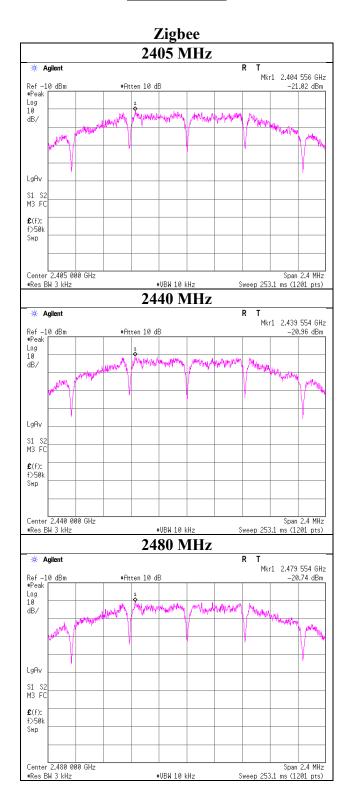
E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Power Density

Report No.	13629400Н
Test place	Ise EMC Lab. No.2 Measurement Room
Date	January 25, 2021
Temperature / Humidity	22 deg. C / 34 % RH
Engineer	Kiyoshiro Okazaki
Mode	Zigbee


Zigbee

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2405	-21.02	0.38	10.04	-10.60	8.00	18.60
2440	-20.96	0.38	10.04	-10.54	8.00	18.54
2480	-20.74	0.39	10.04	-10.31	8.00	18.31

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Power Density

Test report No. Page	: 13629400H-A : 34 of 38
I age Issued date FCC ID	: January 28, 2021 : VPYLB2AM

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MSA-15	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	2020/10/15	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	2020/12/07	12
AT	MCC-66	141328	Microwave Cable 1G- 40GHz	Suhner	SUCOFLEX102	28636/2	2020/04/02	12
AT	MPM-12	141809	Power Meter	ANRITSU	ML2495A	825002	2020/05/07	12
	MPSE-17	141830	Power sensor	ANRITSU	MA2411B	738285	2020/05/07	12
AT	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	2021/01/15	12
AT	MMM-12	141547	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	60500120	2020/02/03	12
	MJM-24	142225	Measure	ASKUL	-	-	-	-
	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	2020/11/13	12
	MCC-64	141327	Coaxial Cable	UL Japan	-	-	2020/02/04	12
AT	MAT-20	141173	Attenuator(10dB)(above 1GHz)	CO.,LTD.	AT-110	-	2020/12/07	12
AT	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	2020/03/04	12
AT	MCC-176	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	15028303	2020/03/18	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	2021/01/15	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	2021/01/07	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	2019/04/04	24
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	2020/05/22	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	2020/10/19	12
RE	MCC-246	199563	Microwave Cable	HUBER+SUNER	SF126E/11PC35/11 PC35/1000M,5000 M	537061/126E / 537072/126E	2020/06/11	12
RE	MHF-26	141296	High Pass Filter 3.5- 18.0GHz	UL Japan	HPF SELECTOR	002	2020/09/23	12
RE	MHA-17	141506	Horn Antenna 15- 40GHz	Schwarzbeck Mess - Elektronik	BBHA9170	BBHA9170307	2020/07/16	12
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	2020/02/05	12
	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA910 6	VHA 91031302	2020/08/31	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	2020/11/06	12
RE	MLA-23	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	2020/09/02	12
	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	2020/02/18	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	2020/03/10	12
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	2020/05/25	24

Test report No.	: 13629400H-A
Page	: 35 of 38
Issued date	: January 28, 2021
 FCC ID	: VPYLB2AM

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: RE: Radiated Emission test AT: Antenna Terminal Conducted test