

Test report No. : 14035603H-A-R1
Page : 1 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

RADIO TEST REPORT

Test Report No.: 14035603H-A-R1

Applicant : Murata Manufacturing Co., Ltd.

Type of EUT : Gateway

Model Number of EUT : LBAE0ZZ2AG

FCC ID : VPYLB2AG

Test regulation : FCC Part 15 Subpart C: 2021

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.

Date of test:

- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

January 13 to 27, 2021

- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 14035603H-A. 14035603H-A is replaced with this report.

Representative test engineer:	J.Okung
	Junya Okuno
	Engineer
Approved by:	Jahayuhi J Takayuki Shimada Leader

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 2 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

REVISION HISTORY

Original Test Report No.: 14035603H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	14035603H-A	October 15, 2021	-	-
1	14035603H-A-R1	October 22, 2021	P 1, 5, 11, 12	Correction of Model Number;
				LBBC0ZZ2AG → LBAE0ZZ2AG
1	14035603H-A-R1	October 22, 2021	P 32 to 34	Addition to test frequency to mode item;
				P 32: Tx Zigbee → Tx Zigbee 2405 MHz
				P 33: Tx Zigbee → Tx Zigbee 2440 MHz
				P 34: Tx Zigbee → Tx Zigbee 2480 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 3 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
T DAG	X 1 X 6		

UL Japan, Inc. Ise EMC Lab.

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Laboratory Information Management System

Test report No. Page Issued date FCC ID : 14035603H-A-R1 : 4 of 42 : October 22, 2021 : VPYLB2AG

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3: SECTION 4:** Operation of EUT during testing......10 **SECTION 5: SECTION 6: SECTION 7:** Conducted Emission 17 6 dB Bandwidth and 99 % Occupied Bandwidth......19 Power Density 35 **APPENDIX 2:** Worst Case Position......41

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 5 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 1: Customer information

Company Name : Murata Manufacturing Co., Ltd.

Address : 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number : +81-75-955-6736 Facsimile Number : +81-75-955-6634 Contact Person : Motoo Hayashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC IDon the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Gateway

Model Number : LBAE0ZZ2AG

Serial Number : Refer to SECTION 4.2

Rating : Typ: 3.85 V (Min: 3.0 V to Max: 4.36 V)

Receipt Date : January 8, 2021

Country of Mass-production : Japan

Condition : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab.

2.2 Product Description

Model: LBAE0ZZ2AG (referred to as the EUT in this report) is a Gateway.

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 2405 MHz to 2480 MHz

Modulation : O-QPSK

Antenna type : Monopole pattern antenna

Antenna Gain : 1.2 dBi Clock frequency (Maximum) : 1.3 GHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 6 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850~MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

Test report No. : 14035603H-A-R1
Page : 7 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	3.68 dB, 0.60762 MHz, L	Complied a)	-
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: -	FCC: Section 15.247(a)(2) ISED: RSS-247 5.2(a)		Complied b)	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3) ISED: RSS-247 5.4(d)	See data.	Complied c)	Conducted
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e) ISED: RSS-247 5.2(b)		Complied d)	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02 ISED: RSS-Gen 6.13	FCC: Section15.247(d) ISED: RSS-247 5.5 RSS-Gen 8.9	6.1 dB 2483.500 MHz, PK, Vert.	Complied e), f)	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Conducted Emission)
- b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- d) Refer to APPENDIX 1 (data of Power Density)
- e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 14035603H-A-R1
Page : 8 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted	
Bandwidth				a)		
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Is EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.4 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.6 dB

Conducted emission

using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.4 dB
	0.15 MHz to 30 MHz	2.9 dB

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
•		•
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 9 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 10 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item	Mode	Tested frequency
Conducted Emission	Zigbee Transmitting (Tx)	2405 MHz
6dB Bandwidth		2440 MHz
99% Occupied Bandwidth		2480 MHz
Maximum Peak Output Power		
Power Density		
Spurious Emission (Conducted / Radiated)		

^{*}Transmitting duty was 100 % on all tests.

- Power Setting: 7 dBm

- Software: EMI_Test_Tool.exe (Ver.1.8)

(Date: 2021.01.14, Storage location: Driven by connected PC)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

^{*}Power of the EUT was set by the software as follows;

^{*}This setting of software is the worst case.

Test report No. : 14035603H-A-R1
Page : 11 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

4.2 Configuration and peripherals

Conducted Emission test and Radiated Emission test

: Standard Ferrite Core

Description of EUT and Support equipment

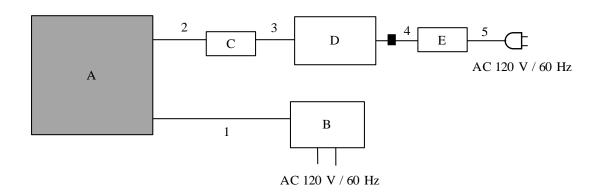
No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Gateway	LBAE0ZZ2AG	001 *1)	Murata Manufacturing	EUT
A			002 *2)	Co.,Ltd	
D	AC Adapter	ACA-IP52BK	J04-0256268	SANWA SUPPLY	*1)
В		BYX-0503000J	-	Yunitoripuru	*2)
С	Laptop PC	CF-N8HWCDPS	0CKSA09265	Panasonic	-
D	AC Adapter	CF-AA6372B	6372BM610X10953E	Panasonic	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.00 *1)	Shielded	Shielded	-
		1.80 *2)	Shielded	Shielded	-
2	USB Cable	2.00	Shielded	Shielded	-
3	DC Cable	0.80	Unshielded	Unshielded	-
4	AC Cable	1.00	Unshielded	Unshielded	-
5	Signal Cable	0.03	Unshielded	Unshielded	-

^{*1)} Used for Conducted Emission test

UL Japan, Inc. Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Radiated Emission test

Test report No. : 14035603H-A-R1
Page : 12 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Antenna Terminal Conducted test

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
_	Gateway	LBAE0ZZ2AG	001	Murata Manufacturing	EUT
Α				Co.,Ltd	
В	AC Adapter	BYX-0503000J	-	Yunitoripuru	-
C	Jig	-	-	-	_
D	Laptop PC	CF-NX2ADHCS	3JKSA53576	Panasonic	-
Е	AC Adapter	CF-AA6412C M2	6412CM21328672A	Panasonic	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.8	Shielded	Shielded	-
2	Signal Cable	0.2	Unshielded	Unshielded	-
3	USB Cable	1.0	Shielded	Shielded	-
4	DC Cable	0.9	Unshielded	Unshielded	-
5	AC Cable	0.9	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 14035603H-A-R1
Page : 13 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 5: Conducted Emission

Test Procedure and conditions

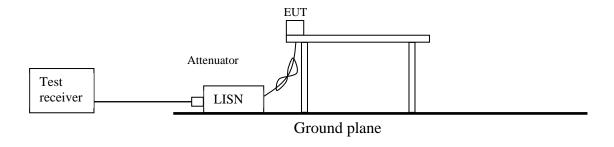
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.


The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

Figure 1: Test Setup

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 14 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

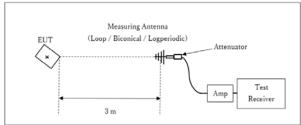
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

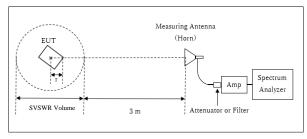
Frequency	Below 1 GHz	Above 1 GHz			20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer		Spectrum Analyzer
Detector	QP	PK	AV *1)	Peak with Duty Factor	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	11.12.2.5.1 RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: 100 traces 11.12.2.5.2 The duty cycle was less than 98% for detected noise, a duty factor was added to the 11.12.2.5.1 results.	RBW: 1 MHz VBW: 3 MHz	RBW: 100 kHz VBW: 300 kHz

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.


UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 15 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


Figure 2: Test Setup

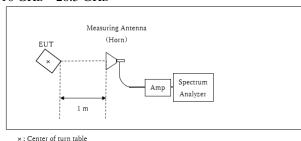
Below 1 GHz

× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m


Distance Factor: $20 \times \log (3.9 \text{ m} / 3.0 \text{ m}) = 2.28 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 3.9 m

SVSWR Volume: 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-

4.) r = 0.1 m

10 GHz - 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 16 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	4 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

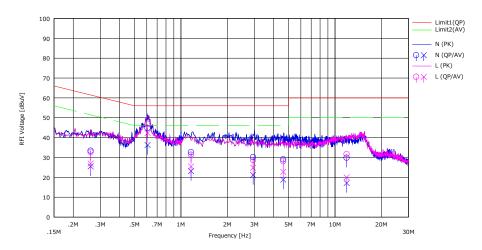
Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test report No. : 14035603H-A-R1
Page : 17 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

APPENDIX 1: Test data


Conducted Emission

Report No. 14035603H

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date January 19, 2021
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Hiroki Numata
Mode Tx Zigbee 2480MHz

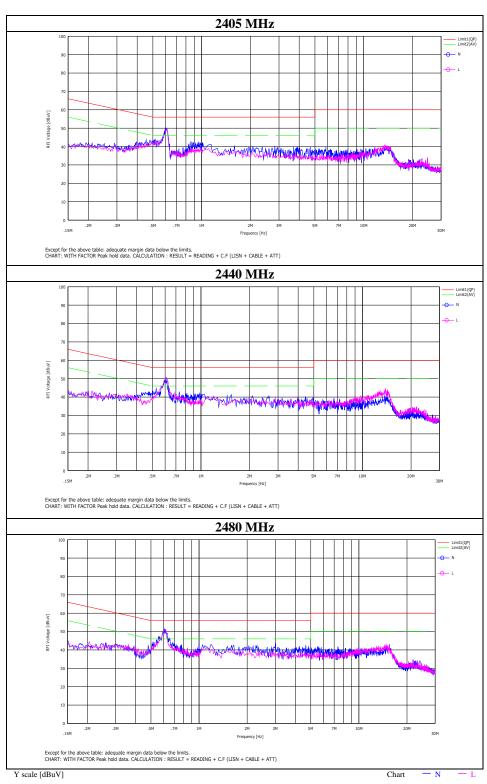
Limit: FCC_Part 15 Subpart C(15.207)

	-	Rea	ding	LICAL	1000	Res	ults	Lin	nit	Mar	rgin		
No.	Freq.	(QP)	(AV)	LISN	LOSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.25962	20.20	12.30	0.06	13.16	33.42	25.52	61.44	51.44	28.02	25.92	N	
2	0.60762	31.50	23.00	0.06	13.22	44.78	36.28	56.00	46.00	11.22	9.72	N	
3	1.16368	19.30	9.80	0.07	13.29	32.66	23.16	56.00	46.00	23.34	22.84	N	
4	2.94168	16.60	7.60	0.10	13.48	30.18	21.18	56.00	46.00	25.82	24.82	N	
5	4.61796	15.30	5.10	0.13	13.61	29.04	18.84	56.00	46.00	26.96	27.16	N	
6	11.90380	15.60	2.90	0.27	13.98	29.85	17.15	60.00	50.00	30.15	32.85	N	
7	0.25962	19.40	13.70	0.10	13.16	32.66	26.96	61.44	51.44	28.78	24.48	L	
8	0.60762	33.60	29.00	0.10	13.22	46.92	42.32	56.00	46.00	9.08	3.68	L	
9	1.16368	18.00	12.10	0.12	13.29	31.41	25.51	56.00	46.00	24.59	20.49	L	
10	2.94168	15.10	11.20	0.15	13.48	28.73	24.83	56.00	46.00	27.27	21.17	L	
11	4.61796	14.30	9.00	0.18	13.61	28.09	22.79	56.00	46.00	27.91	23.21	L	
12	11.90380	17.40	5.70	0.32	13.98	31.70	20.00	60.00	50.00	28.30	30.00	L	

 $CHART: WITH \ FACTOR \ Peak \ hold \ data. \ CALCULATION: RESULT = READING + LISN + LOSS \ (CABLE + ATT) \\ Except \ for \ the \ above \ table: \ adequate \ margin \ data \ below \ the \ limits.$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 14035603H-A-R1
Page : 18 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Conducted Emission

Report No. 14035603H

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Date January 19, 2021
Temperature / Humidity 23 deg. C / 38 % RH
Engineer Hiroki Numata
Mode Tx Zigbee

UL Japan, Inc. Ise EMC Lab.

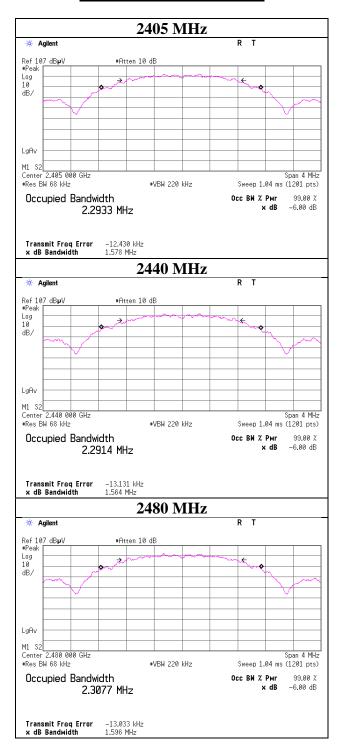
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 19 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

6 dB Bandwidth and 99 % Occupied Bandwidth

Report No. 14035603H

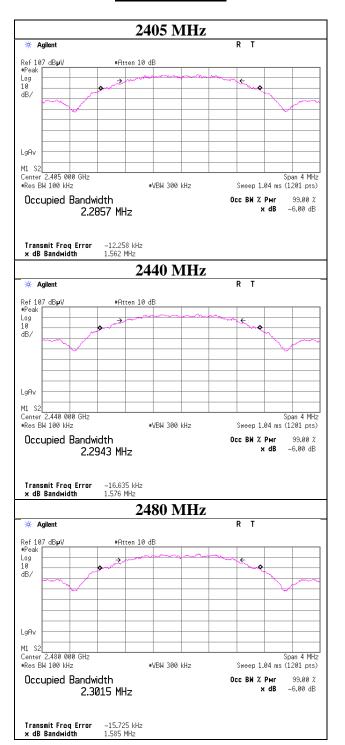
Test place Ise EMC Lab. No.3 Measurement Room


Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya
Mode Tx Zigbee

Frequency	99% Occupied	6dB Bandwidth	Limit for
	Bandwidth		6dB Bandwidth
[MHz]	[kHz]	[MHz]	[MHz]
2405	2293.3	1.562	> 0.5000
2440	2291.4	1.576	> 0.5000
2480	2307.7	1.585	> 0.5000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 20 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


99 % Occupied Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 21 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

6 dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1 Page : 22 of 42 **Issued date** : October 22, 2021 FCC ID : VPYLB2AG

Maximum Peak Output Power

14035603H Report No.

Test place Ise EMC Lab. No.3 Measurement Room

January 27, 2021 Date Temperature / Humidity 20 deg. C / 32 % RH Engineer Yuta Moriya Tx Zigbee Mode

					Co	nducted Po	wer		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Liı	mit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2405	-3.99	1.12	10.07	7.20	5.25	30.00	1000	22.80	1.20	8.40	6.92	36.02	4000	27.62
2440	-3.89	1.12	10.07	7.30	5.37	30.00	1000	22.70	1.20	8.50	7.08	36.02	4000	27.52
2480	-3.79	1.13	10.06	7.40			1000	22.60	1.20	8.60	7.24	36.02	4000	27.42

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

e.i.r.p. Result = Conducted Power Result + Antenna Gain
*The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 14035603H-A-R1
Page : 23 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

<u>Average Output Power</u> (Reference data for RF Exposure)

Report No. 14035603H

Test place Ise EMC Lab. No.3 Measurement Room

Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya
Mode Tx Zigbee

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst power averag	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[dBm]	[mW]
2405	-4.22	1.12	10.07	6.97	4.98	0.00	6.97	4.98
2440	-4.13	1.12	10.07	7.06	5.08	0.00	7.06	5.08
2480	-4.05	1.13	10.06	7.14	5.18	0.00	7.14	5.18

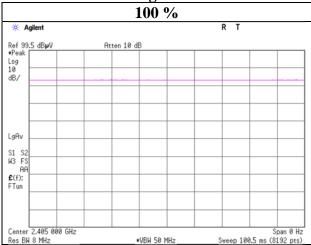
Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 14035603H-A-R1
Page : 24 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


Burst rate confirmation (for Radiated Spurious Emission)

Report No. 14035603H Test place Ise EMC Lab.

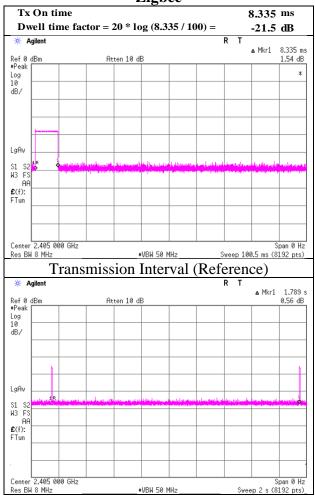
Semi Anechoic Chamber No.4

Date January 13, 2021
Temperature / Humidity 22 deg. C / 33 % RH
Engineer Junya Okuno
Mode Tx Zigbee

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 25 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


Duty Factor (for Peak with Duty factor)

Report No. 14035603H

Test place Ise EMC Lab. No.6 Measurement Room

Date January 14, 2021
Temperature / Humidity 23 deg. C / 34 % RH
Engineer Hiroki Numata
Mode Tx Zigbee

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 26 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Radiated Spurious Emission

Report No. 14035603H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

Date January 13, 2021 January 14, 2021
Temperature / Humidity 22 deg. C / 33 % RH
Engineer Junya Okuno Junya Okuno

(1 GHz - 26.5 GHz) (30 MHz - 1000 MHz)

Mode Tx Zigbee 2405 MHz

[PK/QP]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	44.192	QP	22.3	13.3	7.3	32.0	-	10.9	40.0	29.1	
Hori.	53.000	QP	21.9	10.0	7.5	32.0	-	7.4	40.0	32.7	
Hori.	95.750	QP	26.4	9.4	7.9	31.9	-	11.8	43.5	31.7	
Hori.	101.128	QP	32.8	10.3	8.0	31.9	-	19.2	43.5	24.3	
Hori.	236.190	QP	24.0	11.4	9.1	31.8	-	12.8	46.0	33.2	
Hori.	376.279	QP	24.7	15.3	10.0	31.8	-	18.2	46.0	27.8	
Hori.	2390.000	PK	43.3	27.8	5.3	31.8	-	44.6	73.9	29.4	
Hori.	4810.000	PK	47.8	31.6	7.5	31.2	-	55.7	73.9	18.2	
Hori.	7215.000	PK	43.2	36.5	8.7	32.4	-	56.0	73.9	17.9	
Hori.	9620.000	PK	40.5	38.0	9.4	32.6	-	55.3	73.9	18.6	Floor noise
Vert.	44.192	QP	38.2	13.3	7.3	32.0	-	26.8	40.0	13.2	
Vert.	53.000	QP	42.2	10.0	7.5	32.0	-	27.7	40.0	12.4	
Vert.	95.750	QP	40.7	9.4	7.9	31.9	-	26.1	43.5	17.4	
Vert.	101.128	QP	43.7	10.3	8.0	31.9	-	30.1	43.5	13.4	
Vert.	234.890	QP	26.2	11.4	9.1	31.8	-	14.9	46.0	31.1	
Vert.	376.279	QP	27.0	15.3	10.0	31.8	-	20.5	46.0	25.5	
Vert.	2390.000	PK	43.9	27.8	5.3	31.8	-	45.2	73.9	28.7	
Vert.	4810.000	PK	49.7	31.6	7.5	31.2	-	57.6	73.9	16.3	
Vert.	7215.000	PK	43.5	36.5	8.7	32.4	-	56.3	73.9	17.6	
Vert.	9620.000	PK	40.4	38.0	9.4	32.6	-	55.2	73.9	18.7	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz - 20log (3.9 m / 3.0 m) = 2.28 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2405.000	PK	94.3	27.8	5.3	31.8	95.6	-	-	Carrier
Hori.	2400.000	PK	51.2	27.8	5.3	31.8	52.5	75.6	23.1	
Vert.	2405.000	PK	95.0	27.8	5.3	31.8	96.3	-	-	Carrier
Vert.	2400.000	PK	51.9	27.8	5.3	31.8	53.2	76.3	23.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

[AV]

PK With Duty factor or AV

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2390.000	PK	43.3	27.8	5.3	31.8	-21.5	23.1	53.9	30.9	冰
Hori.	4810.000	PK	47.8	31.6	7.5	31.2	-21.5	34.2	53.9	19.7	冰
Hori.	7215.000	PK	43.2	36.5	8.7	32.4	-21.5	34.5	53.9	19.4	*
Hori.	9620.000	AV	32.6	38.0	9.4	32.6	-	47.4	53.9	6.5	Floor Noise
Vert.	2390.000	PK	44.5	27.8	5.5	31.8	-21.5	24.4	53.9	29.5	冰
Vert.	4810.000	PK	47.4	31.6	7.7	31.2	-21.5	34.0	53.9	19.9	*
Vert.	7215.000	PK	43.0	36.5	8.9	32.4	-21.5	34.5	53.9	19.4	*
Vert.	9620.000	AV	32.5	38.0	9.4	32.6	-	47.3	53.9	6.6	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5dB

UL Japan, Inc. Ise EMC Lab.

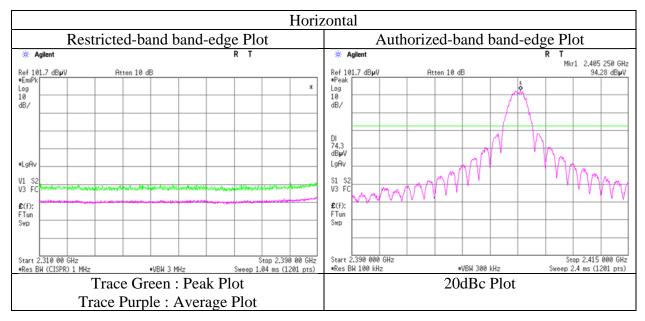
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

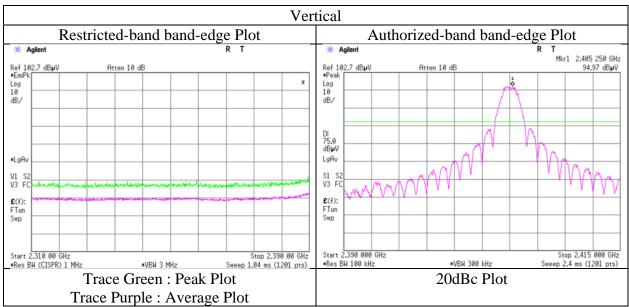
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

⁻ Gain(Amprifier) + Dwell time factor (Refer to dwell time data sheet)

^{*}Above noise was synchronized with carrier frequency.

Test report No. : 14035603H-A-R1
Page : 27 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 14035603H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date January 13, 2021
Temperature / Humidity 22 deg. C / 33 % RH
Engineer Junya Okuno (1 GHz - 26.5 GHz)

Mode Tx Zigbee 2405 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 28 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Radiated Spurious Emission

Report No. 14035603H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

DateJanuary 13, 2021January 14, 2021Temperature / Humidity22 deg. C / 33 % RH22 deg. C / 33 % RHEngineerJunya OkunoJunya Okuno

(1 GHz - 26.5 GHz) (30 MHz - 1000 MHz)

Mode Tx Zigbee 2440 MHz

[PK/QP]

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	41.000	QP	21.2	14.4	7.3	32.0	-	10.9	40.0	29.1	
Hori.	53.000	QP	22.0	10.0	7.5	32.0	-	7.5	40.0	32.6	
Hori.	95.000	QP	23.0	9.3	7.9	31.9	-	8.3	43.5	35.2	
Hori.	156.000	QP	28.6	15.2	8.5	31.9	-	20.4	43.5	23.1	
Hori.	220.333	QP	25.8	11.2	9.0	31.8	-	14.2	46.0	31.8	
Hori.	376.279	QP	20.6	15.3	10.0	31.8	-	14.1	46.0	31.9	
Hori.	4880.000	PK	45.6	31.6	7.5	31.2	-	53.5	73.9	20.5	
Hori.	7320.000	PK	42.7	36.6	8.7	32.4	-	55.6	73.9	18.3	
Hori.	9760.000	PK	40.9	38.4	9.4	32.7	-	56.1	73.9	17.8	Floor noise
Vert.	41.000	QP	28.5	14.4	7.3	32.0	-	18.2	40.0	21.8	
Vert.	53.000	QP	38.2	10.0	7.5	32.0	-	23.7	40.0	16.4	
Vert.	95.750	QP	35.5	9.4	7.9	31.9	-	20.9	43.5	22.6	
Vert.	156.000	QP	25.6	15.2	8.5	31.9	-	17.4	43.5	26.1	
Vert.	220.333	QP	25.6	11.2	9.0	31.8	-	14.0	46.0	32.0	
Vert.	376.279	QP	20.5	15.3	10.0	31.8	-	14.0	46.0	32.0	
Vert.	4880.000	PK	46.1	31.6	7.5	31.2	-	53.9	73.9	20.0	
Vert.	7320.000	PK	43.0	36.6	8.7	32.4	-	55.9	73.9	18.0	
Vert.	9760.000	PK	40.7	38.4	9.4	32.7	-	55.9	73.9	18.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

[AV]

PK With Duty factor or AV

I IX WITH	K With Duty factor of Av											
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Dwell	Result	Limit	Margin	Remark	
				Factor			Factor					
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]		
Hori.	4880.000	PK	45.6	31.6	7.5	31.2	-21.5	32.0	53.9	22.0	*	
Hori.	7320.000	PK	42.7	36.6	8.7	32.4	-21.5	34.1	53.9	19.8	*	
Hori.	9760.000	AV	32.3	38.4	9.4	32.7	-	47.5	53.9	6.4	Floor Noise	
Vert.	4880.000	PK	46.1	31.6	7.5	31.2	-21.5	32.4	53.9	21.5	*	
Vert.	7320.000	PK	43.0	36.6	8.7	32.4	-21.5	34.4	53.9	19.5	*	
Vert.	9760.000	AV	32.5	38.4	9.4	32.7	-	47.7	53.9	6.2	Floor Noise	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

⁻ Gain(Amprifier) + Dwell time factor (Refer to dwell time data sheet)

^{*}Above noise was synchronized with carrier frequency.

Test report No. : 14035603H-A-R1
Page : 29 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Radiated Spurious Emission

Report No. 14035603H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

DateJanuary 13, 2021January 14, 2021Temperature / Humidity22 deg. C / 33 % RH22 deg. C / 33 % RHEngineerJunya OkunoJunya Okuno

(1 GHz - 26.5 GHz) (30 MHz - 1000 MHz)

Mode Tx Zigbee 2480 MHz

[PK/QP]

4											
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	42.813	QP	21.3	13.7	7.3	32.0	-	10.4	40.0	29.7	
Hori.	53.000	QP	22.2	10.0	7.5	32.0	-	7.7	40.0	32.4	
Hori.	95.000	QP	22.8	9.3	7.9	31.9	-	8.1	43.5	35.4	
Hori.	156.000	QP	27.4	15.2	8.5	31.9	-	19.2	43.5	24.3	
Hori.	220.333	QP	26.2	11.2	9.0	31.8	-	14.6	46.0	31.4	
Hori.	376.279	QP	20.5	15.3	10.0	31.8	-	14.0	46.0	32.0	
Hori.	2483.500	PK	65.0	27.7	5.4	31.8	-	66.2	73.9	7.7	
Hori.	4960.000	PK	43.1	31.6	7.5	31.2	-	51.0	73.9	22.9	
Hori.	7440.000	PK	40.7	36.7	8.7	32.5	-	53.7	73.9	20.2	Floor noise
Hori.	9920.000	PK	41.7	38.6	9.5	32.7	-	57.0	73.9	16.9	Floor noise
Vert.	42.813	QP	35.2	13.7	7.3	32.0	-	24.3	40.0	15.8	
Vert.	53.000	QP	37.2	10.0	7.5	32.0	-	22.7	40.0	17.4	
Vert.	95.750	QP	36.0	9.4	7.9	31.9	-	21.4	43.5	22.1	
Vert.	156.000	QP	25.3	15.2	8.5	31.9	-	17.1	43.5	26.4	
Vert.	220.333	QP	25.8	11.2	9.0	31.8	-	14.2	46.0	31.8	
Vert.	376.279	QP	20.6	15.3	10.0	31.8	-	14.1	46.0	31.9	
Vert.	2483.500	PK	66.6	27.7	5.4	31.8	-	67.8	73.9	6.1	
Vert.	4960.000	PK	43.6	31.6	7.5	31.2	-	51.5	73.9	22.4	
Vert.	7440.000	PK	40.6	36.7	8.7	32.5	-	53.5	73.9	20.4	Floor noise
Vert.	9920.000	PK	41.8	38.6	9.5	32.7	-	57.1	73.9	16.8	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

[AV]

PK With Duty factor or AV

1 11 111111	Duty factor	01 111									
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2483.500	PK	65.0	27.7	5.4	31.8	-21.5	44.7	53.9	9.2	*
Hori.	4960.000	PK	43.1	31.6	7.5	31.2	-21.5	29.5	53.9	24.4	*
Hori.	7440.000	AV	33.6	36.7	8.7	32.5	-	46.5	53.9	7.4	Floor Noise
Hori.	9920.000	AV	32.5	38.6	9.5	32.7	-	47.8	53.9	6.1	Floor Noise
Vert.	2483.500	PK	66.6	27.7	5.4	31.8	-21.5	46.3	53.9	7.6	*
Vert.	4960.000	PK	43.6	31.6	7.5	31.2	-21.5	30.0	53.9	23.9	*
Vert.	7440.000	AV	33.5	36.7	8.7	32.5	-	46.4	53.9	7.5	Floor Noise
Vert.	9920.000	AV	32.4	38.6	9.5	32.7	-	47.8	53.9	6.1	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz))

Distance factor: 1 GHz - 10 GHz $\,$ 20log (3.9 m / 3.0 m) = 2.28 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{dB}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

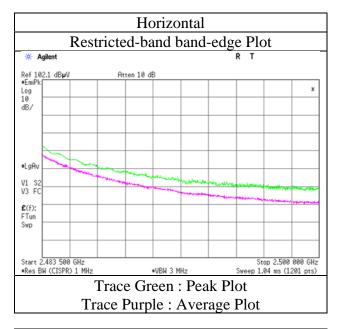
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

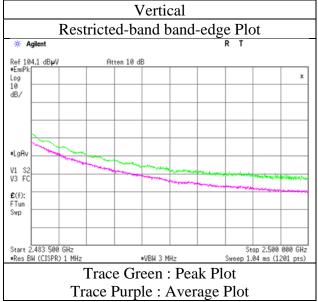
⁻ Gain(Amprifier) + Dwell time factor (Refer to dwell time data sheet)

^{*}Above noise was synchronized with carrier frequency.

Test report No. : 14035603H-A-R1
Page : 30 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 14035603H Test place Ise EMC Lab.


Semi Anechoic Chamber No.4

Date January 13, 2021
Temperature / Humidity 22 deg. C / 33 % RH
Engineer Junya Okuno

(1 GHz - 26.5 GHz)

Mode Tx Zigbee 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

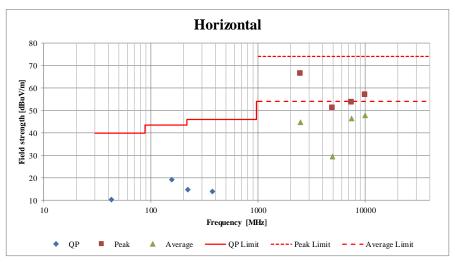
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

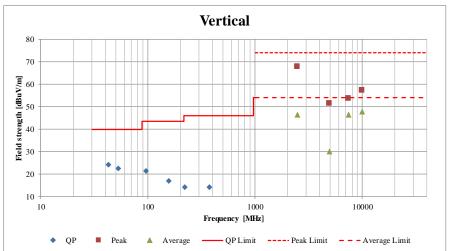
Test report No. : 14035603H-A-R1
Page : 31 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Radiated Spurious Emission (Plot data, Worst case)

No.4

Report No. 14035603H Test place Ise EMC Lab.


Semi Anechoic Chamber No.4


Date January 13, 2021 January 14, 2021
Temperature / Humidity 22 deg. C / 33 % RH 22 deg. C / 33 % RH
Engineer Junya Okuno Junya Okuno

Engineer Junya Okuno Junya Okuno (1 CH 2005 CH)

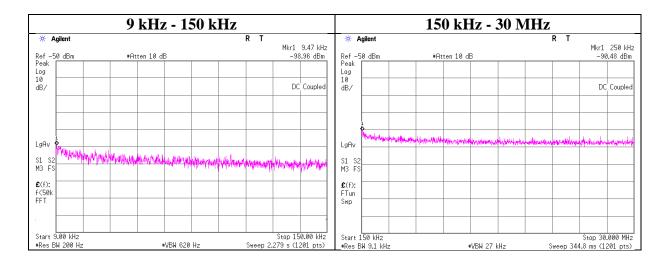
(1 GHz - 26.5 GHz) (
Mode Tx Zigbee 2480 MHz

Junya Okuno (30 MHz - 1000 MHz)

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 14035603H-A-R1
Page : 32 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Conducted Spurious Emission

Report No. 14035603H

Test place Ise EMC Lab. No.3 Measurement Room

Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya
Mode Tx Zigbee 2405 MHz

ĺ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ĺ	9.47	-99.0	0.00	9.8	2.0	1	-87.1	300	6.0	-25.9	48.0	73.9	
	250.00	-90.5	0.01	9.8	2.0	1	-78.6	300	6.0	-17.4	19.6	37.0	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

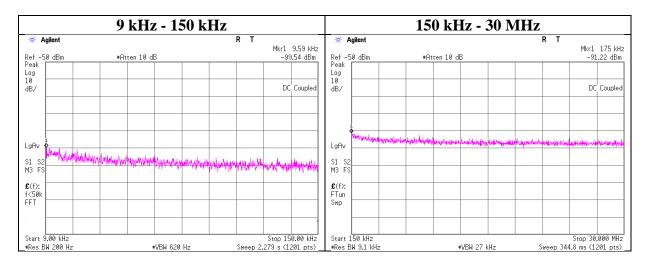
EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test report No. : 14035603H-A-R1
Page : 33 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


Conducted Spurious Emission

Report No. 14035603H

Test place Ise EMC Lab. No.3 Measurement Room

Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya

Mode Tx Zigbee 2440 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	9.59	-99.5	0.00	9.8	2.0	1	-87.7	300	6.0	-26.4	47.9	74.3	
	175.00	-91.2	0.01	9.8	2.0	1	-79.4	300	6.0	-18.1	22.7	40.8	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

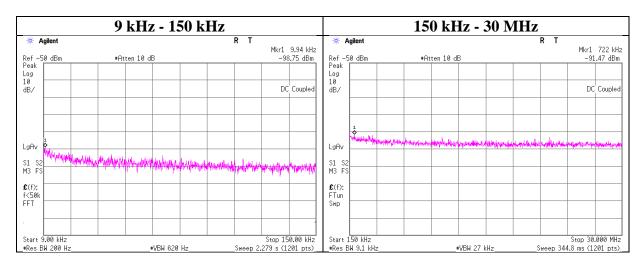
EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on ANSI C63.10 since antenna gain was less than $2.0~\mathrm{dBi}$.

Test report No. : 14035603H-A-R1
Page : 34 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG


Conducted Spurious Emission

Report No. 14035603H

Test place Ise EMC Lab. No.3 Measurement Room

Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya

Mode Tx Zigbee 2480 MHz

ĺ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
ı	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ĺ	9.94	-98.8	0.00	9.8	2.0	1	-86.9	300	6.0	-25.7	47.6	73.3	
	722.00	-91.5	0.01	9.8	2.0	1	-79.6	30	6.0	1.6	30.4	28.8	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Test report No. : 14035603H-A-R1
Page : 35 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Power Density

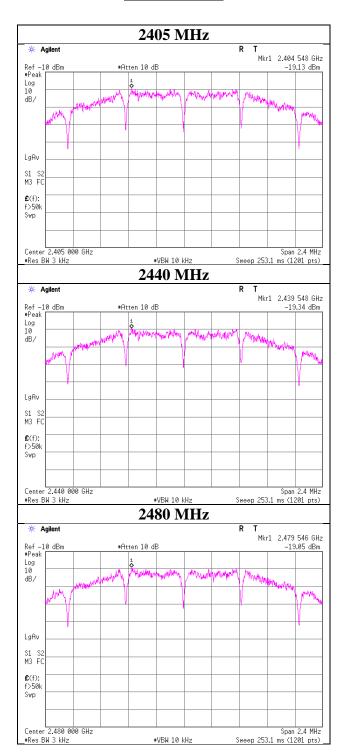
Report No. 14035603H

Test place Ise EMC Lab. No.3 Measurement Room

Date January 27, 2021
Temperature / Humidity 20 deg. C / 32 % RH
Engineer Yuta Moriya
Mode Tx Zigbee

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2405	-19.13	1.12	10.07	-7.94	8.00	15.94
2440	-19.34	1.12	10.07	-8.15	8.00	16.15
2480	-19.05	1.13	10.06	-7.86	8.00	15.86

Sample Calculation:


Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 14035603H-A-R1
Page : 36 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 14035603H-A-R1 Test report No. : 37 of 42 Page **Issued date** : October 22, 2021 : VPYLB2AG FCC ID

APPENDIX 2: Test instruments

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal In
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	2020/05/25	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	2021/01/15	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	2021/01/07	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36		-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC- 04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	2019/04/04	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	2020/02/05	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA91 06	VHA 91031302	2020/08/31	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	2020/11/06	12
RE	MLA-23	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	2020/09/02	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	2020/02/18	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	2020/03/10	12
RE	MHA-21	141508	Horn Antenna 1- 18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	2020/05/22	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	2020/10/19	12
RE	MCC-246	199563	Microwave Cable	HUBER+SUNER	SF126E/11PC35/11 PC35/1000M,5000 M	537061/126E / 537072/126E	2020/06/11	12
RE	MHA-17	141506	Horn Antenna 15- 40GHz	Schwarzbeck Mess - Elektronik	BBHA9170	BBHA9170307	2020/07/16	12
RE	MHF-26	141296	High Pass Filter 3.5- 18.0GHz	UL Japan	HPF SELECTOR	002	2020/09/23	12
CE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	2020/05/26	24
CE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	2020/12/06	12
CE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	2020/08/18	12
CE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess - Elektronik	NSLK8127	8127-729	2020/07/22	12
CE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D- 2W(1m)	-	2020/02/25	12
CE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	2020/08/18	12
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	2020/12/07	12
CE	MTA-54	141936	Terminator	TME	CT-01BP	-	2020/12/04	12
AT	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	2021/01/15	12
AT	MPSE-18	141832	Power sensor	ANRITSU	MA2411B	738174	2020/12/14	12
AT	MPM-13	141810	Power Meter	ANRITSU	ML2495A	824014	2020/12/14	12
AT	MAT-20	141173	Attenuator(10dB)(abov e1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-110	-	2020/12/07	12
AT	MCC-144	141414	Microwave Cable	Junkosha	MWX221	1207S407	2020/08/03	12
AT	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	2020/12/18	12
AT AT	MCC-38 MAT-10	141395 141156	Coaxial Cable Attenuator(10dB)	UL Japan Weinschel Corp	2	- BL1173	2020/11/17 2020/11/13	12 12
ΛI	IVIA 1-1U	141130	Auchaior (100D)	wenischer Corp	4	טרוויס	2020/11/13	12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14035603H-A-R1
Page : 38 of 42
Issued date : October 22, 2021
FCC ID : VPYLB2AG

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN