

Project No: TM-2210000301P Page: 1 / 39 Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

PERMISSIVE CHANGE TEST REPORT

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 RSS-247 issue 2 and RSS-GEN issue 5
FCC ID	VPYLB1ZM
IC	772C-LB1ZM
Product name	Communication Module
Brand Name	muRata
Model No.	LBEE5QD1ZM
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

and

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 11, 2020	Initial Issue	ALL	Mita Wu
01	January 7, 2021	See the following Note Rev.(01)	ALL	Allison Chen
02	November 22, 2022	See the following Note Rev.(02)	ALL	Doris Chu

Note: Rev.(01)

1. This test report is an addendum to the original test report T200915W04-RP1, the EUTs represent the original and this test report are assessed as identical in hardware and software, measurement results in the original report are fully leveraged in this test report without further verification test.

Rev.(02)

Changed antenna type to chip antenna (molex / 2119640001), and only re-test radiation. Other Test data is referenced from cross authorization(s) Measurement results in the original test report (T201215W01-RP1) under issue date (January 7, 2021) are fully leveraged in this test report.
 Other information, please refer to the T201215W01 and this test report.

Page: 2 / 39

				Page:	3 / 39
Report No.:	TMWK2210004209KR	Ref. No.:	T201215W01-RP1	Rev.:	02

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	INFORMATION ABOUT THE FHSS CHARACTERISTICS	5
1.3	EUT CHANNEL INFORMATION	6
1.4		6
1.5	MEASUREMENT UNCERTAINTY	7
1.6	FACILITIES AND TEST LOCATION	B
1.7	INSTRUMENT CALIBRATION	8
1.8	SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
1.9	TEST METHODOLOGY AND APPLIED STANDARDS	9
2.	TEST SUMMARY10	D
3.	DESCRIPTION OF TEST MODES	1
3.1	THE WORST MODE OF OPERATING CONDITION1	1
3.2	THE WORST MODE OF MEASUREMENT 12	2
4.	TEST RESULT1	3
	RADIATION BANDEDGE AND SPURIOUS EMISSION	3

Page: 4 / 39

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Murata Manufacturing Co., Ltd. 1-10-1, Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan		
Manufacturer	Murata Manufacturing Co., Ltd. 1-10-1, Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan		
Equipment	Communication Module		
Model No.	LBEE5QD1ZM		
Model Discrepancy	N/A		
Trade Name	muRata		
Received Date	October 19, 2022		
Date of Test	October 25 ~ November 1, 2022		
Power Supply	Power from power supply.		
HW Version	1.0		
SW Version	1.0		
EUT Serial #	Radiated : 2610 #1		
Remark:	1		

Remark:

1. For more details, refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Page: 5 / 39

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

RSS-247, 5.1 (a): The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Page: 6 / 39

Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.4 ANTENNA INFORMATION

Antenna Specification	🗌 PIFA 🖾 Chip 🔲 Dipole 🗌 Coils
Antenna Gain	molex / 2119640001 Gain: 2.7 dBi

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

Page: 7 / 39

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Radiated Emission_9kHz-30MHz	± 3.814
Radiated Emission_30MHz-200MHz	± 4.272
Radiated Emission_200MHz-1GHz	± 4.619
Radiated Emission_1GHz-6GHz	± 5.522
Radiated Emission_6GHz-18GHz	± 5.228
Radiated Emission_18GHz-26GHz	± 4.089
Radiated Emission_26GHz-40GHz	± 4.019

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 8 / 39

Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan 24803

CAB identifier: TW1309

Test site	Test Engineer	Remark
Radiation	Ray Li, Tony Chao	-

Remark:

1. The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

2. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.7 INSTRUMENT CALIBRATION

3M 966 Chamber Test Site						
Equipment	Manufacturer Model Serial Number Cal Date Cal D					
K-Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	2021-12-05	2022-12-04	
Bi-Log Antenna	Sunol Sciences	JB3	A030105	2022-08-03	2023-08-02	
Spectrum Analyzer	Agilent	E4446A	MY46180323	2021-12-06	2022-12-05	
Thermo-Hygro Meter	WISEWIND	1206	D07	2021-12-28	2022-12-27	
Loop Antenna	COM-POWER	AL-130	121051	2022-04-13	2023-04-12	
Coaxial Cable	EMCI	EMC101G- KM-KM-500	211041	2021-12-23	2022-12-22	
Coaxial Cable	EMC	EMC101G-KM-KM-9000	211042	2021-12-23	2022-12-22	
Horn Antenna	ETS LINDGREN	3116	00026370	2021-11-30	2022-11-29	
Cable	Woken	J-1099	201709090004	2021-12-23	2022-12-22	
Preamplifier	EMEC	EM330	060609	2022-02-23	2023-02-22	
Preamplifier	HP	8449B	3008A00965	2021-12-24	2022-12-23	
Band Reject Filter	MICRO TRONICS	BRM 50702	112	2021-11-23	2022-11-22	
Cable	Huber+Suhner	104PEA	20995+11112+182330	2022-02-23	2023-02-22	
Coaxial Cable	EMCI	EMC105	190914+33953	2022-06-15	2023-06-14	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2022-01-25	2023-01-24	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Software	Software e3 6.11-20180419c					

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 9 / 39

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment					
No.	No. Equipment Brand Model Series No. FCC ID					
	N/A					

	Support Equipment							
No.	No. Equipment Brand Model Series No. FCC ID							
1	NB(G)	Lenovo	IBM 1951	N/A	N/A			

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5.

Page: 10 / 39

Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

2. TEST SUMMARY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.3	Antenna Requirement	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.1	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.1	Radiation Spurious Emission	Pass

Page: 11 / 39

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 12 / 39

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G				
Test Condition	Radiated Emission Above 1G			
Power supply Mode	Mode 1: EUT power by Power supply			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Radiated Emission Measurement Below 1G						
Test Condition	Test Condition Radiated Emission Below 1G					
Power supply Mode	Power supply Mode Mode 1: EUT power by Power supply					
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report

Page: 13 / 39

Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

4. TEST RESULT

4.1 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.1.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 14 / 39

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

<u>RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies</u> <u>Below 30 MHz (Transmit)</u>

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Page: 15 / 39

4.1.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

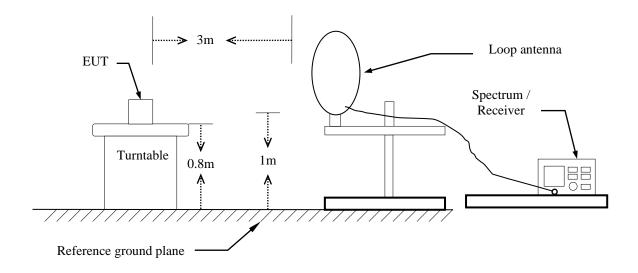
4. For harmonic, the worst case of output power was BDR-1Mbps. Therefore only BDR-1Mbps record in the report.

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

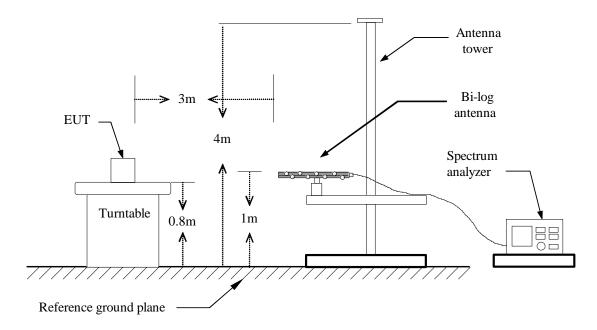
If Duty Cycle \geq 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW≥1/T.

6. Data result

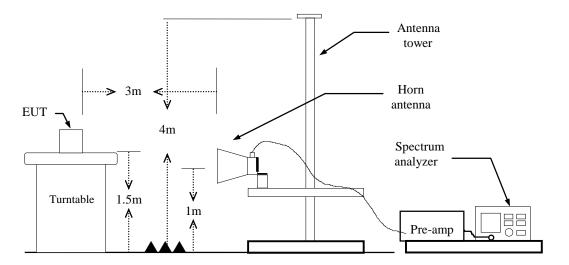

Actual FS=Spectrum Reading Level+Factor

Margin=Actual FS- Limit



Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02 4.1.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page: 16 / 39

Above 1 GHz

Page: 18 / 39

4.1.4 Test Result

Band Edge Test Data

Test Mode:	GFSK_BDR-1Mbps Low CH	Temp/Hum	24.5(°C)/ 62%RH
Test Item	Band Edge	Test Date	November 1, 2022
Polarize	Vertical	Test Engineer	Tony Chao
Detector	Peak / Average		
120 Level (dBuV/ 105.0 90.0 75.0 60.0 45.0 30.0 15.0			
0 2310	2428. 2546. Frequency	2664. 27 (MHz)	82. 2900
Trace: 1			

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
2330.30	Peak	39.66	7.61	47.27	74.00	-26.73
2389.65	Average	29.37	7.75	37.12	54.00	-16.88
2402.00	Peak	83.80	7.79	91.59		
2402.00	Average	83.71	7.79	91.50		
2497.97	Peak	38.96	8.33	47.29	74.00	-26.71
2497.97	Average	29.63	8.33	37.96	54.00	-16.04

2366.99

2402.00

2402.00

2497.97

2499.74

Peak

Peak

Average

Average

Peak

Page: 19 / 39 Report No.: TMWK2210004209KR Ref. No.: T201215W01-RP1 Rev.: 02

		GFSK_BDR-1N Low CH	/lbps	Temp/Hum	24.5(°C	24.5(°C)/ 61%RF	
Test Ite	em	Band Edge	•	Test Date	Octobe	er 25, 2022	
Polariz	ze	Horizontal	-	lest Engineer		ay Li	
Detect	tor	Peak / Averag	ge				
120 Lev 105.0 90.0 75.0 60.0 45.0 30.0 15.0	vel (dBuV/m)						
0 2310) 242 ace: 1		5. 2 quency (M		2782.	2900	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
	DICIODIAN	dDul/	dB	dDuV/m			
MHz	PK/QP/AV	dBµV	uБ	dBµV/m	dBµV/m	dB	

7.69

7.79

7.79

8.33

8.34

47.38

93.54

93.37

40.06

48.99

74.00

- -

- -

54.00

74.00

-26.62

- -

- -

-13.94

-25.01

39.70

85.75

85.57

31.73

40.65

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Test Mod	le: GF	SK_BDR-1Mbp High CH	s Tem	p/Hum	24.5(°C)/	61%RH
Test Ite	m	Band Edge	Tes	t Date	October	26, 2022
Polariz	e	Vertical	Test E	Ingineer	Ra	y Li
Detecto	or 🔰	Peak / Average				
105.0	vel (dBuV/m)					
90.0						
75.0						
60.0						
45.0			and the second second			
30.0						
15.0						
o						
231	0 24	28. 2546 Fre	5. 26 quency (MH		2782.	2900
Т	race: 1					
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
		_	dB 7.74	-		dB -17.04
2385.99	PK/QP/AV	dBµV		dBµV/m	dBµV/m	
2385.99 2387.17	PK/QP/AV Average	dBμV 29.22	7.74	dBµV/m 36.96	dBμV/m 54.00	-17.04
2385.99 2387.17 2480.00	PK/QP/AV Average Peak	dBμV 29.22 39.06	7.74 7.74	dBµV/m 36.96 46.81	dBμV/m 54.00 74.00	-17.04 -27.19
MHz 2385.99 2387.17 2480.00 2480.00 2483.70	PK/QP/AV Average Peak Peak	dBμV 29.22 39.06 82.29	7.74 7.74 8.24	dBμV/m 36.96 46.81 90.53	dBμV/m 54.00 74.00 	-17.04 -27.19

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Test M	lode:	GFSK_BDR-1 High CH	Mbps	Temp/Hum	24.5(°C	C)/ 61%RH
Test I	tem	Band Edg	e	Test Date	Octobe	er 26, 2022
Pola	rize	Horizonta	I .	Test Enginee	r R	ay Li
Dete	ctor	Peak / Avera	age			
120 Lev	vel (dBuV/m)				1 1	
105.0						
90.0						
75.0						
60.0						
45.0		anadar Marianda Luta				-
30.0						
15.0						
₀Ц						
0 231		28. 2546 Free	i. 2 quency (M		2782.	2900
Т	race: 1					
Freq.						
	Detector	Spectrum	Factor	Actual	Limit	Margin
	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz		Spectrum Reading Level dBµV	Factor dB			Margin dB
	Mode	Reading Level		FS	@3m	
MHz 2311.65 2379.03	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
2311.65	Mode PK/QP/AV Peak	Reading Level dBµV 39.76	dB 7.58	FS dBµV/m 47.34	@ 3m dBμV/m 74.00	d B -26.66
2311.65 2379.03 2480.00	Mode PK/QP/AV Peak Average	Reading Level dBµV 39.76 30.04	dB 7.58 7.72	FS dBµV/m 47.34 37.76	@3m dBµV/m 74.00 54.00	dB -26.66 -16.24
2311.65 2379.03	Mode PK/QP/AV Peak Average Peak	Reading Level dBµV 39.76 30.04 91.33	dB 7.58 7.72 8.24	FS dBµV/m 47.34 37.76 99.58	@3m dBµV/m 74.00 54.00	dB -26.66 -16.24

Page: 21 / 39

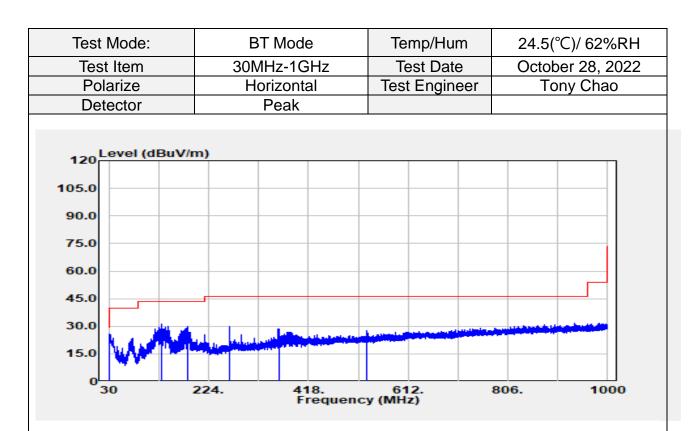
Test Moc	le: 8l	DPSK_EDR-3M Low CH	bps	Temp/Hum	n 24.5(°	C)/ 62%R
Test Iter	n	Band Edge		Test Date	Noven	nber 1, 202
Polarize		Vertical		Test Engine	er To	ny Chao
Detecto	r	Peak / Average	e			
120	vel (dBuV/m)					
105.0						
90.0						
75.0						
60.0						
45.0				geneles a biethteres st		
30.0						
15.0						
231	0 242				2782.	2900
т	race: 1	Fre	quency (M	Hz)		
Freq	Detector	Spectrum	Factor	Actual	Limit	Margin
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual	Limit @3m	Margin
Freq. MHz	Detector Mode PK/QP/AV	Spectrum Reading Level dBµV	Factor	Actual FS dBµV/m	Limit @3m dBµV/m	Margin dB
MHz	Mode	Reading Level		FS	@3m	
MHz 2337.26	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
MHz 2337.26 2383.51	Mode PK/QP/AV Peak	Reading Level dBµV 39.80	dB 7.62	FS dBµV/m 47.42	@3m dBµV/m 74.00	d B -26.58
MHz 2337.26 2383.51 2402.00	Mode PK/QP/AV Peak Average	Reading Level dBµV 39.80 29.33	dB 7.62 7.73	FS dBμV/m 47.42 37.06	@3m dBµV/m 74.00 54.00	dB -26.58 -16.94
	Mode PK/QP/AV Peak Average Peak	Reading Level dBµV 39.80 29.33 80.91	dB 7.62 7.73 7.79	FS dBµV/m 47.42 37.06 88.70	@3m dBµV/m 74.00 54.00	dB -26.58 -16.94

Fest Mode	e: 8DP	SK_EDR-3Mbp Low CH	S .	Temp/Hum	24.5(°0	C)/ 61%Rł
Test Item		Band Edge		Test Date	Octobe	er 26, 202
Polarize		Horizontal	Te	est Engineer		Ray Li
Detector	P	eak / Average				
120 Le	vel (dBuV/m)					
105.0						
90.0						
75.0 -						
60.0						
45.0						
30.0						
15.0						
0 231	0 242	28. 2546	20	664.	2782.	2900
				104.	2/82.	2900
т	race: 1	Fre	quency (Mi	1z)	2182.	2900
Treq.	race: 1 Detector	Spectrum	quency (Mi	Hz) Actual	Limit	Margin
	race: 1	Fre	quency (Mł	iz)		
Freq.	Detector Mode	Free Spectrum Reading Level	quency (Mi	Actual FS	Limit @3m	Margin
Freq. MHz	Detector Mode PK/QP/AV	Free Spectrum Reading Level dBµV	Factor dB	Actual FS dBμV/m	Limit @3m dBµV/m	Margin dB
Freq. MHz 2322.27	Detector Mode PK/QP/AV Average	Free Spectrum Reading Level dBµV 29.63	Factor dB 7.60	Actual FS dBµV/m 37.23	Limit @3m dBμV/m 54.00	Margin dB -16.77
Freq. MHz 2322.27 2371.36	Detector Mode PK/QP/AV Average Peak	Free Spectrum Reading Level dBµV 29.63 39.32	Factor dB 7.60 7.70	Actual FS dBµV/m 37.23 47.02	Limit @3m dBµV/m 54.00 74.00	Margin dB -16.77 -26.98
Freq. MHz 2322.27 2371.36 2402.00	Detector Mode PK/QP/AV Average Peak Peak	Free Spectrum Reading Level dBµV 29.63 39.32 83.08	Factor dB 7.60 7.70 7.79	Actual FS dBµV/m 37.23 47.02 90.87	Limit @3m dBµV/m 54.00 74.00	Margin dB -16.77 -26.98

Test Mo	de:	8	DPSK_EDR-3I High CH	Vbps	Temp/I	Hum	24.5(°C)/ 61%F
Test Ite	m		Band Edge		Test D	Date	Octob	per 26, 20
Polariz	е		Vertical		Test Eng	gineer		Ray Li
Detecto	or		Peak / Averag	ge				
120 Le	vel (dBu	IV/m)						
105.0								
90.0								_
75.0								_
60.0								
45.0								
30.0								
15.0								
0 231 T		242		6. equency (N	2664. 1Hz)	2782	•	2900
	race: 1							
Freq.	Detec		Spectrum Reading Level	Factor	Actual		imit 23m	Margin
Freq. MHz	Detec	de	-	Factor	Actual	Q		Margin dB
-	Detec	de P/AV	Reading Level		Actual	a n dB	23m	-
MHz	Detec Moc PK/QF	de P/AV ak	Reading Level dBµV	dB	Actual FS dBµV/n	n dB	23m µV/m	dB
MHz 2368.06	Detec Moo PK/QF Pea	de P/AV ak age	Reading Level dBµV 39.03	dB 7.69	Actual FS dBµV/n 46.72	n dB 74 54	2 3m µV/m 4.00	d B -27.28
MHz 2368.06 2384.69	Detec Mod PK/QF Pea Avera	de P/AV ak age ak	Reading Level dBµV 39.03 29.33	dB 7.69 7.74	Actual FS dBµV/n 46.72 37.07	n dB 74 54	2 3m μV/m 4.00 4.00	dB -27.28 -16.93
MHz 2368.06 2384.69 2480.00	Detec Mod PK/QF Pea Avera Pea	de P/AV ak age ak age	Reading Level dBµV 39.03 29.33 83.67	dB 7.69 7.74 8.24	Actual FS dBµV/n 46.72 37.07 91.92	n dB 74 54	2 3m μV/m 4.00 4.00	dB -27.28 -16.93

Test Mod	le: 8	DPSK_EDR-3M High CH	lbps	Temp/Hu	m 2	4.5(°C)/ 61%R
Test Iter	n	Band Edge		Test Date	e C	ctober 26, 202
Polariz		Horizontal		Test Engin		Ray Li
Detecto	or	Peak / Averag	е			
120 Le	vel (dBuV/m)					
105.0						
90.0						
75.0						
60.0						
45.0						
30.0						
15.0						
0 231	0 242	28. 2546	5. 2	2664.	2782.	2900
т	race: 1	Fre	quency (N	IHZ)		
				_		
Eroa						
Freq.	Detector	Spectrum	Factor	Actual	Limit	0
	Mode	Reading Level		FS	@3m	ı J
MHz		Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/	m dB
	Mode	Reading Level		FS	@3m	m dB
MHz	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/	m dB
MHz 2373.01	Mode PK/QP/AV Peak	Reading Level dBµV 38.80	dB 7.70	FS dBμV/m 46.51	@3m dBµV/ 74.00	m dB
MHz 2373.01 2388.12	Mode PK/QP/AV Peak Average	Reading Level dBµV 38.80 29.26	dB 7.70 7.75	FS dBμV/m 46.51 37.01	@3m dBµV/ 74.00 54.00	m dB) -27.49) -16.99
MHz 2373.01 2388.12 2480.00	Mode PK/QP/AV Peak Average Peak	Reading Level dBµV 38.80 29.26 88.05	dB 7.70 7.75 8.24	FS dBμV/m 46.51 37.01 96.30	@3m dBµV/ 74.00 54.00	m dB) -27.49) -16.99

Page: 26 / 39


Below 1G Test Data

Test Mode:	BT Mode	Temp/Hum	24.5(°C)/ 62%RH
Test Item	30MHz-1GHz	Test Date	October 28, 2022
Polarize	Vertical	Test Engineer	Tony Chao
Detector	Peak		
120 Level (dBuV/r	m)		
105.0			
90.0			
75.0			
60.0			
45.0			
30.0	i finh and a second		A CONTRACTOR OF
15.0			
30	224. 418. Frequency		806. 1000

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
42.61	Peak	40.45	-11.72	28.73	40.00	-11.27
112.69	Peak	38.20	-10.15	28.06	43.50	-15.44
180.71	Peak	37.25	-11.79	25.45	43.50	-18.05
264.01	Peak	33.98	-9.44	24.54	46.00	-21.46
360.04	Peak	33.35	-7.44	25.91	46.00	-20.09
532.34	Peak	34.98	-3.33	31.65	46.00	-14.35
Note: No emiss	sion found betwe	en lowest interna	l used/genera	ted frequency	to 30MHz (9k	Hz~30MHz).

Page: 27 / 39

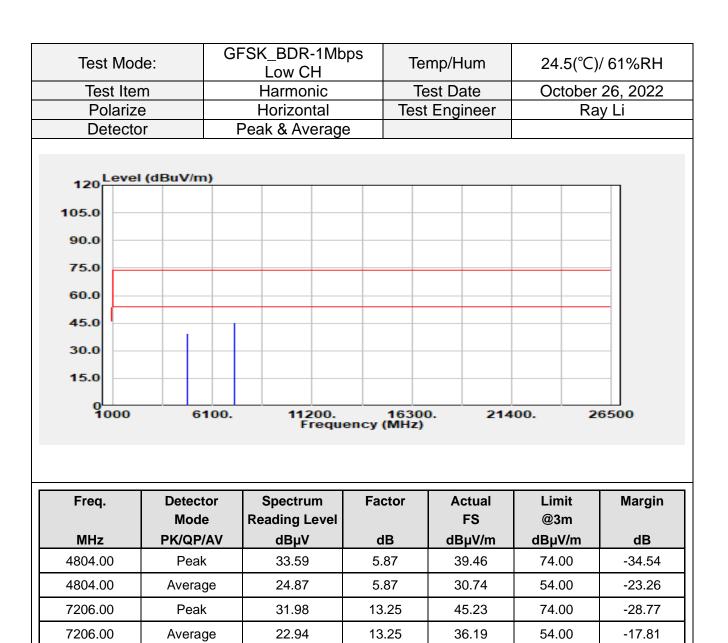
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
31.33	Peak	29.78	-3.85	25.93	40.00	-14.07
131.61	Peak	40.82	-9.58	31.24	43.50	-12.26
183.50	Peak	41.82	-11.75	30.08	43.50	-13.42
264.01	Peak	39.14	-9.44	29.70	46.00	-16.30
360.04	Peak	36.08	-7.44	28.64	46.00	-17.36
531.73	Peak	31.12	-3.34	27.78	46.00	-18.22
Note: No emissi	on found betwee	n lowest internal	used/generate	ed frequency to	30MHz (9kH	z~30MHz).

This document cannot be reproduced except in full, without prior written approval of the Company.本報告未經本公司書面許可,不可部份複製。

Page: 28 / 39

Above 1G Test Data

Test Mode:	GFSK_BDR-1Mbps Low CH	Temp/Hum	24.5(°C)/ 61%RH
Test Item	Harmonic	Test Date	October 26, 2022
Polarize	Vertical	Test Engineer	Ray Li
Detector	Peak & Average	~	*
120 Level (dBuV/m	n)		1
105.0			
90.0			
75.0			
60.0			
45.0			
30.0			
15.0			
0 1000 6 ⁻	100. 11200. Frequency (16300. 214 MHz)	00. 26500


Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.00	Peak	33.01	5.87	38.88	74.00	-35.12
4804.00	Average	24.40	5.87	30.27	54.00	-23.73
7206.00	Peak	31.73	13.25	44.98	74.00	-29.02
7206.00	Average	22.91	13.25	36.16	54.00	-17.84

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 29 / 39

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Test Mode:	GFSK_BDR-1Mbps Mid CH	Temp/Hum	24.5(°C)/ 61%RF
Test Item	Harmonic	Test Date	October 26, 2022
Polarize	Vertical	Test Engineer	Ray Li
Detector	Peak & Average	Ŭ	•
120 Level (dBuV/	/m)		
05.0			
90.0			
75.0			
60.0			
45.0			
30.0			
15.0			
0			
1000	6100. 11200. Frequency	16300. 214 (MHz)	00. 26500

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4882.00	Peak	33.46	6.14	39.60	74.00	-34.40
4882.00	Average	23.83	6.14	29.96	54.00	-24.04
7323.00	Peak	31.14	13.36	44.50	74.00	-29.50
7323.00	Average	22.56	13.36	35.92	54.00	-18.08

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Test Mod	le:		BDR-1Mb /lid CH	ops T	emp/Hum	24.5(°C)/ 61%RH
Test Iter	n	Ha	armonic	-	Test Date	Octobe	r 26, 2022
Polarize	3	Hc	orizontal	Te	st Engineer	R	ay Li
Detecto	r	Peak	& Averag	e			
120 Level 105.0 90.0 75.0 60.0 45.0 30.0 15.0			11200				26500
1000	61	00.	11200. Frequ	163 ency (MHz		400. 2	26500
					1	Limit	1
Freq.	Detecto Mode	e Read	bectrum ding Level	Factor	Actual FS	@3m	Margin
MHz	Mode PK/QP//	e Read	ding Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
	Mode	e Read	ding Level		FS	@3m	
MHz	Mode PK/QP//	e Read	ding Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
MHz 4882.00	Mode PK/QP// Peak	e Read AV	ding Level dBµV 32.78	dB 6.14	FS dBµV/m 38.92	@3m dBµV/m 74.00	dB -35.08

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 31 / 39

Test Mo	ode:	GF	SK_BDR-1MI High CH	ops	Temp/Hu	m 24	4.5(°C)/ 61%RH	
Test Ite	em		Harmonic		Test Date	e 0	October 26, 2022	
Polari	ze		Vertical	Te	est Engin	er	Ray Li	
Detec	tor	P	eak & Averag	е				
120 Lev	el (dBuV/n	1)						
90.0								
75.0								
60.0								
45.0								
30.0								
15.0								
0 1000	6	100.	11200.		300.	21400.	26500	
			Frequ	ency (MH	2)			
Freq.	Detec Mod		Spectrum	Factor	Acti		mit Margin 3m	
MHz				dB		-		
	PK/QP Peal		dΒμV 31.73	6.91	dBµ\ 38.0		JV/m dB .00 -35.36	
4960.00								
4960.00	Avera	ae	23.54	6.91	30.4	45 54	.00 -23.55	
4300.00		3-		0.01			20.00	

Remark:

7440.00

Average

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

13.22

36.26

54.00

-17.74

23.04

Page: 32 / 39

Test Mo	de: G	FSK_BDR-1Mb High CH	^{ps} Т	emp/Hum	24.5(°C	C)/ 61%RH
Test Ite	m	Harmonic	-	Test Date	Octobe	r 26, 2022
Polariz	е	Horizontal	Te	st Engineer		ay Li
Detecto	or	Peak & Average	9			
120 Leve 105.0 90.0 75.0 60.0 45.0 30.0 15.0	el (dBuV/m)	Image: Image				
0 1000	6100	. 11200. Frequ	163 Jency (MH		1400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
-	Mode	Reading Level		FS	@3m	-
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	32.19	6.91	39.11	74.00	-34.89
4960.00	Average	23.51	6.91	30.42	54.00	-23.58
	Peak	31.87	13.22	45.09	74.00	-28.91
7440.00	Peak	51.07				

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 33 / 39

Test Mo	ode	8DPSK_EDR- Low CH		Temp/H	lum	25.2(°C	C)/ 61%RH
Test Ite	em	Harmoni	с	Test Da	ate	October 26, 2022	
Polariz	ze	Vertical		Test Eng	ineer	Ton	y Chao
Detect	or	Peak & Ave	rage				
120 Leve 105.0 90.0 75.0 60.0 45.0 30.0 15.0	el (dBuV/m						
0 1000	6	100. 1120 Fre	00. equency (I	16300. WHz)	214	00.	26500
Freq.	Detect			or A	ctual	Limit	Margin
	Mode	- J - J - J			FS	@3m	
MHz	PK/QP/		dE		βµV/m	dBµV/m	dB
4804.00	Peak		5.8		9.19	74.00	-34.81
4804.00	Avera	ge 24.35	5.8	7 3	0.22	54.00	-23.78
7206.00	Peak	x 32.57	13.2	25 4	5.82	74.00	-28.18
1206.00							

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 34 / 39

Test Mo	ode	8DP\$	SK_EDR-3MI Low CH	^{bps} Te	mp/Hum	25.2(°C)/ 61%R	
Test Ite	em		Harmonic	Te	est Date	October	26, 2022
Polariz	ze		Horizontal	Tes	t Engineer	Tony	[,] Chao
Detect	or	Pe	eak & Average	e			
105.0 90.0 75.0 60.0	el (dBuV/n						
45.0 30.0							
0 1000	6	100.	11200. Frequ	1630 ency (MHz)	0. 214	00. 2	6500
	Detect	or	Spectrum	Factor	Actual FS	Limit @3m	Margin
Freq.	Mod	e F	Reading Level				
Freq. MHz			dBµV	dB	dBµV/m	dBµV/m	dB
	Mod	/AV	-	dB 5.87	_	dBμV/m 74.00	dB -34.93
MHz	Mod PK/QP	/AV	dBµV		dBµV/m		

Remark:

7206.00

Average

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

13.25

36.38

23.13

Page: 35 / 39

-17.62

54.00

Test Mod	le ^{8D}	PSK_EDR-3Mb Mid CH	ops Te	mp/Hum	25.2(°C)	/ 61%RH
Test Iter	n	Harmonic	Т	est Date	October	26, 2022
Polarize		Vertical		t Engineer		, Chao
Detecto	r	Peak & Average	e			
120 Level 105.0 90.0 75.0 60.0 45.0 30.0 15.0 0 1000	(dBuV/m) (dB		1630	0. 214		6500
		Freque	ency (MHz)			
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4882.00	Peak	32.10	6.14	38.23	74.00	-35.77
4882.00	Average	25.26	6.14	31.40	54.00	-22.60
	Peak	31.60	13.36	44.96	74.00	-29.04
7323.00	геак					

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 36 / 39

Test Mo	ode	8DPSK_EDR-3M Mid CH	^{bps} Te	mp/Hum	25.2(°C)	/ 61%RH
Test Ite	em	Harmonic	Te	est Date	October	26, 2022
Polariz	ze	Horizontal		t Engineer	Tony	Chao
Detect	or	Peak & Average	e			
105.0 90.0 75.0 60.0 45.0 30.0 15.0	el (dBuV/m)	Image:				
1000	61	00. 11200. Frequ	1630 ency (MHz)	0. 214	00. 2	6500
Freq.	Detecto		Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
			dB	dBµV/m	dBµV/m	dB
MHz	PK/QP/A			-	74.00	<u> </u>
4882.00	PK/QP/A Peak	Δ dBμV 32.54	6.14	38.67	74.00	-35.33
		32.54		-	74.00 54.00	-35.33 -22.48
4882.00	Peak	32.54	6.14	38.67		

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 37 / 39

Test Mo	de 80	DPSK_EDR-3M High CH	^{bps} Te	mp/Hum	25.2(°C)	/ 61%RH
Test Ite	m	Harmonic	Te	est Date	October 26, 2022	
Polariz	е	Vertical	Test	t Engineer	Tony	Chao
Detecto	or	Peak & Averag	е			
120 Leve	l (dBuV/m)					
105.0						-
90.0						_
75.0						_
60.0						_
45.0						
30.0						_
15.0						_
01000	6100.	11200. Frequ	1630 ency (MHz)	0. 214	400. 2	6500
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	32.26	6.91	39.17	74.00	-34.83
4960.00	Average	23.52	6.91	30.43	54.00	-23.57
1000.00						
7440.00	Peak	31.65	13.22	44.87	74.00	-29.13

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 38 / 39

Test Mod	de	8DP	SK_EDR-3M High CH	bps	Ter	mp/Hum	25	.2(°C)	/ 61%RH
Test Iter	n		Harmonic		Те	st Date	00	tober	26, 2022
Polarize	Э		Horizontal		Test Engineer				Chao
Detecto	r	Pe	eak & Averag	е					
120 Level 105.0 90.0 75.0 60.0 45.0 30.0 15.0	(dBuV/m								
0 1000	0 1000 610		11200. Frequ	1 ency (N	6300 (Hz)). 21	1400.	2	6500
Freq.	Detect Mode		Spectrum Reading Level	Facto	or	Actual FS	Lir @:		Margin
MHz	PK/QP/	AV	dBµV	dB		dBµV/m	dBµ	V/m	dB
4960.00	Peak		32.51	6.91	I.	39.42	74.	00	-34.58
4960.00	Averaç	je	23.64	6.91	I	30.55	54.	00	-23.45
7440.00	Peak		31.79	13.2	2	45.01	74.	00	-28.99
				13.2		37.61	1	00	-16.39

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- End of Test Report -

Page: 39 / 39