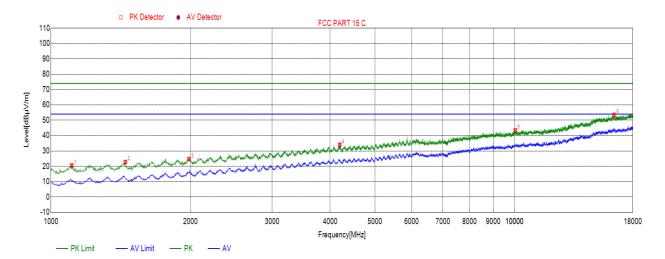

Test Mode	Channel	Polarization	Verdict
11ac HT20	LCH	Vertical	PASS

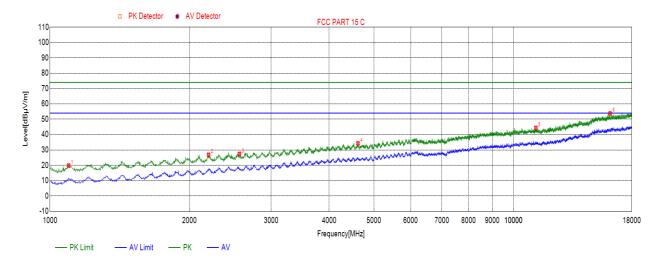
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1210.8211	20.51	74.00	-53.49	peak
2	1542.3542	22.17	74.00	-51.83	peak
3	2304.0304	26.72	74.00	-47.28	peak
4	3191.5192	30.03	74.00	-43.97	peak
5	4905.2905	34.26	74.00	-39.74	peak
6	15946.1946	53.54	74.00	-20.46	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.1328	21.46	74.00	-52.54	peak
2	2650.8651	28.02	74.00	-45.98	peak
3	3971.8972	33.10	74.00	-40.90	peak
4	11558.0558	45.11	74.00	-28.89	peak
5	13603.3603	48.22	74.00	-25.78	peak
6	16544.6545	53.39	74.00	-20.61	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1108.8109	20.56	74.00	-53.44	peak
2	1447.1447	22.80	74.00	-51.20	peak
3	1984.3984	24.67	74.00	-49.33	peak
4	4198.0198	34.00	74.00	-40.00	peak
5	10034.7035	43.41	74.00	-30.59	peak
6	16396.7397	53.51	74.00	-20.49	peak

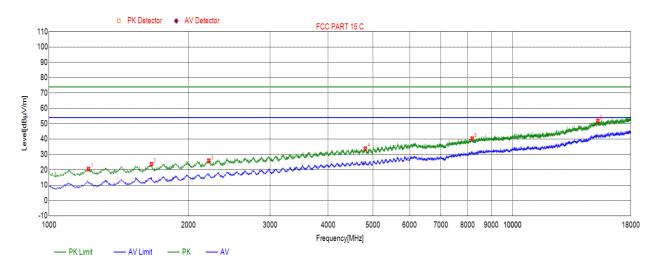
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1096.9097	19.80	74.00	-54.20	peak
2	2198.6199	26.83	74.00	-47.17	peak
3	2562.4562	27.40	74.00	-46.60	peak
4	4617.9618	34.29	74.00	-39.71	peak
5	11175.5176	44.36	74.00	-29.64	peak
6	16155.3155	53.81	74.00	-20.19	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

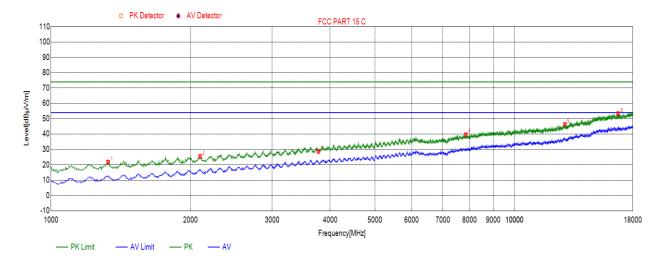
Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1190.4190	19.20	74.00	-54.80	peak
2	2196.9197	26.53	74.00	-47.47	peak
3	3293.5294	30.30	74.00	-43.70	peak
4	5034.5035	34.14	74.00	-39.86	peak
5	6154.9155	39.61	74.00	-34.39	peak
6	14830.8831	52.22	74.00	-21.78	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

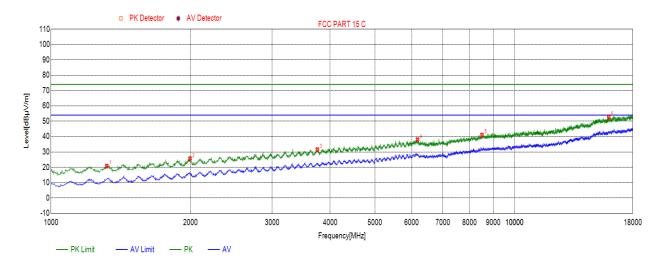
3. 802.11ac HT40

Test Graphs(Worst Case: Antenna 2):


Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Horizontal	PASS

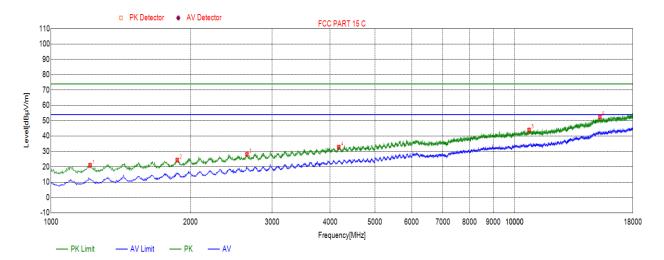
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1217.6218	20.46	74.00	-53.54	peak
2	1663.0663	23.65	74.00	-50.35	peak
3	2212.2212	25.91	74.00	-48.09	peak
4	4811.7812	33.80	74.00	-40.20	peak
5	8184.9185	40.38	74.00	-33.62	peak
6	15284.8285	51.82	74.00	-22.18	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.1328	21.84	74.00	-52.16	peak
2	2096.6097	25.46	74.00	-48.54	peak
3	3774.6775	28.66	74.00	-45.34	peak
4	7848.2848	39.61	74.00	-34.39	peak
5	12845.0845	46.32	74.00	-27.68	peak
6	16726.5727	53.41	74.00	-20.59	peak

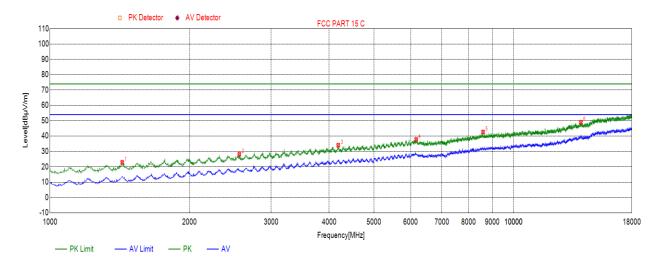
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a c HT40	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1319.6320	20.80	74.00	-53.20	peak
2	1994.5995	25.66	74.00	-48.34	peak
3	3754.2754	31.55	74.00	-42.45	peak
4	6175.3175	38.06	74.00	-35.94	peak
5	8507.9508	41.03	74.00	-32.97	peak
6	15969.9970	52.85	74.00	-21.15	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

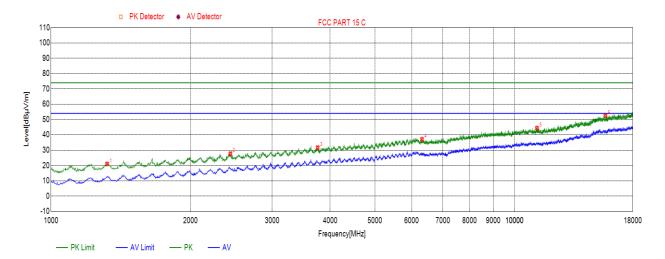
Test Mode	Channel	Polarization	Verdict
11ac HT40	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1214.2214	21.04	74.00	-52.96	peak
2	1872.1872	24.41	74.00	-49.59	peak
3	2647.4647	28.15	74.00	-45.85	peak
4	4177.6178	32.80	74.00	-41.20	peak
5	10748.7749	44.02	74.00	-29.98	peak
6	15284.8285	52.42	74.00	-21.58	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

4. 802.11ac HT80

Test Graphs(Worst Case: Antenna 2):

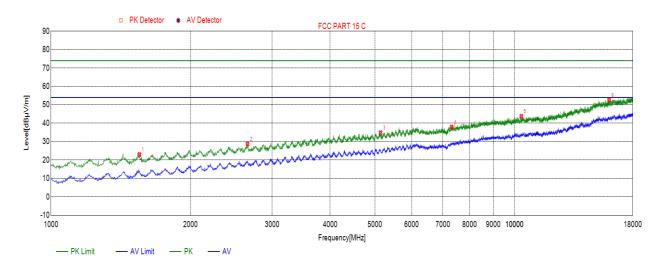

Test Mode	Channel	Polarization	Verdict
11ac HT80	LCH & MCH & HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1431.8432	22.90	74.00	-51.10	peak
2	2560.7561	28.12	74.00	-45.88	peak
3	4186.1186	34.05	74.00	-39.95	peak
4	6165.1165	37.81	74.00	-36.19	peak
5	8594.6595	42.67	74.00	-31.33	peak
6	13975.6976	49.02	74.00	-24.98	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict
11ac HT80	LCH & & MCH & HCH	Vertical	PASS

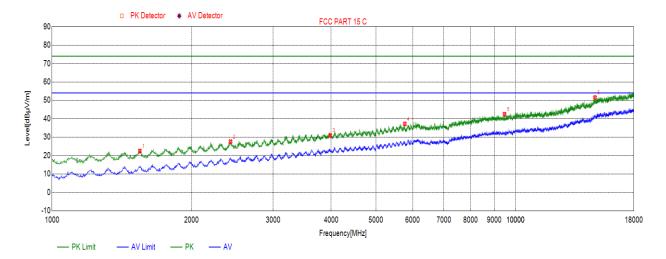
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1321.3321	21.01	74.00	-52.99	peak
2	2438.3438	27.70	74.00	-46.30	peak
3	3761.0761	31.65	74.00	-42.35	peak
4	6314.7315	37.11	74.00	-36.89	peak
5	11178.9179	44.39	74.00	-29.61	peak
6	15708.1708	52.57	74.00	-21.43	peak


- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

6.2.2. UNII-2A BAND

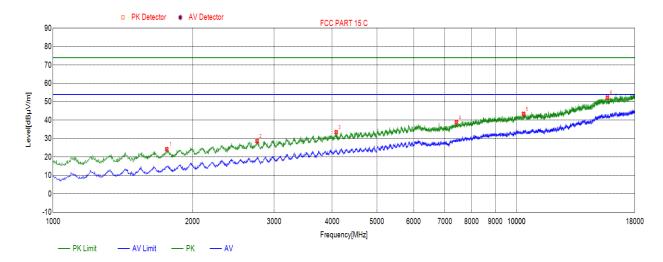
1. 802.11a

<u>Test Graphs(Worse Case: Antenna 2):</u>


Test Mode	Channel	Polarization	Verdict
11a	LCH	Horizontal	PASS

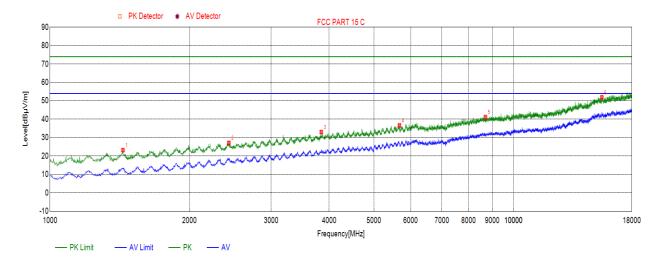
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1550.8551	23.01	74.00	-50.99	peak
2	2654.2654	28.74	74.00	-45.26	peak
3	5141.6142	34.88	74.00	-39.12	peak
4	7317.8318	37.92	74.00	-36.08	peak
5	10340.7341	43.79	74.00	-30.21	peak
6	15993.7994	52.60	74.00	-21.40	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a	LCH	Vertical	PASS

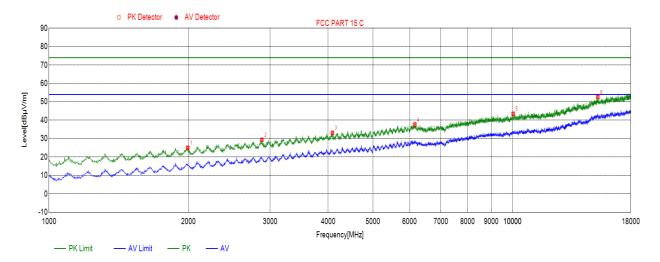
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1547.4547	22.47	74.00	-51.53	peak
2	2428.1428	27.55	74.00	-46.45	peak
3	3983.7984	30.97	74.00	-43.03	peak
4	5770.6771	37.19	74.00	-36.81	peak
5	9471.9472	42.47	74.00	-31.53	peak
6	14839.3839	51.52	74.00	-22.48	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a	MCH	Vertical	PASS

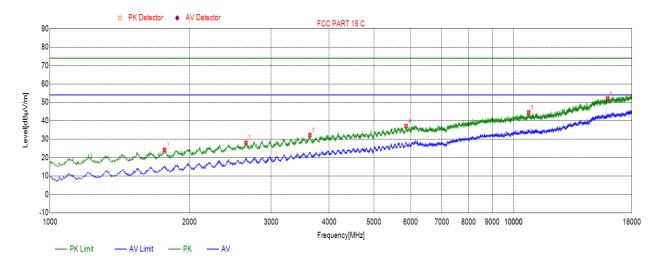
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1759.9760	24.23	74.00	-49.77	peak
2	2756.2756	28.66	74.00	-45.34	peak
3	4082.4082	33.48	74.00	40.52	peak
4	7421.5422	38.87	74.00	-35.13	peak
5	10356.0356	43.44	74.00	-30.56	peak
6	15708.1708	52.30	74.00	-21.70	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Channel Polarization	
11a	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1436.9437	23.19	74.00	-50.81	peak
2	2431.5432	27.17	74.00	-46.83	peak
3	3847.7848	33.05	74.00	-40.95	peak
4	5673.7674	36.63	74.00	-37.37	peak
5	8694.9695	41.13	74.00	-32.87	peak
6	15510.9511	51.94	74.00	-22.06	peak

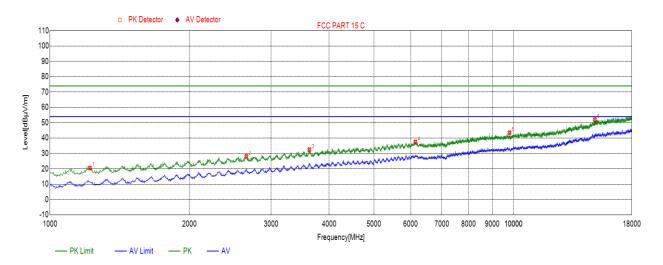
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1992.8993	25.06	74.00	-48.94	peak
2	2878.6879	29.36	74.00	-44.64	peak
3	4087.5088	33.14	74.00	-40.86	peak
4	6156.6157	37.67	74.00	-36.33	peak
5	10031.3031	43.55	74.00	-30.45	peak
6	15272.9273	52.67	74.00	-21.33	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

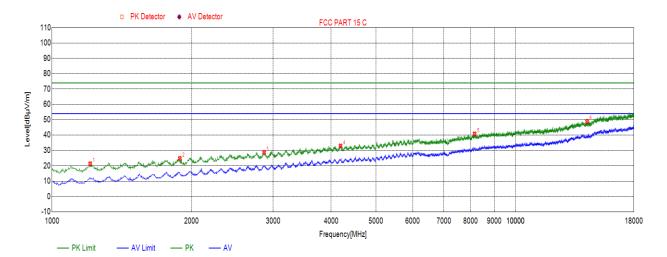
Test Mode	Channel	Polarization	Verdict
11a	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1766.7767	24.21	74.00	-49.79	peak
2	2647.4647	28.07	74.00	-45.93	peak
3	3635.2635	32.22	74.00	-41.78	peak
4	5862.4862	37.12	74.00	-36.88	peak
5	10782.7783	44.56	74.00	-29.44	peak
6	15956.3956	52.05	74.00	-21.95	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

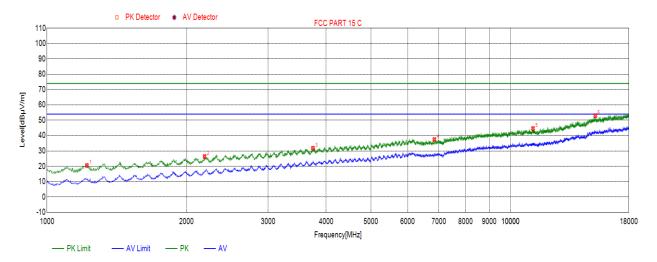
2. 802.11ac HT20

Test Graphs(Worst Case: Antenna 1+Antenna 2):


Test Mode	Channel	Polarization	Verdict
11ac HT20	LCH	Horizontal	PASS

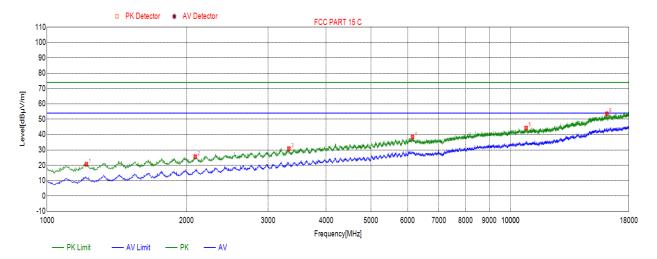
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1219.3219	20.52	74.00	-53.48	peak
2	2650.8651	28.12	74.00	-45.88	peak
3	3626.7627	32.50	74.00	-41.50	peak
4	6141.3141	37.50	74.00	-36.50	peak
5	9801.7802	43.52	74.00	-30.48	peak
6	14983.8984	52.10	74.00	-21.90	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	LCH	Vertical	PASS

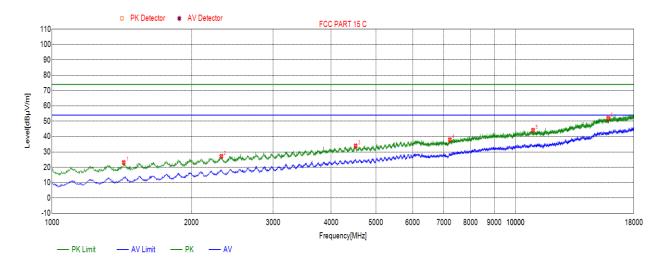
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1209.1209	21.33	74.00	-52.67	peak
2	1887.4887	24.83	74.00	-49.17	peak
3	2868.4868	28.71	74.00	-45.29	peak
4	4192.9193	32.93	74.00	-41.07	peak
5	8161.1161	40.82	74.00	-33.18	peak
6	14269.8270	48.90	74.00	-25.10	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Vertical	PASS

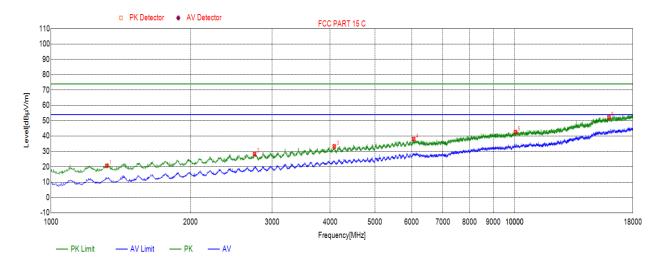
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1219.3219	20.51	74.00	-53.49	peak
2	2188.4188	26.34	74.00	-47.66	peak
3	3747.4747	31.75	74.00	-42.25	peak
4	6850.2850	37.46	74.00	-36.54	peak
5	11180.6181	44.61	74.00	-29.39	peak
6	15235.5236	52.92	74.00	-21.08	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1215.9216	20.67	74.00	-53.33	peak
2	2088.1088	25.62	74.00	-48.38	peak
3	3325.8326	30.83	74.00	-43.17	peak
4	6144.7145	38.31	74.00	-35.69	peak
5	10804.8805	44.27	74.00	-29.73	peak
6	16140.0140	53.60	74.00	-20.40	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Horizontal	PASS

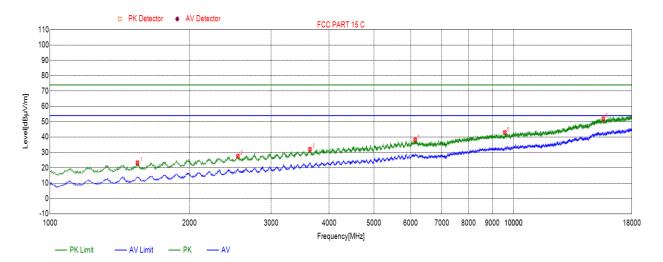
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1428.4428	23.09	74.00	-50.91	peak
2	2319.3319	27.10	74.00	-46.90	peak
3	4519.3519	33.94	74.00	-40.06	peak
4	7217.5218	37.94	74.00	-36.06	peak
5	10908.5909	44.13	74.00	-29.87	peak
6	15845.8846	51.86	74.00	-22.14	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1319.6320	20.63	74.00	-53.37	peak
2	2749.4749	28.29	74.00	-45.71	peak
3	4084.1084	33.26	74.00	-40.74	peak
4	6061.4061	38.04	74.00	-35.96	peak
5	10041.5042	42.64	74.00	-31.36	peak
6	15983.5984	52.24	74.00	-21.76	peak

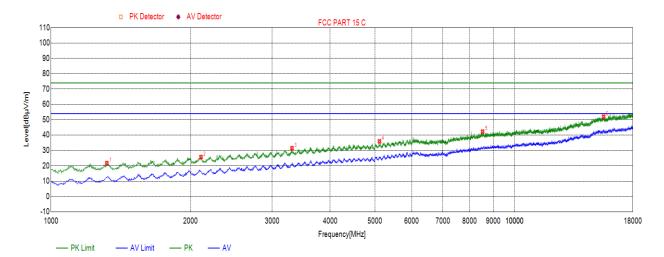
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


REPORT NO: 4788224831-3 FCC ID: VPYLB1FD

3. 802.11ac HT40

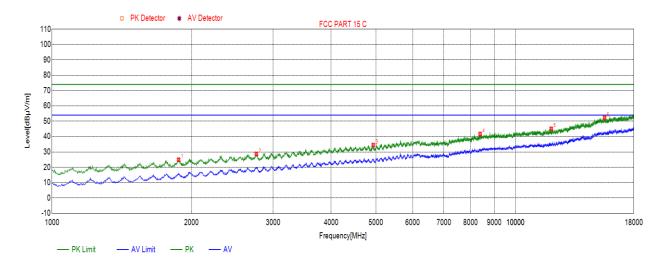
Test Graphs(Worst Case: Antenna 2):

Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Horizontal	PASS


DATE: Feb. 11, 2018 IC ID: 772C-LB1FD

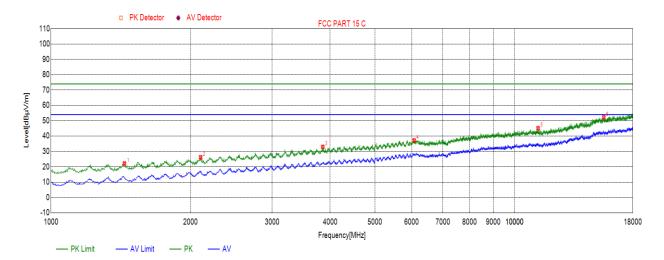
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1544.0544	23.29	74.00	-50.71	peak
2	2543.7544	27.53	74.00	-46.47	peak
3	3638.6639	32.05	74.00	-41.95	peak
4	6136.2136	38.25	74.00	-35.75	peak
5	9579.0579	43.01	74.00	-30.99	peak
6	15619.7620	51.91	74.00	-22.09	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1319.6320	21.72	74.00	-52.28	peak
2	2106.8107	25.65	74.00	-48.35	peak
3	3310.5311	31.44	74.00	-42.56	peak
4	5112.7113	35.91	74.00	-38.09	peak
5	8533.4533	42.25	74.00	-31.75	peak
6	15567.0567	51.96	74.00	-22.04	peak

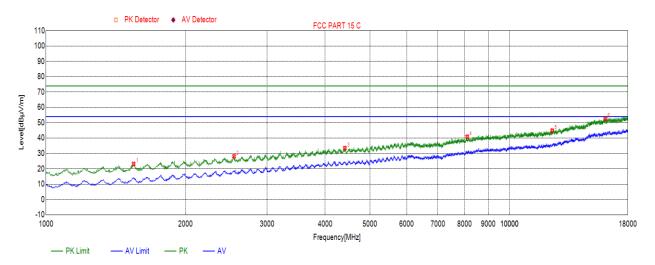
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a c HT40	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1875.5876	24.95	74.00	-49.05	peak
2	2759.6760	28.72	74.00	-45.28	peak
3	4932.4932	34.46	74.00	-39.54	peak
4	8387.2387	41.72	74.00	-32.28	peak
5	11938.8939	45.10	74.00	-28.90	peak
6	15565.3565	52.30	74.00	-21.70	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

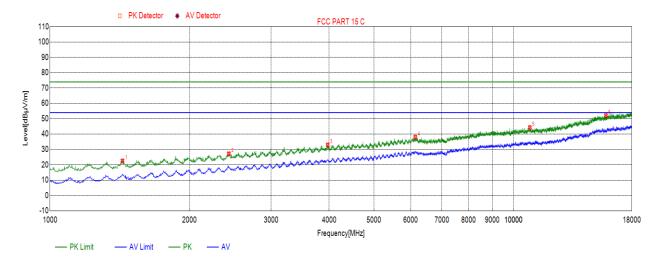
Test Mode	Channel	Polarization	Verdict
11ac HT40	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.3440	22.13	74.00	-51.87	peak
2	2103.4103	26.15	74.00	-47.85	peak
3	3857.9858	32.94	74.00	-41.06	peak
4	6073.3073	37.20	74.00	-36.80	peak
5	11240.1240	45.12	74.00	-28.88	peak
6	15584.0584	52.21	74.00	-21.79	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

4. 802.11ac HT80

Test Graphs(Worst Case: Antenna 2):

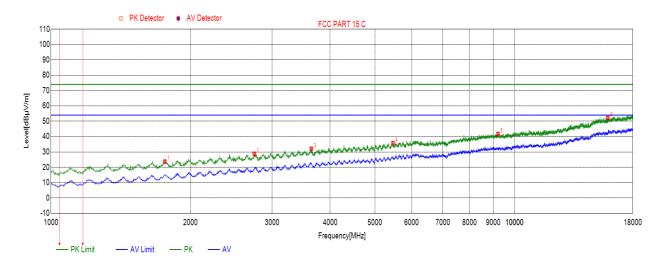

Test Mode	Channel	Polarization	Verdict
11ac HT80	LCH & MCH & HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1545.7546	23.10	74.00	-50.90	peak
2	2545.4545	28.08	74.00	-45.92	peak
3	4413.9414	33.44	74.00	-40.56	peak
4	8105.0105	40.87	74.00	-33.13	peak
5	12358.8359	44.90	74.00	-29.10	peak
6	16087.3087	52.61	74.00	-21.39	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict
11ac HT80	LCH & & MCH & HCH	Vertical	PASS

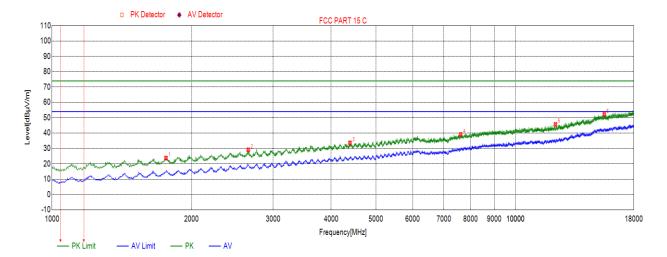
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1433.5434	22.57	74.00	-51.43	peak
2	2431.5432	27.22	74.00	-46.78	peak
3	3973.5974	32.94	74.00	-41.06	peak
4	6137.9138	38.03	74.00	-35.97	peak
5	10845.6846	44.27	74.00	-29.73	peak
6	15822.0822	52.16	74.00	-21.84	peak


- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

6.2.3. UNII-2C BAND

1. 802.11a

Test Graphs(Worse Case: Antenna 2):


Test Mode	Channel	Polarization	Verdict
11a	LCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1759.9760	23.73	74.00	-50.27	peak
2	2746.0746	28.81	74.00	-45.19	peak
3	3643.7644	32.05	74.00	-41.95	peak
4	5468.0468	35.71	74.00	-38.29	peak
5	9213.5214	41.70	74.00	-32.30	peak
6	15893.4893	52.29	74.00	-21.71	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict
11a	LCH	Vertical	PASS

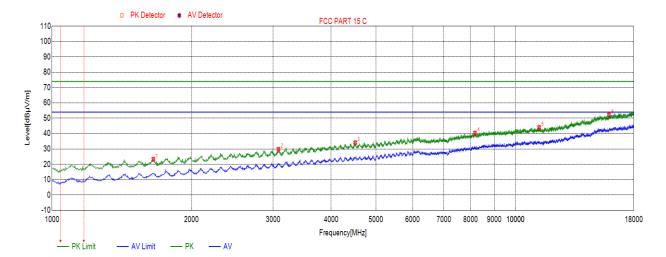
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1761.6762	23.70	74.00	-50.30	peak
2	2650.8651	29.14	74.00	-44.86	peak
3	4393.5394	33.66	74.00	-40.34	peak
4	7615.3615	39.12	74.00	-34.88	peak
5	12192.2192	45.66	74.00	-28.34	peak
6	15538.1538	52.16	74.00	-21.84	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict

FCC ID: VPYLB1FD

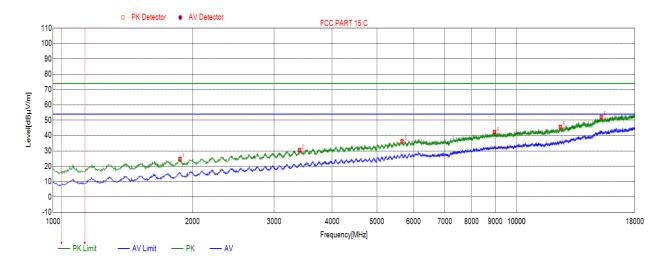
11a MCH Vertical PASS


DATE: Feb. 11, 2018

110_					PART 15 C						
100								1			
90								 			
80								-			
70								-			
60											
50								-			The second secon
40						ļ		5		والمراواين	A PROPERTY AND PRO
30				. 83	March March 1		And the State of t	Application.	***	وتامرسيات	The State of the S
20		متحدد فللاشخرون بالمتحدد	Later Lacor Lago Harrison Later Late	~~~~~	·····	M	الزميوم يهدمهم المدر	-			
10				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
10											
0											
-10□ 1000	0	20	00 30	100 40	100 50	000 60	100 70	000 80	00 90	00 10	000
					quency[MHz]						

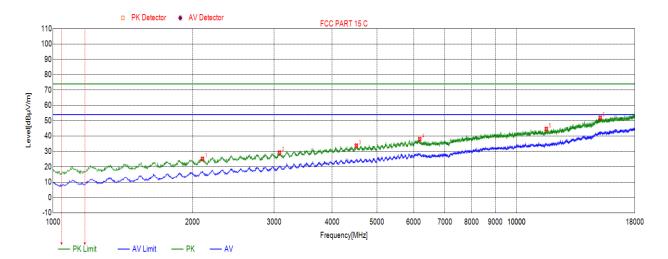
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.3440	22.29	74.00	-51.71	peak
2	2322.7323	27.18	74.00	-46.82	peak
3	3419.3419	31.02	74.00	-42.98	peak
4	4400.3400	34.71	74.00	-39.29	peak
5	6987.9988	37.80	74.00	-36.20	peak
6	15182.8183	51.43	74.00	-22.57	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1654.5655	23.30	74.00	-50.70	peak
2	3079.3079	29.79	74.00	-44.21	peak
3	4509.1509	34.11	74.00	-39.89	peak
4	8176.4176	40.45	74.00	-33.55	peak
5	11241.8242	44.10	74.00	-29.90	peak
6	15908.7909	52.31	74.00	-21.69	peak

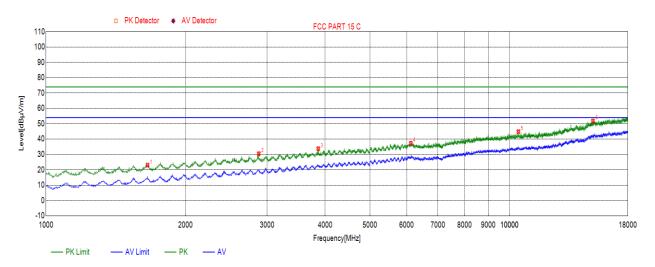
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11a	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1878.9879	24.76	74.00	-49.24	peak
2	3402.3402	30.51	74.00	-43.49	peak
3	5661.8662	36.29	74.00	-37.71	peak
4	8966.9967	42.36	74.00	-31.64	peak
5	12431.9432	45.63	74.00	-28.37	peak
6	15235.5236	52.05	74.00	-21.95	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

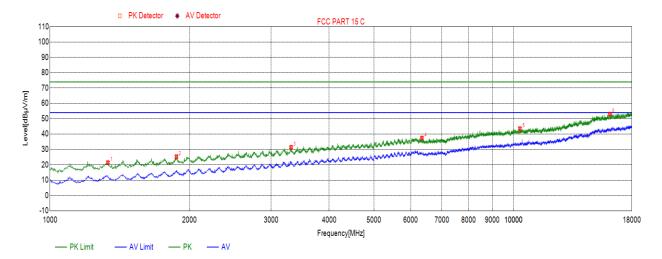
Test Mode	Channel	Polarization	Verdict
11a	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2101.7102	25.12	74.00	-48.88	peak
2	3081.0081	29.17	74.00	-44.83	peak
3	4512.5513	33.74	74.00	-40.26	peak
4	6182.1182	37.99	74.00	-36.01	peak
5	11595.4595	44.65	74.00	-29.35	peak
6	15150.5151	51.92	74.00	-22.08	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2, find the antenna 2 which is worse case, so only the data of the antenna 2 is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

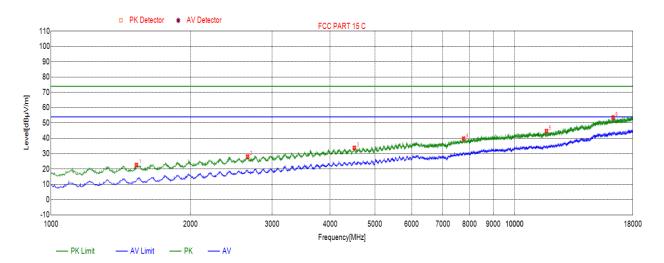
2. 802.11ac HT20

<u>Test Graphs(Worst Case: Antenna 1+Antenna 2):</u>


Test Mode	Channel	Polarization	Verdict
11ac HT20	LCH	Horizontal	PASS

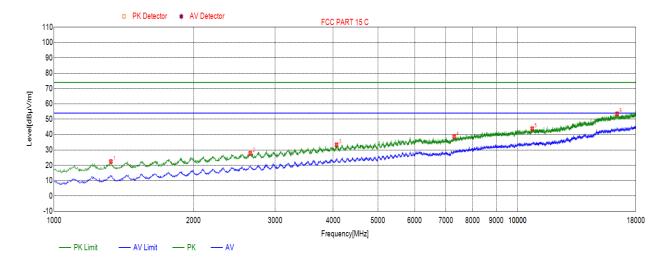
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1656.2656	23.02	74.00	-50.98	peak
2	2878.6879	30.51	74.00	-43.49	peak
3	3866.4866	33.73	74.00	-40.27	peak
4	6126.0126	37.33	74.00	-36.67	peak
5	10449.5450	44.86	74.00	-29.14	peak
6	15136.9137	51.82	74.00	-22.18	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	LCH	Vertical	PASS

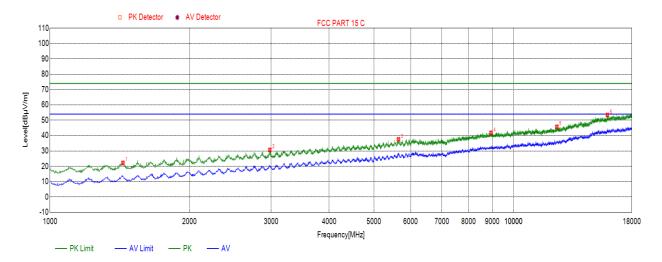
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1333.2333	21.45	74.00	-52.55	peak
2	1873.8874	25.29	74.00	-48.71	peak
3	3312.2312	31.41	74.00	-42.59	peak
4	6343.6344	37.44	74.00	-36.56	peak
5	10323.7324	43.58	74.00	-30.42	peak
6	16141.7142	53.00	74.00	-21.00	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Vertical	PASS

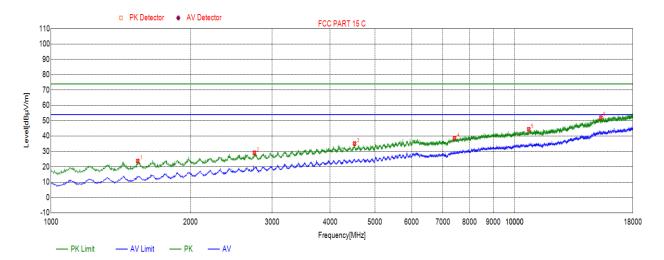
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1528.7529	22.53	74.00	-51.47	peak
2	2655.9656	28.07	74.00	-45.93	peak
3	4512.5513	33.76	74.00	-40.24	peak
4	7766.6767	39.79	74.00	-34.21	peak
5	11721.2721	44.71	74.00	-29.29	peak
6	16320.2320	53.58	74.00	-20.42	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1326.4326	22.46	74.00	-51.54	peak
2	2650.8651	27.84	74.00	-46.16	peak
3	4070.5071	33.36	74.00	-40.64	peak
4	7300.8301	38.65	74.00	-35.35	peak
5	10755.5756	43.90	74.00	-30.10	peak
6	16398.4398	53.59	74.00	-20.41	peak

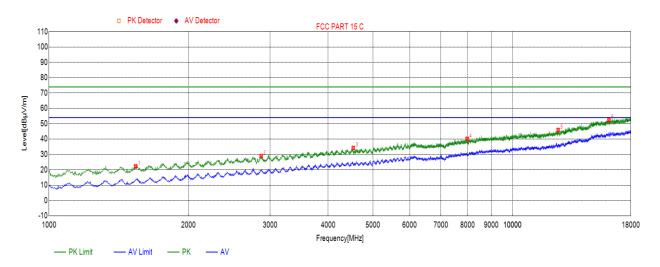
- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1436.9437	22.22	74.00	-51.78	peak
2	2980.6981	30.64	74.00	-43.36	peak
3	5646.5647	37.54	74.00	-36.46	peak
4	8941.4941	41.83	74.00	-32.17	peak
5	12403.0403	45.71	74.00	-28.29	peak
6	15937.6938	53.42	74.00	-20.58	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

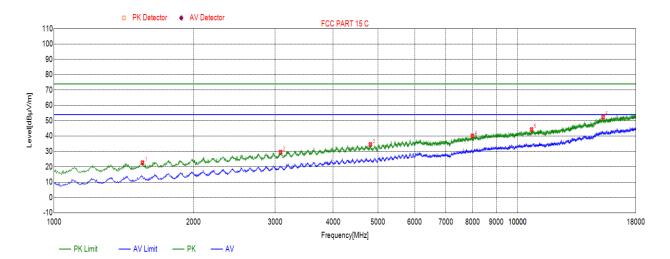
Test Mode	Channel	Polarization	Verdict
11ac HT20	HCH	Vertical	PASS


No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1538.9539	23.77	74.00	-50.23	peak
2	2746.0746	29.09	74.00	-44.91	peak
3	4517.6518	35.15	74.00	-38.85	peak
4	7424.9425	38.60	74.00	-35.40	peak
5	10731.7732	44.44	74.00	-29.56	peak
6	15359.6360	52.05	74.00	-21.95	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna1+antenna 2 which is the worst case, so only the data of the antenna 1+antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

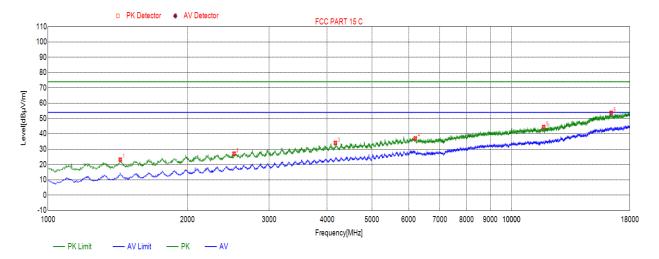
3. 802.11ac HT40

Test Graphs(Worst Case: Antenna 2):


Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Horizontal	PASS

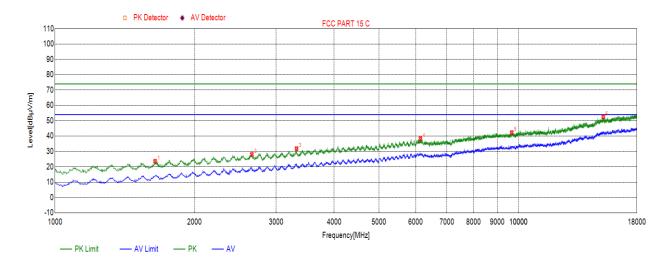
No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1537.2537	22.21	74.00	-51.79	peak
2	2868.4868	28.86	74.00	-45.14	peak
3	4532.9533	34.21	74.00	-39.79	peak
4	7984.2984	40.15	74.00	-33.85	peak
5	12545.8546	45.93	74.00	-28.07	peak
6	16145.1145	52.32	74.00	-21.68	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT40	LCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1552.5553	22.66	74.00	-51.34	peak
2	3082.7083	29.53	74.00	-44.47	peak
3	4815.1815	34.56	74.00	-39.44	peak
4	7992.7993	40.13	74.00	-33.87	peak
5	10723.2723	44.28	74.00	-29.72	peak
6	15298.4298	52.35	74.00	-21.65	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.


Test Mode	Channel	Polarization	Verdict
11ac HT40	MCH	Horizontal	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1431.8432	23.15	74.00	-50.85	peak
2	2519.9520	27.04	74.00	-46.96	peak
3	4169.1169	34.07	74.00	-39.93	peak
4	6200.8201	36.99	74.00	-37.01	peak
5	11734.8735	44.44	74.00	-29.56	peak
6	16405.2405	53.75	74.00	-20.25	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.

Test Mode	Channel	Polarization	Verdict
11ac HT40	MCH	Vertical	PASS

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	1644.3644	23.60	74.00	-50.40	peak
2	2659.3659	28.07	74.00	-45.93	peak
3	3320.7321	31.83	74.00	-42.17	peak
4	6143.0143	38.39	74.00	-35.61	peak
5	9669.1669	42.27	74.00	-31.73	peak
6	15235.5236	52.57	74.00	-21.43	peak

- 2. Peak: Peak detector.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Through pre-testing the antenna 1 and antenna 2 and antenna 1+antenna 2, find the antenna 2 which is the worst case, so only the data of the antenna 2 which is shown in this test report.
- 5. Owing to the highest peak level complies with the lowest limit of unwanted emission out of the restricted bands (Please refer to page 20), so all the test point were deemed to comply with the limits list in the standard.