

Partial FCC Test Report

Report No.: RF160316C19-1

FCC ID: VPYLB1EN

Test Model: LBEE5ZZ1EN

Received Date: Mar. 16, 2016

Test Date: Apr. 09, 2016 ~ Apr. 18, 2016

Issued Date: Apr. 26, 2016

Applicant: MURATA MANUFACTURING CO., LTD.

Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555 Japan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

Test Location (2): No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan,

R.O.C

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF160316C19-1 Page No. 1 / 29 Report Format Version: 6.1.1

Table of Contents

Re	ase Control Record	3
1	ertificate of Conformity	4
2	ummary of Test Results	5
	1 Measurement Uncertainty	
3	eneral Information	6
	1 General Description of EUT	7 8 9
4	est Types and Results	. 10
	1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures 4.1.4 Deviation from Test Standard 4.1.5 Test Set Up 4.1.6 EUT Operating Conditions 4.1.7 Test Results 2 Conducted Emission Measurement 4.2.1 Limits of Conducted Emission Measurement 4.2.2 Test Instruments 4.2.3 Test Procedures 4.2.4 Deviation from Test Standard 4.2.5 Test Setup 4.2.6 EUT Operating Condition 4.2.7 Test Results	. 10 11 . 12 . 13 . 13 . 14 . 22 . 22 . 22 . 23 . 23 . 23
5	ictures of Test Arrangements	. 28
Αp	endix – Information on the Testing Laboratories	. 29

Release Control Record

Issue No.	Description	Date Issued
RF160316C19-1	Original Release	Apr. 26, 2016

Report No.: RF160316C19-1 Page No. 3 / 29 Report Format Version: 6.1.1

Certificate of Conformity 1

Product: Communication Module

Brand: Murata

Test Model: LBEE5ZZ1EN

Sample Status: Identical Prototype

Applicant: MURATA MANUFACTURING CO., LTD.

Test Date: Apr. 09, 2016 ~ Apr. 18, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Evonne Liu / Specialist

Apr. 26, 2016

Approved by:

Stanley Wu / Assistant Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -16.19 dB at 0.41035 MHz.					
15.247(a)(1) (iii)	Number of Hopping Frequency Used	N/A	Refer to Note					
15.247(a)(1) (iii)	Dwell Time on Each Channel	N/A	Refer to Note					
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	N/A	Refer to Note					
15.247(b)	Maximum Peak Output Power	N/A	Refer to Note					
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -4.51 dB at 2488 MHz.					
15.247(d)	Band Edge Measurement	N/A	Refer to Note					
15.247(d)	Antenna Port Emission	N/A	Refer to Note					
15.203	Antenna Requirement	N/A	Refer to Note					

Note: Only test item of Conducted and Radiated Emissions were performed for this report. Other testing data is referring to UL Japan, Inc. module report (Test Report No.: 10689818H-B, Issue Date: Jun. 17, 2015).

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Effissions up to 1 GHz	200 MHz ~1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Radiated Emissions above 1 GHZ	18 GHz ~ 40 GHz	1.1508 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Communication Module
Brand	Murata
Test Model	LBEE5ZZ1EN
Status of EUT	Identical Prototype
Power Supply Rating	19.5 Vdc (adapter)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Antenna Type	Refer to Note as below
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The antenna information is listed as below.

Antenna Type	Brand Name	Parts Number	Antenna Gain (dBi) 2.4GHz
Dipole	Laird	WLAN Main Antenna: PDV24515-DE1 WLAN Aux Antenna: PDV24515-DE1	Main: 2.9 Aux: 2.9
Monopole	Taoglas Antenna Solution Ltd.	WLAN Main Antenna: MA761.B.BICG.014 WLAN Aux Antenna: MA761.B.BICG.014	Main: 2.82 Aux: 2.79

2. The EUT is authorized for use in specific End-product. Please refer to below table for more details.

Item	Brand	Model
Industrial Computer	DELL	N02PC

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
А	V	V	V	-	Dipol Antenna
В	V	V	V	-	Momopole Antenna

Where

RE≥1G: Radiated Emission above 1 GHz

RE<1G: Radiated Emission below 1 GHz

APCM: Antenna Port Conducted Measurement

PLC: Power Line Conducted Emission

NOTE:

1. For Radiated emission test, pre-tested GFSK, π/4-DQPSK, 8DPSK modulation type and found 8DPSK was the worse, therefore chosen for the final test and presented in the test report.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

3. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
A, B	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

	EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
ľ	Λ Β	0 to 79	70	EUCC	ODDCK	DHE

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
A, B	0 to 78	78	FHSS	8DPSK	DH5

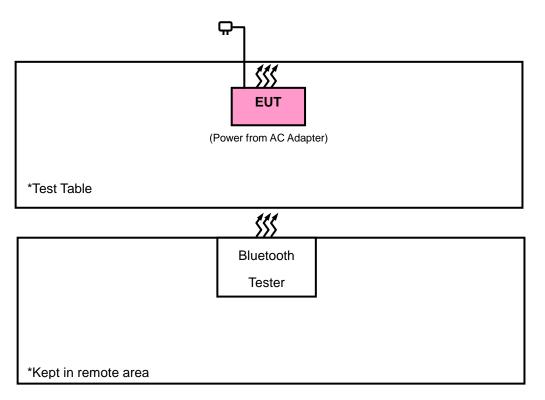
Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by	
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee, Charles Hsiao	
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee, Charles Hsiao	
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Toby Tian	

Report No.: RF160316C19-1 Page No. 8 / 29 Report Format Version: 6.1.1

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Brand	Model No.	Serial No.	FCC ID	
1.	Bluetooth Tester	R&S	CBT	100980	N/A	

No.	Signal Cable Description Of The Above Support Units
1.	N/A

Note

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item 1 acted as communication partners to transfer data.

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF160316C19-1 Page No. 9 / 29 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 ~ 0.490	2400/F (kHz)	300		
0.490 ~ 1.705	24000/F (kHz)	30		
1.705 ~ 30.0	30	30		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF160316C19-1 Page No. 10 / 29 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	May 19, 2015	May 18, 2016
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2015	Dec. 16, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna ETS-Lindgren	3117	00143293	Jan. 19, 2016	Jan. 18, 2017
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Loop Antenna	EM-6879	269	Jul. 31, 2015	Jul. 30, 2016
Agilent Communications Tester-Wireless	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Preamplifier Agilent	310N	187226	Jun. 29, 2015	Jun. 28, 2016
Preamplifier Agilent	83017A	MY39501357	Jun. 29, 2015	Jun. 28, 2016
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Jan. 20, 2016	Jan. 19, 2017
Power Meter Anritsu	ML2495A	1232002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor Anritsu	MA2411B	1207325	Sep. 21, 2015	Sep. 20, 2016
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(R FC-SMS-100-SM S-120+RFC-SMS -100-SMS-400)	Jun. 27, 2015	Jun. 26, 2016
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(R FC-SMS-100-SM S-24)	Jun. 27, 2015	Jun. 26, 2016
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

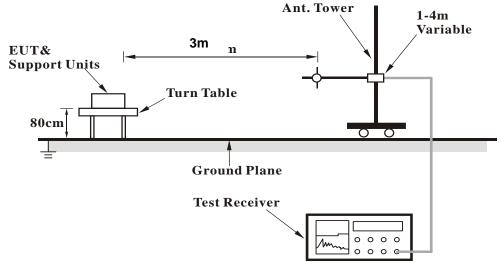
- 2. The test was performed in HsinTien Chamber 1.
- 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The FCC Site Registration No. is 149147.
- 5. The IC Site Registration No. is IC7450I-1.

4.1.3 Test Procedures

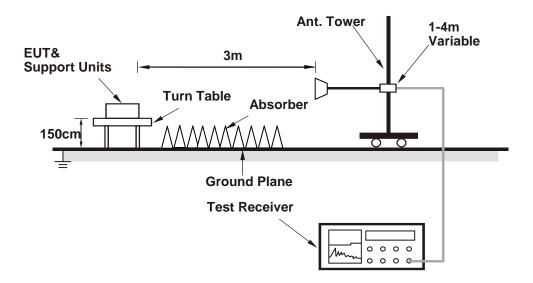
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.


No deviation.

Report No.: RF160316C19-1 Page No. 12 / 29 Report Format Version: 6.1.1



4.1.5 Test Set Up

<Frequency Range below 1 GHz>

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1 GHz DATA:

8DPSK

Mode A

EUT Test Condition		Measurement Detail			
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		

	Antenna Polarity & Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2390	40.01	38.28	54	-13.99	31.8	5.4	35.47	294	237	Average	
2390	59.97	58.24	74	-14.03	31.8	5.4	35.47	294	237	Peak	
2402	106.31	104.58			31.8	5.4	35.47	294	237	Average	
2402	108.9	107.17			31.8	5.4	35.47	294	237	Peak	
2498	39.74	37.72	54	-14.26	31.9	5.53	35.41	294	237	Average	
2498	55.09	53.07	74	-18.91	31.9	5.53	35.41	294	237	Peak	
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2346	39.17	37.6	54	-14.83	31.74	5.33	35.5	124	162	Average	
2346	55.79	54.22	74	-18.21	31.74	5.33	35.5	124	162	Peak	
2402	102.96	101.23			31.8	5.4	35.47	124	162	Average	
2402	104.49	102.76			31.8	5.4	35.47	124	162	Peak	
2488	39.84	37.83	54	-14.16	31.9	5.53	35.42	124	162	Average	
2488	56.31	54.3	74	-17.69	31.9	5.53	35.42	124	162	Peak	

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2402 MHz: Fundamental frequency.

Report No.: RF160316C19-1 Page No. 14 / 29 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail			
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	LINGTOCTOR FUNCTION	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		

	Antenna Polarity & Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2372	39.23	37.57	54	-14.77	31.78	5.37	35.49	294	2	Average	
2372	55.86	54.2	74	-18.14	31.78	5.37	35.49	294	2	Peak	
2441	106.59	104.72			31.85	5.46	35.44	294	2	Average	
2441	108.11	106.24			31.85	5.46	35.44	294	2	Peak	
2492	39.85	37.83	54	-14.15	31.9	5.53	35.41	294	2	Average	
2492	55.47	53.45	74	-18.53	31.9	5.53	35.41	294	2	Peak	
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2344	39.24	37.67	54	-14.76	31.74	5.33	35.5	106	162	Average	
2344	55.98	54.41	74	-18.02	31.74	5.33	35.5	106	162	Peak	
2441	102.23	100.36			31.85	5.46	35.44	106	162	Average	
2441	104.68	102.81			31.85	5.46	35.44	106	162	Peak	

31.9

31.9

5.53

5.53

35.41

35.41

106

106

162

162

Average

Peak

2496 Remarks:

2496

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

54

74

-14.23

-17.44

2. 2441 MHz: Fundamental frequency.

37.75

54.54

39.77

56.56

Report No.: RF160316C19-1 Page No. 15 / 29 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	I I I I I I I I I I I I I I I I I I I	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee		

	Antenna Polarity & Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2362	39.13	37.5	54	-14.87	31.76	5.37	35.5	294	23	Average	
2362	55.7	54.07	74	-18.3	31.76	5.37	35.5	294	23	Peak	
2480	105.74	103.78			31.88	5.5	35.42	294	23	Average	
2480	108.28	106.32			31.88	5.5	35.42	294	23	Peak	
2484	40.16	38.2	54	-13.84	31.88	5.5	35.42	294	23	Average	
2484	67.37	65.41	74	-6.63	31.88	5.5	35.42	294	23	Peak	
		Δ	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n			
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark	
2382	39.29	37.6	54	-14.71	31.78	5.4	35.49	122	165	Average	
2382	56.07	54.38	74	-17.93	31.78	5.4	35.49	122	165	Peak	
2480	101.78	99.82			31.88	5.5	35.42	122	165	Average	
2480	104.28	102.32			31.88	5.5	35.42	122	165	Peak	
2484	39.82	37.86	54	-14.18	31.88	5.5	35.42	122	165	Average	

31.88

5.5

35.42

122

165

Peak

2484 Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

-9.6

74

2. 2480 MHz: Fundamental frequency.

62.44

64.4

Report No.: RF160316C19-1 Page No. 16 / 29 Report Format Version: 6.1.1

Mode B

EUT Test Condition		Measurement Detail			
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2390	39.7	37.97	54	-14.3	31.8	5.4	35.47	277	111	Average
2390	60.64	58.91	74	-13.36	31.8	5.4	35.47	277	111	Peak
2402	95.4	93.67			31.8	5.4	35.47	277	111	Average
2402	98.86	97.13			31.8	5.4	35.47	277	111	Peak
2500	39.53	37.51	54	-14.47	31.9	5.53	35.41	277	111	Average
2500	56.34	54.32	74	-17.66	31.9	5.53	35.41	277	111	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	tical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2390	39.49	37.76	54	-14.51	31.8	5.4	35.47	100	138	Average
2390	60.14	58.41	74	-13.86	31.8	5.4	35.47	100	138	Peak
2402	94.2	92.47			31.8	5.4	35.47	100	138	Average
2402	97.43	95.7			31.8	5.4	35.47	100	138	Peak
2492	39.73	37.71	54	-14.27	31.9	5.53	35.41	100	138	Average
2492	56.03	54.01	74	-17.97	31.9	5.53	35.41	100	138	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2402 MHz: Fundamental frequency.

Report No.: RF160316C19-1 Page No. 17 / 29 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

		An	tenna Po	larity & To	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2382	39.28	37.59	54	-14.72	31.78	5.4	35.49	277	111	Average
2382	55.8	54.11	74	-18.2	31.78	5.4	35.49	277	111	Peak
2441	95.81	93.94			31.85	5.46	35.44	277	111	Average
2441	98.48	96.61			31.85	5.46	35.44	277	111	Peak
2484	39.48	37.52	54	-14.52	31.88	5.5	35.42	277	111	Average
2484	55.15	53.19	74	-18.85	31.88	5.5	35.42	277	111	Peak
		A	Intenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2342	39.13	37.56	54	-14.87	31.74	5.33	35.5	141	138	Average
2342	55.35	53.78	74	-18.65	31.74	5.33	35.5	141	138	Peak
2441	94.41	92.54			31.85	5.46	35.44	141	138	Average
2441	97.06	95.19			31.85	5.46	35.44	141	138	Peak
2490	39.48	37.47	54	-14.52	31.9	5.53	35.42	141	138	Average
2490	55.73	53.72	74	-18.27	31.9	5.53	35.42	141	138	Peak

Remarks:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao	

	Λ.	tonno Do	lority O T	act Diator	aa. Hari-	antal at 2	100		
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
39.09	37.52	54	-14.91	31.74	5.33	35.5	277	111	Average
55.11	53.54	74	-18.89	31.74	5.33	35.5	277	111	Peak
95.64	93.68			31.88	5.5	35.42	277	111	Average
98.79	96.83			31.88	5.5	35.42	277	111	Peak
40.68	38.67	54	-13.32	31.9	5.53	35.42	277	111	Average
69.49	67.48	74	-4.51	31.9	5.53	35.42	277	111	Peak
	A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
39.21	37.55	54	-14.79	31.78	5.37	35.49	276	138	Average
55.4	53.74	74	-18.6	31.78	5.37	35.49	276	138	Peak
94.03	92.07			31.88	5.5	35.42	276	138	Average
97.58	95.62			31.88	5.5	35.42	276	138	Peak
40.38	38.39	54	-13.62	31.88	5.53	35.42	276	138	Average
	Level (dBuV/m) 39.09 55.11 95.64 98.79 40.68 69.49 Emission Level (dBuV/m) 39.21 55.4 94.03 97.58	Emission Level (dBuV/m) (dBuV) 39.09 37.52 55.11 53.54 95.64 93.68 98.79 96.83 40.68 38.67 69.49 67.48 Emission Read Level (dBuV/m) (dBuV) 39.21 37.55 55.4 53.74 94.03 92.07 97.58 95.62	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) 39.09 37.52 54 55.11 53.54 74 95.64 93.68 98.79 96.83 40.68 38.67 54 69.49 67.48 74 Antenna Policy Emission Level (dBuV/m) Level (dBuV/m) Limit (dBuV/m) 39.21 37.55 54 55.4 53.74 74 94.03 92.07 97.58 95.62 95.62 95.62	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) 39.09 37.52 54 -14.91 55.11 53.54 74 -18.89 95.64 93.68 98.79 96.83 40.68 38.67 54 -13.32 69.49 67.48 74 -4.51 Antenna Polarity & Tevel (dBuV/m) Limit (dBuV/m) Margin (dB) 40.80 37.55 54 -14.79 55.4 53.74 74 -18.6 94.03 92.07 97.58 95.62	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) 39.09 37.52 54 -14.91 31.74 55.11 53.54 74 -18.89 31.74 95.64 93.68 31.88 98.79 96.83 31.88 40.68 38.67 54 -13.32 31.9 69.49 67.48 74 -4.51 31.9 Antenna Polarity & Test Distance (dBuV/m) Level (dBuV/m) (dBuV/m) (dB) Antenna Factor (dB/m) 39.21 37.55 54 -14.79 31.78 55.4 53.74 74 -18.6 31.78 94.03 92.07 31.88 97.58 95.62 31.88	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) 39.09 37.52 54 -14.91 31.74 5.33 55.11 53.54 74 -18.89 31.74 5.33 95.64 93.68 31.88 5.5 98.79 96.83 31.88 5.5 40.68 38.67 54 -13.32 31.9 5.53 69.49 67.48 74 -4.51 31.9 5.53 Antenna Polarity & Test Distance: Vertent (dBuV/m) (dBuV/m) (dBuV/m) 39.21 37.55 54 -14.79 31.78 5.37 55.4 53.74 74 -18.6 31.78 5.37 94.03 92.07 31.88 5.5 97.58 95.62 31.88 5.5	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 39.09 37.52 54 -14.91 31.74 5.33 35.5 55.11 53.54 74 -18.89 31.74 5.33 35.5 95.64 93.68 31.88 5.5 35.42 98.79 96.83 31.88 5.5 35.42 40.68 38.67 54 -13.32 31.9 5.53 35.42 69.49 67.48 74 -4.51 31.9 5.53 35.42 Emission Level (dBuV/m) (dBuV) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 55.4 53.74 74 -18.6 31.78 5.37 35.49 94.03 92.07 31.86 5.5 35.42 97.58 95.62 31.88 5.5 35.42	Level (dBuV/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB/m) Factor (dB/m) Cable Loss (dB) Factor (dB) Height (cm) 39.09 37.52 54 -14.91 31.74 5.33 35.5 277 55.11 53.54 74 -18.89 31.74 5.33 35.5 277 95.64 93.68 31.88 5.5 35.42 277 98.79 96.83 31.88 5.5 35.42 277 40.68 38.67 54 -13.32 31.9 5.53 35.42 277 69.49 67.48 74 -4.51 31.9 5.53 35.42 277 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) (dBuV) Limit (dBuV/m) Margin (dB) Cable Loss (dB) Preamp Factor (dB) Height (cm) 39.21 37.55 54 -14.79 31.78 5.37 35.49 276 55.4 53.74 74 -18.6 31.78 5.37 35.42 </td <td>Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (dB) Table Angle (Degree) 39.09 37.52 54 -14.91 31.74 5.33 35.5 277 111 55.11 53.54 74 -18.89 31.74 5.33 35.5 277 111 95.64 93.68 31.88 5.5 35.42 277 111 98.79 96.83 31.88 5.5 35.42 277 111 40.68 38.67 54 -13.32 31.9 5.53 35.42 277 111 69.49 67.48 74 -4.51 31.9 5.53 35.42 277 111 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Table Angle (Degree) 39.21 37.55 54 -14.79 31.78</td>	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (dB) Table Angle (Degree) 39.09 37.52 54 -14.91 31.74 5.33 35.5 277 111 55.11 53.54 74 -18.89 31.74 5.33 35.5 277 111 95.64 93.68 31.88 5.5 35.42 277 111 98.79 96.83 31.88 5.5 35.42 277 111 40.68 38.67 54 -13.32 31.9 5.53 35.42 277 111 69.49 67.48 74 -4.51 31.9 5.53 35.42 277 111 Antenna Polarity & Test Distance: Vertical at 3 m Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Table Angle (Degree) 39.21 37.55 54 -14.79 31.78

31.88

5.53

35.42

276

138

Peak

2486 Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

-8.14

74

2. 2480 MHz: Fundamental frequency.

63.87

65.86

Report No.: RF160316C19-1 Page No. 19 / 29 Report Format Version: 6.1.1

9 kHz ~ 30 MHz DATA:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz WORST-CASE DATA:

Mode A

EUT Test Condition		Measurement Detail		
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Karl Lee	

		An	itenna Po	larity & To	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
32.16	16.62	31.93	40	-23.38	16.21	0.74	32.26	167	144	Peak
75.9	12.88	35.71	40	-27.12	8.28	1.11	32.22	114	158	Peak
172.29	14.07	34.68	43.5	-29.43	10.11	1.52	32.24	102	143	Peak
417.6	25.35	37.33	46	-20.65	17.81	2.41	32.2	136	141	Peak
577.2	24.79	33.94	46	-21.21	20.23	2.82	32.2	109	117	Peak
716.5	23.95	29.68	46	-22.05	23.27	3.11	32.11	112	142	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
33.24	29.04	45.08	40	-10.96	15.47	0.74	32.25	109	186	Peak
96.15	16.45	37.83	43.5	-27.05	9.38	1.28	32.04	116	0	Peak
165.54	17.11	37.48	43.5	-26.39	10.36	1.52	32.25	137	142	Peak
417.6	22.78	34.76	46	-23.22	17.81	2.41	32.2	108	201	Peak
670.3	24.54	30.43	46	-21.46	23.18	3.05	32.12	152	142	Peak
790	25.14	29.89	46	-20.86	24.05	3.27	32.07	133	167	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

Report No.: RF160316C19-1 Page No. 20 / 29 Report Format Version: 6.1.1

Mode B

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Charles Hsiao		

		An	itenna Po	larity & T	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
86.43	21.46	43.53	40	-18.54	8.73	1.11	31.91	124	148	Peak
125.85	18.42	40.28	43.5	-25.08	9	1.38	32.24	190	8	Peak
202.8	25.91	45.56	43.5	-17.59	10.99	1.65	32.29	151	22	Peak
417.6	30.28	42.26	46	-15.72	17.81	2.41	32.2	108	288	Peak
633.2	22.98	30.11	46	-23.02	22.1	2.93	32.16	132	162	Peak
720.7	24.64	30.23	46	-21.36	23.36	3.16	32.11	124	360	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
44.85	25.95	47.76	40	-14.05	9.51	0.9	32.22	181	199	Peak
70.5	22.68	45.68	40	-17.32	8.11	1.11	32.22	199	275	Peak
170.4	13.06	33.74	43.5	-30.44	10.04	1.52	32.24	170	4	Peak
405.7	27.19	39.08	46	-18.81	17.99	2.34	32.22	179	36	Peak
666.8	27.87	33.98	46	-18.13	22.97	3.05	32.13	127	278	Peak
778.8	24.95	30.09	46	-21.05	23.68	3.27	32.09	120	90	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

Report No.: RF160316C19-1 Page No. 21 / 29 Report Format Version: 6.1.1

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MU=)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 16, 2015	Nov. 15, 2016
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 26, 2016	Feb. 25, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 24, 2015	Jul. 23, 2016
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

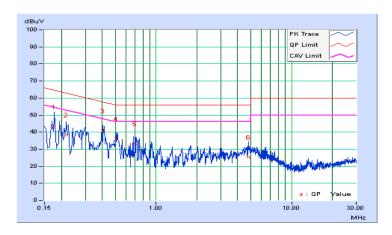
For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF160316C19-1 Page No. 23 / 29 Report Format Version: 6.1.1

4.2.7 Test Results

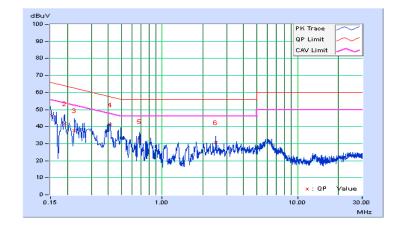

CONDUCTED WORST-CASE DATA: 8DPSK

Mode A

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/4/12

	Phase Of Power : Line (L)									
Nia	Frequency	Correction		Reading Value		Emission Level		Limit (dBuV)		rgin
No	(MHz)	Factor	Q.P.	uV) AV.	Q.P.	uV) AV.	Q.P.	AV.	Q.P.	B) AV.
	(IVITZ)	(dB)	Q.F.	Av.	Q.F.	Av.	Q.F.	Av.	Q.F.	Av.
1	0.17801	10.02	33.05	15.31	43.07	25.33	64.58	54.58	-21.50	-29.24
2	0.21805	10.04	28.46	15.20	38.50	25.24	62.89	52.89	-24.39	-27.65
3	0.40605	10.12	30.78	18.44	40.90	28.56	57.73	47.73	-16.83	-19.17
4	0.51000	10.13	25.95	15.43	36.08	25.56	56.00	46.00	-19.92	-20.44
5	0.70200	10.16	23.07	6.90	33.23	17.06	56.00	46.00	-22.77	-28.94
6	4.80200	10.45	14.83	6.77	25.28	17.22	56.00	46.00	-30.72	-28.78

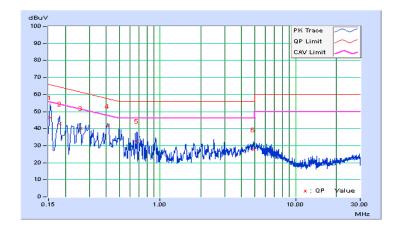
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/4/12

	Phase Of Power : Neutral (N)										
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		gin	
No		Factor	(dB	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.03	37.25	20.18	47.28	30.21	66.00	56.00	-18.72	-25.79	
2	0.19000	10.04	31.59	14.79	41.63	24.83	64.04	54.04	-22.41	-29.21	
3	0.22600	10.05	27.65	12.95	37.70	23.00	62.60	52.60	-24.89	-29.59	
4	0.41400	10.13	30.80	18.69	40.93	28.82	57.57	47.57	-16.64	-18.75	
5	0.67800	10.17	21.12	4.71	31.29	14.88	56.00	46.00	-24.71	-31.12	
6	2.50074	10.32	20.28	17.44	30.60	27.76	56.00	46.00	-25.40	-18.24	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

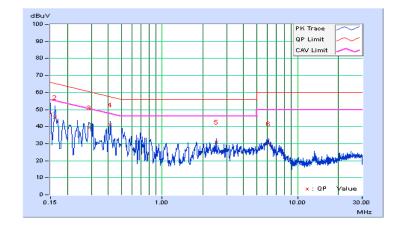


Mode B

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/4/12

	Phase Of Power : Line (L)									
N1.	Frequency	Correction		Reading Value		Emission Level		Limit		rgin
No		Factor		uV)	· · · · · ·	uV)	· · · · ·	uV)		B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15400	10.02	36.60	19.91	46.62	29.93	65.78	55.78	-19.17	-25.86
2	0.18180	10.02	32.69	14.80	42.71	24.82	64.40	54.40	-21.69	-29.58
3	0.25742	10.06	29.85	15.03	39.91	25.09	61.51	51.51	-21.61	-26.43
4	0.41035	10.12	31.33	19.77	41.45	29.89	57.64	47.64	-16.19	-17.75
5	0.67516	10.16	22.61	5.36	32.77	15.52	56.00	46.00	-23.23	-30.48
6	4.89400	10.46	17.22	11.65	27.68	22.11	56.00	46.00	-28.32	-23.89

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/4/12

	Phase Of Power : Neutral (N)										
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		gin	
No		Factor	(dB	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.03	37.30	20.52	47.33	30.55	66.00	56.00	-18.67	-25.45	
2	0.16200	10.03	35.51	17.58	45.54	27.61	65.36	55.36	-19.82	-27.75	
3	0.28906	10.08	29.20	14.59	39.28	24.67	60.55	50.55	-21.27	-25.88	
4	0.41400	10.13	30.84	18.99	40.97	29.12	57.57	47.57	-16.60	-18.45	
5	2.50600	10.32	20.49	17.53	30.81	27.85	56.00	46.00	-25.19	-18.15	
6	6.09800	10.56	19.38	13.77	29.94	24.33	60.00	50.00	-30.06	-25.67	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Please refer to the attached file (Test Setup Photo).
Please refer to the attached file (Test Setup Photo).

Report No.: RF160316C19-1 Page No. 28 / 29 Report Format Version: 6.1.1

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF160316C19-1 Page No. 29 / 29 Report Format Version: 6.1.1