PSB Singapore

Choose certainty. Add value.

Note: This report is issued subject to the Testing and Certification Regulations of the TÜV SÜD Group and the General Terms and Conditions of Business of TÜV SÜD PSB Pte Ltd. In addition, this report is governed by the terms set out within this report.

> FORMAL REPORT ON TESTING IN ACCORDANCE WITH 47 CFR FCC Parts 15B & C: 2011

OF A **BITS SENSOR** [Model : TSS-870]

[FCC ID: VPE-TSS870]

TEST FACILITY TÜV SÜD PSB Pte Ltd.

Electrical & Electronics Centre (EEC), Product Services,

No. 1 Science Park Drive, Singapore 118221

TÜV SÜD PSB Pte Ltd.

Electrical & Electronics Centre (EEC), Product Services, 13 Internatonal Business Park #01-01, Singapore 609932

FCC REG. NO. 160581 (3m and 10m Semi-Anechoic Chamber, International Business Park)

99142 (3m and 10m Semi-Anechoic Chamber, Science Park)

IND. CANADA REG. NO. 2932N-1 (10m Semi-Anechoic Chamber, International Business Park)

2932I-1 (3m and 10m Semi-Anechoic Chamber, Science Park)

PREPARED FOR Cadi Scientific Pte Ltd

31 Ubi Road 1

#03-00 Aztech Building Singapore 408694

Tel: +65 6276 2676 Fax: +65 6276 6216

QUOTATION NUMBER 219135810

JOB NUMBER 7191016180

16 Sep 2011 - 20 Nov 2011 **TEST PERIOD**

PREPARED BY

Quek Keng Associate En APPROVED BY

Lim Cher Hwee Assistant Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0384-G LA-2007-0385-E LA-2007-0386-C LA-2010-0464-D

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked *Not SAC-SINGLAS Accredited* in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd. 3 Science Park Drive, #04-01/05 The Franklin, Singapore 118223

TÜV®

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

RADIATED EMISSION (SPURIOUS EMISSIONS INCLUSIVE RESTRICTED BANDS REQUIREMENT) TEST

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

ANNEX A

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX B

- FCC LABEL & POSITION

ANNEX C

- USER MANUAL, TECHNICAL DESCRIPTION, BLOCK & CIRCUIT DIAGRAMS

SUD

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail				
47 CFR FCC Part 15: 2011						
15.107(a), 15.207	Conducted Emissions	Not Applicable *See Note 5				
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)	Pass				
15.249(a)	Radiated Emissions (Fundamental and Harmonics)	Pass				

Notes

1. The Equipment Under Test (EUT) is to be operated in the two frequencies as listed below. For each frequencies, the EUT was configured to operate in the test mode.

Transmit Frequencies

919.8MHz 925.0MHz

- 2. The EUT is a Class B device when in non-transmitting state and meets the 47 CFR FCC Part15B Class B requirements.
- 3. All test measurement procedures are according to ANSI C63.4: 2003.
- 4. The maximum measured RF power of the Equipment Under Test (EUT) is -3.6dBm.
- 5. TSS-870 is a battery operated device and contains no provision for public utility connections.
- 6. The EUT (TSS-870) was tested using fully charged batteries with DC voltage of 3.0Vdc.

Modifications

No modifications were made.

PRODUCT DESCRIPTION

Description : The Equipment Under Test (EUT) is a **BITS SENSOR.**

Manufacturer : Cadi Scientific Pte Ltd

31 Ubi Road 1

#03-00 Aztech Building Singapore 408694

Model Number(s) : TSS-870

FCC ID : VPE-TSS870

Serial Number(s) : Nil

Microprocessor(s) : Microchip PIC18F45K20

Operating Frequency : Transmit @919.8MHz & 925.0MHz

Clock / Oscillator Frequency : 16MHz

Modulation : Gaussian Frequency Shift Keying (GFSK)

Antenna Gain : 0dBi

IF Filter Bandwidth : Nil

Port / Connectors : Refer to manufacturer's user manual / operating manual.

Rated Input Power : 3Vdc

Operating Temperature : -20°C - 40°C

Accessories : Refer to manufacturer's user manual / operating manual.

SUPPORTING DESCRIPTION DESCRIPTION

Equipment Description (Including Brand Name)	Model, Serial & FCC ID Number	Cable Description (List Length, Type & Purpose)
Dell Laptop	M/N: Inspiron 1420	2.00m unshielded power cable
	S/N: H656X1S	2.00m shielded LAN cable
	FCC ID: DoC	
Dell Power Adapter	M/N: LA65NS0-00	2.00m unshielded power cable
	S/N: CN-0DF263-74615-69G-341D	
	FCC ID: Nil	
UE Power Adapter	M/N: VE15WCP1-0502005SDA	2.00m unshielded power cable
	S/N: Nil	
	FCC ID: Nil	
Vanson Switching Mode Power	M/N: SMP-1000A	2.00m unshielded power cable
Supply	S/N: Nil	
	FCC ID: Nil	
Optoelectronics 1D Barcode	M/N: OPR-3201	2.00m unshielded cable
Laser Scanner	S/N: 005551	
	FCC ID: Nil	
Newstar Power Adapter	M/N: NA-1235es	2.00m unshielded power cable
	S/N: Nil	
	FCC ID: Nil	
Cadi Scientific Pte Ltd	M/N: SMN-870	2.00m unshielded power cable
	S/N: Nil	
	FCC ID: VPE-SMN870	12

EUT OPERATING CONDITIONS

47 CFR FCC Part 15

- 1. Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)
- 2. Radiated Emissions (Fundamental and Harmonics)
- 3. Maximum Permissible Exposure

The EUT was exercised by operating in maximum RF transmission with continuous transmission in test mode, i.e transmitting at 919.8MHz and 925MHz channels respectively at one time.

RADIATED EMISSION TEST

47 CFR FCC Part 15.205 Restricted Bands

N	ИHz			MHz			MHz			GHz	
0.090	-	0.110	16.42	-	16.423	399.9	-	410	4.5	-	5.15
0.495	-	0.505	16.69475	-	16.69525	608	-	614	5.35	-	5.46
2.1735	-	2.1905	16.80425	-	16.80475	960	-	1240	7.25	-	7.75
4.125	-	4.128	25.5	-	25.67	1300	-	1427	8.025	-	8.5
4.17725	-	4.17775	37.5	-	38.25	1435	-	1626.5	9.0	-	9.2
4.20725	-	4.20775	73	-	74.6	1645.5	-	1646.5	9.3	-	9.5
6.215	-	6.218	74.8	-	75.2	1660	-	1710	10.6	-	12.7
6.26775	-	6.26825	108	-	121.94	1718.8	-	1722.2	13.25	-	13.4
6.31175	-	6.31225	123	-	138	2200	-	2300	14.47	-	14.5
8.291	-	8.294	149.9	-	150.05	2310	N	2390	15.35	-	16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	3	2500	17.7	-	21.4
8.37625	-	8.38675	156.7	-	156.9	2690	7	2900	22.01	-	23.12
8.41425	-	8.41475	162.0125	15	167.17	3260	170	3267	23.6	-	24.0
12.29	-	12.293	167.72	<i>y</i> E.	173.2	3332	-	3339	31.2	-	31.8
12.51975	-	12.52025	240	- i	285	3345.8	-	3358	36.43	-	36.5
12.57675	-	12.57725	322	-	335.4	3600		4400	Ab	ove 38	3.6
13.36	-	13.41					74				

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m
30 - 88	40.0
88 - 216	43.5
216 - 960	46.0
Above 960	54.0*
* Above 1GHz, average detector was used. A peak limit	of 20dB above the average limit does apply.

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Rohde & Schwarz EMI Test Receiver	ESMI	849182/003	02 Sep 2012
(20Hz – 26.5GHz)		848926/007	
TDK RF Solutions Hybrid Log Periodic Antenna	HLP-3003C	130238	19 Mar 2012
(30MHz-3GHz)			
TDK RF Solution Horn Antenna (1GHz-18GHz)	HRN-0118	130256	15 Mar 2012
Sonoma Preamplifier (9kHz – 1GHz)	310N	270640	08 Sep 2012
Toyo MicroWave Preamplifier (1GHz - 18GHz)	TPA0188-36	1005	24 Jun 2012

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Setup

- The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m \times 1.0m \times 0.8m high, non-metallic table. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate 1.
- 2. power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
- The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: 3.
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b.
 - The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out. 4.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were 5.
- The frequency range covered was from 30MHz to 10th harmonics of the EUT fundamental frequency, 6. using the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $200 \mu V/m = 46.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dBµV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Results

Operating Mode	Transmit @ 919.8MHz	Temperature	24°C
Test Input Power	3.0Vdc	Relative Humidity	44%
Test Distance	3m	Atmospheric Pressure	1030mbar
Model	TSS-870	Tested By	Kelvin Cheng

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
32.6180	18.8	-21.2	320	399	V
44.0170	17.5	-22.5	359	101	V
69.8220	18.9	-21.1	282	173	V
167.4590	12.5	-31.0	23	184	Н
199.9920	36.4	-7.1	344	127	Н
399.9750	33.7	-12.3	158	102	Н

Spurious Emissions ranging from 1GHz – 10GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
3.7428	28.6	-45.4	28.6	-25.4	6	138	Н
4.0127	29.4	-44.6	29.3	-24.7	138	392	V
4.4745	31.0	-43.0	31.1	-22.9	311	284	Н
4.7375	32.4	-41.6	32.3	-21.7	49	102	Н
5.0364	31.6	-42.4	31.6	-22.4	164	399	Н
9.0722	26.6	-47.4	26.5	-27.5	193	383	V

RADIATED EMISSION TEST

47 CFR FCC Parts 15.109(a) and 15.209 Radiated Emission Results

Operating Mode	Transmit @ 925.0MHz	Temperature	24°C
Test Input Power	3.0Vdc	Relative Humidity	44%
Test Distance	3m	Atmospheric Pressure	1030mbar
Model	TSS-870	Tested By	Kelvin Cheng

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
30.7340	26.4	-13.6	272	103	V
48.2180	18.7	-21.3	286	105	V
66.5220	25.6	-14.4	93	103	V
199.9810	38.4	-5.1	337	134	Н
319.9880	32.9	-13.1	278	102	Н
399.9860	32.9	-13.1	76	102	Н

Spurious Emissions ranging from 1GHz - 10GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
2.2937	26.5	-47.5	26.5	-27.5	71	119	V
2.9964	26.3	-47.7	26.2	-27.8	242	102	V
3.2362	27.1	-46.9	27.0	-27.0	206	147	Н
4.2061	29.8	-44.2	29.7	-24.3	9	104	Н
4.5498	32.0	-42.0	31.9	-22.1	351	359	V
4.9631	33.9	-40.1	33.8	-20.2	209	155	V

RADIATED EMISSION TEST

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak
 measurements were used for emissions above 1GHz. The average measurement was done by
 measuring the absolute voltage during a 0.1 second interval during which the field strength is at its
 maximum value.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

- 5. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 6. The channel in the table refers to the transmit channel of the EUT.
- 7. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 25GHz is $\pm 4.0dB$.

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

47 CFR FCC Part 15.249(a) Radiated Emission (Fundamental and Harmonics) Limits

Fundamental Frequency (MHz)	Field Strength of Fundamental Limit Values @ 3m (dBµV/m) *	Field Strength of Harmonics Limit Values @ 3m (dBµV/m) *
902 - 928	94.0	54.0
2400 - 2483.5	94.0	54.0
5725 - 5875	94.0	54.0
24000 - 24250	108.0	68.0

^{*} Quasi peak detector was employed for frequency up to 1GHz. For above 1GHz frequency, average detector was used. A peak limit of 20dB above the average limit does apply.

47 CFR FCC Parts 15.249(a) Radiated Emission (Fundamental and Harmonics) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver – ESI1	ESI40	100010	06 Jun 2012
Schaffner Bilog Antenna –(30MHz-2GHz) BL3 (Ref)	CBL6112B	2549	06 Jan 2012
EMCO Horn Antenna(1GHz-18GHz) – H15 (Ref)	3115	0003-6008	20 May 2012
Agilent Preamplifier(1GHz-26.5GHz) (PA18)	8449D	3008A02305	08 Oct 2012
Teseq Preamplifier (9kHz-1GHz)	LNA6901	72266	23 Jun 2012

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

47 CFR FCC Part 15.249(a) Radiated Emission (Fundamental and Harmonics) Test Setup

- The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate 1.
- 2. power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

47 CFR FCC Part 15.249(a) Radiated Emission (Fundamental and Harmonics) Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the fundamental and harmonics emission frequencies from the EUT. 2. For EUT which is a portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
- The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: 3.
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b.
 - The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out. 4.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were 5.
- The frequency range covered was from the EUT fundamental frequency until its 10th harmonics, using 6. the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

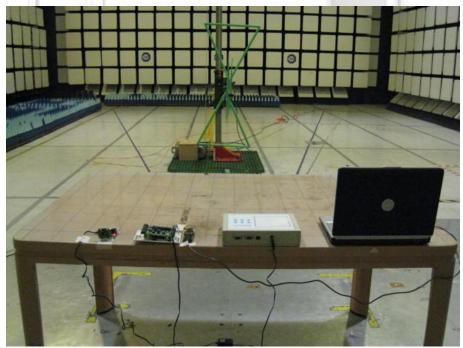
Q-P limit (Class B) = $200 \mu V/m = 46.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dBµV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0


i.e. 6 dB below Q-P limit

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

47 CFR FCC Part 15.249(a) Radiated Emission (Fundamental and Harmonics) Results

Test Input Power	3.0Vdc	Temperature	24°C
Test Distance	3m	Relative Humidity	60%
Operating Mode	Transmit @ 919.8MHz	Atmospheric Pressure	1030mbar
Model	TSS-870	Tested By	Zechs Ng Chee Siong

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)	Note
919.8000	46.1	-47.9	148	207	V	Fundamental

Fundamental and harmonics field strength above 1GHz

Frequency (MHz)	Peak Value (dB _µ V/m)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Note
1839.6000	26.3	25.7	-28.3	303	165	V	Harmonics
2759.4000	26.2	24.3	-29.7	277	100	V	Harmonics
3679.2000	28.6	23.7	-30.3	192	288	V	Harmonics
4599.0000	31.0	30.4	-23.6	8	312	V	Harmonics
5518.8000	31.6	29.1	-24.9	233	399	V	Harmonics
6438.6000	33.7	32.8	-21.2	355	100	V	Harmonics

Test Input Power	3.0Vdc	Temperature	24°C
Test Distance	3m	Relative Humidity	60%
Operating Mode	Transmit @ 925.0MHz	Atmospheric Pressure	1030mbar
Model	TSS-870	Tested By	Zechs Ng Chee Siong

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)	Note
924.9900	39.6	-54.4	303	165	V	Fundamental

Fundamental and harmonics field strength above 1GHz

Frequency (MHz)	Peak Value (dB _µ V/m)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Note
1850.0000	26.5	22.6	-31.4	122	100	V	Harmonics
2775.0000	26.2	25.3	-28.7	143	101	V	Harmonics
3700.0000	28.1	24.7	-29.3	160	101	V	Harmonics
4625.0000	31.9	30.6	-23.4	138	313	V	Harmonics
5550.0000	33.9	32.5	-21.5	285	313	V	Harmonics
6475.0000	34.6	33.6	-20.4	78	188	V	Harmonics

RADIATED EMISSION (FUNDAMENTAL AND HARMONICS) TEST

<u>Notes</u>

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak
 measurements were used for emissions above 1GHz. The average measurement was done by
 measuring the absolute voltage during a 0.1 second interval during which the field strength is at its
 maximum value.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

- 5. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 6. The channel in the table refers to the transmit channel of the EUT.
- 7. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 25GHz is $\pm 4.0dB$.

Please note that this Report is issued under the following terms :

- 1. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.
- 2. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- 3. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 4. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 5. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

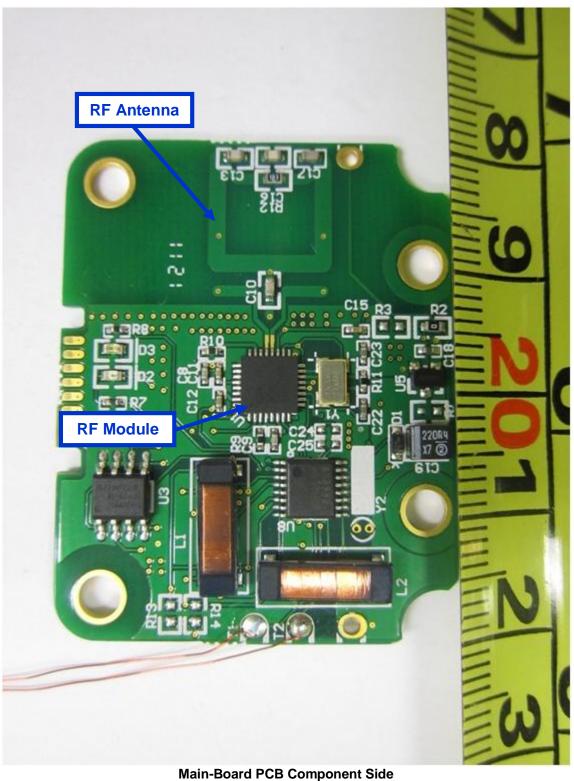
FCC LABEL & POSITION

ANNEX B

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

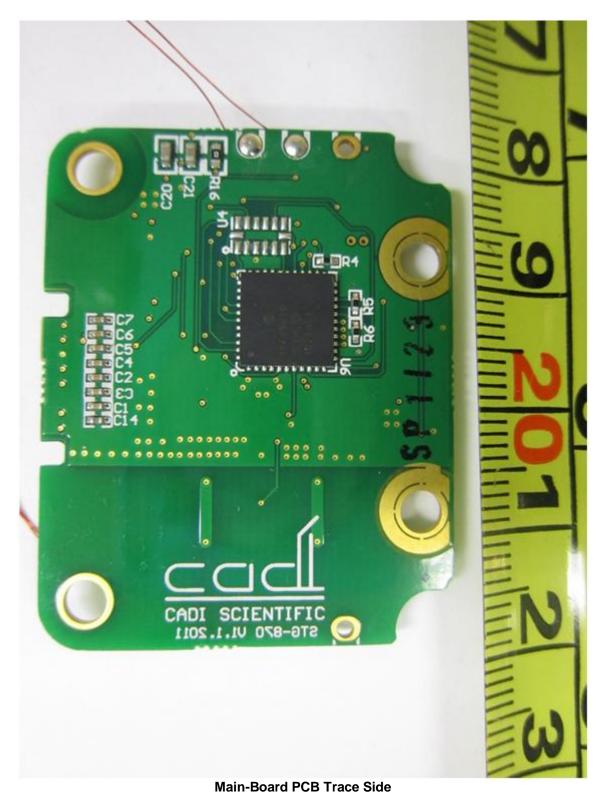
EUT PHOTOGRAPHS FOR SENSOR MODEL TSS-870


Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS FOR SENSOR MODEL TSS-870



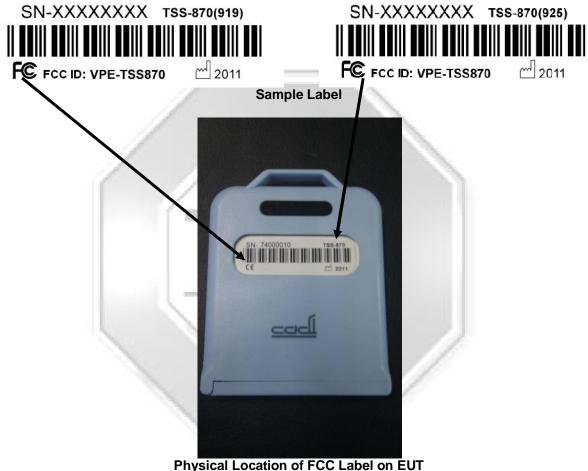
EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS FOR SENSOR MODEL TSS-870

FCC LABEL & POSITION

ANNEX B



FCC LABEL & POSITION

ANNEX B

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

Physical Location of FCC Label on EUT

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAM

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)