

MET Laboratories, Inc.

Safety Certification - EMI - Telecom Environmental Simulation

3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372

Electromagnetic Compatibility MPE Calculation

For the

**Autonet Mobile
AS-BUSPLS-01**

Tested under

**Title 47 of the Code of Federal Regulations (CFR),
Part 15 Subpart C**

MET Report: EMCS81064-MPE

October 7, 2008

Prepared For:

**Autonet Mobile
10 Skylark Drive, Suite 41
Larkspur, CA 94939**

**Prepared By:
MET Laboratories, Inc.
3162 Belick Street
Santa Clara, CA 95054**

Electromagnetic Compatibility MPE Calculation

For the

**Autonet Mobile
AS-BUSPLS-01**


Tested under

**Title 47 of the Code of Federal Regulations (CFR),
Part 15 Subpart C**

MET Report: EMCS81064-MPE

Shawn McMillen
Manager, Electromagnetic Compatibility Lab

Jennifer Sanchez
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Title 47 of the CFR, Part 15, Subpart C under normal use and maintenance.

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output and RF Exposure

Test Purpose: Co-location of two modules, Wistron, FCC ID: NKRCM9 (2.15dBi/2.19dBi) and Novatel, FCC ID: PKRNVWE725 (3dBi).

RF Exposure Requirements: **§1.1307(b)(1) and §1.1307(b)(2):** Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: **§1.1310:** As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Calculation - Wistron Module: 2.4GHz & 5.725-5.825GHz (FCC ID: NKRCM9)

Equation from page 18 of OET 65, Edition 97-01

$$S = PG / 4\pi R^2 \quad \text{or} \quad R = \sqrt{PG / 4\pi S}$$

MPE Limit Calculation: EUT's operating frequencies @ **2412 - 2462MHz**; highest conducted power = 22.912dBm (peak) therefore, Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

EUT maximum antenna gain = **2.15 dBi**.

where, S = Power Density (mW/cm²)
 P = Power Input to antenna (195.524mW)
 G = Antenna Gain (1.64 numeric)

$$S = (195.524 * 1.64 / 4 * 3.14 * 20.0^2) = (320.7746 / 5024) = **0.063mW/cm²** @ 20cm separation$$

MPE Limit Calculation: EUT's operating frequencies @ **5745 - 5805MHz**; highest conducted power = 20.04dBm (peak) therefore, Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

EUT maximum antenna gain = **2.19 dBi**.

where, S = Power Density (mW/cm²)
 P = Power Input to antenna (100.925mW)
 G = Antenna Gain (1.65 numeric)

$$S = (100.925 * 1.65 / 4 * 3.14 * 20.0^2) = (165.1091 / 5024) = **0.033mW/cm²** @ 20cm separation$$

MPE Calculation - Novatel Module: 824.7 – 848.3MHz & 1851.25-1908.75MHz (FCC ID: PKRNVWE725)

Equation from page 18 of OET 65, Edition 97-01

$$S = PG / 4\pi R^2 \quad \text{or} \quad R = \sqrt{PG / 4\pi S}$$

MPE Limit Calculation: EUT's operating frequencies @ **824.7 – 848.3MHz**; highest conducted power = 24.63dBm (peak) therefore, Limit for Uncontrolled exposure: 0.56 mW/cm² or 5.6 W/m²

EUT maximum antenna gain = **3 dBi**.

where, S = Power Density (mW/cm²)
 P = Power Input to antenna (290.4023mW)
 G = Antenna Gain (1.99 numeric)

$$S = (290.4 * 1.99 / 4 * 3.14 * 20.0^2) = (579.4287 / 5024) = **0.115 mW/cm²** @ 20cm separation$$

MPE Limit Calculation: EUT's operating frequencies @ **1851.25 – 1908.75MHz**; highest conducted power = 24.71dBm (peak) therefore, Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

EUT maximum antenna gain = **3 dBi**.

where, S = Power Density (mW/cm²)
 P = Power Input to antenna (295.8012mW)
 G = Antenna Gain (1.99 numeric)

$$S = (295.8012 * 1.99 / 4 * 3.14 * 20.0^2) = (590.2011 / 5024) = **0.117 cm²** @ 20cm separation$$

MPE Calculation – Co-Location of Wistron Module, FCC ID: NKRCM9 & Novatel Module, FCC ID: PKRNVWE725

MPE Summary:

Frequency Range	MPE Result (mW/cm ²)	Limit (mW/cm ²)
2.4GHz	0.063	1
5.745-5.805GHz	0.033	1
824.7 – 848.3MHz	0.115	0.56
1851.25 – 1908.75MHz	0.117	1

Test Requirements: [MPE(f1)/Limit(f1) + MPE(f2)/Limit(f2)] < 1

Test Results:

MPE(f1)	MPE(f2)	Calculation	MPE Result (mW/cm ²)
Frequency (MHz)	Frequency (MHz)	[MPE(f1)/Limit(f1) + MPE(f2)/Limit(f2)]	
2412 - 2462	824.7 – 848.3	0.063 / 1 + 0.115 / 0.56 = (0.069 + 0.205)	0.27
2412 - 2462	1851.25 – 1908.75	0.063 / 1 + 0.117 / 1	0.18
5745-5805	824.7 – 848.3	0.033 / 1 + 0.115 / 0.56 = (0.033 + 0.205)	0.24
5745-5805	1851.25 – 1908.75	0.033 / 1 + 0.117 / 1	0.15