

FCC CFR47 PART 15 SUBPART C

BLUETOOTH LOW ENERGY

CERTIFICATION TEST REPORT

FOR

PORTABLE GAMING DEVICE

MODEL NUMBER: P2523

FCC ID: VOB-P2523

REPORT NUMBER: 14U19497-E6V2

ISSUE DATE: JULY 12, 2016

Prepared for NVIDIA 2701 SAN TOMAS EXPY SANTA CLARA, CA 95050

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

laavia

Revision History

Rev.	Date	Revisions	Revised By
V1	6/20/16	Initial Issue	D. Coronia
V2	7/12/16	Updated Section 6	D. Coronia

Page 2 of 38

TABLE OF CONTENTS

1. A	TESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. F#	CILITIES AND ACCREDITATION	5
4. C/	LIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	6
5. EC	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
5.4.	WORST-CASE CONFIGURATION AND MODE	7
5.5.	DESCRIPTION OF TEST SETUP	8
6. TE	ST AND MEASUREMENT EQUIPMENT10	0
8. SI	JMMARY12	2
8. SI 9. AI	IMMARY12 ITENNA PORT TEST RESULTS	2
 8. St 9. Al 9.1. 	IMMARY	2 3 3
 8. Sl 9. Al 9.1. 9.2. 	IMMARY 11 ITENNA PORT TEST RESULTS 11 ON TIME, DUTY CYCLE 11 6 dB BANDWIDTH 14	2 3 3 4
 8. SU 9. AI 9.1. 9.2. 9.3. 	IMMARY 11 ITENNA PORT TEST RESULTS 11 ON TIME, DUTY CYCLE 11 6 dB BANDWIDTH 14 99% BANDWIDTH 14	2 3 3 4 5
 8. St 9. At 9.1. 9.2. 9.3. 9.4. 	IMMARY 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 14	2 3 <i>3</i> <i>4</i> <i>5</i> <i>6</i>
 8. St 9. Al 9.1. 9.2. 9.3. 9.4. 9.5. 	IMMARY 11 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 14 AVERAGE POWER 1	2 3 <i>3</i> <i>4</i> <i>5</i> <i>6</i> <i>7</i>
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 	JIMMARY 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 14 AVERAGE POWER 14 POWER SPECTRAL DENSITY 14	2 3 <i>3</i> <i>4</i> <i>5</i> <i>6</i> <i>7</i> <i>8</i>
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 	IMMARY 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 14 AVERAGE POWER 14 POWER SPECTRAL DENSITY 14 CONDUCTED SPURIOUS EMISSIONS 14	2 3 <i>3</i> <i>4</i> <i>5</i> <i>6</i> <i>7</i> <i>8</i> <i>9</i>
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 	IMMARY 12 ITENNA PORT TEST RESULTS 13 ON TIME, DUTY CYCLE 14 6 dB BANDWIDTH 14 99% BANDWIDTH 14 OUTPUT POWER 14 AVERAGE POWER 14 POWER SPECTRAL DENSITY 14 CONDUCTED SPURIOUS EMISSIONS 14 RADIATED TEST RESULTS 2	2 3 3 4 5 6 7 8 9 1
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 	IMMARY12ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE146 dB BANDWIDTH1499% BANDWIDTH14OUTPUT POWER14AVERAGE POWER14POWER SPECTRAL DENSITY14CONDUCTED SPURIOUS EMISSIONS15RADIATED TEST RESULTS2*TRANSMITTER ABOVE 1 GHz2	2 3 3 4 5 6 7 8 9 1 2
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 10.1 10.1 	IMMARY11ITENNA PORT TEST RESULTS13ON TIME, DUTY CYCLE146 dB BANDWIDTH1499% BANDWIDTH140UTPUT POWER14AVERAGE POWER14POWER SPECTRAL DENSITY14CONDUCTED SPURIOUS EMISSIONS14RADIATED TEST RESULTS24TRANSMITTER ABOVE 1 GHz24TRANSMITTER BELOW 1 GHz34	2 3 <i>3</i> <i>4</i> <i>5</i> <i>6</i> <i>7</i> <i>8</i> <i>9</i> 1 <i>2</i> <i>2</i>
 8. SU 9. AI 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 10. 10.1 10.1 11. 	JMMARY 11 ITENNA PORT TEST RESULTS 11 ON TIME, DUTY CYCLE 11 6 dB BANDWIDTH 11 99% BANDWIDTH 11 OUTPUT POWER 11 AVERAGE POWER 11 POWER SPECTRAL DENSITY 11 CONDUCTED SPURIOUS EMISSIONS 11 RADIATED TEST RESULTS 22 TRANSMITTER ABOVE 1 GHz 24 TRANSMITTER BELOW 1 GHz 34 AC POWER LINE CONDUCTED EMISSIONS 34	2 3 3 4 5 6 7 8 9 1 2 2 4

1. ATTESTATION OF TEST RESULTS

NVIDIA
Portable Gaming Device
P2523
P2523-E02-S0929
NOVEMBER 21-DECEMBER 8, 2014

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

DAN CORONIA CONSUMER TECHNOLOGY DIVISION WISE PROJECT LEAD UL VERIFICATION SERVICES INC Prepared By :

KIYA KEDIDA CONSUMER TECHNOLOGY DIVISION WISE LAB ENGINEER UL VERIFICATION SERVICES INC

Page 4 of 38

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 9KHz to 30 MHz	2.14 dB
Radiated Disturbance, 30 to 1000 MHz	4.98 dB
Radiated Disturbance,1000 to 6000 MHz	3.86 dB
Radiated Disturbance,6000 to 18000 MHz	4.23 dB
Radiated Disturbance,18000 to 26000 MHz	5.30 dB
Radiated Disturbance,26000 to 40000 MHz	5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 38

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Portable Gaming Device.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402-2480	BLE	6.22	4.19

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna, with a maximum gain of 3.36 dBi.

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Page 7 of 38

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	Suppo	rt Equipment List		
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter	NVIDIA	SPA011AU5W	R43001	N/A

I/O CABLES

Cable	Port	# of identical	Connector	Cable Type	Cable Length	Remarks
No		ports	Туре		(m)	
1	DC Power	1	Mini USB	Shielded	1.2m	N/A

TEST SETUP

The EUT is continuously transmitting Bluetooth through the EUT's software.

Page 8 of 38

SETUP DIAGRAM FOR TESTS

Page 9 of 38

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equipme	nt List		
Description	Manufacturer	Model	Asset	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00986	4/1/2015
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	2/26/2015
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	8/8/2015
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00580	5/8/2015
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	10/22/2015
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	N/A	3/6/2015
Antenna, Horn, 18 GHz	ETS	3117	C01022	2/21/2015
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	12/17/2014
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/2014
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/2014
LISN, 30 MHz	FCC	50/250-25-2	C00626	1/14/2015
NOTE: The calibration interval of the at	oove test instruments i	is 12 months and the	calibrations	
are traceable to NIST USA.				

	Test Software L	ist	
Description	Manufacturer	Model	Version
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15

Page 10 of 38

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 D01 v03r05, Section 6.0

<u>6 dB BW</u>: KDB 558074 D01 v03r05, Section 8.1.

<u>99% BW</u>: ANSI C63.10-2013, Section 6.9.3.

Output Power: KDB 558074 D01 v03r05, Section 9.1.1.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r05, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.1, 12.2

AC Power Line Conducted Emissions: ANSI C63.10-2013 Section 6.2.

Page 11 of 38

8. SUMMARY

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result
15.247 (a)(2)	RSS-247 5.2 (1)	Occupied Band width (6dB) with 99%	>500KHz		Pass
2.1051, 15.247 (d)	RSS-247 5.5	Band Edge / Conducted Spurious Emission	-20dBc	Conducted	Pass
15.247	RSS-247 5.4 (4)	TX conducted output power	<30dBm	Conducted	Pass
15.247	RSS-247 5.2 (2)	PSD	<8dBm		Pass
15.207 (a)	RSS-GEN 8.8	AC Power Line conducted emissions	Section 10	Dedicted	Pass
15.205, 15.209	RSS-GEN 8.9	Radiated Spurious Emission	< 54dBuV/m	naulaleu	Pass

Page 12 of 38

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME, DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

RESULTS

Page 13 of 38

9.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

KDB 58074 D01 v03r05 Section 8.1

RESULTS

6 dB BANDWIDTH PLOTS AND TABLE

Page 14 of 38

9.3. 99% **BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

99% BANDWIDTH PLOTS AND TABLE

Page 15 of 38

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b)

The maximum antenna gain is less than or equal to 6dBi, therefore the limit is 30 dBm.

RESULTS

OUTPUT POWER PLOTS AND TABLE

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc

Page 16 of 38

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

	AVERAGE POWER		
	Channel	Frequency (MHz)	AV power (dBm)
	Low	2402	5.44
	Middle	2440	6.08
	High	2480	5.23
NOTE:			

Page 17 of 38

9.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

POWER SPECTRAL DENSITY PLOTS AND TABLE

Page 18 of 38

9.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

Page 19 of 38

BANDEDGE AND SPURIOUS EMISSIONS PLOTS

10. RADIATED TEST RESULTS

LIMITS AND PROCEDURE

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor = $10 \log (1/x)$. For this sample: DCF = $10 \log (1/0.624) = 2.05$ dB

The spectrum from 1GHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

Page 21 of 38

10.1. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL)

Page 22 of 38

RESTRICTED BANDEDGE (LOW CHANNEL)

Page 23 of 38

RESTRICTED BANDEDGE (HIGH CHANNEL)

Page 24 of 38

 Page 25 of 38

 UL VERIFICATION SERVICES INC.
 FORM NO: CCSUP47011

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc

HARMONICS AND SPURIOUS EMISSIONS

SPURIOUS (LOW CHANNEL)

Page 26 of 38

LOW CHANNEL DATA

TRACE	MARKERS
-------	---------

2 4.804 5 4.805 1 1.77 4 1.909 3 6.499 6 6.896 6 6.896 - Peak dete
5 * 4.805 1 1.77 4 1.909 3 6.499 6 6.896 indicates fre - Peak dete
1 1.77 4 1.909 3 6.499 6 6.896 - Peak dete
4 1.909 3 6.499 6 6.896 indicates fre - Peak dete
3 6.499 6 6.896 indicates fre - Peak dete
6 6.896 indicates fre - Peak dete
ndicates fre - Peak dete
diated En
requency I (GHz) Re
requency I (GHz) Re (d
requency I (GHz) Re (4.804 4
requency (GHz) R (GHz) ((1 * 4.804 4 * 4.804 3
requency (GHz) Re (GHz) 4 * 4.804 4 * 4.804 5 * 4.805 4

Page 27 of 38

SPURIOUS (MID CHANNEL)

MID CHANNEL DATA

TRACE MARKERS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/F tr/Pad (dB)	DC Cor (dB)	rr Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.88	32.23	PK	34	-30.2	0	36.03	-	-	74	-37.97	0-360	200	Н
5	* 4.881	35.04	PK	34	-30.2	0	38.84	-	-	74	-35.16	0-360	200	V
4	1.781	33.64	PK	29.9	-23.4	0	40.14	-		-	-	0-360	200	V
1	1.922	33.64	PK	31.3	-23.2	0	41.74	-		-	-	0-360	200	Н
3	6.04	31.11	PK	35.3	-29.3	0	37.11	-		-	-	0-360	200	Н
6	6.329	30.88	PK	35.4	-29	0	37.28	-	-	-	-	0-360	100	V
'K - P€	eak detect	or	01111	0.200,10										
rK - P€	eak detect	ssions												
K - Pe	eak detect	ssions												
K - Pe adia Freque (GH2	ted Emi	SSIONS er De ling De	et	AF T119 (dB/m)	Amp/Cbl/ Fitr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarit

74

351

172

172

-29.05

282

130

130

Н

V

ν

* - indicates frequency in CFR15.205/IC 8.10 Restricted Band PK - Peak detector

MAv1

PK2

MAv1

34

34

34

2.1

0

2.1

36.25

44.95

35.49

54

54

-17.75

-18.51

-30.2

-30.2

-30.2

RMS - RMS detection

30.35

41.15

29.59

NOTE:

* 4.88

* 4.878

* 4.88

Page 29 of 38

SPURIOUS (HIGH CHANNEL)

Page 30 of 38

HIGH CHANNEL DATA

TRACE MARKERS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fl tr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 4.96	32.12	PK	34	-31	0	35.12	-	-	74	-38.88	0-360	200	Н
5	* 4.96	35.16	PK	34	-31	0	38.16	-	-	74	-35.84	0-360	200	V
1	1.907	33.34	PK	31.3	-23.2	0	41.44	-	-	-	-	0-360	200	Н
4	1.988	34.08	PK	31.6	-23.2	0	42.48	-	-	-	-	0-360	200	V
3	6.158	31.71	PK	35.3	-29.7	0	37.31	-	-	-	-	0-360	200	Н
6	6.322	31.32	PK	35.4	-29.3	0	37.42	-	-	-	-	0-360	200	V

* - indicates frequency in CFR15.205/IC 8.10 Restricted Band

PK - Peak detector

Radiated Emissions

Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
* 4.96	42.56	PK2	34	-31	0	45.56	-	-	74	-28.44	125	153	Н
* 4.96	30.63	MAv1	34	-31	2.1	35.73	54	-18.25	-	-	125	153	Н
* 4.959	44.21	PK2	34	-31	0	47.21	-	-	74	-26.79	140	258	V
* 4.96	34.23	MAv1	34	-31	2.1	39.33	54	-14.67	-	-	140	258	V

* - indicates frequency in CFR15.205/IC 8.10 Restricted Band PK - Peak detector

RMS - RMS detection

NOTE:

Page 31 of 38

10.1. TRANSMITTER BELOW 1 GHz

REPORT NO: 14U19497-E6V2 FCC ID: VOB-P2523

BELOW 1 GHz TABLE

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Correcte d Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 165.9575	46	PK	11.7	-30.2	27.5	43.52	-16.02	0-360	400	Н
6	* 111.26	52.82	PK	12.8	-30.4	35.22	43.52	-8.3	0-360	101	V
10	* 240.4	44.65	PK	11.5	-29.7	26.45	46.02	-19.57	0-360	101	V
3	32.7625	45.48	PK	19.2	-31.2	33.48	40	-6.52	0-360	101	V
4	45.5125	47.06	PK	10.3	-31.1	26.26	40	-13.74	0-360	101	V
1	92.9	55.57	PK	8.3	-30.6	33.27	43.52	-10.25	0-360	400	Н
5	104.885	56.69	PK	11.5	-30.5	37.69	43.52	-5.83	0-360	101	V
7	316.2	47.38	PK	13.9	-29.3	31.98	46.02	-14.04	0-360	101	Н
8	396.6	47.14	PK	15.1	-29.1	33.14	46.02	-12.88	0-360	101	Н
9	499.2	35.88	PK	17.6	-28.7	24.78	46.02	-21.24	0-360	200	Н

* - indicates frequency in CFR15.205/IC 8.10 Restricted Band

PK - Peak detector

Note: --

Page 33 of 38

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS AND PROCEDURE

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Fraguency of Emission (MHz)	Conducted Limit (dBuV)					
Frequency of Emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 34 of 38

<u>6 WORST EMISSIONS</u>

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc

Page 35 of 38

Page 36 of 38