

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For Portable Gaming Device

FCC ID: VOB-P2523 Model Name: P2523

Report Number: 14U19497-S1C Issue Date: 3/3/2015

Prepared for NVIDIA 2701 SAN TOMAS EXPY SANTA CLARA, CA 95050

Prepared by UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
	12/31/2014	Initial Issue	
А	1/7/2015	Section 7: Added Note(s) section	Coltyce Sanders
В	2/27/2015	Section 2: Added KDB 941225 D07 test standard	Coltyce Sanders
С	3/3/2015	Section 7: Added reference to KDB enquiry, deleted notes.	Dave Weaver

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	7
4.	SAR Measurement System & Test Equipment	8
4.1.	SAR Measurement System	8
4.2.	SAR Scan Procedures	9
4.3.	Test Equipment1	1
5.	Measurement Uncertainty1	1
6.	Device Under Test (DUT) Information1	2
6.1.	DUT Description 1	2
6.2.	Wireless Technologies	2
6.3.	Nominal and Maximum Output Power1	3
7.	RF Exposure Conditions (Test Configurations)1	4
8.	Dielectric Property Measurements & System Check 1	4
8.1.	Dielectric Property Measurements 1	4
8.2.	System Check 1	6
9.	Conducted Output Power Measurements1	8
9.1.	Wi-Fi DTS (2.4 GHz) Band 1	8
9.2.	Wi-Fi U-NII (5 GHz) Bands 1	9
9.3.	Bluetooth2	0
10.	Measured and Reported (Scaled) SAR Results2	1
10.1	1. Wi-Fi (DTS Band) defined	1.
10.2	2. Wi-Fi (U-NII Band) error! Bookmark not defined	1.
10.3	3. Bluetooth	3
11.	SAR Measurement Variability 2	4
12.	Simultaneous Transmission SAR Analysis 2	5
12.1	1. Sum of the SAR Wi-Fi & BT 2	5
Apper	ndixes	6
A_1	4U19497-S1v0 SAR Photos & Ant. Locations2	6
B_1	4U19497-S1v0 SAR Highest SAR Test Plots2	6
C_1	4U19497-S1v0 SAR System Check Plots 2	6

Page 3 of 26

D_14U19497-S1v0 SAR Tissue Ingredients	26
E_14U19497-S1v0 SAR Probe Cal. Certificates	26
F_14U19497-S1v0 SAR Dipole Cal. Certificates	26

Page 4 of 26

1. Attestation of Test Results

NVIDIA				
VOB-P25				
P2523				
FCC 47 CFR § 2.1093				
Published RF expose	ure KDB procedure	S		
IEEE Std 1528-2013				
SAR Limi	ts (W/Kg)			
Peak spatial-average (1g of tissue) Extremities (hands, wrists, ankles, etc.) (10g of tissue)				
1.6	3	4		
The Highest Repo	orted SAR (W/kg)			
	Equipm	ent Class		
Licensed	DTS	U-NII	DSS (BT)	
0.094		0.250		
	0.141	0.303	NA	
12/4/2014 to 12/10/2014				
Pass				
	VOB-P25 P2523 FCC 47 CFR § 2.108 Published RF expose IEEE Std 1528-2013 SAR Limi Peak spatial-avera 1.6 The Highest Repo Licensed NA 12/4/2014 to 12/10/20	VOB-P25 P2523 FCC 47 CFR § 2.1093 Published RF exposure KDB procedure IEEE Std 1528-2013 SAR Limits (W/Kg) Peak spatial-average (1g of tissue) 1.6 Equipm Licensed DTS NA 0.094 0.141 12/4/2014 to 12/10/2014	VOB-P25 P2523 FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013 SAR Limits (W/Kg) Extremities (hands (10g or 100 or	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:	
JenCary	Cetter Sund	
Devin Chang	Coltyce Sanders	
Senior Engineer	Laboratory Engineer	
UL Verification Services Inc.	UL Verification Services Inc.	

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 SAR Meas for 802 11abg v01r02
- o 447498 D01 General RF Exposure Guidance v05r02
- o 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- o 865664 D02 RF Exposure Reporting v01r01
- o 941225 D07 UMPC Mini Tablet v01r01

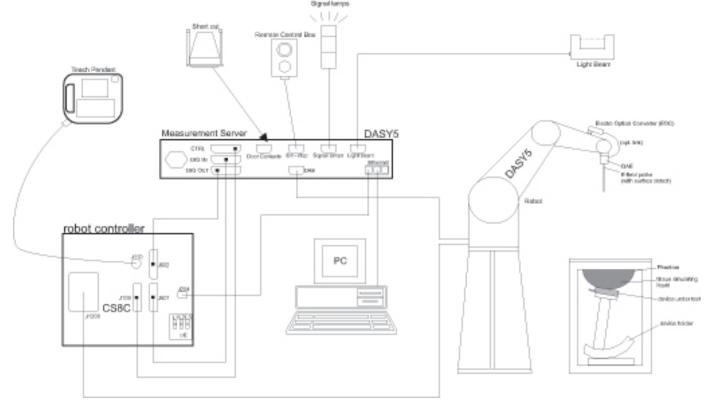
In addition to the above, the following information was used:

o <u>TCB workshop</u> April, 2014; Page 7, RF Exposure Procedures General Update

Page 6 of 26

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 8 of 26

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$^{1/2}\cdot\delta\cdot\ln(2)\pm0.5~mm$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{\text{Zoom}}(n)$		\leq 5 mm	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	an graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{Zoom}(n>1)$: between subsequent points	≤1.5·∆z	Zoom(n-1)
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	E753ES	MY40000980	4/7/2015
Dielectronic Probe kit	SPEAG	DAK-3.5	1082	9/16/2015
Dielectronic Probe kit	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Control Company	4242	122529163	10/8/2015
Thermometer	EXTECH	445703	CCS-200	3/24/2015
System Check				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
HP Signal Generator	HP	8665B	3546A00784	6/23/2015
Power Meter	Agilent	N1911A	MY53060016	8/7/2015
Power Sensor	Agilent	E9323A	MY53070003	5/1/2015
Power Meter	HP	437B	3125U09516	10/6/2015
Power Sensor	HP	8481A	3318A95392	10/6/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1622052	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2711	N/A
DC Power Supply	Sorensen Ametek	XT20-3	1318A00530	N/A
Synthesized Signal Generator	Agilent	8665B	3438A00633	8/29/2015
Power Meter	HP	437B	3125U11347	8/27/2015
Power Sensor	HP	8481A	1926A16917	10/10/2015
Power Meter	HP	437B	3125U16345	6/16/2015
Power Sensor	HP	8481A	2702A60780	6/16/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1808938	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2710	N/A
DC Power Supply	HP	6296A	2841A-05955	N/A
E-Field Probe (SAR 1)	SPEAG	EX3DV4	3902	5/19/2015
E-Field Probe (SAR 5)	SPEAG	EX3DV4	3991	5/16/2015
Data Acquisition Electronics (SAR 1)	SPEAG	DAE3	427	1/21/2015
Data Acquisition Electronics (SAR 5)	SPEAG	DAE4	1439	5/14/2015
System Validation Dipole	SPEAG	D2450V2	748	2/18/2015
System Validation Dipole	SPEAG	D5GHzV2	1003	2/26/2015
Thermometer (SAR Lab 1)	EXTECH	445703	CCS-205	3/24/2015
Thermometer (SAR Lab 5)	EXTECH	445703	CCS-239	6/3/2015

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Power Meter	Agilent	N1912A	MY53040015	7/10/2015
Power Sensor	Agilent	N1921A	MY52200012	9/26/2015

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 10-g SAR within a frequency band is < 3.0 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Standard 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Model: P2523				
	Overall (Length x Width): 107.5 mm x 138.6 mm			
Device Dimension	Overall Diagonal: 157 mm			
	Display Diagonal: 152.6 mm			
	Normal Battery Cover			
	Normal Battery Cover with NFC			
Battery Back Cover	U Wireless Charger Battery Cover			
	Wireless Charger Battery Cover with NFC			
	☐ The rechargeable battery is not user accessible.			
	Standard – Lithium-ion battery, Rating N/A Vdc, N/A Wh			
Battery Options	Extended (large capacity)			
	In the rechargeable battery is not user accessible.			

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
		802.11b	
	2.4 GHz	802.11g	1009/
	2.4 GHZ	802.11n (HT20)	11n (HT20)
		802.11n (HT40)	
Wi-Fi		802.11a	
		802.11n (HT20)	
	5 GHz	802.11n (HT40)	100%
		802.11ac (VHT40)	
		802.11ac (VHT80)	
Bluetooth	2.4 GHz	Version 4.0 LE	77.5% (DH5)

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Upper limit (dB):	-1.5 ~ 0.5	Channel	с	ore 0	Ca	ore 1
RF Air interface	Mode	Number	Target	Max. tune-up tolerance limit	Target	Max. tune-up tolerance limit
		1	19.0	19.5	19.0	19.5
	000 445	6	19.0	19.5	19.0	19.5
	802.11b	10	19.0	19.5	19.0	19.5
		11	19.0	19.5	19.0	19.5
		1	13.0	13.5	13.0	13.5
		2	16.5	17.0	16.5	17.0
		3	18.0	18.5	18.0	18.5
	802.11g	6	18.0	18.5	18.0	18.5
		9	18.0	18.5	18.0	18.5
		10	17.0	17.5	17.0	17.5
WiFi 2.4 GHz		11	14.5	15.0	14.5	15.0
		1	14.5	15.0	14.5	15.0
		2	15.5	16.0	15.5	16.0
		3	17.5	18.0	17.5	18.0
	802.11n HT20 -	6	17.5	18.0	17.5	18.0
		10	17.5	18.0	17.5	18.0
		11	13.0	13.5	13.0	13.5
		3	12.0	12.5	12.0	12.5
	802.11n HT40	6	13.5	14.0	13.5	14.0
		9	13.0	13.5	13.0	13.5
		36	15.0	15.5	15.0	15.5
	-	40	15.0	15.5	15.0	15.5
		44	15.0	15.5	15.0	15.5
		48	15.0	15.5	15.0	15.5
	802.11a	149	15.0	15.5	15.0	15.5
		153	15.0	15.5	15.0	15.5
	-	157	15.0	15.5	15.0	15.5
	-	161	15.0	15.5	15.0	15.5
	-	165	15.0	15.5	15.0	15.5
		36	12.0	12.5	12.0	12.5
	-	40	12.0	12.5	12.0	12.5
	-	40	12.0	12.5	12.0	12.5
WiFi 5 GHz	802.11n HT20	149	11.0	11.5	12.0	11.5
	-	149	13.0	13.5	13.0	13.5
	-	165	13.0	13.5	13.0	13.5
	<u>├</u> ───┼	38	12.0	12.5	12.0	12.5
		46	12.0	12.5	12.0	12.5
	802.11n HT40 -	151	11.0	11.5	12.0	12.5
	-	159	15.0	15.5	11.0	11.5
	<u>├</u>	38	12.0	12.5	12.0	12.5
	-	46	12.0	12.5	12.0	12.5
	802.11ac VHT40 -	151	12.0	11.5	12.0	12.5
	-	151	15.0	15.5	11.0	11.5
	├					15.5
	802.11ac VHT80 -	42	12.0	12.5	12.0	
DI	otooth	155	12.5	13.0	12.5	13.0
	etooth ooth LE	N/A N/A	10.0 6.5	10.5 7.0		

7. RF Exposure Conditions (Test Configurations)

The RF exposure test configurations were determined through a KDB enquiry.

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR
technologies	Conditions	Separation	Position	edge/surface	Required
WLAN	Extremity (Hand/Wrist/Ankle)	0	Rear	N/A	Yes

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	F	lead	Bod	у
raiget riequency (wiriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Standard 1528-2013

Refer to Table 3 within the IEEE Standard 1528-2013

Dielectric Property Measurements Results:

SAR Lab 1

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	50.3700	Relative Permittivity (c _r):	50.37	52.70	-4.42	5
	B00y 2450	e"	14.9500	Conductivity (σ):	2.04	1.95	4.44	5
12/4/2014	Body 2410	e'	50.5300	Relative Permittivity (ε_r):	50.53	52.76	-4.23	5
12/4/2014	B00y 2410	e"	14.8800	Conductivity (σ):	1.99	1.91	4.53	5
	Body 2475	e'	50.2500	Relative Permittivity (c _r):	50.25	52.67	-4.59	5
	Body 2475	e"	15.0800	Conductivity (σ):	2.08	1.99	4.54	5
	Body 2450	e'	50.9100	Relative Permittivity (c _r):	50.91	52.70	-3.40	5
	B00y 2450	e"	14.7500	Conductivity (σ):	2.01	1.95	3.04	5
12/8/2014	Body 2410	e'	51.0500	Relative Permittivity (c _r):	51.05	52.76	-3.24	5
12/0/2014	B00y 2410	e"	14.6000	Conductivity (o):	1.96	1.91	2.57	5
	Body 2475	e'	50.8100	Relative Permittivity (c _r):	50.81	52.67	-3.53	5
	Body 2475	e"	14.8100	Conductivity (σ):	2.04	1.99	2.67	5

SAR Lab 5

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 5180	e'	47.2500	Relative Permittivity (ε_r):	47.25	49.05	-3.66	5
	Body 5180	e"	18.9500	Conductivity (σ):	5.46	5.27	3.54	5
	Body 5200	e'	47.1300	Relative Permittivity (ε_r):	47.13	49.02	-3.85	5
	B00y 5200	e"	18.7900	Conductivity (σ):	5.43	5.29	2.61	5
12/4/2014	Body 5600	e'	46.4800	Relative Permittivity (ε_r):	46.48	48.48	-4.12	5
12/4/2014	Body 5000	e"	19.1600	Conductivity (σ):	5.97	5.76	3.56	5
	Body 5800	e'	46.0700	Relative Permittivity (ε_r):	46.07	48.20	-4.42	5
	BOUY 5600	e"	19.3700	Conductivity (σ):	6.25	6.00	4.11	5
	Body 5825	e'	46.1300	Relative Permittivity (ε_r):	46.13	48.20	-4.29	5
	BOUY 5625	e"	19.4000	Conductivity (σ):	6.28	6.00	4.72	5
	Body 5180	e'	47.0500	Relative Permittivity (ε_r):	47.05	49.05	-4.07	5
	BOUY 5160	e"	18.7900	Conductivity (σ):	5.41	5.27	2.67	5
	Body 5200	e'	46.9500	Relative Permittivity (ε_r):	46.95	49.02	-4.22	5
	B00y 5200	e"	18.8300	Conductivity (σ):	5.44	5.29	2.83	5
12/8/2014	Body 5600	e'	46.2800	Relative Permittivity (c _r):	46.28	48.48	-4.53	5
12/0/2014	BOUY 5600	e"	19.2300	Conductivity (σ):	5.99	5.76	3.94	5
	Body 5800	e'	45.8300	Relative Permittivity (ε_r):	45.83	48.20	-4.92	5
	Bouy 3600	e"	19.5000	Conductivity (σ):	6.29	6.00	4.81	5
	Body 5825	e'	45.9400	Relative Permittivity (ε_r):	45.94	48.20	-4.69	5
	BUUY 3823	e"	19.4300	Conductivity (σ):	6.29	6.00	4.89	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date		Target SAR Values (W/kg)			
System Dipole	Senar No.	Cal. Date	Freq. (MHz)	1g/10g	Head	Body	
D2450\/2	D2450V2 748 2/18/20		2450	1g	51.6	50.7	
D2450V2			2450	10g	24.0	23.7	
		2/26/2014	5200	1g	77.7	73.5	
			5200	10g	22.2	20.5	
D5GHzV2	1003		5600	1g	81.8	79.6	
DOGHZ V Z	1003	2/20/2014	5600	10g	23.2	22.1	
			5800	1g	78.3	73.8	
			5600	10g	22.1	20.4	

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab 1

	System	System Dipole		то		Measured Results		Delta	
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	±10 %	Plot No.
12/4/2014	D2450V2	748	Body	1g	5.31	53.1	50.70	4.73	
12/4/2014	D2430 V Z	740	BOUY	10g	2.46	24.6	23.7	3.80	
12/9/2014	D2450\/2	748	Dedu	1g	5.40	54.0	50.70	6.51	1,2
12/0/2014	12/8/2014 D2450V2		Body	10g	2.49	24.9	23.7	5.06	∠, ۱

SAR Lab 5

	System	n Dipole	то		Measured	d Results	Torget	Dalta	Diet	
Date Tested	Туре	Serial #	T.S. Liquid			Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.	
12/4/2014	5200	1003	Body	1g	7.63	76.3	73.50	3.81		
12/4/2014	5200	1005	Body	10g	2.15	21.5	20.50	4.88		
12/4/2014	5600	1003	Body	1g	8.31	83.1	79.60	4.40		
12/4/2014	5000	1005	Body	10g	2.31	23.1	22.10	4.52		
12/4/2014	5800	1002	1003	Body	1g	7.90	79.0	73.80	7.05	
12/4/2014	5600	1005	Body	10g	2.17	21.7	20.40	6.37		
12/8/2014	5200	1003	Body	1g	7.80	78.0	73.50	6.12		
12/0/2014	5200	1003	Body	10g	2.20	22.0	20.50	7.32		
12/9/2014	5600	1003	Body	1g	8.50	85.0	79.60	6.78		
12/0/2014	12/8/2014 5600	1003	Bouy	10g	2.37	23.7	22.10	7.24		
12/8/2014	12/8/2014 5800 100	1003	1000 Date	1g	7.88	78.8	73.80	6.78	2.4	
12/0/2014	5600	1003	Body	10g	2.21	22.1	20.40	8.33	3,4	

9. Conducted Output Power Measurements

9.1. Wi-Fi DTS (2.4 GHz) Band

Required Test Channels per KDB 248227 D01

Measured Results

Band	Mode	Data Rate	Ch #	Freq.	Avg Pw	r (dBm)	SAR Test
(GHz)	Widde	Dala Nale	Off#	(MHz)	Core 0	Core 1	(Yes/No)
			1	2412	18.5	17.6	
	802.11b	1 Mbps	6	2437	18.4	18.5	Yes
			11	2462	18.2	18.3	
			1	2412	12.7	12.6	
			2	2417	16.1	16.2	
			3	2422	18.1	18.3	
			4	2427	18.0	17.9	
	802.11g	6 Mbps	6	2437	18.2	18.2	No
			8	2447	18.1	18.2	- - - -
			9	2452	17.7	18.1	
2.4			10	2457	16.6	17.0	
(DTS)			11	2462	12.2	12.6	
			1	2412	14.6	14.1	
			2	2417	15.5	15.5	
	000 44-		3	2422	17.7	17.3	
	802.11n (HT20)	MCS0	6	2437	17.3	17.3	No
	(11120)		9	2452	17.4	17.8	
			10	2457	16.9	17.5	
			11	2462	13.0	13.0	
000.44	000 11+		3	2422	12.0	12.0	
	802.11n (HT40)	MCS0	6	2437	13.4	13.4	No
	(0+11)		9	2452	13.0	13.0	

Power measurements to determine worst-case data rates

Mode	Ch #	Freq.	Data Rate	Avg Pw	r (dBm)	SAR test	
		(MHz)	Data Nate	Core 0	Core 1	(Yes/No)	
		1 Mbps	18.4	18.5	Yes		
802.11b	6	2437	2 Mbps	18.4	18.2	No	
002.110	0		5.5 Mbps	18.4	18.3	No	
			11 Mbps	18.4	18.5	No	

Note(s):

1. Per KDB 248227 D01,

• Testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is < 1/4 dB higher than those measured at the lowest data rate.

• Each channel should be tested at the lowest data rate in each a-b/g mode channel BW configuration.

Page 18 of 26

9.2. Wi-Fi U-NII (5 GHz) Bands

Required Test Channels per KDB 248227 D01

Measured Results

Band	Mode	Data Rate	Ch #	Freq.	Avg Pw	rr (dBm)	SAR Test
(GHz)	Mode	Data Nate	01#	(MHz)	Core 0	Core 1	(Yes/No)
			36	5180	14.5	14.8	
	802.11a	6 Mbps	40	5200	14.2	14.9	Yes
	002.11a		44	5220	14.4	14.6	165
			48	5240	14.1	14.5	
	000.44+		36	5180	10.8	10.8	
5.2	802.11n 5.2 (HT20)	MCS0	40	5200	10.8	12.4	No
(UNII-1)	(1120)		48	5240	10.8	12.5	
802.11n	802.11n	MCS0	38	5190	11.4	12.5	No
	(HT40)	WC30	46	5230	11.4	12.3	NO
	802.11ac	MCS0	38	5190	11.4	12.5	No
	(VHT40)	10030	46	5230	11.4	12.3	NO
	802.11ac (VHT80)	MCS0	42	5210	11.2	11.0	No
		6 Mbps	149	5745	14.8	13.0	
			153	5765	14.7	13.0	
	802.11a		157	5785	14.7	13.0	Yes
			161	5805	14.6	13.0	
			165	5825	14.6	13.0	
	802.11n		149	5745	10.5	9.6	
5.8	802.11h (HT20)	MCS0	157	5785	13.0	12.0	No
(UNII-3)	(1120)		161	5805	13.0	12.0	
	802.11n	MCS0	151	5755	10.8	9.6	No
	(HT40)	WCSU	159	5795	14.9	13.7	INO
	802.11ac	MCS0	151	5755	10.8	9.6	No
	(VHT40)	WCOU	159	5795	14.9	13.7	NO
	802.11ac (VHT80)	MCS0	155	5775	12.3	11.3	No

Power measurements to determine worst-case data rates

Band	Ch #	Freq.	Data Rate	Avg Pwr (dBm)	SAR test
Bana	011 //	(MHz)	Data Nato	Core 0	(Yes/No)
			6 Mbps	14.5	Yes
			9 Mbps	14.4	No
			12 Mbps	14.3	No
5.2 GHz	36	5180	18 Mbps	14.1	No
(UNII-1)	50	5160	24 Mbps	13.9	No
			36 Mbps	13.4	No
			48 Mbps	13.2	No
			54 Mbps	13.1	No
			6 Mbps	14.8	Yes
			9 Mbps	14.1	No
			12 Mbps	14.0	No
5.8 GHz	149	5745	18 Mbps	13.8	No
(UNII-3)	145	5745	24 Mbps	13.5	No
			36 Mbps	13.1	No
			48 Mbps	12.9	No
			54 Mbps	12.7	No

Page 19 of 26

Power measurements to determine worst-case data rates(continued)

Band	Ch #	Freq.	Data Rate	Avg Pwr (dBm)	SAR test
Danu	01#	(MHz)	Data Nate	Core 1	(Yes/No)
			6 Mbps	14.9	Yes
			9 Mbps	14.3	No
			12 Mbps	14.2	No
5.2 GHz	40	5200	18 Mbps	13.8	No
(UNII-1)	40	5200	24 Mbps	13.6	No
			36 Mbps	13.1	No
			48 Mbps	13.0	No
			54 Mbps	12.8	No
			6 Mbps	13.0	Yes
			9 Mbps	13.0	No
			12 Mbps	13.0	No
5.8 GHz	165	5825	18 Mbps	12.7	No
(UNII-3)	105	3023	24 Mbps	12.5	No
			36 Mbps	12.1	No
			48 Mbps	13.9	No
			54 Mbps	13.7	No

Note(s):

1. Per KDB 248227 D01,

- Testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is < 1/4 dB higher than those measured at the lowest data rate.
- Each channel should be tested at the lowest data rate in each a-b/g mode channel BW configuration.

9.3. Bluetooth

Maximum tune-up tolerance limit is 10.5 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

Refer to Standalone SAR Test Exclusion Considerations Section.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 248227 D01 SAR Measurements Procedures for 802.11 a/b/g Transmitters v01r02 (pg.6):

Each channel should be tested at the lowest data rate in each a-b/g mode or 4.9 GHz channel BW configuration. When the extrapolated maximum peak SAR for the maximum output channel is ≤ 1.6 W/kg and the 1-g averaged SAR is ≤ 0.8 W/kg, testing of other channels in the "default test channels" or "required test channels" configuration is optional.

April 2013 TCB Workshop Updates:

Apply usual 802.11 test exclusion considerations, but include 802.11ac SAR for highest 802.11a configuration in each frequency band and each exposure condition.

10.1. Wi-Fi (DTS Band)

2.4 GHz Bands						Core 0				Core 1					
	2.4 GHZ BANUS					Power	Power (dBm) 10-g SAF		-g SAR (W/kg) Powe		er (dBm) 10-g SAF		R (W/kg)	Plot	
RF Exposure Condition	Active Antenna(s)	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	Tune-up limit	Meas.	Meas.	Scaled	No.
	2.4 GHz (DTS) 802.11b				1	2412	19.5	18.5	0.037	0.047					
Extremity		802.11b 0	Rear	6	2437	19.5	18.4	0.055	0.071	19.5	18.5	0.037	0.047		
× ×					11	2462	19.5	18.2	0.070	0.094					1

10.2. Wi-Fi (U-NII Band)

5.2 GHz (U-NII-1)						Co	re 0		Core 1					
0.2 GH2 (0-Nii-1)					Power (dBm)		10-g SAR (W/kg)		Power (dBm)		10-g SAR (W/kg)		Plot	
RF Exposure Condition	Mode	Dist. (mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	Tune-up limit	Meas.	Meas.	Scaled	No.
Estre milter	802.11a 6 Mbps	0	Rear	36	5180	15.5	14.5	0.042	0.053	15.5	14.8	0.130	0.153	
Extremity	802.11ac (VHT80)	0	Rear	42	5210					12.5	11.0	0.177	0.250	2
					Core 0			Core 1						
	590		11 2)				Co	re 0			Co	re 1		
	5.8 0	GHz (U-N	II-3)			Power			R (W/kg)	Power	(dBm)	-	R (W/kg)	Plot
RF Exposure Condition	5.8 C Mode	GHz (U-N Dist. (mm)	II-3) Test Position	Ch #.	Freq. (MHz)	Power Tune-up limit	(dBm)		R (W/kg) Scaled	Power Tune-up limit	(dBm)	-	R (W/kg) Scaled	Plot No.
•		Dist.	Test	Ch #. 157		Tune-up	(dBm)	10-g SA		Tune-up	(dBm)	10-g SA	(0/	

10.3. Bluetooth

Standalone SAR Test Exclusion Considerations & Estimated SAR

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Extremity

Max. tune-up	Max. tune-up tolerance limit		Frequency (GHz)	SAR test exclusion	Test Configuration	Estimated 10-g SAR
(dBm)	(mW)	separation distance (mm)	· · · ·	Result*	Configuration	(W/kg)
10.5	11	5	2.480	3.5	Rear	0.188

Conclusion:

*: The computed value is < 7.5; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 2 W/kg; steps 2) through
 4) do not apply.
- 2) When the original highest measured SAR is \geq 2 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 3.625 W/kg (~ 10% from the 10-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
2400	Wi-Fi 802.11b/g/n	Extremity	Rear	No	0.07	N/A	N/A
5200	Wi-Fi 802.11a/n/ac	Extremity	Rear	No	0.177	N/A	N/A
5800	Wi-Fi 802.11a/n/ac	Extremity	Rear	No	0.140	N/A	N/A

Conclusion:

Repeated Measurement is not required since there are no SAR measurements > 2 W/kg.

12. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

DE Exposuro Condition	ltem	Capable Transmit Configurations					
RF Exposure Condition	liem	Core 0		Core 1			
	1	Wi-Fi 2.4 GHz	+	Wi-Fi 2.4 GHz			
	2	Wi-Fi 5 GHz	+	Wi-Fi 5 GHz			
Extremity	3	Wi-Fi 5 GHz / BT	+	Wi-Fi 5 GHz			
	4	Bluetooth	+	Wi-Fi 2.4 GHz			
	5	Bluetooth	+	Wi-Fi 5 GHz			

Notes:

1. Wi-Fi 2.4 GHz Radio cannot transmit simultaneously with Bluetooth Radio when on the same antenna.

12.1. Sum of the SAR Wi-Fi & BT

				Simultaneou	Σ10-g				
RF Exposure	Tost P	Test Position		Wi-Fi(DTS)		Wi-Fi(UNII)		SAR	SPLSR
conditions		0311011	1	2	3	<u>,4</u>	5	(mW/g)	(Yes/No)
			Core 0	Core 1	Core 0	Core 0 Core 1		(11079)	
	Rear	1+2	0.094	0.047				0.141	No
		3+4			0.053	0.250		0.303	No
Extremity		3+4+5			0.053	0.250	0.188	0.491	No
		2+5		0.047			0.188	0.235	No
		3+,5			0.053		0.188	0.241	No

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 10-g SAR is < 4 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Appendixes

Refer to separated files for the following appendixes.

- A_14U19497-S1v0 SAR Photos & Ant. Locations
- B_14U19497-S1v0 SAR Highest SAR Test Plots
- C_14U19497-S1v0 SAR System Check Plots
- D_14U19497-S1v0 SAR Tissue Ingredients
- E_14U19497-S1v0 SAR Probe Cal. Certificates
- F_14U19497-S1v0 SAR Dipole Cal. Certificates

END OF REPORT