SAR EVALUATION REPORT For # **NVIDIA CORPORATION** 2701 San Tomas Expressway, Santa Clara, CA 95050, USA FCC ID: VOB-P2290W IC: 7361A-P2290W Report Type: **Product Type:** Original Report Tablet Jin Yang Prepared By: Test Engineer **Report Number:** R1511101-SAR **Report Date:** 2016-04-01 Simon Ma Samon lle Reviewed By: RF Lead Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164 Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" ((RCA)) | Summary of Test Results | | | | | | | | |--|---|--|--------|-------------|--|--|--| | Rule Part(s): | FCC §2.1093, IO | C RSS-102 Issue 5 | | | | | | | Test Procedure(s): | | 3, KDB 248227, KD
DB 616217, IEC 62 | | | | | | | Device Category:
Exposure Category: | Portable Device
General Population/Uncontrolled Exposure | | | | | | | | Device Type: | Portable Device | | | | | | | | Modulation Type: | CCK, OFDM, F | HSS | | | | | | | TX Frequency Range: | 802.11b/g/n: 2412-2472 MHz
802.11a/n/ac: 5180-5240 MHz, 5260-5320 MHz,
5500-5700 MHz (FCC), 5500-5580 MHz (IC),
5660-5700 MHz (IC), 5745-5825 MHz
Bluetooth: 2402-2480 MHz
BLE:2402-2480 MHz | | | | | | | | | | ooth: 10.74 dBm
b/g/n: 17.26 dBm | | 2.4 GHz | | | | | | 802.11 | a/n/ac: 12.19 dBm | | 5.2 GHz | | | | | Maximum Conducted Power: | 802.11 | a/n/ac: 12.75 dBm | | 5.3 GHz | | | | | | 802.11 | 5.6 GHz | | | | | | | | 802.11 | 5.8 GHz | | | | | | | Antenna Type(s) Tested: | d: Internal Antennas | | | | | | | | Body-Worn Accessories: | | None | | | | | | | Face-Head Accessories: | | None | | | | | | | Battery Type (s) Tested: | | Li-Ion: 3.8V/5100r | mAh | | | | | | | Level (W/Kg) | Position | Operat | ional Mode | | | | | | 1.54 | Back Side Touch | 2. | 4 GHz | | | | | | Level (W/Kg) | Position | Operat | tional Mode | | | | | | 1.45 | Top Side Touch | 5. | 2 GHz | | | | | | Level (W/Kg) | Position | Operat | tional Mode | | | | | | 1.45 | Top Side Touch | 5. | 3 GHz | | | | | Max. SAR Level (s) Measured: | Level (W/Kg) | Position | Operat | tional Mode | | | | | | 1.44 | Top Side Touch | 5. | 6 GHz | | | | | | Level (W/Kg) | Position | Operat | tional Mode | | | | | | 1.44 | Top Side Touch | 5. | 8 GHz | | | | | | Level (W/Kg) | Position | Operat | tional Mode | | | | | | 1.609
(SPLSR=0.04) | - | Sim | ultaneous | | | | # **TABLE OF CONTENTS** | 1 | GENERAL DESCRIPTION | 6 | |----|---|-----| | | 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | | | 2 | TEST FACILITY | | | | | | | 3 | REFERENCE, STANDARDS AND GUIDELINES | | | | 3.1 SAR LIMITS | | | 4 | EQUIPMENT LIST AND CALIBRATION | | | | 4.1 EQUIPMENT LIST & CALIBRATION INFO | | | 5 | SAR MEASUREMENT SYSTEM VERIFICATION | | | | 5.1 SYSTEM ACCURACY VERIFICATION | | | | 5.2 SAR SYSTEM VERIFICATION SETUP AND PROCEDURE | | | 6 | EUT TEST STRATEGY AND METHODOLOGY | | | | 6.1 TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS | | | | 6.2 SAR EVALUATION PROCEDURE | | | (| 6.3 TEST METHODOLOGY | | | 7 | DASY4 SAR EVALUATION PROCEDURE | | | | 7.1 POWER REFERENCE MEASUREMENT | | | | 7.2 Area Scan | | | | 7.4 POWER DRIFT MEASUREMENT | | | • | 7.5 Z-Scan | | | 8 | DESCRIPTION OF TEST SYSTEM | 17 | | | 8.1 IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS | | | | 8.2 DAY4 USER'S MANUAL RECOMMENDED TISSUE DIELECTRIC PARAMETERS | | | | 8.3 MEASUREMENT SYSTEM DIAGRAM | | | 9 | SAR MEASUREMENT CONSIDERATION AND REDUCTION | | | | 9.1 SAR REDUCTIONS | | | | 9.2 SAR Consideration. | | | 10 | SAR MEASUREMENT RESULTS | 47 | | | 10.1 TEST ENVIRONMENTAL CONDITIONS | | | | 10.2 STANDALONE SAR RESULTS | | | | 10.3 MULTI-TX AND ANTENNA SAR CONSIDERATIONS | | | 11 | | | | 12 | APPENDIX B - PROBE CALIBRATION CERTIFICATES | 72 | | 13 | APPENDIX C – DIPOLE CALIBRATION CERTIFICATES | 94 | | 14 | APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS | 116 | | 15 | APPENDIX E - EUT SCAN RESULTS | 120 | | 16 | APPENDIX F- RF OUTPUT POWER MEASUREMENT | 149 | | 17 AP | PENDIX G – TEST SETUP PHOTOS | 153 | |-------|--|-----| | 17.1 | TABLET BACK SIDE TOUCH TO THE TWIN PHANTOM SETUP PHOTO-1 | 153 | | 17.2 | TABLET BACK SIDE TOUCH TO THE TWIN PHANTOM SETUP PHOTO-2 | 153 | | 17.3 | TABLET RIGHT SIDE EDGE TOUCH TO THE TWIN PHANTOM ANT 1 SETUP PHOTO | 154 | | 17.4 | TABLET LEFT EDGE TOUCH TO THE TWIN PHANTOM ANT 0 SETUP PHOTO | | | 17.5 | TABLET TOPTOUCH TO THE TWIN PHANTOM SETUP PHOTO | 155 | | 18 AP | PENDIX H - EUT PHOTOS | 156 | | 18.1 | EUT – Front View | 156 | | 18.2 | EUT – BACK VIEW | 156 | | 18.3 | EUT - TOP VIEW | 157 | | 18.4 | EUT – BOTTOM VIEW | 157 | | 18.5 | EUT – Left View | 158 | | 18.6 | EUT – RIGHT VIEW | | | 18.7 | EUT – AC/DC ADAPTER 1 | 159 | | 18.8 | EUT – AC/DC ADAPTER 2 | | | 18.9 | EUT – OPEN CASE VIEW 1 | 160 | | 18.10 | EUT – OPEN CASE VIEW 2 | 160 | | 19 AP | PENDIX I - INFORMATIVE REFERENCES | 161 | # **DOCUMENT REVISION HISTORY** | Revision Number Report Number | | Description of Revision | Date of Revision | | |-------------------------------|--------------|-------------------------|------------------|--| | 0 | R1511101-SAR | Original Report | 2016-04-01 | | # 1 General Description # 1.1 Product Description for Equipment under Test (EUT) This test and measurement report was prepared on behalf of *NVIDIA CORPORATION*, and their product, FCC ID: VOB-P2290W; IC: 7361A-P2290W, model: *P2290W* or the "EUT" as referred to in this report, is a Tablet with WLAN and Bluetooth Functionalities. ## 1.2 EUT Technical Specification | Item | Description | | | | | |--------------------|---|---------|--|--|--| | Modulation | DSSS, OFDM, FHSS | | | | | | Frequency Range | 802.11b/g/n: 2412-2472 MHz
802.11a/n/ac: 5180-5240 MHz, 5260-5320 MHz,
5500-5700 MHz (FCC), 5500-5580 MHz (IC),
5660-5700 MHz (IC), 5745-5825 MHz
Bluetooth: 2402-2480 MHz
BLE:2402-2480 MHz | | | | | | | Bluetooth: 10.74 dBm
802.11b/g/n: 17.26 dBm | 2.4 GHz | | | | | Maximum Conducted | 802.11a/n/ac: 12.19 dBm | 5.2 GHz | | | | | Power Tested: | 802.11a/n/ac: 12.75 dBm | 5.3 GHz | | | | | | 802.11a/n/ac: 12.87 dBm | 5.6 GHz | | | | | | 802.11a/n/ac: 13.5 dBm | 5.8 GHz | | | | | Dimensions (L*W*H) | Tablet: 218 mm (L) x 123 mm (W) x 8 | mm (H) | | | | | Power Source | Li-Ion: 3.8V/5100mAh | | | | | | Weight | 350 g | | | | | | Normal Operation | Body-worn | | | | | The test data gathered are from typical production sample, product S/N: 0424515000201 provided by the manufacturer. ## 2 Test Facility Bay area compliance Laboratories Corp. (BACL) is: 1- An independent Commercial Test Laboratory accredited to **ISO 17025:2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting. - 2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminares and Computers. - 3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC(Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives. - 4- A Product Certification Body accredited to **ISO Guide 65:1996** by **A2LA** to certify: - 1- Unlicensed, Licensed radio frequency devices and Telephone Terminal Equipment for the FCC. Scope A1, A2, A3, A4, B1, B2, B3, B4 & C. - 2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada. 3. Radio Communication Equipment for Singapore. - 4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong. - 5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3). - 6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (Including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans. The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its
facility in Sunnyvale, California, USA. The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010. The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database. Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b ## 3 Reference, Standards and Guidelines ### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. ## CE: The CE requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits? SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. ### 3.1 SAR Limits ### FCC/IC Limit | | SAR (W/kg) | | | | | |--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | ### CE Limit | | SAR (W/kg) | | | | | |--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | Spatial Peak
(averaged over any 10 g of tissue) | 2.0 | 10 | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6 W/kg (FCC) & 2 W/kg (CE) applied to the EUT. # 4 Equipment List and Calibration # 4.1 Equipment List & Calibration Info | Type/Model | Cal. Due Date | S/N | |--------------------------------------|---------------|-----------------| | DASY4 Professional Dosimetric System | N/A | N/A | | Robot RX60L | N/A | CS7MBSP / 467 | | Robot Controller | N/A | F01/5J72A1/A/01 | | Dell Computer Dimension 3000 | N/A | N/A | | SPEAG EDC3 | N/A | N/A | | SPEAG DAE4 | 2016-08-18 | 530 | | DASY4 Measurement Server | N/A | 1176 | | Schmid & Partner ES3DV2 | 2016-08-19 | 3019 | | SPEAG E-Field Probe EX3DV4 | 2016-10-20 | 3619 | | Antenna, Dipole, D-2450-S-1 | 2017-08-19 | BCL-141 | | Antenna, Dipole, D5100V2 | 2017-08-19 | 1001 | | SPEAG Twin SAM Phantom | N/A | TP-1032 | | Muscle Equivalent Matter (2450 MHz) | Each Time | N/A | | Muscle Equivalent Matter (5 GHz) | Each Time | N/A | | Agilent, Spectrum Analyzer E4440A | 2016-06-22 | MY44303352 | | Mini Circuits, AMPLIFIER ZHL-42 | 2016-11-05 | QA1326001 | | Power Sensor Agilent E9304A | 2016-08-14 | MY54280008 | | Power Sensor Agilent E9304A | 2016-08-14 | MY54280006 | | Dielectric Probe Kit HP85070A | N/A | US99360201 | | HP, Signal Generator, 83650B | 2016-08-18 | 3614A00276 | | Mini Circuits, AMPLIFIER ZVE-8G+ | 2016-11-05 | N605601404 | # 5 SAR Measurement System Verification ## 5.1 System Accuracy Verification SAR system verification is required to confirm measurement accuracy. The system verification must be performed for each frequency band. A system verification must be performed before each series of SAR measurements. ## 5.2 SAR System Verification Setup and procedure ### **Procedure:** - 1) The SAR system verification measurements were performed in the flat section of TWIN SAM or flat phantom with shell thickness of 2±0.2mm filled with head or body liquid. - 2) The depth of liquid in phantom must be \geq 15 cm for SAR measurement less than 3 GHz and \geq 10 cm for SAR measurement above 3 GHz. - 3) The dipole was mounted below the center of flat phantom, and oriented parallel to the Y-Axis. The standard measurement distance is 15mm (below 1~GHz) and 10mm (above 1~GHz) from dipole center to the liquid surface. - 4) The dipole input power was 250 mW or 100 mW. - 5) The SAR results are normalized to 1 Watt input power. - 6) Compared the normalized the SAR results to the dipole calibration results. # 5.3 Liquid and System Validation | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits
[%] | |-----------------|----------|----------------|------------|------------------------|-----------------|-------------------|---------------|---------------| | | | | εr | 22 | 52.7 | 53.26 | 1.1 | ± 5 | | 2016-01-03 Body | 2450 | σ | 22 | 1.95 | 2.00 | 2.6 | ± 5 | | | | | | 1g SAR | 22 | 56.519 | 58.8 | 4.0 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation
[%] | Limits
[%] | |-----------------|----------|----------------|------------|------------------------|-----------------|-------------------|------------------|---------------| | 2016-01-05 Body | | | εr | 22 | 48.95 | 47.7 | -2.6 | ± 5 | | | 5250 | σ | 22 | 5.36 | 5.12 | -4.5 | ± 5 | | | | = = # 3 | 0200 | 1g SAR | 22 | 75.9 | 69.6 | -8.3 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation
[%] | Limits
[%] | |-----------------|----------|----------------|------------|------------------------|-----------------|-------------------|------------------|---------------| | 2016-01-07 Body | | 5600 | εr | 22 | 48.47 | 46.65 | -3.8 | ± 5 | | | Body | | σ | 22 | 5.77 | 5.63 | -2.4 | ± 5 | | | · | | 1g SAR | 22 | 80.5 | 75.7 | -6.0 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits
[%] | |--------------|----------|----------------|------------
------------------------|-----------------|-------------------|---------------|---------------| | 2016-01-10 E | | 5800 | er | 22 | 48.2 | 46.16 | -4.2 | ± 5 | | | Body | | σ | 22 | 6.0 | 5.92 | -1.3 | ± 5 | | | | | 1g SAR | 22 | 75.6 | 71.5 | -5.4 | ± 10 | $\varepsilon r = relative \ permittivity, \ \sigma = conductivity \ and \ \rho = 1000 \ kg/m^3$ # 6 EUT Test Strategy and Methodology ### 6.1 Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. ### **6.2** SAR Evaluation Procedure The evaluation was performed with the following procedure: - **Step 1:** Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. - **Step 2:** The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 15 mm x 15 mm. Based on these data, the area of the maximum absorption was determined by line interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - **Step 3**: Around this point, a volume of 30 mm x 30 mm x 21 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1. The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - **Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. ## 6.3 Test Methodology - KDB 447498 D01 (General SAR Guidance) - KDB 648474 D01 (SAR Handsets Multi Xmitter and Ant) - KDB 248227 D01 (SAR Consideration for 802.11 Devices) - KDB 865664 D01 (SAR Measurements up to 6 GHz) - KDB 616217 D04 (Tablet SAR Considerations) ## 7 DASY4 SAR Evaluation Procedure ### 7.1 Power Reference Measurement The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7mm for an ET3DV6 probe type). ### 7.2 Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. After measurement is completed, all maxima and their coordinates are listed in the Results property page. The maximum selected in the list is highlighted in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima within x dB condition. Only the primary maximum and any secondary maxima within x dB from the primary maximum and above this limit will be measured. #### 7.3 Zoom Scan Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. ### 7.4 Power drift measurement The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. ### 7.5 Z-Scan The Z Scan job measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. A user can anchor the grid to the section reference point, to any defined user point or to the current probe location. As with any other grids, the local Z axis of the anchor location establishes the Z axis of the grid. # 8 Description of Test System These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter: The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than $\pm 0.02mm$. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. # 8.1 IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters | Frequency | Head T | Гissue | Body | Tissue | |-----------|--------|---------|------|---------| | (MHz) | εr | O (S/m) | εr | O (S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80
 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | # 8.2 DAY4 user's Manual Recommended Tissue Dielectric Parameters | Frequency | Head T | Гissue | Body | Tissue | |-----------|--------|---------|------|---------| | (MHz) | εr | O'(S/m) | εr | O (S/m) | | 2450 | 39.2 | 1.8 | 52.7 | 1.95 | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | ## 8.3 Measurement System Diagram The DASY4 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 2000 or Windows XP. - DASY4 software. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand and right-hand usage. - The device holder for handheld mobile phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing system validation. ## **8.4** System Components - DASY4 Measurement Server - Data Acquisition Electronics - Probes - Light Beam Unit - Medium - SAM Twin Phantom - Device Holder for SAM Twin Phantom - System Validation Kits - Robot ### **DASY4 Measurement Server** The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pin out and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. ### **Data Acquisition Electronics** The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. #### **Probes** The DASY system can support many different probe types. **Dosimetric Probes:** These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies. Free Space Probes: These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.) **Temperature Probes:** Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes. ### **ET3DV6 Probe Specification** Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity \pm 0.2 dB in brain tissue (rotation around \pm 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface \pm 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm Photograph of the probe Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum. Inside view of ET3DV6 E-field Probe ### **E-Field Probe Calibration Process** Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. #### **Data Evaluation** The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, ai0, ai1, ai2 Conversion factor ConvFiDiode compression point dcpi Device parameters: - Frequency f - Crest factor cf Media parameters: - Conductivity σ - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x,
y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E – field probes : $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H – field probes : $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ With Vi = compensated signal of channel i (i = x, y, z) $Norm_i = sensor sensitivity of channel i (i = x, y, z)$ $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strenggy of channel i in V/m H_i = diode compression point (DASY parameter) The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ With SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/meter] or [Siemens/meter] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid. ## **Light Beam Unit** The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. #### Medium #### **Parameters** The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003). #### Parameter measurements Several measurement systems are available for measuring the dielectric parameters of liquids: - The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate acuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process. - The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method. - The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity. - The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious. #### **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: - Left hand - Right hand - Flat phantom The phantom table comes in two sizes: A $100 \times 50 \times 85$ cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a $100 \times 75 \times 85$ cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option) . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. The phantom can be used with the following tissue simulating liquids: - Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation. - Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week). - Do not use other organic solvents without previously testing the phantom's compatibility. ### **Device Holder for SAM Twin Phantom** The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. ### **System Validation Kits** Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request). The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole. ### Robot The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchronous motors; no stepper motors) - Low ELF interference (the closed metallic construction shields against motor control fields) For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard- and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information. ## 9 SAR Measurement Consideration and Reduction ### 9.1 SAR Reductions ## **EUT Antennas Location** (Front Side View) Note: #### Reduced¹ According to KDB 248227 Section 5.2.1, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. ### Reduced² According to KDB 248227 Section 5.3.4 (b), when the highest reported SAR for the initial test configuration, according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$, SAR is not required for that subsequent test configuration. #### Reduced³ According to KDB 447498 Section 4.3.1 (b), based on the SAR test Exclusion Thresholds for 100MHz-6GHz and >50mm. When the power lower than the thresholds, the testing is not required. Calculation details are shown in the tables below. | | | | 2.4 GH | z Band | | | | |------------|---------|----------|--------------------|------------------------|-----------------------
---|--------------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold
(mW) | | DT/DLE | 0 | Bottom | 2441 | 10.74 | 11.86 | 204 | 1636.01 | | BT/BLE | U | Right | 2441 | 10.74 | 11.86 | 65.4 | 250.01 | | | 0 | Bottom | 2452 | 17.26 | 53.21 | 204 | 1635.79 | | 802.11b | U | Right | 2452 | 17.26 | 53.21 | 65.4 | 249.79 | | 802.110 | 1 | Bottom | 2467 | 17 | 50.12 | 204 | 1635.50 | | | 1 | Left | 2467 | 17 | 50.12 | 66.35 | 259 | | | 0 | Bottom | 2412 | 16.28 | 42.46 | 204 | 1636.58 | | 002 11 | 0 | Right | 2412 | 16.28 | 42.46 | 65.4 | 250.58 | | 802.11g | | Bottom | 2457 | 16 | 39.81 | 204 | 1635.69 | | | 1 | Left | 2457 | 16 | 39.81 | 66.35 | 259.19 | | 002.11.20 | 0 | Bottom | 2417 | 16.25 | 42.17 | 204 | 1636.48 | | 802.11n20 | 1 | Bottom | 2457 | 16.12 | 40.93 | 204 | 1635.69 | | 002 11 40 | 0 | Bottom | 2437 | 14.89 | 30.83 | 204 | 1636.09 | | 802.11n40 | 1 | Bottom | 2437 | 14.52 | 28.31 | 204 | 1636.09 | | | | <u>.</u> | 5.2 GH | z Band | <u>'</u> | <u> </u> | ! | | | _ | Bottom | 5220 | 12.19 | 16.56 | 204 | 1605.65 | | | 0 | Right | 5220 | 12.19 | 16.56 | 65.4 | 219.65 | | 802.11a | | Bottom | 5240 | 11 | 12.59 | 204 | 1605.53 | | | 1 | Left | 5240 | 11 | 12.59 | 66.35 | 229.03 | | | _ | Bottom | 5220 | 11.03 | 12.68 | 204 | 1605.65 | | | 0 | Right | 5220 | 11.03 | 12.68 | 65.4 | 219.65 | | 802.11n20 | | Bottom | 5240 | 11 | 12.59 | 204 | 1605.53 | | | 1 | Left | 5240 | 11 | 12.59 | 66.35 | 229.03 | | | | Bottom | 5240 | 11 | 12.59 | 204 | 1605.53 | | | 0 | Right | 5240 | 11 | 12.59 | 65.4 | 219.53 | | 802.11ac20 | | Bottom | 5220 | 11 | 12.59 | 204 | 1605.65 | | | 1 | Left | 5220 | 11 | 12.59 | 66.35 | 229.15 | | | | Bottom | 5230 | 11.04 | 12.71 | 204 | 1605.59 | | | 0 | Right | 5230 | 11.04 | 12.71 | 65.4 | 219.59 | | 802.11n40 | | Bottom | 5230 | 11 | 12.59 | 204 | 1605.59 | | | 1 | Left | 5230 | 11 | 12.59 | 66.35 | 229.09 | | | | Bottom | 5230 | 11 | 12.59 | 204 | 1605.59 | | | 0 | Right | 5230 | 11 | 12.59 | 65.4 | 219.59 | | 802.11ac40 | | Bottom | 5230 | 11.02 | 12.65 | 204 | 1605.59 | | | 1 | Left | 5230 | 11.02 | 12.65 | 66.35 | 229.09 | | | | Bottom | 5210 | 11 | 12.59 | 204 | 1605.72 | | | 0 | Right | 5210 | 11 | 12.59 | 65.4 | 219.72 | | 802.11ac80 | | Bottom | 5210 | 11 | 12.59 | 204 | 1605.72 | | | 1 | Left | 5210 | 11 | 12.59 | 66.35 | 229.22 | | | 5.3 GHz Band | | | | | | | | | | |------------|--------------|----------|--------------------|------------------------|-----------------------|---|--------------------------------|--|--|--| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold
(mW) | | | | | | 0 | Bottom | 5320 | 12.5 | 17.78 | 204 | 1605.03 | | | | | 802.11a | U | Right | 5320 | 12.5 | 17.78 | 65.4 | 219.03 | | | | | 802.11a | 1 | Bottom | 5320 | 11 | 12.59 | 204 | 1605.03 | | | | | | 1 | Left | 5320 | 11 | 12.59 | 66.35 | 228.53 | | | | | | 0 | Bottom | 5320 | 12.5 | 17.78 | 204 | 1605.03 | | | | | 802.11n20 | 0 | Right | 5320 | 12.5 | 17.78 | 65.4 | 219.03 | | | | | 802.111120 | 1 | Bottom | 5320 | 11 | 12.59 | 204 | 1605.03 | | | | | | 1 | Left | 5320 | 11 | 12.59 | 66.35 | 228.53 | | | | | | 0 | Bottom | 5320 | 12.5 | 17.78 | 204 | 1605.03 | | | | | 802.11ac20 | 0 | Right | 5320 | 12.5 | 17.78 | 65.4 | 219.03 | | | | | 802.11ac20 | 1 | Bottom | 5320 | 11.02 | 12.65 | 204 | 1605.03 | | | | | | 1 | Left | 5320 | 11.02 | 12.65 | 66.35 | 228.53 | | | | | | 0 | Bottom | 5310 | 12.5 | 18.84 | 204 | 1605.09 | | | | | 802.11n40 | 0 | Right | 5310 | 12.5 | 18.84 | 65.4 | 219.09 | | | | | 802.111140 | 1 | Bottom | 5270 | 11.01 | 12.62 | 204 | 1605.34 | | | | | | 1 | Left | 5270 | 11.01 | 12.62 | 66.35 | 228.84 | | | | | | 0 | Bottom | 5310 | 12.66 | 18.45 | 204 | 1605.09 | | | | | 802.11ac40 | 0 | Right | 5310 | 12.66 | 18.45 | 65.4 | 219.09 | | | | | 802.11ac40 | 1 | Bottom | 5310 | 11.2 | 13.18 | 204 | 1605.09 | | | | | | 1 | Left | 5310 | 11.2 | 13.18 | 66.35 | 228.59 | | | | | | 0 | Bottom | 5290 | 12.2 | 16.60 | 204 | 1605.22 | | | | | 002 1100 | 0 | Right | 5290 | 12.2 | 16.60 | 65.4 | 219.22 | | | | | 802.11ac80 | 1 | Bottom | 5290 | 10.64 | 11.59 | 204 | 1605.22 | | | | | | 1 | Left | 5290 | 10.64 | 11.59 | 66.35 | 228.72 | | | | | | 5.6 GHz Band | | | | | | | | | | | |------------|--------------|----------|--------------------|------------------------|-----------------------|---|--------------------------------|--|--|--|--| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold
(mW) | | | | | | | 0 | Bottom | 5700 | 13 | 19.95 | 204 | 1605.83 | | | | | | 802.11a | Ů | Right | 5700 | 13 | 19.95 | 65.4 | 216.83 | | | | | | 802.11a | 1 | Bottom | 5700 | 11.26 | 13.37 | 204 | 1602.83 | | | | | | | 1 | Left | 5700 | 11.26 | 13.37 | 66.35 | 226.33 | | | | | | | 0 | Bottom | 5700 | 12.76 | 18.88 | 204 | 1602.83 | | | | | | 802.11n20 | 0 | Right | 5700 | 12.76 | 18.88 | 65.4 | 216.83 | | | | | | 802.111120 | 1 | Bottom | 5700 | 11.14 | 13.00 | 204 | 1602.83 | | | | | | | 1 | Left | 5700 | 11.14 | 13.00 | 66.35 | 226.33 | | | | | | | 0 | Bottom | 5700 | 12.7 | 18.62 | 204 | 1602.83 | | | | | | 002.11 20 | 0 | Right | 5700 | 12.7 | 18.62 | 65.4 | 216.83 | | | | | | 802.11ac20 | 1 | Bottom | 5700 | 11.22 | 13.24 | 204 | 1602.83 | | | | | | | 1 | Left | 5700 | 11.22 | 13.24 | 66.35 | 226.33 | | | | | | | 0 | Bottom | 5670 | 10.5 | 11.22 | 204 | 1602.99 | | | | | | 002 11 40 | 0 | Right | 5670 | 10.5 | 11.22 | 65.4 | 216.99 | | | | | | 802.11n40 | 1 | Bottom | 5510 | 10.68 | 11.69 | 204 | 1603.90 | | | | | | | 1 | Left | 5510 | 10.68 | 11.69 | 66.35 | 227.40 | | | | | | | 0 | Bottom | 5670 | 10.5 | 11.22 | 204 | 1602.99 | | | | | | 002 11 40 | 0 | Right | 5670 | 10.5 | 11.22 | 65.4 | 216.99 | | | | | | 802.11ac40 | 1 | Bottom | 5510 | 10.6 | 11.48 | 204 | 1603.90 | | | | | | | 1 | Left | 5510 | 10.6 | 11.48 | 66.35 | 227.40 | | | | | | | 0 | Bottom | 5610 | 10 | 10.00 | 204 | 1603.33 | | | | | | 002 11 02 | 0 | Right | 5610 | 10 | 10.00 | 65.4 | 217.33 | | | | | | 802.11ac80 | 1 | Bottom | 5530 | 10.1 | 10.23 | 204 | 1603.79 | | | | | | | 1 | Left | 5530 | 10.1 | 10.23 | 66.35 | 227.29 | | | | | | | 5.8 GHz Band | | | | | | | | | | |------------|--------------|----------|--------------------|------------------------|-----------------------|---|--------------------------------|--|--|--| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold
(mW) | | | | | | 0 | Bottom | 5745 | 13.5 | 22.39 | 204 | 1602.58 | | | | | 802.11a | U | Right | 5745 | 13.5 | 22.39 | 65.4 | 216.58 | | | | | 802.11a | 1 | Bottom | 5825 | 12.83 | 19.19 | 204 | 1602.15 | | | | | | 1 | Left | 5825 | 12.83 | 19.19 | 66.35 | 225.65 | | | | | | 0 | Bottom | 5745 | 13.5 | 22.39 | 204 | 1602.58 | | | | | 802.11n20 | U | Right | 5745 | 13.5 | 22.39 | 65.4 | 216.58 | | | | | 802.111120 | 1 | Bottom | 5785 | 12.5 | 17.78 | 204 | 1602.36 | | | | | | 1 | Left | 5785 | 12.5 | 17.78 | 66.35 | 225.86 | | | | | | 0 | Bottom | 5745 | 13.5 | 22.39 | 204 | 1602.58 | | | | | 902.1120 | 0 | Right | 5745 | 13.5 | 22.39 | 65.4 | 216.58 | | | | | 802.11ac20 | 1 | Bottom | 5785 | 12.5 | 17.78 | 204 | 1602.36 | | | | | | 1 | Left | 5785 | 12.5 | 17.78 | 66.35 | 225.86 | | | | | | 0 | Bottom | 5755 | 13.5 | 22.39 | 204 | 1602.53 | | | | | 902 11-40 | 0 | Right | 5755 | 13.5 | 22.39 | 65.4 | 216.53 | | | | | 802.11n40 | 1 | Bottom | 5755 | 12.5 | 17.78 | 204 | 1602.53 | | | | | | 1 | Left | 5755 | 12.5 | 17.78 | 66.35 | 226.03 | | | | | | 0 | Bottom | 5755 | 13.5 | 22.39 | 204 | 1602.53 | | | | | 802.11ac40 | 0 | Right | 5755 | 13.5 | 22.39 | 65.4 | 216.53 | | | | | 802.11ac40 | 1 | Bottom | 5755 | 12.5 | 17.78 | 204 | 1602.53 | | | | | | 1 | Left | 5755 | 12.5 | 17.78 | 66.35 | 226.03 | | | | | | 0 | Bottom | 5775 | 13.1 | 20.42 | 204 | 1602.42 | | | | | 002 1100 | U | Right | 5775 | 13.1 | 20.42 | 65.4 | 216.42 | | | | | 802.11ac80 | 1 | Bottom | 5775 | 12.5 | 17.78 | 204 | 1602.42 | | | | | | 1 | Left | 5775 | 12.5 | 17.78 | 66.35 | 225.92 | | | | ### Reduced⁴ According to KDB 248227 Section 5.2.2, in 2.4 GHz frequency band, when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR for OFDM is not required. ### Reduced⁵ According to KDB 248227 Section 5.3.3, OFDM when the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested. ### Reduced⁶ According to KDB 248227 Section 5.3.1, U-NII-1 and U-NII-2 bands, When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration. ## Reduced⁷ According to 447498 Section 4.3.1 (a), for 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR. Calculation details are shown in the
tables below. | Bluetooth/BLE | | | | | | | | | | |---|---|------|------|-------|-------|------|------------------------|--|--| | Mode Antenna Position ' ' Power Power | | | | | | | Exclusion
Threshold | | | | BT/BLE | 0 | Left | 2441 | 10.74 | 11.86 | 21.5 | 0.86 | | | | | 5.2 GHz Band | | | | | | | | | | |-------------|--------------|----------|--------------------|------------------------|-----------------------|---|------------------------|--|--|--| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold | | | | | 802.11a | 0 | Left | 5220 | 12.19 | 16.56 | 21.5 | 1.76 | | | | | 802.11a | 1 | Right | 5240 | 11 | 12.59 | 37 | 0.79 | | | | | 002 11-20 | 0 | Left | 5220 | 11.03 | 12.68 | 21.5 | 1.35 | | | | | 802.11n20 | 1 | Right | 5220 | 11 | 12.59 | 37 | 0.78 | | | | | 802.11ac20 | 0 | Left | 5240 | 11 | 12.59 | 21.5 | 1.34 | | | | | 802.11ac20 | 1 | Right | 5220 | 11 | 12.59 | 37 | 0.78 | | | | | 002 11-40 | 0 | Left | 5230 | 11.04 | 12.71 | 21.5 | 1.35 | | | | | 802.11n40 | 1 | Right | 5230 | 11 | 12.59 | 37 | 0.78 | | | | | 002.11 - 40 | 0 | Left | 5230 | 11 | 12.59 | 21.5 | 1.34 | | | | | 802.11ac40 | 1 | Right | 5230 | 11.02 | 12.65 | 37 | 0.72 | | | | | 002 1100 | 0 | Left | 5210 | 11 | 12.59 | 21.5 | 1.34 | | | | | 802.11ac80 | 1 | Right | 5210 | 11 | 12.59 | 37 | 0.78 | | | | | | | | 5.3 GH | z Band | | | | |-------------|--------------|----------|--------------------|------------------------|-----------------------|---|------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Exclusion
Threshold | | 002.11- | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 1.91 | | 802.11a | 1 | Right | 5320 | 11 | 12.59 | 37 | 0.78 | | 002.11.20 | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 1.91 | | 802.11n20 | 1 | Right | 5320 | 11 | 12.59 | 37 | 0.78 | | 002.1120 | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 1.91 | | 802.11ac20 | 1 | Right | 5320 | 11.02 | 12.65 | 37 | 0.79 | | 002 1140 | 0 | Left | 5310 | 12.75 | 18.84 | 21.5 | 2.02 | | 802.11n40 | 1 | Right | 5270 | 11.01 | 12.62 | 37 | 0.78 | | 002 11 - 40 | 0 | Left | 5310 | 12.66 | 18.45 | 21.5 | 1.98 | | 802.11ac40 | 1 | Right | 5310 | 11.2 | 13.18 | 37 | 0.82 | | 002 11 00 | 0 | Left | 5290 | 12.2 | 16.60 | 21.5 | 1.78 | | 802.11ac80 | 1 | Right | 5290 | 10.64 | 11.59 | 37 | 0.72 | | | - | | 5.6 GH | z Band | | | | | | 0 | Left | 5700 | 13 | 19.95 | 21.5 | 2.21 | | 802.11a | 1 | Right | 5700 | 11.26 | 13.37 | 37 | 0.86 | | | 0 | Left | 5700 | 12.76 | 18.88 | 21.5 | 2.10 | | 802.11n20 | 1 | Right | 5700 | 11.14 | 13.00 | 37 | 0.84 | | 000 11 00 | 0 | Left | 5700 | 12.7 | 18.62 | 21.5 | 2.07 | | 802.11ac20 | 1 | Right | 5700 | 11.22 | 13.24 | 37 | 0.85 | | 000.11.10 | 0 | Left | 5670 | 10.5 | 11.22 | 21.5 | 1.23 | | 802.11n40 | 1 | Right | 5510 | 10.68 | 11.69 | 37 | 0.74 | | 002.11.40 | 0 | Left | 5670 | 10.5 | 11.22 | 21.5 | 1.24 | | 802.11ac40 | 1 | Right | 5510 | 10.6 | 11.48 | 37 | 0.73 | | 000.11.00 | 0 | Left | 5610 | 10 | 10.00 | 21.5 | 1.10 | | 802.11ac80 | 1 | Right | 5530 | 10.01 | 10.02 | 37 | 0.64 | | | | | 5.8 GH | z Band | | | | | | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 2.50 | | 802.11a | 1 | Right | 5825 | 12.83 | 19.19 | 37 | 1.25 | | 000.11.00 | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 2.50 | | 802.11n20 | 1 | Right | 5785 | 12.5 | 17.78 | 37 | 1.16 | | 902.11.22 | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 2.50 | | 802.11ac20 | 1 | Right | 5785 | 12.5 | 17.78 | 37 | 1.16 | | 002 11 40 | 0 | Left | 5755 | 13.5 | 22.39 | 21.5 | 2.50 | | 802.11n40 | 1 | Right | 5755 | 12.5 | 17.78 | 37 | 1.15 | | 000 11 10 | 0 | Left | 5755 | 13.5 | 22.39 | 21.5 | 2.50 | | 802.11ac40 | 1 | Right | 5755 | 12.5 | 17.78 | 37 | 1.15 | | 000 11 00 | 0 | Left | 5775 | 13.1 | 20.42 | 21.5 | 2.28 | | 802.11ac80 | 1 | Right | 5775 | 12.5 | 17.78 | 37 | 1.15 | # 9.2 SAR Consideration | Mode | Side | Channel | Result | |---------------------|-------------|-------------------|----------------------| | | | Low Channel-2412 | Tested | | | Top Side | Mid Channel-2437 | Tested | | | | High Channel-2452 | Tested | | | | Low Channel-2412 | Reduced ³ | | | Bottom Side | Mid Channel-2437 | Reduced ³ | | 2.4.611 | | High Channel-2452 | Reduced ³ | | 2.4 GHz
802.11 b | | Low Channel-2412 | Reduced ¹ | | 002.11 0 | Left Side | Mid Channel-2437 | Tested | | Antenna 0 | | High Channel-2452 | Reduced ¹ | | | | Low Channel-2412 | Reduced ³ | | | Right Side | Mid Channel-2437 | Reduced ³ | | | | High Channel-2452 | Reduced ³ | | | | Low Channel-2412 | Reduced ¹ | | | Back Side | Mid Channel-2437 | Tested | | | | High Channel-2452 | Tested | | | | Low Channel-2412 | Reduced ¹ | | | Top Side | Mid Channel-2437 | Tested | | | | High Channel-2467 | Reduced ¹ | | | Bottom Side | Low Channel-2412 | Reduced ³ | | | | Mid Channel-2437 | Reduced ³ | | 0 4 GH | | High Channel-2467 | Reduced ³ | | 2.4 GHz
802.11 b | Left Side | Low Channel-2412 | Reduced ³ | | 002.11 0 | | Mid Channel-2437 | Reduced ³ | | Antenna 1 | | High Channel-2467 | Reduced ³ | | | | Low Channel-2412 | Reduced ¹ | | | Right Side | Mid Channel-2437 | Tested | | | | High Channel-2467 | Reduced ¹ | | | | Low Channel-2412 | Tested | | | Back Side | Mid Channel-2437 | Tested | | | | High Channel-2467 | Tested | | | | Low Channel-2412 | Reduced ⁵ | | | Top Side | Mid Channel-2437 | Tested | | | | High Channel-2457 | Reduced ⁵ | | | | Low Channel-2412 | Reduced ³ | | | Bottom Side | Mid Channel-2437 | Reduced ³ | | 2.4.677 | | High Channel-2457 | Reduced ³ | | 2.4 GHz
802.11 g | | Low Channel-2412 | Reduced ³ | | 002.11 g | Left Side | Mid Channel-2437 | Reduced ³ | | Antenna 1 | | High Channel-2457 | Reduced ³ | | | | Low Channel-2412 | Reduced ⁵ | | | Right Side | Mid Channel-2437 | Tested | | | | High Channel-2457 | Reduced ⁵ | | | | Low Channel-2412 | Tested | | | Back Side | Mid Channel-2437 | Tested | | | | High Channel-2457 | Tested | | Mode | Side | Channel | Result | |-------------|--------------|---------------------------------------|---| | | | Low Channel-2412 | Reduced ⁴ | | | Top Side | Mid Channel-2437 | Reduced ⁴ | | | | High Channel-2462 | Reduced ⁴ | | | | Low Channel-2412 | Reduced ³ | | | Bottom Side | Mid Channel-2437 | Reduced ³ | | 2.4 GHz | | High Channel-2462 | Reduced ³ | | 802.11 g | | Low Channel-2412 | Reduced ⁴ | | VV-1-1-8 | Left Side | Mid Channel-2437 | Reduced ⁴ | | Antenna 0 | | High Channel-2462 | Reduced ⁴ | | | D' 1. C' 1 | Low Channel-2412 | Reduced ³ | | | Right Side | Mid Channel-2437 | Reduced ³ | | | | High Channel-2462 | Reduced ³ | | | Back Side | Low Channel-2412
Mid Channel-2437 | Reduced ⁴ Reduced ⁴ | | | Back Side | | Reduced ⁴ | | | | High Channel-2462
Low Channel-2417 | Tested | | | Ton Cido | Mid Channel-2437 | Tested | | | Top Side | High Channel-2457 | Tested | | | | Low Channel-2417 | | | | Bottom Side | Mid Channel-2437 | Reduced ³ Reduced ³ | | | | High Channel-2457 | Reduced ³ | | 2.4 GHz | | Low Channel-2417 | Reduced ⁵ | | 802.11 n20 | Left Side | Mid Channel-2437 | Tested | | | Left Side | High Channel-2457 | Reduced ⁵ | | Antenna 0+1 | | Low Channel-2417 | Reduced ⁵ | | | Right Side | Mid Channel-2437 | Tested | | | Kight Side | High Channel-2457 | Reduced ⁵ | | | | Low Channel-2417 | Tested | | | Back Side | Mid Channel-2437 | Tested | | | Duck Side | High Channel-2457 | Tested | | | | Low Channel-2422 | Reduced ⁴ | | | Top Side | Mid Channel-2437 | Reduced ⁴ | | | Top Side | High Channel-2452 | Reduced ⁴ | | | | Low Channel-2422 | Reduced ³ | | | Bottom Side | Mid Channel-2437 | Reduced ³ | | | 2000iii bido | High Channel-2452 | Reduced ³ | | 2.4 GHz | | Low Channel-2422 | Reduced ⁴ | | 802.11 n40 | Left Side | Mid Channel-2437 | Reduced ⁴ | | Antenna 0+1 | | High Channel-2452 | Reduced ⁴ | | Antenna V I | | Low Channel-2422 | Reduced ⁴ | | | Right Side | Mid Channel-2437 | Reduced ⁴ | | | | High Channel-2452 | Reduced ⁴ | | | | Low Channel-2422 | Reduced ⁴ | | | Back Side | Mid Channel-2437 | Reduced ⁴ | | | | High Channel-2452 | Reduced ⁴ | | Mode | Side | Channel | Result | |----------------|-------------|-------------------|----------------------| | | | Low Channel-2402 | Tested | | | Top Side | Mid Channel-2441 | Tested | | | | High Channel-2480 | Tested | | | | Low Channel-2402 | Reduced ³ | | | Bottom Side | Mid Channel-2441 | Reduced ³ | | | | High Channel-2480 | Reduced ³ | | 2.4.011 | | Low Channel-2402 | Reduced ⁷ | | 2.4 GHz
BT | Left Side | Mid Channel-2441 | Reduced ⁷ | | DI | | High Channel-2480 | Reduced ⁷ | | | | Low Channel-2402 | Reduced ³ | | | Right Side | Mid Channel-2441 | Reduced ³ | | | | High Channel-2480 | Reduced ³ | | | | Low Channel-2402 | Tested | | | Back Side | Mid Channel-2441 | Tested | | | | High Channel-2480 | Tested | | | | Low Channel-2402 | Tested | | | Top Side | Mid Channel-2440 | Tested | | | | High Channel-2480 | Tested | | | | Low Channel-2402 | Reduced ³ | | | Bottom Side | Mid Channel-2440 | Reduced ³ | | | | High Channel-2480 | Reduced ³ | | 2.4.011 | | Low Channel-2402 | Reduced ⁷ | | 2.4 GHz
BLE | Left Side | Mid Channel-2440 | Reduced ⁷ | | DLE | | High Channel-2480 | Reduced ⁷ | | | | Low Channel-2402 | Reduced ³ | | | Right Side | Mid Channel-2440 | Reduced ³ | | | | High Channel-2480 | Reduced ³ | | | | Low Channel-2402 | Tested | | | Back Side | Mid Channel-2440 | Tested | | | | High Channel-2480 | Tested | | Mode | Side | Channel | Result | | | |----------------|-------------|-------------------|----------------------|--|--| | | | Low Channel-5180 | Tested | | | | | Top Side | Mid Channel-5220 | Tested | | | | | | High Channel-5240 | Tested | | | | | | Low Channel-5180 | Reduced ³ | | | | | Bottom
Side | Mid Channel-5220 | Reduced ³ | | | | 5.2 GHz | | High Channel-5240 | Reduced ³ | | | | 802.11 a | | Low Channel-5180 | Reduced ³ | | | | 802.11 a | Left Side | Mid Channel-5220 | Reduced ³ | | | | Antenna 1 | | High Channel-5240 | Reduced ³ | | | | 1 1110011110 1 | | Low Channel-5180 | Reduced ⁷ | | | | | Right Side | Mid Channel-5220 | Reduced ⁷ | | | | | | High Channel-5240 | Reduced ⁷ | | | | | | Low Channel-5180 | Reduced ² | | | | | Back Side | Mid Channel-5200 | Reduced ² | | | | | | High Channel-5240 | Reduced ² | | | | | | Low Channel-5180 | Reduced ² | | | | | Top Side | Mid Channel-5220 | Reduced ² | | | | | | High Channel-5240 | Reduced ² | | | | | Bottom Side | Low Channel-5180 | Reduced ³ | | | | | | Mid Channel-5220 | Reduced ³ | | | | 5.2 CH | | High Channel-5240 | Reduced ³ | | | | 5.2 GHz | | Low Channel-5180 | Reduced ⁷ | | | | 802.11 a | Left Side | Mid Channel-5220 | Reduced ⁷ | | | | Antenna 0 | | High Channel-5240 | Reduced ⁷ | | | | Antenna 0 | Right Side | Low Channel-5180 | Reduced ³ | | | | | | Mid Channel-5220 | Reduced ³ | | | | | | High Channel-5240 | Reduced ³ | | | | | | Low Channel-5180 | Reduced ² | | | | | Back Side | Mid Channel-5220 | Reduced ² | | | | | | High Channel-5240 | Reduced ² | | | | | | Low Channel-5180 | Tested | | | | | Top Side | Mid Channel-5220 | Tested | | | | | | High Channel-5240 | Tested | | | | | | Low Channel-5180 | Reduced ³ | | | | | Bottom Side | Mid Channel-5220 | Reduced ³ | | | | | | High Channel-5240 | Reduced ³ | | | | 5.2 GHz | | Low Channel-5180 | Reduced ⁷ | | | | 802.11 n20 | Left Side | Mid Channel-5220 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5240 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5180 | Reduced ⁷ | | | | | Right Side | Mid Channel-5220 | Reduced ⁷ | | | | | | High Channel-5240 | Reduced ⁷ | | | | | | Low Channel-5180 | Reduced ² | | | | | Back Side | Mid Channel-5220 | Reduced ² | | | | | | High Channel-5240 | Reduced ² | | | | Mode | Side | Channel | Result | | | |-------------------------|-------------|---------------------|----------------------|--|--| | | | Low Channel-5180 | Tested | | | | | Top Side | Mid Channel-5220 | Tested | | | | | - | High Channel-5240 | Tested | | | | | | Low Channel-5180 | Reduced ³ | | | | | Bottom Side | Mid Channel-5220 | Reduced ³ | | | | | | High Channel-5240 | Reduced ³ | | | | 5.2 GHz | | Low Channel-5180 | Reduced ⁷ | | | | 802.11 ac20 | Left Side | Mid Channel-5220 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5240 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5180 | Reduced ⁷ | | | | | Right Side | Mid Channel-5220 | Reduced ⁷ | | | | | U | High Channel-5240 | Reduced ⁷ | | | | | | Low Channel-5180 | Reduced ² | | | | | Back Side | Mid Channel-5200 | Reduced ² | | | | | | High Channel-5240 | Reduced ² | | | | | m a:1 | Low Channel-5190 | Tested | | | | | Top Side | High Channel-5230 | Tested | | | | | | Low Channel-5190 | Reduced ³ | | | | 5.2 GHz | Bottom Side | High Channel-5230 | Reduced ³ | | | | 802.11 n40 | 7 0 011 | Low Channel-5190 | Reduced ⁷ | | | | 002.11 11.0 | Left Side | High Channel-5230 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5190 | Reduced ⁷ | | | | | Right Side | High Channel-5230 | Reduced ⁷ | | | | | | Low Channel-5190 | Reduced ² | | | | | Back Side | High Channel-5230 | Reduced ² | | | | | | Low Channel-5190 | Tested | | | | | Top Side | High Channel-5230 | Tested | | | | | | Low Channel-5190 | Reduced ³ | | | | 5.2 GHz | Bottom Side | High Channel-5230 | Reduced ³ | | | | 802.11 ac40 | | Low Channel-5190 | Reduced ⁷ | | | | 002.11 40 10 | Left Side | High Channel-5230 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5190 | Reduced ⁷ | | | | | Right Side | High Channel-5230 | Reduced ⁷ | | | | <u> </u> | | Low Channel-5190 | Reduced ² | | | | | Back Side | High Channel-5230 | Reduced ² | | | | <u> </u> | Top Side | Middle Channel-5210 | Tested | | | | 5.2 GHz | Bottom Side | Middle Channel-5210 | Reduced ³ | | | | 802.11 ac80 | Left Side | Middle Channel-5210 | Reduced ⁷ | | | | (Initial Configuration) | Right Side | Middle Channel-5210 | Reduced ⁷ | | | | Antenna 0+1 | Back Side | Middle Channel-5210 | Tested | | | | Mode | Side | Channel | Result | | | |---------------------|-------------|-------------------|----------------------|--|--| | | | Low Channel-5260 | Tested | | | | | Top Side | Mid Channel-5300 | Tested | | | | | | High Channel-5320 | Tested | | | | | | Low Channel-5260 | Reduced ³ | | | | | Bottom Side | Mid Channel-5300 | Reduced ³ | | | | 5.2 CH | | High Channel-5320 | Reduced ³ | | | | 5.3 GHz
802.11 a | | Low Channel-5260 | Reduced ³ | | | | 802.11 a | Left Side | Mid Channel-5300 | Reduced ³ | | | | Antenna 1 | | High Channel-5320 | Reduced ³ | | | | 7 Kitterinia 1 | | Low Channel-5260 | Reduced ⁷ | | | | | Right Side | Mid Channel-5300 | Reduced ⁷ | | | | | | High Channel-5320 | Reduced ⁷ | | | | | | Low Channel-5260 | Reduced ² | | | | | Back Side | Mid Channel-5300 | Reduced ² | | | | | | High Channel-5320 | Reduced ² | | | | | | Low Channel-5260 | Reduced ¹ | | | | | Top Side | Mid Channel-5300 | Tested | | | | | | High Channel-5320 | Reduced ¹ | | | | | | Low Channel-5260 | Reduced ³ | | | | | Bottom Side | Mid Channel-5300 | Reduced ³ | | | | | | High Channel-5320 | Reduced ³ | | | | 5.3 GHz | | Low Channel-5260 | Reduced ⁷ | | | | 802.11 a | Left Side | Mid Channel-5300 | Reduced ⁷ | | | | Antenna 0 | | High Channel-5320 | Reduced ⁷ | | | | Antenna 0 | | Low Channel-5260 | Reduced ³ | | | | | Right Side | Mid Channel-5300 | Reduced ³ | | | | | | High Channel-5320 | Reduced ³ | | | | | | Low Channel-5260 | Reduced ² | | | | | Back Side | Mid Channel-5300 | Reduced ² | | | | | | High Channel-5320 | Reduced ² | | | | | | Low Channel-5260 | Tested | | | | | Top Side | Mid Channel-5300 | Tested | | | | | | High Channel-5320 | Tested | | | | | | Low Channel-5260 | Reduced ³ | | | | | Bottom Side | Mid Channel-5300 | Reduced ³ | | | | | | High Channel-5320 | Reduced ³ | | | | 5.3 GHz | | Low Channel-5260 | Reduced ⁷ | | | | 802.11 n20 | Left Side | Mid Channel-5300 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5320 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5260 | Reduced ⁷ | | | | | Right Side | Mid Channel-5300 | Reduced ⁷ | | | | | | High Channel-5320 | Reduced ⁷ | | | | | | Low Channel-5260 | Reduced ² | | | | | Back Side | Mid Channel-5300 | Reduced ² | | | | | | High Channel-5320 | Reduced ² | | | | Mode | Side | Channel | Result | | | |-------------------------|-------------|---------------------|----------------------|--|--| | | | Low Channel-5260 | Tested | | | | | Top Side | Mid Channel-5300 | Tested | | | | | - | High Channel-5320 | Tested | | | | | | Low Channel-5260 | Reduced ³ | | | | | Bottom Side | Mid Channel-5300 | Reduced ³ | | | | | | High Channel-5320 | Reduced ³ | | | | 5.3 GHz | | Low Channel-5260 | Reduced ⁷ | | | | 802.11 ac20 | Left Side | Mid Channel-5300 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5320 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5260 | Reduced ⁷ | | | | | Right Side | Mid Channel-5300 | Reduced ⁷ | | | | | Č | High Channel-5320 | Reduced ⁷ | | | | | | Low Channel-5260 | Reduced ² | | | | | Back Side | Mid Channel-5300 | Reduced ² | | | | | | High Channel-5320 | Reduced ² | | | | | m. «:1 | Low Channel-5270 | Tested | | | | | Top Side | High Channel-5310 | Tested | | | | | _ ~ | Low Channel-5270 | Reduced ³ | | | | 5.3 GHz | Bottom Side | High Channel-5310 | Reduced ³ | | | | 802.11 n40 | 7 0 011 | Low Channel-5270 | Reduced ⁷ | | | | (Initial Configuration) | Left Side | High Channel-5310 | Reduced ⁷ | | | | Antenna 0+1 | D1.1.011 | Low Channel-5270 | Reduced ⁷ | | | | | Right Side | High Channel-5310 | Reduced ⁷ | | | | | D 1 011 | Low Channel-5270 | Tested | | | | | Back Side | High Channel-5310 | Tested | | | | | m. «:1 | Low Channel-5270 | Tested | | | | | Top Side | High Channel-5310 | Tested | | | | | D C.1 | Low Channel-5270 | Reduced ³ | | | | 5.3 GHz | Bottom Side | High Channel-5310 | Reduced ³ | | | | 802.11 ac40 | 7 0 011 | Low Channel-5270 | Reduced ⁷ | | | | 002100 00010 | Left Side | High Channel-5310 | Reduced ⁷ | | | | Antenna 0+1 | D: 1 - 0:1 | Low Channel-5270 | Reduced ⁷ | | | | | Right Side | High Channel-5310 | Reduced ⁷ | | | | | D 1 211 | Low Channel-5270 | Reduced ² | | | | | Back Side | High Channel-5310 | Reduced ² | | | | | Top Side | Middle Channel-5290 | Tested | | | | 5.3 GHz | Bottom Side | Middle Channel-5290 | Reduced ³ | | | | 802.11 ac80 | Left Side | Middle Channel-5290 | Reduced ⁷ | | | | Antonno 0+1 | Right Side | Middle Channel-5290 | Reduced ⁷ | | | | Antenna 0+1 | Back Side | Middle Channel-5290 | Reduced ² | | | | Mode | Side | Channel | Result | | | |-------------------------|-------------|-------------------|----------------------|--|--| | | | Low Channel-5500 | Tested | | | | | Top Side | Mid Channel-5580 | Tested | | | | | | High Channel-5700 | Tested | | | | | | Low Channel-5500 | Reduced ³ | | | | | Bottom Side | Mid Channel-5580 | Reduced ³ | | | | 5.6 GHz | | High Channel-5700 | Reduced ³ | | | | 802.11 a | T 0 0'1 | Low Channel-5500 | Reduced ³ | | | | (Initial Configuration) | Left Side | Mid Channel-5580 | Reduced ³ | | | | Antenna 1 | | High Channel-5700 | Reduced ³ | | | | | P. 1. 611 | Low Channel-5500 | Reduced ⁷ | | | | | Right Side | Mid Channel-5580 | Reduced ⁷ | | | | <u> </u> | | High Channel-5700 | Reduced ⁷ | | | | | | Low Channel-5500 | Reduced ⁵ | | | | | Back Side | Mid Channel-5580 | Reduced ⁵ | | | | | | High Channel-5700 | Tested | | | | | | Low Channel-5500 | Reduced ⁵ | | | | | Top Side | Mid Channel-5580 | Reduced ⁵ | | | | | | High Channel-5700 | Tested | | | | | Bottom Side | Low Channel-5500 | Reduced ³ | | | | 5.6 GHz | | Mid Channel-5580 | Reduced ³ | | | | | | High Channel-5700 | Reduced ³ | | | | 802.11 a | Left Side | Low Channel-5500 | Reduced ⁷ | | | | (Initial Configuration) | | Mid Channel-5580 | Reduced ⁷ | | | | Antenna 0 | | High Channel-5700 | Reduced ⁷ |
 | | | Right Side | Low Channel-5500 | Reduced ³ | | | | | | Mid Channel-5580 | Reduced ³ | | | | <u> </u> | | High Channel-5700 | Reduced ³ | | | | | | Low Channel-5500 | Reduced ⁵ | | | | | Back Side | Mid Channel-5580 | Reduced ⁵ | | | | | | High Channel-5700 | Tested | | | | | | Low Channel-5500 | Tested | | | | | Top Side | Mid Channel-5580 | Tested | | | | | | High Channel-5700 | Tested | | | | | | Low Channel-5500 | Reduced ³ | | | | | Bottom Side | Mid Channel-5580 | Reduced ³ | | | | 5.6 GHz | | High Channel-5700 | Reduced ³ | | | | 802.11 n20 | | Low Channel-5500 | Reduced ⁷ | | | | 002.11 1120 | Left Side | Mid Channel-5580 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5700 | Reduced ⁷ | | | | | | Low Channel-5500 | Reduced ⁷ | | | | | Right Side | Mid Channel-5580 | Reduced ⁷ | | | | <u> </u> | | High Channel-5700 | Reduced ⁷ | | | | | | Low Channel-5500 | Reduced ² | | | | | Back Side | Mid Channel-5580 | Reduced ² | | | | | | High Channel-5700 | Reduced ² | | | | Mode | Side | Channel | Result | | | |------------------------|-------------|-------------------|----------------------|--|--| | | | Low Channel-5500 | Tested | | | | | Top Side | Mid Channel-5580 | Tested | | | | | | High Channel-5700 | Tested | | | | | | Low Channel-5500 | Reduced ³ | | | | | Bottom Side | Mid Channel-5580 | Reduced ³ | | | | 5.6.CH | | High Channel-5700 | Reduced ³ | | | | 5.6 GHz
802.11 ac20 | | Low Channel-5500 | Reduced ⁷ | | | | 802.11 ac20 | Left Side | Mid Channel-5580 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5700 | Reduced ⁷ | | | | 7 Michilla 0 · 1 | | Low Channel-5500 | Reduced ⁷ | | | | | Right Side | Mid Channel-5580 | Reduced ⁷ | | | | | | High Channel-5700 | Reduced ⁷ | | | | | | Low Channel-5500 | Reduced ² | | | | | Back Side | Mid Channel-5580 | Reduced ² | | | | | | High Channel-5700 | Reduced ² | | | | | | Low Channel-5510 | Tested | | | | | Top Side | Mid Channel-5550 | Tested | | | | | | High Channel-5670 | Tested | | | | | | Low Channel-5510 | Reduced ³ | | | | | Bottom Side | Mid Channel-5550 | Reduced ³ | | | | 5.6.611 | | High Channel-5670 | Reduced ³ | | | | 5.6 GHz | | Low Channel-5510 | Reduced ⁷ | | | | 802.11 n40 | Left Side | Mid Channel-5550 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5670 | Reduced ⁷ | | | | Antenna 0 · 1 | | Low Channel-5510 | Reduced ⁷ | | | | | Right Side | Mid Channel-5550 | Reduced ⁷ | | | | | | High Channel-5670 | Reduced ⁷ | | | | | | Low Channel-5510 | Reduced ² | | | | | Back Side | Mid Channel-5550 | Reduced ² | | | | | | High Channel-5670 | Reduced ² | | | | | | Low Channel-5510 | Tested | | | | | Top Side | Mid Channel-5550 | Tested | | | | | | High Channel-5670 | Tested | | | | | | Low Channel-5510 | Reduced ³ | | | | | Bottom Side | Mid Channel-5550 | Reduced ³ | | | | 5 (CH- | | High Channel-5670 | Reduced ³ | | | | 5.6 GHz
802.11 ac40 | | Low Channel-5510 | Reduced ⁷ | | | | 002.11 ac40 | Left Side | Mid Channel-5550 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5670 | Reduced ⁷ | | | | 7 intende O · 1 | | Low Channel-5510 | Reduced ⁷ | | | | | Right Side | Mid Channel-5550 | Reduced ⁷ | | | | | | High Channel-5670 | Reduced ⁷ | | | | | | Low Channel-5510 | Reduced ² | | | | | Back Side | Mid Channel-5550 | Reduced ² | | | | | | High Channel-5670 | Reduced ² | | | | Mode | Side | Channel | Result | | |-------------|-------------|--------------------|----------------------|--| | | Ton Sido | Low Channel-5530 | Tested | | | | Top Side | High Channel-5610* | Tested | | | | Bottom Side | Low Channel-5530 | Reduced ³ | | | 5.6 GHz | Bottom Side | High Channel-5610* | Reduced ³ | | | 802.11 ac80 | Left Side | Low Channel-5530 | Reduced ⁷ | | | | | High Channel-5610* | Reduced ⁷ | | | Antenna 0+1 | Dight Cida | Low Channel-5530 | Reduced ⁷ | | | | Right Side | High Channel-5610* | Reduced ⁷ | | | | Back Side | Low Channel-5530 | Reduced ² | | | | Dack Side | High Channel-5610* | Reduced ² | | | Mode | Side | Channel | Result | | | |-------------|-------------|---------------------------------------|---|--|--| | | | Low Channel-5745 | Tested | | | | | Top Side | Mid Channel-5785 | Tested | | | | | | High Channel-5825 | Tested | | | | | | Low Channel-5745 | Reduced ³ | | | | | Bottom Side | Mid Channel-5785 | Reduced ³ | | | | 5.8 GHz | | High Channel-5825 | Reduced ³ | | | | 802.11 a | 1 0 0:1 | Low Channel-5745 | Reduced ³ | | | | | Left Side | Mid Channel-5785 | Reduced ³ | | | | Antenna 1 | | High Channel-5825 | Reduced ³ | | | | | Dialet Cida | Low Channel-5745 | Reduced ⁷ | | | | | Right Side | Mid Channel 5785 | Reduced ⁷ Reduced ⁷ | | | | | | High Channel-5825
Low Channel-5745 | Reduced ² | | | | | Back Side | Mid Channel-5785 | Reduced ² | | | | | Dack Side | High Channel-5825 | Reduced ² | | | | | | Low Channel-5745 | Tested | | | | | Top Side | Mid Channel-5785 | Tested | | | | | Top Side | High Channel-5825 | Tested | | | | | | Low Channel-5745 | Reduced ³ | | | | | Bottom Side | Mid Channel-5785 | Reduced ³ | | | | | | High Channel-5825 | Reduced ³ | | | | 5.8 GHz | | Low Channel-5745 | Reduced ⁷ | | | | 802.11 a | Left Side | Mid Channel-5785 | Reduced ⁷ | | | | Antenna 0 | | High Channel-5825 | Reduced ⁷ | | | | Antenna 0 | | Low Channel-5745 | Reduced ³ | | | | | Right Side | Mid Channel-5785 | Reduced ³ | | | | | | High Channel-5825 | Reduced ³ | | | | | | Low Channel-5745 | Reduced ² | | | | | Back Side | Mid Channel-5785 | Reduced ² | | | | | | High Channel-5825 | Reduced ² | | | | | | Low Channel-5745 | Tested | | | | | Top Side | Mid Channel-5785 | Tested | | | | | | High Channel-5825 | Tested | | | | | | Low Channel-5745 | Reduced ³ | | | | | Bottom Side | Mid Channel-5785 | Reduced ³ | | | | 5.8 GHz | | High Channel-5825 | Reduced ³ | | | | 802.11 n20 | 1 0 0 1 | Low Channel-5745 | Reduced ⁷ | | | | | Left Side | Mid Channel-5785 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5825 | Reduced ⁷ | | | | | Right Side | Low Channel-5745 | Reduced ⁷ Reduced ⁷ | | | | | Right Side | Mid Channel-5785
High Channel-5825 | Reduced ⁷ | | | | | | Low Channel-5745 | Reduced ² | | | | | Back Side | Mid Channel-5785 | Reduced ² | | | | | Dack Sluc | High Channel-5825 | Reduced ² | | | | | | nigh Channel-3823 | Keduced ² | | | ^{*:} Channel for FCC only. | Mode | Side | Channel | Result | | | |---------------------------------------|-------------|---------------------|----------------------|--|--| | | | Low Channel-5745 | Tested | | | | | Top Side | Mid Channel-5785 | Tested | | | | | - | High Channel-5825 | Tested | | | | | | Low Channel-5745 | Reduced ³ | | | | | Bottom Side | Mid Channel-5785 | Reduced ³ | | | | | | High Channel-5825 | Reduced ³ | | | | 5.8 GHz | | Low Channel-5745 | Reduced ⁷ | | | | 802.11 ac20 | Left Side | Mid Channel-5785 | Reduced ⁷ | | | | Antenna 0+1 | | High Channel-5825 | Reduced ⁷ | | | | Antenna 0+1 | | Low Channel-5745 | Reduced ⁷ | | | | | Right Side | Mid Channel-5785 | Reduced ⁷ | | | | | Č | High Channel-5825 | Reduced ⁷ | | | | | | Low Channel-5745 | Reduced ² | | | | | Back Side | Mid Channel-5785 | Reduced ² | | | | | | High Channel-5825 | Reduced ² | | | | | T. C:1 | Low Channel-5755 | Tested | | | | | Top Side | High Channel-5795 | Tested | | | | Ī | D " C'1 | Low Channel-5755 | Reduced ³ | | | | 5.8 GHz | Bottom Side | High Channel-5795 | Reduced ³ | | | | 802.11 n40 | I 0 C 1 | Low Channel-5755 | Reduced ³ | | | | | Left Side | High Channel-5795 | Reduced ³ | | | | Antenna 0+1 | D: 14 C: 1 | Low Channel-5755 | Reduced ³ | | | | | Right Side | High Channel-5795 | Reduced ³ | | | | | D1- C: 1- | Low Channel-5755 | Tested | | | | | Back Side | High Channel-5795 | Tested | | | | | T C: 1. | Low Channel-5755 | Tested | | | | | Top Side | High Channel-5795 | Tested | | | | | Dattam Cida | Low Channel-5755 | Reduced ³ | | | | 58 GHz | Bottom Side | High Channel-5795 | Reduced ³ | | | | 802.11 ac40 | I -0.011- | Low Channel-5755 | Reduced ⁷ | | | | | Left Side | High Channel-5795 | Reduced ⁷ | | | | Antenna 0+1 | Dight Cida | Low Channel-5755 | Reduced ⁷ | | | | | Right Side | High Channel-5795 | Reduced ⁷ | | | | | Back Side | Low Channel-5755 | Reduced ² | | | | | Back Side | High Channel-5795 | Reduced ² | | | | 5.0.033 | Top Side | Middle Channel-5775 | Tested | | | | 5.8 GHz | Bottom Side | Middle Channel-5775 | Reduced ³ | | | | 802.11 ac80 | Left Side | Middle Channel-5775 | Reduced ⁷ | | | | (Initial Configuration) – Antenna 0+1 | Right Side | Middle Channel-5775 | Reduced ⁷ | | | | Antenna 0+1 | Back Side | Middle Channel-5775 | Tested | | | # 10 SAR Measurement Results This page summarizes the results of the performed SAR evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device, could be found in Appendix E. ## 10.1 Test Environmental Conditions | Temperature: | 23° C | | | |--------------------|------------|--|--| | Relative Humidity: | 43 % | | | | ATM Pressure: | 101.89 kPa | | | Testing was performed by Jin Yang in SAR chamber from 01-03-2016 to 01-10-2016. #### 10.2 Standalone SAR Results Please refer to the following tables. | | 2.4 GHz Band | | | | | | | | | | | |---------|------------------------------------|-------|------|-------|-------------------|----------|--------|-----------------|---------------|-----------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Pow | er (dBm) | Scale | Measured
SAR | Scaled
SAR | Limit
(W/kg) | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | (W/kg) | (W/kg) | 1g Tissue | # | | | Back Side
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.62 | 17 | 1.09 | 0.824 | 0.90 | 1.6 | - | | | Left Edge
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.62 | 17 | 1.09 | 0.221 | 0.24 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.62 | 17 | 1.09 | 1.01 | 1.10 | 1.6 | - | | | Back Side
Touch
(High CH) | 2452 | Body | Ant
0 | 17.26 | 17 | 1.00 | 1.01 | 1.01 | 1.6 | - | | | Top Side
Touch
(High CH) | 2452 | Body | Ant 0 | 17.26 | 17 | 1.00 | 1.23 | 1.23 | 1.6 | 1 | | 802.11b | Top Side
Touch
(Low CH) | 2412 | Body | Ant 0 | 16.84 | 17 | 1.04 | 0.923 | 0.96 | 1.6 | - | | | Back Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 16.11 | 17 | 1.23 | 1.07 | 1.31 | 1.6 | - | | | Right Edge
Touch
(Middle CH) | 2437 | Body | Ant 1 | 16.11 | 17 | 1.23 | 0.0587 | 0.07 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 16.11 | 17 | 1.23 | 0.345 | 0.42 | 1.6 | 1 | | | Back Side
Touch
(High CH) | 2467 | Body | Ant 1 | 16.04 | 17 | 1.25 | 0.999 | 1.25 | 1.6 | - | | | Back Side
Touch
(Low CH) | 2412 | Body | Ant 1 | 16.84 | 17 | 1.04 | 1.48 | 1.54 | 1.6 | 2 | | | Back Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.7 | 16 | 1.07 | 1.16 | 1.24 | 1.6 | - | | | Right Edge
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.7 | 16 | 1.07 | 0.0553 | 0.06 | 1.6 | - | | 802.11g | Top Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.7 | 16 | 1.07 | 0.314 | 0.34 | 1.6 | - | | | Back Side
Touch
(High CH) | 2457 | Body | Ant 1 | 15.95 | 16 | 1.01 | 1.39 | 1.41 | 1.6 | 3 | | | Back Side
Touch
(Low CH) | 2412 | Body | Ant 1 | 15.55 | 16 | 1.11 | 1.05 | 1.16 | 1.6 | - | | | | | | | 2.4 GHz I | Band | | | | | | |---------------|------------------------------------|-------------|--------------|---------------|------------------------|------|-----------------|--------|-------------------------|------------------------------|-----------| | Radio
Mode | EUT
Position | Freq. (MHz) | Test
Type | Ant.
Chain | Output Pow
Measured | | Scale
Factor | | Scaled
SAR
(W/kg) | Limit
(W/kg)
1g Tissue | Plot
| | | Back Side
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.09 | 16 | 1.00 | 1.17 | 1.17 | 1.6 | - | | | Left Edge
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.09 | 16 | 1.00 | 0.194 | 0.19 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 2437 | Body | Ant 0 | 16.09 | 16 | 1.00 | 0.925 | 0.93 | 1.6 | - | | | Back Side
Touch
(High CH) | 2457 | Body | Ant 0 | 15.83 | 16 | 1.04 | 1.01 | 1.05 | 1.6 | 1 | | | Top Side
Touch
(High CH) | 2457 | Body | Ant 0 | 15.83 | 16 | 1.04 | 0.974 | 1.01 | 1.6 | - | | | Back Side
Touch
(Low CH) | 2417 | Body | Ant 0 | 16.25 | 16 | 1.00 | 0.965 | 0.97 | 1.6 | - | | 802.11n | Top Side
Touch
(Low CH) | 2417 | Body | Ant 0 | 16.25 | 16 | 1.00 | 1.14 | 1.14 | 1.6 | - | | HT20 | Back Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.77 | 16 | 1.05 | 1.12 | 1.18 | 1.6 | - | | | Right Edge
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.77 | 16 | 1.05 | 0.0673 | 0.07 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 2437 | Body | Ant 1 | 15.77 | 16 | 1.05 | 0.118 | 0.12 | 1.6 | ı | | | Back Side
Touch
(High CH) | 2457 | Body | Ant 1 | 16.12 | 16 | 1.00 | 1.11 | 1.11 | 1.6 | ı | | | Top Side
Touch
(High CH) | 2457 | Body | Ant 1 | 16.12 | 16 | 1.00 | 0.137 | 0.14 | 1.6 | - | | | Back Side
Touch
(Low CH) | 2417 | Body | Ant 1 | 15.7 | 16 | 1.07 | 1.27 | 1.36 | 1.6 | 4 | | | Top Side
Touch
(Low CH) | 2417 | Body | Ant 1 | 15.7 | 16 | 1.07 | 0.149 | 0.16 | 1.6 | - | | | | | | | 2.4 GHz B | Sand | | | | | | |-----------|-----------------------------------|-------|------|-------|-------------------|----------|--------|-----------------|---------------|-----------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Pow | er (dBm) | Scale | Measured
SAR | Scaled
SAR | Limit
(W/kg) | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | (W/kg) | (W/kg) | 1g Tissue | # | | | Back Side
Touch
(Middle CH) | 2441 | Body | Ant 0 | 10.74 | 10.5 | 1.00 | 0.151 | 0.151 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 2441 | Body | Ant 0 | 10.74 | 10.5 | 1.00 | 0.159 | 0.159 | 1.6 | 5 | | Bluetooth | Back Side
Touch
(Low CH) | 2402 | Body | Ant 0 | 7.66 | 7.5 | 1.00 | 0.0903 | 0.0903 | 1.6 | - | | - GFSK | Top Side
Touch
(Low CH) | 2402 | Body | Ant 0 | 7.66 | 7.5 | 1.00 | 0.0916 | 0.0916 | 1.6 | - | | | Back Side
Touch
(High CH) | 2480 | Body | Ant 0 | 7.66 | 7.5 | 1.00 | 0.152 | 0.152 | 1.6 | - | | | Top Side
Touch
(High CH) | 2480 | Body | Ant 0 | 10 | 10 | 1.00 | 0.118 | 0.118 | 1.6 | - | | | Back Side
Touch
(Middle CH) | 2440 | Body | Ant 0 | Flat | 6.57 | 6.5 | 1.00 | 0.0384 | 0.0384 | 1.6 | | | Top Side
Touch
(Middle CH) | 2440 | Body | Ant 0 | Flat | 6.57 | 6.5 | 1.00 | 0.0381 | 0.0381 | 1.6 | | BLE | Back Side
Touch
(Low CH) | 2402 | Body | Ant 0 | Flat | 4.12 | 4 | 1.00 | 0.0292 | 0.0292 | 1.6 | | | Top Side
Touch
(Low CH) | 2402 | Body | Ant 0 | Flat | 4.12 | 4 | 1.00 | 0.0245 | 0.0245 | 1.6 | | | Back Side
Touch
(High CH) | 2480 | Body | Ant 0 | Flat | 5.99 | 6 | 1.00 | 0.0271 | 0.0271 | 1.6 | | | Top Side
Touch
(High CH) | 2480 | Body | Ant 0 | Flat | 5.99 | 6 | 1.00 | 0.0306 | 0.0306 | 1.6 | | | | | | | 5.2 GHz B | and | | | | | | |---------|----------------------------------|-------|------|-------|-------------|----------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Powe | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Middle CH) | 5220 | Body | Ant 1 | 10.89 | 11 | 1.03 | 1.39 | 1.43 | 1.6 | 6 | | 802.11a | Top Side
Touch
(High CH) | 5240 | Body | Ant 1 | 10.92 | 11 | 1.02 | 1.39 | 1.42 | 1.6 | 1 | | | Top Side
Touch
(Low CH)) | 5180 | Body | Ant 1 | 10.9 | 11 | 1.02 | 1.37 | 1.40 | 1.6 | 1 | | | Top Side
Touch
(Low CH) | 5180 | Body | Ant 0 | 10.24 | 11 | 1.19 | 0.335 | 0.40 | 1.6 | ı | | | Top Side
Touch
(Middle CH) | 5220 | Body | Ant 0 | 11.03 | 11 | 1.00 | 0.402 | 0.40 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5240 | Body | Ant 0 | 10.98 | 11 | 1.00 | 0.288 | 0.29 | 1.6 | - | | HT20 | Top Side
Touch
(Low CH) | 5180 | Body | Ant 1 | 10.9 | 11 | 1.02 | 1.38 | 1.41 | 1.6 | 7 | | | Top Side
Touch
(Middle CH) | 5220 | Body | Ant 1 | 10.91 | 11 | 1.02 | 1.29 | 1.32 | 1.6 | - | | | Top Side
Touch
(High CH) | 5240 | Body | Ant 1 | 10.84 | 10.5 | 1.00 | 1.25 | 1.25 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5180 | Body | Ant 0 | 10.32 | 11 | 1.17 | 0.332 | 0.39 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5220 | Body | Ant 0 | 10.86 | 11 | 1.03 | 0.37 | 0.38 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5240 | Body | Ant 0 | 10.86 | 11 | 1.03 | 0.317 | 0.33 | 1.6 | - | | ac20 | Top Side
Touch
(Low CH) | 5180 | Body | Ant 1 | 10.92 | 11 | 1.02 | 1.36 | 1.39 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5220 | Body | Ant 1 | 10.96 | 11 | 1.01 | 1.25 | 1.26 | 1.6 | - | | | Top Side
Touch
(High CH) | 5240 | Body | Ant 1 | 10.45 | 10 | 1.00 | 1.42 | 1.42 | 1.6 | 8 | Page 51 of 161 | | | | | | 5.2 GHz B | and | | | | | | |---------|-----------------------------------|-------|------|-------|-------------|----------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Powe | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Low CH) | 5190 | Body | Ant 0 | 10.29 | 10.5 | 1.05 | 0.365 | 0.38 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5230 | Body | Ant 0 | 11.04 | 11 | 1.00 | 0.371 | 0.37 | 1.6 | - | | HT40 | Top Side
Touch
(Low CH) | 5190 | Body | Ant 1 | 10.85 | 10.5 | 1.00 | 1.45 | 1.45 | 1.6 | 9 | | | Top Side
Touch
(High CH) | 5230 | Body | Ant 1 | 10.96 | 11 | 1.01 | 1.4 | 1.41 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5190 | Body | Ant 0 | 10.34 | 11 | 1.16 | 0.396 | 0.46 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5230 | Body | Ant 0 | 11 | 11 | 1.00 | 0.346 | 0.35 | 1.6 | - | | ac40 | Top Side
Touch
(Low CH) | 5190 | Body | Ant 1 | 10.96 | 11 | 1.01 | 1.41 | 1.42 | 1.6 | 10 | | | Top Side
Touch
(High CH) | 5230 | Body | Ant 1 | 11.02 | 11 | 1.00 | 1.4 | 1.40 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5210 | Body | Ant 0 | 10.6 | 11 | 1.10 | 0.341 | 0.37 | 1.6 | - | | 802.11 | Back Side
Touch
(Middle CH) | 5210 | Body | Ant 0 | 10.6 | 11 | 1.10 | 0.573 | 0.63 | 1.6 | - | | ac80 | Top Side
Touch
(Middle CH) | 5210 | Body | Ant 1 | 10.71 | 11 | 1.07 | 1.34 | 1.43 | 1.6 | 11 | | | Back Side
Touch
(Middle CH) | 5210 | Body | Ant 1 | 10.71 | 11 | 1.07 | 0.817 | 0.87 | 1.6 | - | | | | | | | 5.3 GHz B | and | | | | | | |---------|----------------------------------|-------|------|-------|-------------------|----------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Pow | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 0 | 12.29 | 12.5 | 1.05 | 0.363 | 0.38 | 1.6 | - | | 802.11a | Top Side
Touch
(Low CH) | 5260 | Body | Ant 1 | 10.61 | 10.5 | 1.00 | 1.35 | 1.35 | 1.6 | - | | 002.11a | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 1 | 10.79 | 11 | 1.05 | 1.3 | 1.36 | 1.6 | - | | | Top Side
Touch
(High CH) | 5320 | Body | Ant 1 | 10.8 | 11 | 1.05 | 1.35 | 1.41 | 1.6 | 12 | | | Top Side
Touch
(Low CH) | 5260 | Body | Ant 0 | 11.53 | 11.5 | 1.00 | 0.336 | 0.34 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 0 | 12.37 | 12.5 | 1.03 | 0.363 | 0.37 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5320 | Body | Ant 0 | 12.32 | 12.5 | 1.04 |
0.399 | 0.42 | 1.6 | - | | HT20 | Top Side
Touch
(Low CH) | 5260 | Body | Ant 1 | 10.29 | 10.5 | 1.05 | 1.36 | 1.43 | 1.6 | 13 | | | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 1 | 10.65 | 10.5 | 1.00 | 1.34 | 1.34 | 1.6 | - | | | Top Side
Touch
(High CH) | 5320 | Body | Ant 1 | 10.96 | 11 | 1.01 | 1.35 | 1.36 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5260 | Body | Ant 0 | 11.51 | 11.5 | 1.00 | 0.319 | 0.32 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 0 | 12.39 | 12.5 | 1.03 | 0.384 | 0.39 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5320 | Body | Ant 0 | 12.39 | 12.5 | 1.03 | 0.423 | 0.43 | 1.6 | - | | ac20 | Top Side
Touch
(Low CH) | 5260 | Body | Ant 1 | 10.4 | 10.5 | 1.02 | 1.35 | 1.38 | 1.6 | 14 | | | Top Side
Touch
(Middle CH) | 5300 | Body | Ant 1 | 10.92 | 10.5 | 1.00 | 1.33 | 1.33 | 1.6 | - | | | Top Side
Touch
(High CH) | 5320 | Body | Ant 1 | 11.02 | 11 | 1.00 | 1.36 | 1.36 | 1.6 | - | | | | | | | 5.3 GHz B | and | | | | | | |---------|----------------------------------|-------|------|-------|-------------|----------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Powe | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Low CH) | 5270 | Body | Ant 0 | 12.01 | 12 | 1.00 | 0.377 | 0.38 | 1.6 | - | | | Back Side
Touch
(Low CH) | 5270 | Body | Ant 0 | 12.01 | 12 | 1.00 | 0.694 | 0.69 | 1.6 | 1 | | | Top Side
Touch
(High CH) | 5310 | Body | Ant 0 | 12.75 | 12.5 | 1.00 | 0.347 | 0.35 | 1.6 | - | | 802.11n | Back Side
Touch
(High CH) | 5310 | Body | Ant 0 | 12.75 | 12.5 | 1.00 | 0.798 | 0.80 | 1.6 | - | | HT40 | Top Side
Touch
(Low CH) | 5270 | Body | Ant 1 | 11.01 | 11 | 1.00 | 1.37 | 1.37 | 1.6 | - | | | Back Side
Touch
(Low CH) | 5270 | Body | Ant 1 | 11.01 | 11 | 1.00 | 1.03 | 1.03 | 1.6 | - | | | Top Side
Touch
(High CH) | 5310 | Body | Ant 1 | 10.86 | 11 | 1.03 | 1.4 | 1.45 | 1.6 | 15 | | | Back Side
Touch
(High CH) | 5310 | Body | Ant 1 | 10.86 | 11 | 1.03 | 1 | 1.03 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5270 | Body | Ant 0 | 12.08 | 12 | 1.00 | 0.396 | 0.40 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5310 | Body | Ant 0 | 12.66 | 12.5 | 1.00 | 0.393 | 0.39 | 1.6 | - | | ac40 | Top Side
Touch
(Low CH) | 5270 | Body | Ant 1 | 10.82 | 11 | 1.04 | 1.38 | 1.44 | 1.6 | 16 | | | Top Side
Touch
(High CH) | 5310 | Body | Ant 1 | 11.2 | 11 | 1.00 | 1.35 | 1.35 | 1.6 | - | | 802.11 | Top Side
Touch
(Middle CH) | 5290 | Body | Ant 0 | 12.2 | 12 | 1.00 | 0.333 | 0.33 | 1.6 | - | | ac80 | Top Side
Touch
(Middle CH) | 5290 | Body | Ant 1 | 10.64 | 10.5 | 1.00 | 1.29 | 1.29 | 1.6 | 17 | Page 54 of 161 | | | | | | 5.6 GHz Ba | and | | | | | | |----------|----------------------------------|-------|------|-------|--------------------|---------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Powe | r (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(High CH) | 5700 | Body | Ant 0 | 12.87 | 13 | 1.03 | 0.517 | 0.53 | 1.6 | - | | | Back Side
Touch
(High CH) | 5700 | Body | Ant 0 | 12.87 | 13 | 1.03 | 0.591 | 0.61 | 1.6 | - | | 802.11 a | Top Side
Touch
(High CH) | 5700 | Body | Ant 1 | 11.26 | 11 | 1.00 | 1.37 | 1.37 | 1.6 | - | | | Back Side
Touch
(High CH) | 5700 | Body | Ant 1 | 11.26 | 11 | 1.00 | 0.751 | 0.751 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5580 | Body | Ant 1 | 9.55 | 9.5 | 1.00 | 1.43 | 1.43 | 1.6 | 18 | | | Top Side
Touch
(Low CH) | 5500 | Body | Ant 1 | 10.21 | 10 | 1.00 | 1.29 | 1.29 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5500 | Body | Ant 0 | 9.83 | 10.5 | 1.17 | 0.223 | 0.26 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5580 | Body | Ant 0 | 9.45 | 9.5 | 1.01 | 0.258 | 0.26 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5700 | Body | Ant 0 | 12.76 | 12.5 | 1.00 | 0.513 | 0.51 | 1.6 | - | | HT20 | Top Side
Touch
(Low CH) | 5500 | Body | Ant 1 | 10.36 | 10.5 | 1.03 | 1.32 | 1.36 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5580 | Body | Ant 1 | 9.4 | 9.5 | 1.02 | 1.29 | 1.32 | 1.6 | - | | | Top Side
Touch
(High CH) | 5700 | Body | Ant 1 | 11.14 | 11 | 1.00 | 1.38 | 1.38 | 1.6 | 19 | | | Top Side
Touch
(Low CH) | 5500 | Body | Ant 0 | 9.79 | 10.5 | 1.18 | 0.317 | 0.37 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5580 | Body | Ant 0 | 9.32 | 9.5 | 1.04 | 0.282 | 0.29 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5700 | Body | Ant 0 | 12.7 | 12.5 | 1.00 | 0.512 | 0.51 | 1.6 | - | | ac20 | Top Side
Touch
(Low CH) | 5500 | Body | Ant 1 | 10.31 | 10.5 | 1.04 | 1.35 | 1.41 | 1.6 | 20 | | | Top Side
Touch
(Middle CH) | 5580 | Body | Ant 1 | 9.5 | 9.5 | 1.00 | 1.28 | 1.28 | 1.6 | - | | | Top Side
Touch
(High CH) | 5700 | Body | Ant 1 | 11.22 | 11 | 1.00 | 1.32 | 1.32 | 1.6 | - | | | | | | | 5.6 GHz B | and | | | | | | |---------|----------------------------------|-------|------|-------|-------------------|----------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Pow | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Low CH) | 5510 | Body | Ant 0 | 10.01 | 10.5 | 1.12 | 0.233 | 0.26 | 1.6 | 1 | | | Top Side
Touch
(Middle CH) | 5550 | Body | Ant 0 | 9.3 | 10 | 1.17 | 0.215 | 0.25 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5670 | Body | Ant 0 | 10.4 | 10.5 | 1.02 | 0.287 | 0.29 | 1.6 | - | | HT40 | Top Side
Touch
(Low CH) | 5510 | Body | Ant 1 | 10.68 | 10.5 | 1.00 | 1.4 | 1.40 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5550 | Body | Ant 1 | 10 | 10 | 1.00 | 1.42 | 1.42 | 1.6 | 21 | | | Top Side
Touch
(High CH) | 5670 | Body | Ant 1 | 9.2 | 10 | 1.20 | 1.06 | 1.27 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5510 | Body | Ant 0 | 10.06 | 10.5 | 1.11 | 0.22 | 0.24 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5550 | Body | Ant 0 | 9.43 | 10 | 1.14 | 0.21 | 0.24 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5670 | Body | Ant 0 | 10.45 | 10.5 | 1.01 | 0.298 | 0.30 | 1.6 | - | | ac40 | Top Side
Touch
(Low CH) | 5510 | Body | Ant 1 | 10.6 | 10.5 | 1.00 | 1.44 | 1.44 | 1.6 | 22 | | | Top Side
Touch
(Middle CH) | 5550 | Body | Ant 1 | 10.22 | 10 | 1.00 | 1.42 | 1.42 | 1.6 | - | | | Top Side
Touch
(High CH) | 5670 | Body | Ant 1 | 9.2 | 10 | 1.20 | 1.01 | 1.21 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5530 | Body | Ant 0 | 9.27 | 10 | 1.18 | 0.224 | 0.27 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5610 | Body | Ant 0 | 9.91 | 10 | 1.02 | 0.159 | 0.16 | 1.6 | - | | ac80 | Top Side
Touch
(Low CH) | 5530 | Body | Ant 1 | 10.01 | 10 | 1.00 | 1.44 | 1.44 | 1.6 | 23 | | | Top Side
Touch
(Middle CH) | 5610 | Body | Ant 1 | 9.41 | 10 | 1.15 | 1.17 | 1.34 | 1.6 | - | | | | | | | 5.8 GHz Ba | and | | | | | | |----------|----------------------------------|-------|------|-------|-------------|---------|--------|---------------|---------------|---------------------|------| | Radio | EUT | Freq. | Test | Ant. | Output Powe | r (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | Target | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Low CH) | 5745 | Body | Ant 0 | 13.5 | 13.5 | 1.00 | 1.11 | 1.11 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 0 | 12.94 | 13 | 1.01 | 1.41 | 1.43 | 1.6 | 24 | | 802.11 a | Top Side Touch (High CH) | 5825 | Body | Ant 0 | 11.66 | 12 | 1.08 | 1.29 | 1.40 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5745 | Body | Ant 1 | 11.67 | 12 | 1.08 | 1.23 | 1.33 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 1 | 12.01 | 12.5 | 1.12 | 1.21 | 1.35 | 1.6 | - | | | Top Side
Touch
(High CH) | 5825 | Body | Ant 1 | 12.83 | 12.5 | 1.00 | 1.1 | 1.10 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5745 | Body | Ant 0 | 13.5 | 13.5 | 1.00 | 0.797 | 0.80 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 0 | 13.08 | 13 | 1.00 | 1.05 | 1.05 | 1.6 | - | | 802.11n | Top Side
Touch
(High CH) | 5825 | Body | Ant 0 | 11.58 | 12 | 1.10 | 1.02 | 1.12 | 1.6 | - | | HT20 | Top Side
Touch
(Low CH) | 5745 | Body | Ant 1 | 11.83 | 12 | 1.04 | 1.33 | 1.38 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 1 | 12.08 | 12.5 | 1.10 | 1.25 | 1.38 | 1.6 | 25 | | | Top Side
Touch
(High CH) | 5825 | Body | Ant 1 | 11.43 | 12 | 1.14 | 1.04 | 1.19 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5745 | Body | Ant 0 | 13.46 | 13.5 | 1.01 | 0.739 | 0.75 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 0 | 13.06 | 13 | 1.00 | 0.986 | 0.99 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5825 | Body | Ant 0 | 11.45 | 12 | 1.14 | 0.992 | 1.13 | 1.6 | - | | ac20 | Top Side
Touch
(Low CH) | 5745 | Body | Ant 1 | 11.9 | 12 | 1.02 | 1.37 | 1.40 | 1.6 | 26 | | | Top Side
Touch
(Middle CH) | 5785 | Body | Ant 1 | 12.16 | 12.5 | 1.08 | 1.23 | 1.33 | 1.6 | - | | | Top Side
Touch
(High CH) | 5825 | Body | Ant 1 | 11.4 | 12 | 1.15 | 0.903 | 1.04 | 1.6 | - | | | | | | | 5.8 GHz B | and | | | | | | |---------|-----------------------------------|-------|------|-------|-------------------|----------|--------|---------------|---------------|---------------------
------| | Radio | EUT | Freq. | Test | Ant. | Output Pow | er (dBm) | Scale | Measured | Scaled | Limit | Plot | | Mode | Position | (MHz) | Type | Chain | Measured | | Factor | SAR
(W/kg) | SAR
(W/kg) | (W/kg)
1g Tissue | # | | | Top Side
Touch
(Low CH) | 5755 | Body | Ant 0 | 13.5 | 13.5 | 1.00 | 0.949 | 0.95 | 1.6 | - | | | Back Side
Touch
(Low CH) | 5755 | Body | Ant 0 | 13.5 | 13.5 | 1.00 | 1.01 | 1.01 | 1.6 | - | | | Top Side
Touch
(High CH) | 5795 | Body | Ant 0 | 12.03 | 12 | 1.00 | 0.893 | 0.89 | 1.6 | - | | 802.11n | Back Side
Touch
(High CH) | 5795 | Body | Ant 0 | 12.03 | 12 | 1.00 | 0.887 | 0.89 | 1.6 | - | | HT40 | Top Side
Touch
(Low CH) | 5755 | Body | Ant 1 | 12.14 | 12.5 | 1.09 | 1.3 | 1.41 | 1.6 | 27 | | | Back Side
Touch
(Low CH) | 5755 | Body | Ant 1 | 12.14 | 12.5 | 1.09 | 0.851 | 0.92 | 1.6 | - | | | Top Side
Touch
(High CH) | 5795 | Body | Ant 1 | 11.65 | 12 | 1.08 | 1.13 | 1.22 | 1.6 | - | | | Back Side
Touch
(High CH) | 5795 | Body | Ant 1 | 11.65 | 12 | 1.08 | 0.667 | 0.72 | 1.6 | - | | | Top Side
Touch
(Low CH) | 5755 | Body | Ant 0 | 13.5 | 13.5 | 1.00 | 0.859 | 0.86 | 1.6 | - | | 802.11 | Top Side
Touch
(High CH) | 5795 | Body | Ant 0 | 12.05 | 12 | 1.00 | 0.92 | 0.92 | 1.6 | - | | ac40 | Top Side
Touch
(Low CH) | 5755 | Body | Ant 1 | 12.32 | 12.5 | 1.04 | 1.38 | 1.44 | 1.6 | 28 | | | Top Side
Touch
(High CH) | 5795 | Body | Ant 1 | 11.34 | 12 | 1.16 | 1.14 | 1.33 | 1.6 | - | | | Top Side
Touch
(Middle CH) | 5775 | Body | Ant 0 | 13.1 | 13 | 1.00 | 1.11 | 1.11 | 1.6 | - | | 802.11 | Back Side
Touch
(Middle CH) | 5775 | Body | Ant 0 | 13.1 | 13 | 1.00 | 0.848 | 0.85 | 1.6 | - | | ac80 | Top Side
Touch
(Middle CH) | 5775 | Body | Ant 1 | 12.08 | 12.5 | 1.10 | 1.23 | 1.35 | 1.6 | 29 | | | Back Side
Touch
(Middle CH) | 5775 | Body | Ant 1 | 12.08 | 12.5 | 1.10 | 0.819 | 0.90 | 1.6 | - | | (| Corrected | SAR | Eval | luation | Table | |---|-----------|-----|------|---------|-------| | | | | | | | | Frequency
(MHz) | Liquid
Type | C_{ϵ} | $\triangle \epsilon_{ m r}$ | C_{δ} | \triangle_{δ} | △SAR | |--------------------|----------------|----------------|-----------------------------|--------------|----------------------|-------| | 2412 | Body | -0.225 | 0.013 | 0.489 | 0.016 | 0.005 | | 2437 | Body | -0.225 | 0.011 | 0.483 | 0.005 | 0.000 | | 2462 | Body | -0.225 | 0.008 | 0.478 | 0.020 | 0.008 | | 5180 | Body | -0.202 | -0.024 | -0.024 | -0.047 | 0.006 | | 5220 | Body | -0.201 | -0.024 | -0.027 | -0.043 | 0.006 | | 5240 | Body | -0.201 | -0.025 | -0.028 | -0.047 | 0.006 | | 5260 | Body | -0.201 | -0.026 | -0.030 | -0.047 | 0.007 | | 5300 | Body | -0.201 | -0.029 | -0.032 | -0.042 | 0.007 | | 5320 | Body | -0.201 | -0.029 | -0.034 | -0.044 | 0.007 | | 5500 | Body | -0.200 | -0.034 | -0.042 | -0.028 | 0.008 | | 5580 | Body | -0.199 | -0.039 | -0.044 | -0.030 | 0.009 | | 5700 | Body | -0.199 | -0.038 | -0.046 | -0.019 | 0.008 | | 5745 | Body | -0.199 | -0.039 | -0.045 | -0.020 | 0.009 | | 5785 | Body | -0.199 | -0.041 | -0.045 | -0.013 | 0.009 | | 5825 | Body | -0.199 | -0.042 | -0.044 | -0.017 | 0.009 | $$\Delta \text{SAR} = c_{\epsilon} \ \Delta \varepsilon_{\text{r}} + c_{\sigma} \ \Delta \sigma$$ $$c_{\epsilon} = -7.854 \times 10^{-4} \ f^3 + 9.402 \times 10^{-3} \ f^2 - 2.742 \times 10^{-2} \ f - 0.202 \ 6$$ $$c_{\sigma} = 9.804 \times 10^{-3} \ f^3 - 8.661 \times 10^{-2} \ f^2 + 2.981 \times 10^{-2} \ f + 0.782 \ 9$$ where # f is the frequency in GHz. Note 1: According NOTICE 2012-DRS0529, if the correction \triangle SAR has a negative sign, the measured SAR result should be corrected, and has a positive sign, the measured SAR result shall not be corrected. Note 2: NOTICE 2012-DRS1203: Based on the IEEE 1528 and IEC 62209 requirements, the high, mid and low channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured. #### 10.3 Multi-TX and Antenna SAR Considerations The NVIDIA Tablet (Model: P2290W) contains at most two radio modules inside, namely Bluetooth and WLAN radios, each internal radio has individual registration identifiers. #### **EUT Antennas Location** (Front Side View) Note1: Simultaneous Transmit: #### The possible Simultaneous Transmit: Bluetooth and 5 GHz WLAN When the Sum SAR value over 1.6W/KG, based on KDB447498 D01v05, SPLSR=(SAR1+SAR2)*^(1.5)/(min. separation distance, mm) ≤ 0.04 , and the peak separation distance is computed by the square root of $[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]$, where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the area scans or extrapolated peak SAR locations in the zoom scans. If $SPLSR \leq 0.04$, simultaneously transmission SAR measurement is not necessary ## 10.3.1 Estimated SAR According to FCC KDB 447498 Section 4.3.2 b), when an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria: 1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot \sqrt{f_{(GHz)}/x}$ W/kg, for test separation distance ≤ 50 mm; Where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50 mm. | | | | 5.2 | GHz | | | | |-------------|---------|----------|--------------------|------------------------|-----------------------|---|----------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Estimated
SAR
(W/kg) | | | | Back | 5220 | 12.19 | 16.56 | 5 | 1.01 | | | 0 | Тор | 5220 | 12.19 | 16.56 | 5 | 1.01 | | | 0 | Left | 5220 | 12.19 | 16.56 | 21.5 | 0.23 | | 802.11a | | Right | - | - | - | 65.4 | 0.40 | | | | Back | 5240 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | - | - | 66.35 | 0.40 | | | | Right | 5240 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5220 | 11.03 | 12.68 | 5 | 0.77 | | | 0 | Left | 5220 | 11.03 | 12.68 | 21.5 | 0.18 | | 802.11n20 | | Right | - | - | - | 65.4 | 0.40 | | 802.111120 | | Back | 5220 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | 1 | - | 66.35 | 0.40 | | | | Right | 5220 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5240 | 11 | 12.59 | 5 | 0.77 | | | 0 | Left | 5240 | 11 | 12.59 | 21.5 | 0.18 | | 802.11ac20 | | Right | - | 1 | - | 65.4 | 0.40 | | 802.11ac20 | | Back | 5220 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | - | - | 66.35 | 0.40 | | | | Right | 5220 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5230 | 11.04 | 12.71 | 5 | 0.77 | | | 0 | Left | 5230 | 11.04 | 12.71 | 21.5 | 0.18 | | 902 1140 | | Right | - | - | - | 65.4 | 0.40 | | 802.11n40 | | Back | 5230 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | - | - | 66.35 | 0.40 | | | | Right | 5230 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5230 | 11 | 12.59 | 5 | 0.77 | | | 0 | Left | 5230 | 11 | 12.59 | 21.5 | 0.18 | | 802.11ac40 | | Right | - | - | - | 65.4 | 0.40 | | 802.11ac40 | | Back | 5230 | 11.02 | 12.65 | 5 | 0.77 | | | 1 | Left | - | - | - | 66.35 | 0.40 | | | | Right | 5230 | 11.02 | 12.65 | 37 | 0.10 | | | 0 | Left | 5210 | 11 | 12.59 | 21.5 | 0.18 | | 0000 1100 | 0 | Right | - | - | - | 65.4 | 0.40 | | 8002.11ac80 | 1 | Left | - | - | - | 66.35 | 0.40 | | | 1 | Right | 5210 | 11 | 12.59 | 37 | 0.10 | | | | | 5.3 (| GHz | | | | |-------------|---------|----------|--------------------|------------------------|-----------------------|---|----------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Estimated
SAR
(W/kg) | | | | Back | 5320 | 12.5 | 17.78 | 5 | 1.09 | | | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 0.25 | | 802.11a | | Right | - | - | - | 65.4 | 0.4 | | 002.11a | | Back | 5320 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5320 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5320 | 12.5 | 17.78 | 5 | 1.09 | | | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 0.25 | | q802.11n20 | | Right | - | - | - | 65.4 | 0.4 | | 4002.111120 | | Back | 5320 | 11 | 12.59 | 5 | 0.77 | | | 1 | Left | - | 1 | - | 66.35 | 0.4 | | | | Right | 5320 | 11 | 12.59 | 37 | 0.10 | | | | Back | 5320 | 12.5 | 17.78 | 5 | 1.09 | | | 0 | Left | 5320 | 12.5 | 17.78 | 21.5 | 0.25 | | 802 1120 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac20 | | Back | 5320 | 11.02 | 12.65 | 5 | 0.78 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5320 | 11.02 | 12.65 | 37 | 0.11 | | | 0 | Left | 5310 | 12.75 | 18.84 | 21.5 | 0.27 | | 902 11-40 | 0 | Right | - | - | - | 65.4 | 0.4 | | 802.11n40 | 1 | Left | - | - | - | 66.35 | 0.4 | | | 1 | Right | 5270 | 11.01 | 12.62 | 37 | 0.10 | | | | Back | 5310 | 12.66 | 18.45 | 5 | 1.13 | | | 0 | Left | 5310 | 12.66 | 18.45 | 21.5 | 0.26 | | 902 11 - 40 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac40 | | Back | 5310 | 11.2 | 13.18 | 5 | 0.81 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5310 | 11.2 | 13.18 | 37 | 0.11 | | | | Back | 5290 | 12.2 | 16.60 | 5 | 1.02 | | | 0 | Left | 5290 | 12.2 | 16.60 | 21.5 | 0.24 | | 000 11 00 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac80 | | Back | 5290 | 10.64 | 11.59 | 5 | 0.71 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5290 | 10.64 | 11.59 | 37 | 0.10 | | | | | 5.6 (| GHz | | | | |------------|---------|----------|--------------------|------------------------|-----------------------|---|----------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Estimated
SAR
(W/kg) | |
 0 | Left | 5700 | 13 | 19.95 | 21.5 | 0.30 | | 802.11a | U | Right | - | - | - | 65.4 | 0.4 | | 002.11a | 1 | Left | - | - | - | 66.35 | 0.4 | | | 1 | Right | 5700 | 11.26 | 13.37 | 37 | 0.11 | | | | Back | 5700 | 12.76 | 18.88 | 5 | 1.20 | | | 0 | Left | 5700 | 12.76 | 18.88 | 21.5 | 0.28 | | 802.11n20 | | Right | - | - | - | 65.4 | 0.4 | | 802.111120 | | Back | 5700 | 11.14 | 13.00 | 5 | 0.83 | | | 1 | Left | - | 1 | - | 66.35 | 0.4 | | | | Right | 5700 | 11.14 | 13.00 | 37 | 0.11 | | | | Back | 5700 | 12.7 | 18.62 | 5 | 1.19 | | | 0 | Left | 5700 | 12.7 | 18.62 | 21.5 | 0.28 | | 902 1120 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac20 | | Back | 5700 | 11.22 | 13.24 | 5 | 0.84 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5700 | 11.22 | 13.24 | 37 | 0.11 | | | | Back | 5670 | 10.5 | 11.22 | 5 | 0.71 | | | 0 | Left | 5670 | 10.5 | 11.22 | 21.5 | 0.17 | | 802.11n40 | | Right | - | - | - | 65.4 | 0.4 | | 802.111140 | | Back | 5510 | 10.68 | 11.69 | 5 | 0.73 | | | 1 | Left | - | 1 | - | 66.35 | 0.4 | | | | Right | 5510 | 10.68 | 11.69 | 37 | 0.10 | | | | Back | 5670 | 10.5 | 11.22 | 5 | 0.71 | | | 0 | Left | 5670 | 10.5 | 11.22 | 21.5 | 0.17 | | 902 1140 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac40 | | Back | 5510 | 10.6 | 11.48 | 5 | 0.72 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5510 | 10.6 | 11.48 | 37 | 0.10 | | | | Back | 5610 | 10 | 10.00 | 5 | 0.63 | | | 0 | Left | 5610 | 10 | 10.00 | 21.5 | 0.15 | | 000 1100 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac80 | | Back | 5530 | 10.1 | 10.23 | 5 | 0.64 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5530 | 10.1 | 10.23 | 37 | 0.09 | | | | | 5.8 | GHz | | | | |------------|---------|----------|--------------------|------------------------|-----------------------|---|----------------------------| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Estimated
SAR
(W/kg) | | | | Back | 5745 | 13.5 | 22.39 | 5 | 1.43 | | | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 0.33 | | 802.11a | | Right | - | - | - | 65.4 | 0.4 | | 802.11a | | Back | 5825 | 12.83 | 19.19 | 5 | 1.23 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5825 | 12.83 | 19.19 | 37 | 0.17 | | | | Back | 5745 | 13.5 | 22.39 | 5 | 1.43 | | | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 0.33 | | | | Right | - | - | - | 65.4 | 0.4 | | 802.11n20 | | Back | 5785 | 12.5 | 17.78 | 5 | 1.14 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5785 | 12.5 | 17.78 | 37 | 0.15 | | | | Back | 5745 | 13.5 | 22.39 | 5 | 1.43 | | | 0 | Left | 5745 | 13.5 | 22.39 | 21.5 | 0.33 | | 002.11 20 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac20 | | Back | 5785 | 12.5 | 17.78 | 5 | 1.14 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5785 | 12.5 | 17.78 | 37 | 0.15 | | | 0 | Left | 5755 | 13.5 | 22.39 | 21.5 | 0.33 | | 902 11 40 | 0 | Right | - | - | - | 65.4 | 0.4 | | 802.11n40 | 1 | Left | - | - | - | 66.35 | 0.4 | | | 1 | Right | 5755 | 12.5 | 17.78 | 37 | 0.15 | | | | Back | 5755 | 13.5 | 22.39 | 5 | 1.43 | | | 0 | Left | 5755 | 13.5 | 22.39 | 21.5 | 0.33 | | 002 11 40 | | Right | - | - | - | 65.4 | 0.4 | | 802.11ac40 | | Back | 5755 | 12.5 | 17.78 | 5 | 1.14 | | | 1 | Left | - | - | - | 66.35 | 0.4 | | | | Right | 5755 | 12.5 | 17.78 | 37 | 0.15 | | | | Left | 5775 | 13.1 | 20.42 | 21.5 | 0.30 | | 002.11 00 | 0 | Right | - | - | - | 65.4 | 0.4 | | 802.11ac80 | 1 | Left | - | - | - | 66.35 | 0.4 | | | 1 | Right | 5775 | 12.5 | 17.78 | 37 | 0.15 | | BT/BLE | | | | | | | | | | | | |--------|---------|----------|--------------------|------------------------|-----------------------|---|----------------------------|--|--|--|--| | Mode | Antenna | Position | Frequency
(MHz) | Max.
Power
(dBm) | Max.
Power
(mW) | Separation
distance
from body
(mm) | Estimated
SAR
(W/kg) | | | | | | BT/BLE | 0 | Left | 2441 | 10.74 | 11.86 | 21.5 | 0.11 | | | | | | D1/DLE | U | Right | - | - | - | 65.4 | 0.40 | | | | | # 10.3.2 Simultaneous Transmission Analysis | | | | | SA | R (W/kg) | | | | | | | |---------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------|------------------|------------|---------------| | Position | 5.2G
Wifi
802.11a
Ant0 | 5.2G
Wifi
802.11a
Ant1 | 5.2G
Wifi
802.11
n20 | 5.2G
Wifi
802.11
ac20 | 5.2G
Wifi
802.11
n40 | 5.2G
Wifi
802.11
ac40 | 5.2G
Wifi
802.11
ac80 | 2.4GHz
BT/
BLE | Sum
of
SAR | Ri
(mm) | SPLS
Ratio | | | 1.01 | - | - | - | - | | - | 0.152 | 1.169 | - | - | | | - | 0.77 | - | - | - | | - | 0.152 | 0.922 | - | - | | Back | - | - | 0.77 | - | - | | - | 0.152 | 0.922 | - | - | | Touch | - | - | 1 | 0.77 | - | | - | 0.152 | 0.922 | - | 1 | | | - | - | - | - | 0.77 | - | - | 0.152 | 0.922 | | - | | | - | - | - | - | - | 0.77 | - | 0.152 | 0.922 | 1 | - | | | - | - | - | - | - | - | 0.87 | 0.152 | 1.025 | - | - | | | 1.01 | - | - | - | - | | - | 0.159 | 1.169 | - | - | | | - | 1.43 | - | - | - | | - | 0.159 | 1.585 | ı | - | | Тор | - | - | 1.41 | - | - | | - | 0.159 | 1.571 | - | | | Touch | - | - | - | 1.42 | - | | - | 0.159 | 1.579 | - | - | | | - | - | - | - | 1.45 | - | - | 0.159 | 1.609 | 47.21 | 0.04 | | | - | - | - | - | - | 1.42 | - | 0.159 | 1.582 | - | - | | | - | - | - | - | - | - | 1.43 | 0.159 | 1.592 | - | - | | | 0.23 | - | - | - | - | - | - | 0.11 | 0.34 | - | - | | | - | 0.4 | - | - | - | - | - | 0.11 | 0.51 | - | - | | T 6 | - | - | 0.4 | - | - | - | - | 0.11 | 0.51 | - | - | | Left
Touch | - | - | - | 0.4 | - | - | - | 0.11 | 0.51 | - | - | | 1000 | - | - | - | - | 0.4 | - | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | 0.4 | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | - | 0.4 | 0.11 | 0.51 | - | - | | | 0.4 | - | - | - | - | - | - | 0.4 | 0.8 | - | - | | | - | 0.1 | - | - | - | - | - | 0.4 | 0.5 | - | - | | Right | - | - | 0.4 | - | - | - | - | 0.4 | 0.8 | - | - | | Touch | - | - | - | 0.4 | - | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | 0.4 | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | 0.4 | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | - | 0.4 | 0.4 | 0.8 | - | - | | | | | | SA | R (W/kg) | | | | | | | |----------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------|------------------|------------|---------------| | Position | 5.3G
Wifi
802.11a
Ant0 | 5.3G
Wifi
802.11a
Ant1 | 5.3G
Wifi
802.11
n20 | 5.3G
Wifi
802.11
ac20 | 5.3G
Wifi
802.11
n40 | 5.3G
Wifi
802.11
ac40 | 5.3G
Wifi
802.11
ac80 | 2.4GHz
BT/
BLE | Sum
of
SAR | Ri
(mm) | SPLS
Ratio | | | 1.09 | - | - | - | - | | - | 0.152 | 1.242 | - | - | | | - | 0.77 | - | - | - | | - | 0.152 | 0.922 | - | - | | Back | - | - | 1.09 | - | - | | - | 0.152 | 1.242 | - | - | | Touch | - | - | - | 1.09 | - | | - | 0.152 | 1.242 | - | - | | | - | - | - | - | 1.03 | - | - | 0.152 | 1.180 | - | - | | | - | - | - | - | - | 1.13 | - | 0.152 | 1.282 | - | - | | | • | 1 | 1 | 1 | - | - | 1.02 | 0.152 | 1.172 | - | - | | | 0.38 | - | - | - | - | | - | 0.159 | 0.540 | - | - | | | - | 1.41 | - | - | - | | - | 0.159 | 1.573 | - | - | | Тор | - | - | 1.43 | - | - | | - | 0.159 | 1.586 | - | | | Touch | 1 | - | - | 1.38 | - | | - | 0.159 | 1.540 | 1 | - | | | - | - | - | - | 1.45 | - | - | 0.159 | 1.605 | 47.05 | 0.04 | | | - | - | - | - | - | 1.44 | - | 0.159 | 1.597 | 1 | - | | | - | - | - | - | - | - | 1.29 | 0.159 | 1.449 | - | - | | | 0.25 | - | - | - | - | - | - | 0.11 | 0.36 | - | - | | | - | 0.4 | - | - | - | - | - | 0.11 | 0.51 | - | - | | Left | - | - | 0.4 | - | - | - | - | 0.11 | 0.51 | - | - | | Touch | - | - | - | 0.4 | - | - | - | 0.11 | 0.51 | - | - | | | - | - | - | - | 0.4 | - | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | 0.4 | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | - | 0.4 | 0.11 | 0.51 | - | - | | | 0.4 | - | - | - | - | - | - | 0.4 | 0.8 | - | - | | | - | 0.1 | - | - | - | - | - | 0.4 | 0.5 | - | - | | Right | - | - | 0.4 | - | - | - | - | 0.4 | 0.8 | - | - | | Touch | - | - | - | 0.4 | - | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | 0.4 | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | 0.4 | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | - | 0.4 | 0.4 | 0.8 | - | - | | | | | | SA | R (W/kg) | | | | | | | |---------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------|------------------|------------|---------------| | Position | 5.6G
Wifi
802.11a
Ant0 | 5.6G
Wifi
802.11a
Ant1 | 5.6G
Wifi
802.11
n20 | 5.6G
Wifi
802.11
ac20 | 5.6G
Wifi
802.11
n40 | 5.6G
Wifi
802.11
ac40 | 5.6G
Wifi
802.11
ac80 | 2.4GHz
BT/
BLE | Sum
of
SAR | Ri
(mm) | SPLS
Ratio | | | 0.61 | - | - | - | - | - | - | 0.152 | 0.761 | - | - | | | - | 0.75 | - | - | - | - | - | 0.152 | 0.903 | - | - | | Back | - | - | 1.20 | - | - | - | - | 0.152 | 1.352 | - | - | | Touch | - | - | - | 1.19 | - | - | - | 0.152 | 1.342 | - | - | | | - | - | - | - | 0.73 | - | - | 0.152 | 0.882 | - | - | | | - | - | - | - | - | 0.72 | - | 0.152 | 0.881 | i | - | | | - | - | - | - | - | - | 0.64 | 0.152 | 0.792 | i | - | | | 0.53 | - | - | - | - | - | - | 0.159 | 0.692 | 1 | - | | | - | 1.43 | - | - | - | - | - | 0.159 | 1.589 | - | - | |
Тор | - | - | 1.38 | - | - | - | - | 0.159 | 1.539 | - | - | | Touch | - | - | - | 1.41 | - | - | - | 0.159 | 1.569 | - | - | | | - | - | - | - | 1.42 | - | - | 0.159 | 1.579 | - | - | | | - | - | - | - | - | 1.44 | - | 0.159 | 1.599 | - | - | | | - | - | - | - | - | - | 1.44 | 0.159 | 1.599 | - | - | | | 0.3 | - | - | - | - | - | - | 0.11 | 0.41 | - | - | | | - | 0.4 | - | - | - | - | - | 0.11 | 0.51 | - | - | | T 6 | - | - | 0.4 | - | - | - | - | 0.11 | 0.51 | - | - | | Left
Touch | - | - | - | 0.4 | - | - | - | 0.11 | 0.51 | - | - | | 1000 | - | - | - | - | 0.4 | - | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | 0.4 | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | - | 0.4 | 0.11 | 0.51 | - | - | | | 0.4 | - | - | - | - | - | - | 0.4 | 0.8 | - | - | | | - | 0.11 | - | - | - | - | - | 0.4 | 0.51 | - | - | | Right | - | - | 0.4 | - | - 1 | - | - | 0.4 | 0.8 | - | - | | Touch | - | - | - | 0.4 | - | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | 0.4 | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | 0.4 | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | - | 0.4 | 0.4 | 0.8 | - | - | Page 67 of 161 | | | | | SA | R (W/kg) | | | | | | | |---------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------|------------------|------------|---------------| | Position | 5.8G
Wifi
802.11a
Ant0 | 5.8G
Wifi
802.11a
Ant1 | 5.8G
Wifi
802.11
n20 | 5.8G
Wifi
802.11
ac20 | 5.8G
Wifi
802.11
n40 | 5.8G
Wifi
802.11
ac40 | 5.8G
Wifi
802.11
ac80 | 2.4GHz
BT/
BLE | Sum
of
SAR | Ri
(mm) | SPLS
Ratio | | | 1.43 | - | - | - | - | - | - | 0.152 | 1.582 | - | - | | | - | 1.23 | - | - | - | - | - | 0.152 | 1.382 | - | - | | Back | - | - | 1.43 | - | - | - | - | 0.152 | 1.582 | - | - | | Touch | - | - | - | 1.43 | - | - | - | 0.152 | 1.582 | - | - | | | - | - | - | - | 1.01 | - | - | 0.152 | 1.162 | | - | | | - | - | - | - | - | 1.43 | - | 0.152 | 1.582 | i | - | | | - | - | - | - | - | - | 0.90 | 0.152 | 1.054 | i | - | | | 1.43 | - | - | - | - | - | - | 0.159 | 1.589 | 1 | - | | | - | 1.35 | - | - | - | - | - | 0.159 | 1.514 | - | - | | Тор | - | - | 1.38 | - | - | - | - | 0.159 | 1.542 | - | - | | Touch | - | - | - | 1.40 | - | - | - | 0.159 | 1.561 | - | - | | | - | - | - | - | 1.41 | - | - | 0.159 | 1.571 | - | - | | | - | - | - | - | - | 1.44 | - | 0.159 | 1.597 | - | - | | | - | - | - | - | - | - | 1.35 | 0.159 | 1.514 | - | - | | | 0.4 | - | - | - | - | - | - | 0.11 | 0.51 | - | - | | | - | 0.4 | - | - | - | - | - | 0.11 | 0.51 | - | - | | T 6 | - | - | 0.4 | - | - | - | - | 0.11 | 0.51 | - | - | | Left
Touch | - | - | - | 0.4 | - | - | - | 0.11 | 0.51 | - | - | | Touch | - | - | - | - | 0.4 | - | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | 0.4 | - | 0.11 | 0.51 | - | - | | | - | - | - | - | - | - | 0.4 | 0.11 | 0.51 | - | - | | | 0.4 | - | - | - | - | - | - | 0.4 | 0.8 | - | - | | | - | 0.4 | - | - | - | - | - | 0.4 | 0.8 | - | - | | Right | - | - | 0.4 | - | - | - | - | 0.4 | 0.8 | - | - | | Touch | - | - | - | 0.4 | - | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | 0.4 | - | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | 0.4 | - | 0.4 | 0.8 | - | - | | | - | - | - | - | - | - | 0.4 | 0.4 | 0.8 | - | - | Page 68 of 161 #### 10.3.3 Off-Shelf USB Dongle Enabled Hotspot Function If the device enables hotspot through USB-Ethernet dongle, simultaneous transmission need to be considered. According to FCC KDB 941225, a reported SAR of 1.6 W/kg is used for the external transmitter to determine simultaneous transmission SAR test exclusion. For USB dongles, the peak SAR location is assumed to be at 1 cm or less from the router surface, on the USB dongle. Distance between Wi-Fi antennas and the USB dongle applied in the following table is demonstrated in the diagram in Section 10.3 of this report. The Wi-Fi standalone SAR values are selected either from the measurement results in Section 10.2 or from the estimated SAR in Section 10.3.1 of this report whichever is higher. The highest back side touch SAR value in each operating frequency band was picked to represent the worst case. | Frequency
Band | Antenna | Wi-Fi SAR
(W/kg) | USB Dongle SAR
(W/kg) | Separation
Distance
(mm) | SPLSR | |-------------------|---------|---------------------|--------------------------|--------------------------------|-------| | BT/BLE | 0 | 0.152 | 1.6 | 217 | 0.01 | | 2.4.611 | 0 | 1.17 | 1.6 | 217 | 0.02 | | 2.4 GHz | 1 | 1.54 | 1.6 | 224 | 0.02 | | 5.2 CH | 0 | 1.01 | 1.6 | 217 | 0.02 | | 5.2 GHz | 1 | 0.87 | 1.6 | 224 | 0.02 | | 5.2 CH- | 0 | 1.13 | 1.6 | 217 | 0.02 | | 5.3 GHz | 1 | 1.03 | 1.6 | 224 | 0.02 | | 5 (CH- | 0 | 1.27 | 1.6 | 217 | 0.02 | | 5.6 GHz | 1 | 0.84 | 1.6 | 224 | 0.02 | | 5.0 CH- | 0 | 1.43 | 1.6 | 217 | 0.02 | | 5.8 GHz | 1 | 1.23 | 1.6 | 224 | 0.02 | As shown in the table above, simultaneous transmission SAR can be excluded for hotspot configuration since SPLSR is less than 0.04. # 11 Appendix A – Measurement Uncertainty The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table. **Below 3 GHz** | | DASY4 Uncertainty Budget | | | | | | | | | | | |---------------------------------|--------------------------|----------------|------------|-------------|--------------|----------------|-----------------|---------------|--|--|--| | Error Description | Uncertainty
Value | Prob.
Dist. | Div. | (c i)
1g | (c i)
10g | Std. Unc. (1g) | Std. Unc. (10g) | (v i)
veff | | | | | | | Measur | ement Sy | stem | | | | | | | | | Probe Calibration
(2450 MHz) | ± 6.0 % | N | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | œ | | | | | Axial Isotropy | ± 0.25 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 1.0 % | ± 1.0 % | ∞ | | | | | Hemispherical Isotropy | ± 1.3 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 0.53 % | ± 0.53 % | ∞ | | | | | Boundary Effects | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | | | | Linearity | ± 0.3 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.17 % | ± 0.17 % | ∞ | | | | | System Detection Limits | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | | | | Modulation Response | ± 1.65 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.95 % | ± 0.95 % | ∞ | | | | | Readout Electronics | ± 0.3 % | N | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | | | | Response Time | ± 0.8 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.5 % | ± 0.5 % | ∞ | | | | | Integration Time | ± 2.6 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.5 % | ± 1.5 % | ∞ | | | | | RF Ambient Noise | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | | | | RF Ambient Conditions | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | œ | | | | | Probe Positioner | ± 0.4 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.2 % | ± 0.2 % | ∞ | | | | | Probe Positioning | ± 2.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | | | | Max. SAR Eval. | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | œ | | | | | | | Test Sa | mple Re | lated | | | | | | | | | Device Positioning | ± 2.9 % | N | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | | | | Device Holder | ± 3.6 % | N | 1 | 1 | 1 | ± 3.6 % | ± 2.6 % | 5 | | | | | Power Drift | ± 5.0 % | R | | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | | | | | | Phanto | om and S | etup | | | | | | | | | Phantom Uncertainty | ± 4.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | œ | | | | | Liquid Conductivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | | | | Liquid Conductivity (meas.) | ± 2.5 % | N | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | œ | | | | | Liquid Permittivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | ∞ | | | | | Liquid Permittivity (meas.) | ± 2.5 % | N | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | œ | | | | | Combined Std. Uncertainty | - | RSS | - | - | - | ± 9.4 % | ± 9.3 % | 330 | | | | | Expanded STD Uncertainty | - | 2 | - | - | - | ± 18.9 % | ± 18.5 % | - | | | | ## **Above 3 GHz** | | DA | ASY4 Un | certaint | y Budge | et | | | | |------------------------------|----------------------|----------------|------------|-------------|--------------|----------------|-----------------|---------------| | Error Description | Uncertainty
Value | Prob.
Dist. | Div. | (c i)
1g | (c i)
10g | Std. Unc. (1g) | Std. Unc. (10g) | (v i)
veff | | | | Measur | ement Sy | stem | | | | | | Probe Calibration
(5 GHz) | ± 6.55 % | N | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % | œ | | Axial Isotropy | ± 0.25 % | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 0.1 % | ± 0.1 % | ∞ | | Hemispherical Isotropy | ± 1.3% | R | $\sqrt{3}$ | 0.7 | 0.7 | ± 0.53 % | ± 0.53 % | ∞ | | Boundary Effects | ± 2.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.2 % | ± 1.2 % | ∞ | | Linearity | ± 0.3 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.17 % | ± 0.17 % | ∞ | | System Detection Limits | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | œ | | Modulation Response | ± 1.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.1% | ± 1.1% | ∞ | | Readout Electronics | ± 0.3 % | N | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | 8 | | Response Time | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | ∞ | | Integration Time | 0 | R | $\sqrt{3}$ | 1 | 1 | 0 | 0 | 8 | | RF Ambient Noise | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | RF Ambient Conditions | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | œ | | Probe Positioner | ± 0.8 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.5 % | ± 0.5 % | ∞ | | Probe Positioning | ± 2.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | Max. SAR Eval. | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | œ | | | | Test Sa | ample Re | lated | | | | | | Device Positioning | ± 2.9 % | N | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device Holder | ± 3.6 % | N | 1 | 1 | 1 | ±
3.6 % | ± 2.6 % | 5 | | Power Drift | ± 5.0 % | R | | 1 | 1 | ± 2.9 % | ± 2.9 % | œ | | | | Phante | om and S | etup | | | | | | Phantom Uncertainty | ± 4.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | œ | | Liquid Conductivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | Liquid Conductivity (meas.) | ± 2.5 % | N | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | œ | | Liquid Permittivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | œ | | Liquid Permittivity (meas.) | ± 2.5 % | N | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | œ | | Combined Std. Uncertainty | - | RSS | - | - | - | ± 9.7 % | ± 9.6 % | 330 | | Expanded STD Uncertainty | - | 2 | - | 1 | - | ± 19.4 % | ± 19.2 % | - | # 12 Appendix B - Probe Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Certificate No: ES3-3019_Aug15 ## CALIBRATION CERTIFICATE Object ES3DV2 - SN:3019 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 19, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | | | Calibrated by: Calibrated by: Claudio Leubler Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3019_Aug15 Page 1 of 11 Issued: August 20, 2015 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3019_Aug15 Page 2 of 11 August 19, 2015 # Probe ES3DV2 SN:3019 Manufactured: December 5, 2002 Calibrated: August 19, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ES3-3019_Aug15 Page 3 of 11 August 19, 2015 # DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 1.03 | 1.15 | 0.96 | ± 10.1 % | | DCP (mV) ⁸ | 106.1 | 103.8 | 104.7 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | | | | | | | |-----|---------------------------|-----|-----|-------|-----|------|-------|------------------| | 0.0 | Communication System Name | - 1 | Α . | B | С | l D | VR | Unc ^E | | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 184.6 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 195.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 186.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ES3-3019_Aug15 Report Number: R1511101-SAR A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the August 19, 2015 # DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 6.75 | 6.75 | 6.75 | 0.18 | 1.70 | ± 13.4 % | | 750 | 41.9 | 0.89 | 6.54 | 6.54 | 6.54 | 0.21 | 2.00 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.23 | 6.23 | 6.23 | 0.34 | 1.49 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.11 | 5.11 | 5.11 | 0.53 | 1.28 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 4.86 | 4.86 | 4.86 | 0.63 | 1.16 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.16 | 4.16 | 4.16 | 0.45 | 1.62 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.00 | 4.00 | 4.00 | 0.70 | 1.30 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The
uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency Certificate No: ES3-3019_Aug15 below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. diameter from the boundary. ES3DV2- SN:3019 August 19, 2015 # DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 56.7 | 0.94 | 7.03 | 7.03 | 7.03 | 0.13 | 1.50 | ± 13.4 % | | 750 | 55.5 | 0.96 | 6.34 | 6.34 | 6.34 | 0.19 | 2.28 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.25 | 6.25 | 6.25 | 0.35 | 1.60 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.71 | 4.71 | 4.71 | 0.38 | 1.66 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.48 | 4.48 | 4.48 | 0.45 | 1.52 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 3.95 | 3.95 | 3.95 | 0.66 | 1.25 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 3.79 | 3.79 | 3.79 | 0.79 | 1.07 | ± 12.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: ES3-3019_Aug15 Page 6 of 11 validity can be extended to ± 110 MHz. "At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. August 19, 2015 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) 1.5-1.4 1.3 Frequency response (normalized) 1.0-0.9 0.8 0.7 0.6 0.5 0 500 1000 1500 2000 2500 3000 f [MHz] TEM • R22 Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ES3-3019_Aug15 Page 7 of 11 August 19, 2015 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ES3-3019_Aug15 Page 8 of 11 August 19, 2015 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ES3-3019_Aug15 Page 9 of 11 August 19, 2015 # **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: ES3-3019_Aug15 Page 10 of 11 August 19, 2015 # DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 110.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Certificate No: ES3-3019_Aug15 Page 11 of 11 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL Certificate No: EX3-3619_Oct15 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3619 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: October 20, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Function Signature Laboratory Technician Run Chaecee Approved by: Katja Pokovic Technical Manager Issued: October 22, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3619_Oct15 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization ⊕ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined
based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3619_Oct15 Page 2 of 11 EX3DV4 - SN:3619 October 20, 2015 # Probe EX3DV4 SN:3619 Manufactured: July 3, 2007 Calibrated: October 20, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3619_Oct15 Page 3 of 11 EX3DV4- SN:3619 October 20, 2015 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.45 | 0.38 | 0.41 | ± 10.1 % | | DCP (mV) ^B | 99.0 | 99.2 | 98.8 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^t
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 157.0 | ±3.8 % | | | | Y | 0.0 | 0.0 | 1.0 | | 142.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 147.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3619_Oct15 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4-SN:3619 October 20, 2015 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 42.7 | 0.88 | 8.67 | 8.67 | 8.67 | 0.10 | 1.15 | ± 13.3 % | | 5250 | 35.9 | 4.71 | 4.26 | 4.26 | 4.26 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 3.68 | 3.68 | 3.68 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 3.77 | 3.77 | 3.77 | 0.50 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Certificate No: EX3-3619_Oct15 Integration SAV values. At frequencies above 3 GHz, the valually of tissue parameters (£ and of) is restricted to ± 5%. The uncertainty is the KSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3619 October 20, 2015 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 ### **Calibration Parameter Determined in Body Tissue Simulating Media** | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 600 | 56.1 | 0.95 | 8.65 | 8.65 | 8.65 | 0.10 | 1.15 | ± 13.3 % | | 5250 | 48.9 | 5.36 | 3.80 | 3.80 | 3.80 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.23 | 3.23 | 3.23 | 0.55 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.54 | 3.54 | 3.54 | 0.55 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. **At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAB values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF and σ is restricted to ± 50 MHz. Certificate No: EX3-3619_Oct15 Page 6 of 11 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target its sue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3619 October 20, 2015 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3619_Oct15 Page 7 of 11 EX3DV4-SN:3619 October 20, 2015 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=1800 MHz,R22 100 Roll [°] 100 MHz 600 MHz 1800 MHz 2500 MHz Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3619_Oct15 0.5 -0.5 Error [dB] Page 8 of 11 EX3DV4- SN:3619 October 20, 2015 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3619_Oct15 Page 9 of 11 EX3DV4- SN:3619 October 20, 2015 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: EX3-3619_Oct15 Page 10 of 11 EX3DV4- SN:3619 October 20, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | | | Mechanical Surface Detection Mode | 25.3 | | | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | | | Tip Length | 10 mm | | | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3619_Oct15 Page 11 of 11 ## 13 Appendix C – Dipole Calibration Certificates #### NCL CALIBRATION LABORATORIES Calibration File No: DC-1578 Project Number: BACL-dipole-cal-5774 #### CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. BACL Validation Dipole (Head & Body) Manufacturer: APREL Laboratories Part number: D-2450-S-1 Frequency: 2450 MHz Serial No: BCL-141 Customer: Bay Area Compliance Laboratory Calibrated: 19th August 2014 Released on: 20th August 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager CL CALIBRATION LABORATORIES a 102, 303 Terry Fox Dr. Division of APREL Lab. Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA. K2K 3J1 Division of APREL Lat TEL: (613) 435-8300 FAX: (613) 432-8306 Division of APREL
Laboratories. #### Conditions Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration. Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C}$ #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer Division of APREL Laboratories. #### Calibration Results Summary The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### **Mechanical Dimensions** Length: 49.8 mm Height: 29.9 mm #### **Electrical Calibration** | Test | Result Head | Result Body | | | |-----------|-------------|-------------|--|--| | S11 R/L | -28.771 dB | -24.946 dB | | | | SWR | 1.075 U | 1.120 U | | | | Impedance | 53.072 Ω | 55.701 Ω | | | #### System Validation Results | Frequency
2450 MHz | 1 Gram | 10 Gram | |-----------------------|--------|---------| | Head | 52.985 | 24.065 | | Body | 56.519 | 24.855 | This page has been reviewed for content and attested to by signature within this document. 3 Division of APREL Laboratories. #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole BCL-141. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - SSI-TP-018-ALSAS Dipole Calibration Procedure - SSI-TP-016 Tissue Calibration Procedure - IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" - IEC-62209 "Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures" - Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - TP-D01-032-E020-V2 E-Field probe calibration procedure - D22-012-Tissue dielectric tissue calibration procedure - D28-002-Dipole procedure for validation of SAR system using a dipole - IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz #### Conditions Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration. Ambient Temperature of the Laboratory: $21 \,^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} \pm 0.5 \,^{\circ}\text{C}$ 4 Division of APREL Laboratories. #### Dipole Calibration Results #### Mechanical Verification | APREL | APREL | Measured | Measured | |---------|---------|----------|----------| | Length | Height | Length | Height | | 51.0 mm | 30.0 mm | 49.8 mm | 29.9 mm | #### Tissue Validation | Tissue 2450MHz | Measured
Head | Measured
Body | |-------------------------------------|------------------|------------------| | Dielectric constant, ε _r | 37.61 | 53.69 | | Conductivity, σ [S/m] | 1.86 | 1.96 | #### Dipole Calibration uncertainty The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2% TOTAL 8.32% (16.64% K=2) #### **Primary Measurement Standards** Instrument Serial Number Cal due date Tektronix USB Power Meter 11C940 May 14, 2015 Network Analyzer Anritsu 37347C 002106 Feb. 20, 2015 Agilent Signal Generator MY45094463 Dec. 2015 We have a two year calibration interval. 5 Division of APREL Laboratories. #### **Electrical Calibration** | Test | Result Head | Result Body | |-----------|-------------|-------------| | S11 R/L | -28.771 dB | -24.946 dB | | SWR | 1.075 U | 1.120 U | | Impedance | 53.072 Ω | 55.701 Ω | The Following Graphs are the results as displayed on the Vector Network Analyzer. ## S11 Parameter Return Loss Frequency Range 2330 MHz to 2544 MHz Frequency Range 2342 MHz to 2532 MHz 6 Division of APREL Laboratories. #### SWR #### Head #### Body This page has been reviewed for content and attested to by signature within this document. 7 Division of APREL Laboratories. ### Smith Chart Dipole Impedance #### Head #### Body 8 Division of APREL Laboratories. #### **Test Equipment** The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2014. 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACI Accreditation No.: SCS 108 Certificate No: D5GHzV2-1001_Aug14 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1001 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: August 19, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | GB37480704 | 09-Oct-13 (No. 217-01827) | Oct-14 | |--------------------|--|---| | | | OCI-14 | | US37292783 | 09-Oct-13 (No. 217-01827) | Oct-14 | | MY41092317 | 09-Oct-13 (No. 217-01828) | Oct-14 | | SN: 5058 (20k) | 03-Apr-14 (No. 217-01918) | Apr-15 | | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921) | Apr-15 | | SN: 3503 | 30-Dec-13 (No. EX3-3503_Dec13) | Dec-14 | | SN: 601 | 30-Apr-14 (No. DAE4-601_Apr14) | Apr-15 | | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | ID# | Check Date (in house) | Scheduled Check | | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3503
SN: 601
SN: 601 | SN: 5058 (20k) 03-Apr-14 (No. 217-01918) SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) SN: 3503 30-Dec-13 (No. EX3-3503_Dec13) SN: 601 30-Apr-14 (No. DAE4-601_Apr14) SN: 601 18-Aug-14 (No. DAE4-601_Aug14) ID # Check Date (in house) 100005 04-Aug-99 (in house check Oct-13) | Calibrated by: Name Michael Weber Function Laboratory Technician Signature // /// /- Approved by: Katja Pokovic Technical Manager Issued: August 20, 2014 This calibration certificate shall not be reproduced except-in full without written approval of the laborator Certificate No: D5GHzV2-1001_Aug14 Page 1 of 13 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" - c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the
certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1001_Aug14 Page 2 of 13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | <u> </u> | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | #### **Head TSL parameters at 5250 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | #### **Head TSL parameters at 5600 MHz** The following parameters and calculations were applied. | - | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 4.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.9 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1001_Aug14 Page 3 of 13 Page 105 of 161 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.38 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 5.84 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1001_Aug14 #### Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | To to lowing paramoters and cancers are appropriately | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 ℃ | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.12 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1001_Aug14 #### Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.1 Ω - 7.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.6 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.0 Ω - 4.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 26.1 dB | | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 55.5 Ω + 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.9 dB | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 51.5 Ω - 5.2 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 25.4 dB | | | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 54.3 Ω - 1.7 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 27.0 dB | | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 55.0 Ω + 3.0 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 25.1 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.202 ns |
----------------------------------|-------------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 02, 2003 | Certificate No: D5GHzV2-1001_Aug14 Page 7 of 13 #### **DASY5 Validation Report for Head TSL** Date: 14.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1001 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.86$ S/m; $\epsilon_r = 34.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.06$ S/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** - Probe: EX3DV4 SN3503; ConvF(5.36, 5.36, 5.36); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2014 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.22 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.41 W/kgMaximum value of SAR (measured) = 19.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.13 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.58 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 20.4 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.06 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.7 W/kg Certificate No: D5GHzV2-1001_Aug14 Page 8 of 13 Report Number: R1511101-SAR #### Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1001_Aug14 Page 10 of 13 #### **DASY5 Validation Report for Body TSL** Date: 19.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1001 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.38$ S/m; $\epsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.84$ S/m; $\epsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ S/m; $\epsilon_r = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.89, 4.89, 4.89); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.75 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.15 W/kgMaximum value of SAR (measured) = 17.9 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.53 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.26 W/kgMaximum value of SAR (measured) = 19.9 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.74 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 18.8 W/kg Certificate No: D5GHzV2-1001_Aug14 Page 11 of 13 ### Impedance Measurement Plot for Body TSL Certificate No: D5GHzV2-1001_Aug14 Page 13 of 13 # 14 Appendix D - Test System Verifications Scans Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 2450 MHz Body System Validation DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: BCL-141 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 53.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **d = 10mm, Pin = 0.1W/Area Scan (71x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.35 mW/g d = 10mm, Pin = 0.1W/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.5 V/m; Power Drift = 0.278 dB Peak SAR (extrapolated) = 13.2 W/kg SAR(1 g) = 5.88 mW/g; SAR(10 g) = 2.64 mW/gMaximum value of SAR (measured) = 6.50 mW/g 5250 MHz Body System Validation DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 SN: 1001 Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 5.12 \text{ mho/m}$; $\varepsilon_r = 47.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 • Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **d = 10mm, Pin = 0.1W/Area Scan (61x71x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 8.08 mW/g d = 10mm, Pin = 0.1W/Zoom Scan (7x7x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 37.4 V/m; Power Drift = 0.287 dB Peak SAR (extrapolated) = 24.9 W/kg SAR(1 g) = 6.96 mW/g; SAR(10 g) = 2.04 mW/gMaximum value of SAR (measured) = 12.8 mW/g 5600 MHz Body System Validation DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 SN: 1001 Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.63 \text{ mho/m}$; $\varepsilon_r = 46.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 d = 10mm, Pin = 0.1W/Area Scan (61x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.2 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 36.1 V/m; Power Drift = 0.302 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 7.57 mW/g; SAR(10 g) = 2.21 mW/gMaximum value of SAR (measured) = 14.5 mW/g 5800 MHz Body System Validation DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 SN: 1001 Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.92 \text{ mho/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 • Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 d = 10mm, Pin = 0.1W/Area Scan (61x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.2 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 35.2 V/m; Power Drift = 0.314 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 7.15 mW/g; SAR(10 g) = 2.06 mW/gMaximum value of SAR (measured) = 13.6 mW/g # 15 Appendix E - EUT Scan Results **Test Laboratory: Bay Area Compliance Lab Corp.(BACL)** Top Touch to the Phantom - B Ant 0 (Channel 9) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11b; Frequency: 2452 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2452 MHz; $\sigma = 2$ mho/m; $\varepsilon_r =
53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: • Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (61x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.46 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.63 V/m; Power Drift = -1.46 dB Peak SAR (extrapolated) = 2.84 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.540 mW/gMaximum value of SAR (measured) = 1.43 mW/g ### **Back Touch to the Phantom - B Ant 1 (Channel 1)** ## DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### DASY4 Configuration: • Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back Side Touch to the Phantom/Area Scan (71x91x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.72 mW/g **Back Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.3 V/m; Power Drift = 0.651 dB Peak SAR (extrapolated) = 4.49 W/kg SAR(1 g) = 1.48 mW/g; SAR(10 g) = 0.557 mW/gMaximum value of SAR (measured) = 1.79 mW/g Back Touch to the Phantom - g Ant 1 (Channel 10) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11B/G; Frequency: 2457 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2457 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back Side Touch to the Phantom/Area Scan (71x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.60 mW/g **Back Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = 1.12 dB Peak SAR (extrapolated) = 4.22 W/kg SAR(1 g) = 1.39 mW/g; SAR(10 g) = 0.532 mW/gMaximum value of SAR (measured) = 1.62 mW/g Back Touch to the Phantom - n20 (Channel 2) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11 N20; Frequency: 2417 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2417 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back Side Touch to the Phantom/Area Scan (71x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.47 mW/g **Back Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = 0.033 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.538 mW/g Maximum value of SAR (measured) = 1.45 mW/g **Back Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = 0.033 dB Peak SAR (extrapolated) = 2.25 W/kg SAR(1 g) = 0.965 mW/g; SAR(10 g) = 0.448 mW/g Maximum value of SAR (measured) = 1.09 mW/g #4 Top Touch to the Phantom - BT GFSK Ant 0 (Channel 39 2441 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### DASY4 Configuration: Probe: ES3DV2 - SN3019; ConvF(3.95, 3.95, 3.95); Calibrated: 8/19/2015 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn530; Calibrated: 8/18/2015 Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (61x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.187 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.92 V/m; Power Drift = -0.281 dB Peak SAR (extrapolated) = 0.350 W/kg # SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.070 mW/g Maximum value of SAR (measured) = 0.184 mW/g #5 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -a Ant1 (Channel 44 5220 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11a; Frequency: 5220 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5220 MHz; $\sigma = 5.1 \text{ mho/m}$; $\varepsilon_r = 47.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.04 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.11 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 5.47 W/kg SAR(1 g) = 1.39 mW/g; SAR(10 g) = 0.316 mW/gMaximum value of SAR (measured) = 2.87 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n20 (Channel 36 5180 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n20; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 5.03 \text{ mho/m}$; $\varepsilon_r = 47.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.96 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.83 V/m; Power Drift = 1.10 dB Peak SAR (extrapolated) = 6.00 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 2.73 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.83 V/m; Power Drift = 1.10 dB Peak SAR (extrapolated) = 1.66 W/kg SAR(1 g) = 0.335 mW/g; SAR(10 g) = 0.084 mW/g Maximum value of SAR (measured) = 0.778 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac20 (Channel 48 5240 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac20; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 5.1$ mho/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.05 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.14 V/m; Power Drift = 1.38 dB Peak SAR (extrapolated) = 6.97 W/kg SAR(1 g) = 1.42 mW/g; SAR(10 g) = 0.337 mW/g Maximum value of SAR (measured) = 3.03 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.14 V/m; Power Drift = 1.38 dB Peak SAR (extrapolated) = 1.31 W/kg SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.082 mW/gMaximum value of SAR (measured) = 0.722 mW/g Top Touch to the Phantom -n40 (Channel 38 5190 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n40; Frequency: 5190 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5190 MHz; $\sigma = 5.1$ mho/m; $\varepsilon_r = 47.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 3.02 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 10.1 V/m; Power Drift = 0.911 dB Peak SAR (extrapolated) = 5.74 W/kg SAR(1 g) = 1.45 mW/g; SAR(10 g) = 0.347 mW/g Maximum value of SAR (measured) = 2.82 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 10.1 V/m; Power Drift = 0.911 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.086 mW/g Maximum value of SAR (measured) = 0.863 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac40 (Channel 38 5190 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac40; Frequency: 5190 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5190 MHz; $\sigma = 5.1$ mho/m; $\varepsilon_r = 47.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.01 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.75 V/m; Power Drift = 1.30 dB Peak SAR (extrapolated) = 6.51 W/kg SAR(1 g) = 1.41 mW/g; SAR(10 g) = 0.335 mW/g Maximum value of SAR (measured) = 2.87 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.75 V/m; Power Drift = 1.30 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.092 mW/gMaximum value of SAR (measured) = 0.885 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac80 (Channel 42 5210 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac80; Frequency: 5210 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5210 MHz; $\sigma = 5.09$ mho/m; $\varepsilon_r = 47.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.84 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.6 V/m; Power Drift = 0.445 dB Peak SAR (extrapolated) = 5.69 W/kg SAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 2.66 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.6 V/m; Power Drift = 0.445 dB Peak SAR (extrapolated) = 1.85 W/kg SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.080 mW/g Maximum value of SAR (measured) = 0.800 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -a Ant 1 (Channel 64 5320 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11a; Frequency: 5320 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5320 MHz; $\sigma = 5.2$ mho/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.72 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.70 V/m; Power Drift = 0.075 dB Peak SAR (extrapolated) = 5.91 W/kg ## SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.317 mW/gMaximum value of SAR (measured) = 2.72 mW/g #12 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n20 (Channel 52 5260 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n20; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.12 \text{ mho/m}$; $\varepsilon_r = 47.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.94 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.91 V/m; Power Drift = 1.58 dB Peak SAR (extrapolated) = 6.92 W/kg SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 2.90 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.91 V/m; Power Drift = 1.58 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.089 mW/gMaximum value of SAR (measured) = 0.745 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac20 (Channel 52 5260 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac20; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5260 MHz; $\sigma = 5.12$ mho/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.86 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 10.4 V/m; Power Drift = 0.533 dB Peak SAR (extrapolated) = 6.27 W/kg SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.324 mW/g Maximum value of SAR (measured) = 2.80 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 10.4 V/m; Power Drift = 0.533 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.319 mW/g; SAR(10 g) = 0.073 mW/g Maximum value of SAR (measured) = 0.744 mW/g #14 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n40 (Channel 62 5310 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n40; Frequency: 5310 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5310 MHz; $\sigma = 5.19 \text{ mho/m}$; $\varepsilon_r = 47.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.13 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.96 V/m; Power Drift = 0.771 dB Peak SAR (extrapolated) = 5.40 W/kg SAR(1 g) = 1.4 mW/g; SAR(10 g) = 0.336 mW/g Maximum value of SAR (measured) = 2.77 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.96 V/m; Power Drift = 0.771 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 0.347 mW/g; SAR(10 g) = 0.079 mW/g Maximum value of SAR (measured) = 0.770 mW/g #15 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac40 (Channel 54 5270 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac40; Frequency: 5270 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5270 MHz; $\sigma = 5.16$ mho/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.09 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.02 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 5.66 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.326 mW/g Maximum value of SAR (measured) = 2.86 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.02 V/m; Power Drift = -0.058
dB Peak SAR (extrapolated) = 1.68 W/kg SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.102 mW/g Maximum value of SAR (measured) = 0.879 mW/g #16 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac80 (Channel 58 5290 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac80; Frequency: 5290 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5290 MHz; $\sigma = 5.15$ mho/m; $\varepsilon_r = 47.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.8, 3.8, 3.8); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.68 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.19 V/m; Power Drift = 1.07 dB Peak SAR (extrapolated) = 6.23 W/kg SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.302 mW/g Maximum value of SAR (measured) = 2.69 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.19 V/m; Power Drift = 1.07 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.084 mW/gMaximum value of SAR (measured) = 0.721 mW/g #17 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -a Ant 1 (Channel 116 5580 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11a; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz; $\sigma = 5.57 \text{ mho/m}$; $\varepsilon_r = 46.61$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.27 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.30 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 6.31 W/kg # SAR(1 g) = 1.43 mW/g; SAR(10 g) = 0.305 mW/gMaximum value of SAR (measured) = 3.15 mW/g #18 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n20 (Channel 140 5700 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n20; Frequency: 5700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; $\sigma = 5.77$ mho/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn530; Calibrated: 8/18/2015 Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 Top Side Touch to the Phantom/Area Scan (81x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.18 mW/g Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.15 V/m; Power Drift = 1.23 dB Peak SAR (extrapolated) = 7.92 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.293 mW/g Maximum value of SAR (measured) = 3.22 mW/g Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.15 V/m; Power Drift = 1.23 dB Peak SAR (extrapolated) = 2.41 W/kg SAR(1 g) = 0.513 mW/g; SAR(10 g) = 0.137 mW/g Maximum value of SAR (measured) = 1.19 mW/g #19 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac20 (Channel 100 5500 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac20; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; $\sigma = 5.49$ mho/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn530; Calibrated: 8/18/2015 Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 Top Side Touch to the Phantom/Area Scan (81x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.08 mW/g Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.70 V/m; Power Drift = 0.808 dB Peak SAR (extrapolated) = 6.09 W/kg SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.306 mW/g Maximum value of SAR (measured) = 2.71 mW/g Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.70 V/m; Power Drift = 0.808 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.076 mW/gMaximum value of SAR (measured) = 0.763 mW/g mW/g 0.763 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n40 (Channel 110 5550 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n40; Frequency: 5550 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5550 MHz; $\sigma = 5.56 \text{ mho/m}$; $\varepsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.10 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.20 V/m; Power Drift = 1.35 dB Peak SAR (extrapolated) = 7.26 W/kg SAR(1 g) = 1.42 mW/g; SAR(10 g) = 0.308 mW/g Maximum value of SAR (measured) = 3.21 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.20 V/m; Power Drift = 1.35 dB Peak SAR (extrapolated) = 0.963 W/kg SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.468 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac40 (Channel 102 5510 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac40; Frequency: 5510 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5510 MHz; $\sigma = 5.49$ mho/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.19 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.57 V/m; Power Drift = 1.40 dB Peak SAR (extrapolated) = 7.09 W/kg SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.317 mW/g Maximum value of SAR (measured) = 3.07 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.57 V/m; Power Drift = 1.40 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.220 mW/g; SAR(10 g) = 0.055 mW/g Maximum value of SAR (measured) = 0.497 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac80 (Channel 106 5530 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac80; Frequency: 5530 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5530 MHz; $\sigma = 5.6$ mho/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.23, 3.23, 3.23); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.49 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.63 V/m; Power Drift = 0.107 dB Peak SAR (extrapolated) = 7.42 W/kg SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.318 mW/g Maximum value of SAR (measured) = 3.26 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.63 V/m; Power Drift = 0.107 dB Peak SAR (extrapolated) = 0.864 W/kg SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.065 mW/g Maximum value of SAR (measured) = 0.479 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -a Ant 0 (Channel 157 5785 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5785 MHz; $\sigma = 5.9$ mho/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³ Phantom section:
Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.98 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0.000 V/m; Power Drift = 999.0 dB Peak SAR (extrapolated) = 6.19 W/kg ## SAR(1 g) = 1.41 mW/g; SAR(10 g) = 0.338 mW/gMaximum value of SAR (measured) = 2.97 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n20 (Channel 157 5785 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n20; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5785 MHz; $\sigma = 5.9$ mho/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.51 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.46 V/m; Power Drift = 0.305 dB Peak SAR (extrapolated) = 7.04 W/kg SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.270 mW/g Maximum value of SAR (measured) = 2.81 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.46 V/m; Power Drift = 0.305 dB Peak SAR (extrapolated) = 4.32 W/kg SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.267 mW/g Maximum value of SAR (measured) = 2.21 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac20 (Channel 149 5745 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac20; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.82$ mho/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.72 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.03 V/m; Power Drift = 1.46 dB Peak SAR (extrapolated) = 6.70 W/kg SAR(1 g) = 1.37 mW/g; SAR(10 g) = 0.293 mW/g Maximum value of SAR (measured) = 2.98 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.03 V/m; Power Drift = 1.46 dB Peak SAR (extrapolated) = 3.35 W/kg SAR(1 g) = 0.739 mW/g; SAR(10 g) = 0.193 mW/g Maximum value of SAR (measured) = 1.68 mW/g #26 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -n40 (Channel 151 5755 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11n40; Frequency: 5755 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5755 MHz; $\sigma = 5.81$ mho/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.70 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.58 V/m; Power Drift = 1.01 dB Peak SAR (extrapolated) = 6.66 W/kg SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.287 mW/g Maximum value of SAR (measured) = 2.92 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.58 V/m; Power Drift = 1.01 dB Peak SAR (extrapolated) = 4.23 W/kg SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 2.03 mW/g Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac40 (Channel 151 5755 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac40; Frequency: 5755 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5755 MHz; $\sigma = 5.81$ mho/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.85 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.25 V/m; Power Drift = 1.03 dB Peak SAR (extrapolated) = 6.98 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.302 mW/g Maximum value of SAR (measured) = 2.89 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 8.25 V/m; Power Drift = 1.03 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 0.859 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 1.81 mW/g #28 Test Laboratory: Bay Area Compliance Lab Corp.(BACL) Top Touch to the Phantom -ac80 (Channel 155 5775 MHz) DUT: Nvidia; Type: Tablet; Serial: 0424515000201 Communication System: 802.11ac80; Frequency: 5775 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5775 MHz; $\sigma = 5.87$ mho/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(3.54, 3.54, 3.54); Calibrated: 10/20/2015 • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 8/18/2015 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186 **Top Side Touch to the Phantom/Area Scan (81x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.65 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.60 V/m; Power Drift = -0.507 dB Peak SAR (extrapolated) = 5.10 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.271 mW/g Maximum value of SAR (measured) = 2.36 mW/g **Top Side Touch to the Phantom/Zoom Scan (7x7x13)/Cube 1:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.60 V/m; Power Drift = -0.507 dB Peak SAR (extrapolated) = 6.21 W/kg SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.266 mW/g Maximum value of SAR (measured) = 2.89 mW/g # 16 Appendix F- RF Output Power Measurement # **RF Output Power Measurement Results** ### 2.4 GHz WLAN: | | | Output Average Power Conducted (dBm) | | | | |-------------------------|--------------------|--------------------------------------|--------|------------|--------| | Modulation | Frequency
(MHz) | TX Chain 0 | | TX Chain 1 | | | | (141112) | Measured | Target | Measured | Target | | | 2412 | 16.84 | 17 | 16.84 | 17 | | | 2437 | 16.62 | 17 | 16.11 | 17 | | | 2452 | 17.26 | 17 | - | _ | | 2.4 GHz
802.11b | 2457 | 15.19 | 15 | - | - | | 002.110 | 2462 | 13.64 | 13.5 | - | _ | | | 2467 | 12.89 | 12.5 | 16.04 | 17 | | | 2472 | 13.84 | 13.5 | 13.67 | 13.5 | | | 2412 | 16.28 | 16 | 15.55 | 16 | | | 2437 | 16.15 | 16 | 15.7 | 16 | | 2.4 GHz | 2457 | 16.65 | 16 | 15.95 | 16 | | 802.11g | 2462 | 15.92 | 15.5 | 14.31 | 15.5 | | | 2467 | 13.66 | 13.5 | 10.86 | 10.5 | | | 2472 | 11.14 | 10.5 | 10.87 | 10.5 | | | 2412 | 14.83 | 14 | 14.27 | 14 | | | 2417 | 16.25 | 16 | 15.7 | 16 | | | 2437 | 16.09 | 16 | 15.77 | 16 | | 2.4 GHz
802.11n HT20 | 2457 | 15.83 | 16 | 16.12 | 16 | | 002.111111120 | 2462 | 13.68 | 13 | 12.05 | 12 | | | 2467 | 11.51 | 10.5 | 10.63 | 10.5 | | | 2472 | 8.78 | 8 | 8.31 | 8 | | | 2422 | 13.62 | 12 | 12.33 | 12 | | 2.4 GHz
802.11n HT40 | 2437 | 14.89 | 14 | 14.25 | 14 | | | 2462 | 12.19 | 12 | 10.4 | 10 | ## 2.4 GHz Bluetooth: | | | Output Average Power Conducted (dBm) TX Chain 0 | | | |------------|-----------------|--|--------|--| | Modulation | Frequency (MHz) | | | | | | (1/11/2) | Measured | Target | | | | 2402 | 7.66 | 7.5 | | | BT-GFSK | 2441 | 10.74 | 10.5 | | | | 2480 | 10 | 10 | | | | 2402 | 6.08 | 6 | | | BT- DQPSK | 2441 | 8.58 | 8.5 | | | | 2480 | 8.02 | 8 | | | | 2402 | 6.54 | 6.5 | | | BT-8DPSK | 2441 | 9.06 | 9 | | | | 2480 | 8.39 | 8.5 | | | | 2402 | 4.12 | 4 | | | BT-BLE | 2440 | 6.57 | 6.5 | | | | 2480 | 5.99 | 6 | | # 5 GHz WLAN: | | | Output Average Power Conducted (dBm) | | | | | |--------------|--------------------|--------------------------------------|--------|------------|--------|--| | Modulation | Frequency
(MHz) | TX Chain 0 | | TX Chain 1 | | | | | (IVIIIZ) | Measured | Target | Measured | Target | | | |
5180 | 11.33 | 11.5 | 10.9 | 11 | | | | 5220 | 12.19 | 12 | 10.89 | 11 | | | | 5240 | 11.92 | 12 | 10.92 | 11 | | | | 5260 | 11.8 | 12 | 10.61 | 10.5 | | | | 5300 | 12.29 | 12.5 | 10.79 | 11 | | | 5 GHz | 5320 | 12.43 | 12.5 | 10.8 | 11 | | | 802.11a | 5500 | 10.15 | 10 | 10.21 | 10 | | | | 5580 | 10.4 | 10.5 | 9.55 | 9.5 | | | | 5700 | 12.87 | 13 | 11.26 | 11 | | | | 5745 | 13.5 | 13.5 | 11.67 | 12 | | | | 5785 | 12.94 | 13 | 12.01 | 12.5 | | | | 5825 | 11.66 | 12 | 12.83 | 12.5 | | | | 5180 | 10.24 | 11 | 10.9 | 11 | | | | 5220 | 11.03 | 11 | 10.91 | 11 | | | | 5240 | 10.98 | 11 | 10.85 | 10.5 | | | | 5260 | 11.53 | 11.5 | 10.29 | 10.5 | | | | 5300 | 12.37 | 12.5 | 10.65 | 10.5 | | | 5 GHz | 5320 | 12.32 | 12.5 | 10.96 | 11 | | | 802.11n HT20 | 5500 | 9.83 | 10.5 | 10.36 | 10.5 | | | | 5580 | 9.45 | 9.5 | 9.4 | 9.5 | | | | 5700 | 12.76 | 12.5 | 11.14 | 11 | | | | 5745 | 13.5 | 13.5 | 11.83 | 12 | | | | 5785 | 13.08 | 13 | 12.08 | 12.5 | | | | 5825 | 11.58 | 12 | 11.43 | 12 | | | | 5180 | 10.32 | 11 | 10.92 | 11 | | | | 5220 | 10.86 | 11 | 10.96 | 11 | | | | 5240 | 10.86 | 11 | 10.45 | 10.5 | | | | 5260 | 11.51 | 11.5 | 10.4 | 10.5 | | | | 5300 | 12.39 | 12.5 | 10.92 | 10.5 | | | 5 GHz | 5320 | 12.39 | 12.5 | 11.02 | 11 | | | 802.11 ac20 | 5500 | 9.79 | 10.5 | 10.31 | 10.5 | | | | 5580 | 9.32 | 9.5 | 9.5 | 9.5 | | | | 5700 | 12.7 | 12.5 | 11.22 | 11 | | | | 5745 | 13.46 | 13.5 | 11.9 | 12 | | | | 5785 | 13.06 | 13 | 12.16 | 12.5 | | | | 5825 | 11.45 | 12 | 11.4 | 12 | | | | | Output Average Power Conducted (dBm) | | | | |-----------------------|--------------------|--------------------------------------|--------|------------|--------| | Modulation | Frequency
(MHz) | TX Chain 0 | | TX Chain 1 | | | | | Measured | Target | Measured | Target | | | 5190 | 10.29 | 10.5 | 10.85 | 10.5 | | | 5230 | 11.04 | 11 | 10.96 | 11 | | | 5270 | 12.01 | 12 | 11.01 | 11 | | - 011 | 5310 | 12.75 | 12.5 | 10.86 | 11 | | 5 GHz
802.11n HT40 | 5510 | 10.01 | 10.5 | 10.68 | 10.5 | | 002.111111140 | 5550 | 9.3 | 10 | 10 | 10 | | | 5670 | 10.4 | 10.5 | 9.2 | 10 | | | 5755 | 13.5 | 13.5 | 12.14 | 12.5 | | | 5795 | 12.03 | 12 | 11.65 | 12 | | | 5190 | 10.34 | 10.5 | 10.96 | 10.5 | | | 5230 | 11 | 11 | 11.02 | 11 | | | 5270 | 12.08 | 12 | 10.82 | 11 | | | 5310 | 12.66 | 12.5 | 11.2 | 11 | | 5 GHz
802.11 ac40 | 5510 | 10.06 | 10.5 | 10.6 | 10.5 | | 002.11 ac 40 | 5550 | 9.43 | 10 | 10.22 | 10 | | | 5670 | 10.45 | 10.5 | 9.2 | 10 | | | 5755 | 13.5 | 13.5 | 12.32 | 12.5 | | | 5795 | 12.05 | 12 | 11.34 | 12 | | 5 GHz
802.11 ac80 | 5210 | 10.6 | 11 | 10.71 | 11 | | | 5290 | 12.2 | 12 | 10.64 | 10.5 | | | 5530 | 9.27 | 10 | 10.01 | 10 | | | 5610* | 9.91 | 10 | 9.41 | 10 | | | 5775 | 13.1 | 13 | 12.08 | 12.5 | Note*: channel used for FCC only.