FCC&	C Radio Test Report
FC	CC ID: VOB-P1640
I	C: 7361A-P1640
This report concerns	(check one): Original Grant Class II Change
Project No.	 Aug. 15, 2013 1307C222A Tablet P1640 NVIDIA CORPORATION 2701 SAN TOMAS EXPRESSWAY, SANTA CLARA, CALIFORNIA 95050, UNITED STATES OF AMERICA
Date of Recei	utron Engineering Inc. EMC Laboratory pt: Jul. 19, 2013 Jul. 19, 2013 ~ Aug. 14, 2013
Testing Engin	neer : <u>David Mao</u> (David Mao)
Technical Ma	nager :(Leo Hung)
Authorized Si	ignatory : Seven Lu)
No	eutron Engineering Inc. b.3,Jinshagang 1st Road, ShiXia, alang Town, Dong Guan, China. TEL: 0769-8318-3000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents P	age
1. CERTIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTER	D 12
3.5 DESCRIPTION OF SUPPORT UNITS	13
4. EMC EMISSION TEST	14
4.1 CONDUCTED EMISSION MEASUREMENT	14
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	14
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING	14
4.1.3 TEST PROCEDURE	15
4.1.4 DEVIATION FROM TEST STANDARD 4.1.5 TEST SETUP	15 15
4.1.5 TEST SETOP 4.1.6 EUT OPERATING CONDITIONS	15
4.1.7 TEST RESULTS	16
4.2 RADIATED EMISSION MEASUREMENT	21
4.2.1 RADIATED EMISSION LIMITS	21
4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING	22
4.2.3 TEST PROCEDURE	23
4.2.4 DEVIATION FROM TEST STANDARD	23
4.2.5 TEST SETUP	24
4.2.6 EUT OPERATING CONDITIONS 4.2.7 TEST RESULTS (9K~ 30MHZ)	25 26
4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	20 27
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	40
5 . BANDWIDTH TEST	88
5.1 APPLIED PROCEDURES	88
5.1.1 MEASUREMENT INSTRUMENTS LIST	88
5.1.2 TEST PROCEDURE	88
5.1.3 DEVIATION FROM STANDARD	88
5.1.4 TEST SETUP	88
5.1.5 EUT OPERATION CONDITIONS 5.1.6 TEST RESULTS	88 89
J.I.VILJI REJULIJ	03

- Neutron Engineering Inc.	
Table of Contents	Page
6 . MAXIMUM OUTPUT POWER TEST	97
6.1 APPLIED PROCEDURES / LIMIT	97
6.1.1 MEASUREMENT INSTRUMENTS LIST	97
6.1.2 TEST PROCEDURE	97
6.1.3 DEVIATION FROM STANDARD	97
6.1.4 TEST SETUP	97
6.1.5 EUT OPERATION CONDITIONS	97
6.1.6 TEST RESULTS	98
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	100
7.1 APPLIED PROCEDURES / LIMIT	100
7.1.1 MEASUREMENT INSTRUMENTS LIST	100
7.1.2 TEST PROCEDURE	100
7.1.3 DEVIATION FROM STANDARD	100
7.1.4 TEST SETUP	101
7.1.5 EUT OPERATION CONDITIONS	101
7.1.6 TEST RESULTS	102
8 . POWER SPECTRAL DENSITY TEST	122
8.1 APPLIED PROCEDURES / LIMIT	122
8.1.1 MEASUREMENT INSTRUMENTS LIST	122
8.1.2 TEST PROCEDURE	122
8.1.3 DEVIATION FROM STANDARD	122
8.1.4 TEST SETUP	122
8.1.5 EUT OPERATION CONDITIONS	122
8.1.6 TEST RESULTS	123
9 . EUT TEST PHOTO	131

1. CERTIFICATION

Equipment : Brand Name : Model Name :	NVIDIA
Applicant :	NVIDIA CORPORATION
Manufacturer :	NVIDIA CORPORATION
Address :	2701 SAN TOMAS EXPRESSWAY, SANTA CLARA,CALIFORNIA 95050, UNITED STATES OF AMERICA
Factory :	Keen high technologies Ltd
Address :	Ze Da Li industrial Zone, Jian-An 1 Road, New-High Technologies area, Tang Wei, Fuyong, Bao-an, Shenzhen, China
Date of Test :	Jul. 19, 2013 ~ Aug. 14, 2013
Test Item :	ENGINEERING SAMPLE
Standard(s) :	FCC Part15, Subpart C(15.247) / ANSI C63.4-2009 Canada RSS-210:2010 RSS-GEN Issue 3, Dec 2010

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FICP-2-1307C222A) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247) , Subpart C Canada RSS-210:2010; RSS-GEN Issue 3, Dec 2010

Standard	(s) Section	Test Item	Judgment	Remark	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS		
15.247(d)	RSS-210 Annex 8 (A8.5)	Antenna conducted Spurious Emission	PASS		
15.247(a)(2)	RSS-210 Annex 8 (A8.2(a))	6dB Bandwidth	PASS		
15.247(b)(3)	RSS-210 Annex 8 (A8.4(4))	Peak Output Power	PASS		
15.247(e)	RSS-210 Annex 8 (A8.2(b))	Power Spectral Density	PASS		
15.203	-	Antenna Requirement	PASS		
15.209/15.205	RSS-210 Annex 8 (A8.5)	Transmitter Radiated Emissions	PASS		
-	RSS- Gen 7.2.3	Receiver Radiated Emissions	PASS		

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

(2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r01 (Measurement Guidelines of DTS)

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-C02/DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC: 319330 Neutron's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\,$ k=2 , providing a level of confidence of approximately 95 % $_{\circ}$

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U , (dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
		9KHz~30MHz	V	3.79	
		9KHz~30MHz	Н	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	Н	3.60	
DG-CB03	CISPR	200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CIOFK	200MHz ~ 1,000MHz	Н	3.94	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	Н	4.14	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Tablet				
Brand Name	NVIDIA				
Model Name	P1640				
Model Difference	N/A				
	Operation Frequency Modulation Technology	2412~2462 MHz 802.11b:DSSS 802.11g:OFDM 802.11n:OFDM			
	Bit Rate of Transmitter	802.11b: 11/5.5/2/1 Mbps 802.11g: 54/48/36/24/18/12/9/6 Mbps 802.11n up to 135 Mbps			
Product Description	Number Of Channel	11 CH, Please see note 2.(Page 9)			
	Antenna Designation Antenna Gain(Peak)	Please see note 3.(Page 9)			
	Output Power (Max.) 802.11b: 17.79 dBm 802.11g: 21.83 dBm 802.11n(20MHz): 22.06 dBm 802.11n(40MHz): 19.54 dBm 802.11n(40MHz): 19.54 dBm				
	More details of EUT tech User's Manual.	nnical specification, please refer to the			
Power Source	 #1 DC voltage supplied from AC adapter. 1) Brand/ Model: PIE/ AD835321 2) Brand/ Model: Chicony/ W12-010N3A #2 Supplied from lithium-ion battery. 1) Brand/ Model: YOKU/ 32102102 2) Brand/ Model: YOKU/ 30102102 #3 Supplied from USB charging. 				
Power Rating	#1 AC adapter 1) I/P: AC 100-240V~	r, 50/60Hz, 0.3A O/P: DC 5.0V, 2.0A r, 50/60Hz, 0.3A O/P: DC 5.35V, 2A			
Connecting I/O Port(s)	Please refer to the User'				

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Neutron Engineering Inc.

2. CH 01 – CH 11 for 802.11b, 802.11g, 802.11n(20MHz) CH 03 – CH 09 for 802.11n(40MHz)

Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452			

3. Table for Filed Antenna

	Group 1						
Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain (dBi)	Note	
1	INPAQ TECHNOLOGY CO., LTD.	WA-F-LAG1-02-00 1	IFA	N/A	3.5	TX/RX	
Group 2							

Group 2						
Ant.	Manufacturer	Model Name	Antenna Type	Connector	Gain (dBi)	Note
1	Shanghai Amphenol Airwave Communication Electronics Co., Ltd	NV4593-12-000-R	IFA	N/A	3.5	TX/RX

Note:

(1) Two groups of antenna used with the same type and same gain, only differ in manufacturer and model name, group 1 is tested and recorded as the worst case in this

report.

(2) The antenna of EUT could be rotated, and the antenna polarity vertical is the worst.

Neutron Engineering Inc.=

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09
Mode 5	WIFI

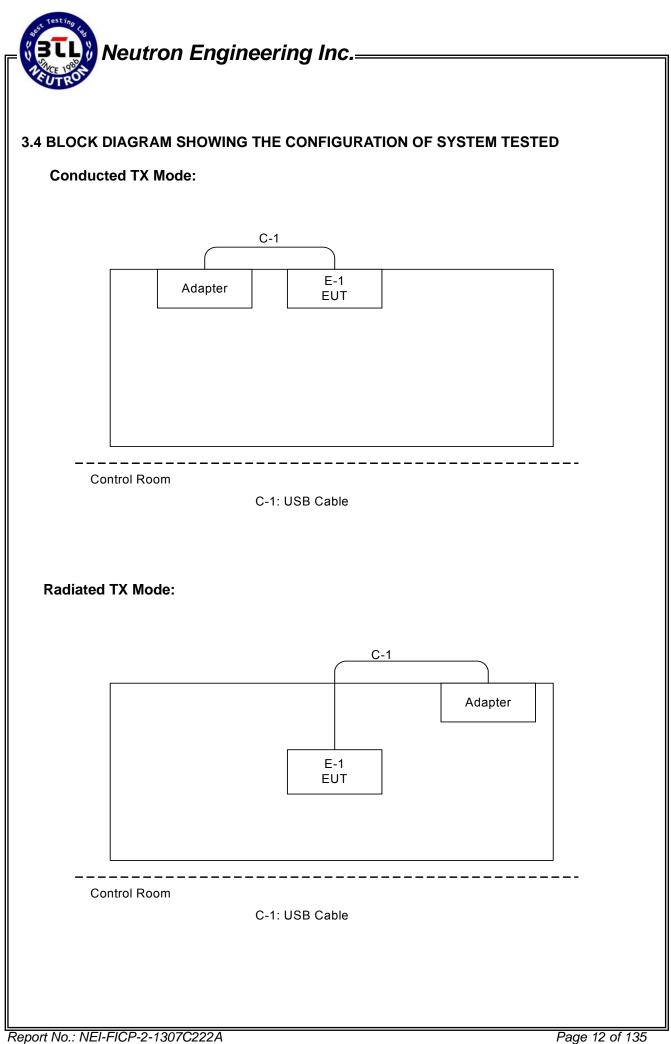
The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Test						
Final Test Mode Description						
Mode 5 WIFI						

	For Radiated Test					
Final Test Mode Description						
Mode 1	TX B MODE CHANNEL 01/06/11					
Mode 2	TX G MODE CHANNEL 01/06/11					
Mode 3 TX N-20MHZ MODE CHANNEL 01/06/11						
Mode 4 TX N-40MHZ MODE CHANNEL 03/06/0						

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) 802.11b mode: DBPSK (1Mbps) 802.11g mode: OFDM (6Mbps) 802.11n HT20 mode : BPSK (6.5Mbps) 802.11n HT40 mode : BPSK (13.5Mbps) For radiated emission tests, the highest output powers were set for final test.
- (3) The EUT was pre-tested on positioned of each 3 axis. The worst cas was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.
- (4) The EUT system operated in these modes (AC adapter and Lithium-ion battery) and AC adapter found to be the worst case during the pre-scanning test.



3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	N/A				
Frequency	2412 MHz	2437 MHz	2462 MHz		
IEEE 802.11b DSSS	18	18	18		
IEEE 802.11g OFDM	9.4	18	11.6		

Test software version	N/A			
Frequency (MHz)	2412 MHz 2437 MHz 2462			
IEEE 802.11n (20MHz)	9	18	11.6	
Frequency (MHz)	2422 MHz	2437 MHz	2452 MHz	
IEEE 802.11n (40MHz)	12	16	12	

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID/IC	Series No.	Note
E-1	Tablet	NVIDIA	P1640	VOB-P1640/ 7361A-P1640	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
C-1	YES	NO	0.8m	USB Cable

Note:

(1) For detachable type I/O cable should be specified the length in m in [[]Length] column.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A (dBuV)		Class B	Standard		
Frequency (MHz)	Quasi-peak Average		Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR	
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

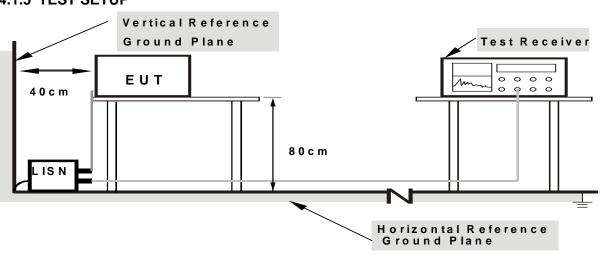
4.1.2 MEASUREMENT INSTRUMENTS LIST AND SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014
2	LISN	R&S	ENV216	100087	Nov.16, 2013
3	Test Cable	N/A	C_17	N/A	Mar.15, 2014
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

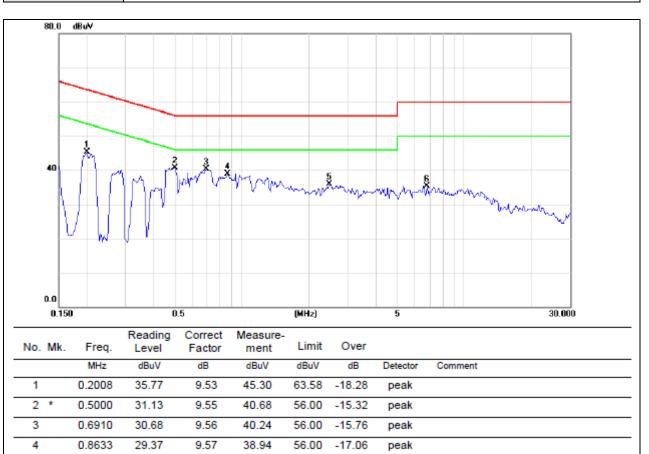
4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.6 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting mode.


4.1.7 TEST RESULTS

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of ^ℂNote_□. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform ∘ In this case, a "*" marked in AVG Mode column of Interference Voltage Measured ∘
- (2) Measuring frequency range from 150KHz to 30MHz \circ

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	55 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode :	WIFI (Adapter: AD835321)		

5

6

2.4674

6.7590

26.32

25.72

9.60

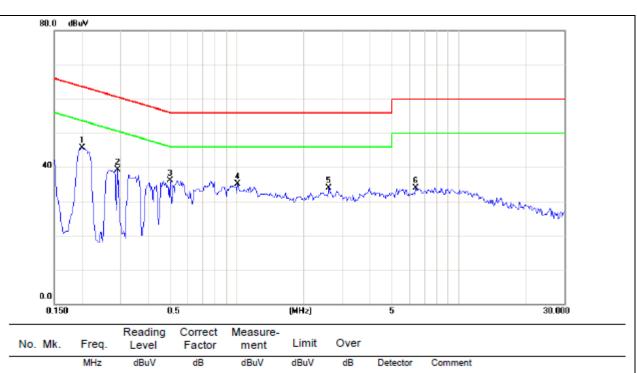
9.65

35.92

35.37

56.00

60.00 -24.63


-20.08

peak

peak


EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	55 %
Test Power:	AC 120V/60Hz	Phase:	Neutral
Test Mode :	WIFI (Adapter: AD835321)		

1 *	0.2008	36.13	9.59	45.72	63.58	-17.86	peak	
2	0.2895	29.62	9.59	39.21	60.54	-21.33	peak	
3	0.5000	26.51	9.59	36.10	56.00	-19.90	peak	
4	1.0070	25.46	9.60	35.06	56.00	-20.94	peak	
5	2.6018	24.27	9.62	33.89	56.00	-22.11	peak	
6	6.4100	24.18	9.68	33.86	60.00	-26.14	peak	

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	55 %
Test Power:	AC 120V/60Hz	Phase:	Line
Test Mode :	WIFI (Adapter: W12-010N3A	()	

6

7

5.9512

17.6517

29.91

26.57

9.64

9.85

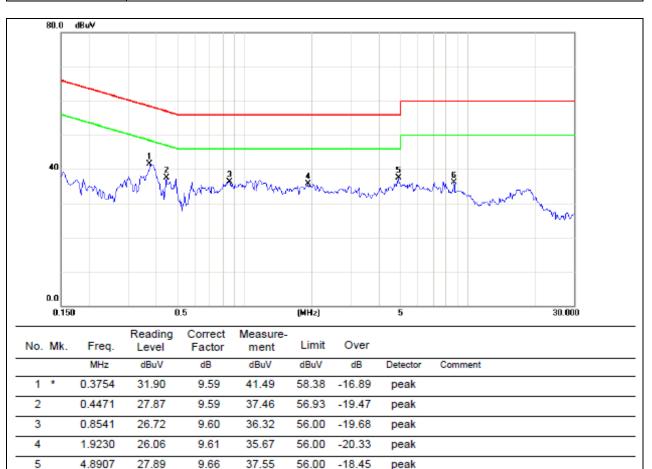
39.55

36.42

60.00

60.00

-20.45


-23.58

peak

peak

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	55 %
Test Power:	AC 120V/60Hz	Phase:	Neutral
Test Mode :	WIFI (Adapter: W12-010N3A	()	

60.00 -23.90

peak

6

8.6723

26.35

9.75

36.10

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz-1000MHz)

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) & RSS-210 section 2.2& Annex 8 (A8.5), then the 15.209(a)& RSS-Gen limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (a	at 3 meters)
Frequency (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Neutron Engineering Inc._____

4.2.2 MEASUREMENT INSTRUMENTS LIST ANS SETTING

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014
5	Antenna	ETS	3115	00075789	Apr. 25, 2014
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014
7	Spectrum	Agilent	E4408B	US39240143	Nov. 16, 2013
8	Test Cable	HUBER+SUHNER	C-45	N/A	Apr. 30, 2014
9	Controller	СТ	SC100	N/A	N/A
10	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014
11	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct. 23, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

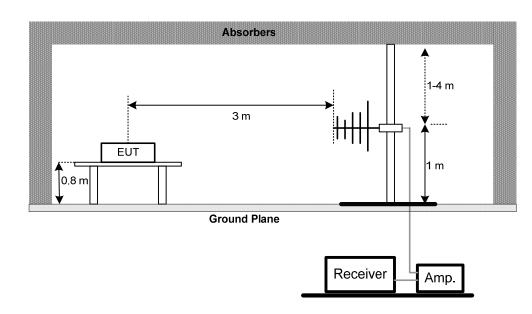
All calibration period of equipment list is one year.

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW			
(Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average		

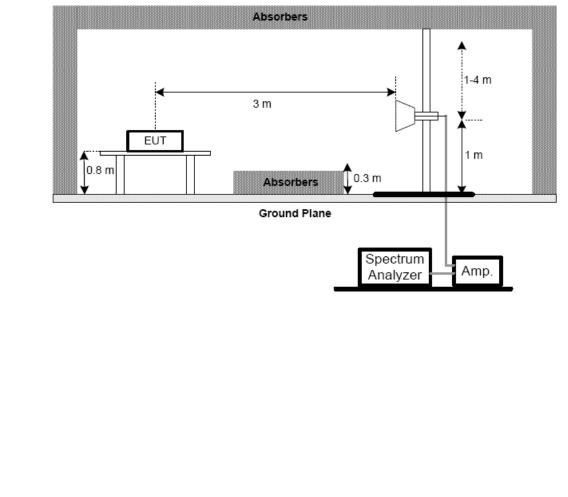
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

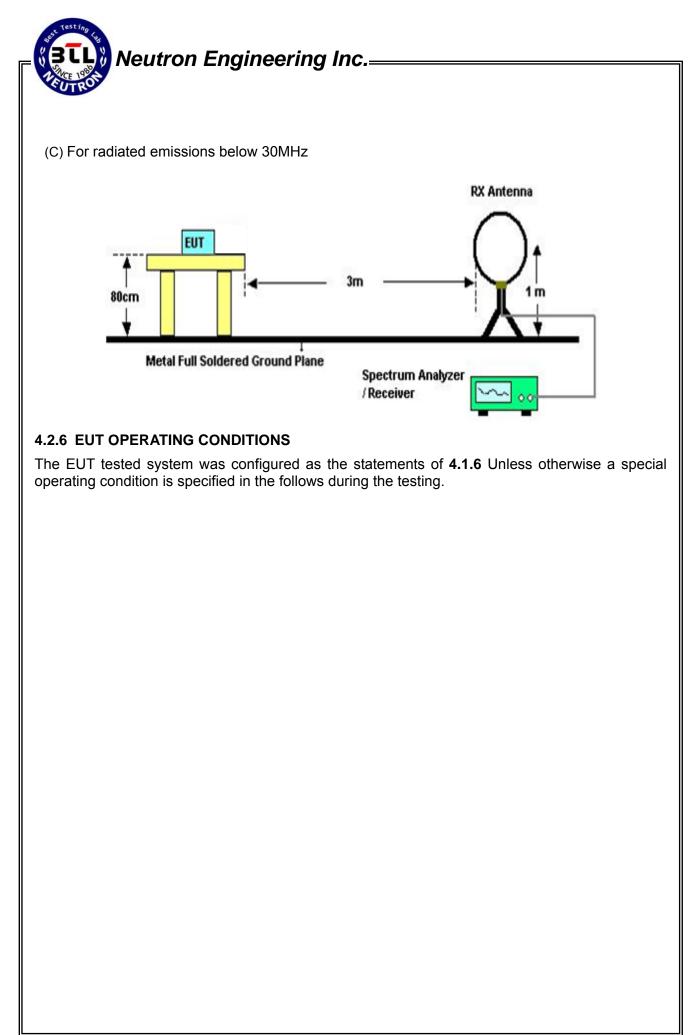
4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


4.2.4 DEVIATION FROM TEST STANDARD

No deviation




4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

Neutron Engineering Inc.=

4.2.7 TEST RESULTS (9K~ 30MHZ)

EUT :	Та	blet		Model Name :	P1640		
Temperature	e: 25	5 °C		Relative Humi	dity: 54 %		
Pressure :	10)09 hPa		Test Power :	AC 120)V/60Hz	
Test Mode	: T>	K Mode 2412	MHz				
	1						1
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
0.0094	0°	17.63	24.30	41.93	128.19	-86.26	AV
0.0094	0°	19.54	24.30	43.84	148.19	-104.35	PK
0.0128	0°	18.05	24.30	42.35	125.49	-83.14	AV
0.0128	0°	19.87	24.30	44.17	145.49	-101.32	PK
0.0243	0°	17.23	24.03	41.26	119.89	-78.63	AV
0.0243	0°	20.15	24.03	44.18	139.89	-95.71	PK
0.0365	0°	17.32	23.26	40.58	116.37	-75.79	AV
0.0365	0°	19.88	23.26	43.14	136.37	-93.23	PK
0.4132	0°	17.32	20.01	37.33	95.28	-57.95	AVG
0.4132	0°	20.24	20.01	40.25	115.28	-75.03	PK
1.1245	0°	18.35	19.59	37.94	66.59	-28.65	QP
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Note
0.0095	90°	17.63	24.30	41.93	128.08	-86.15	AVG
0.0095	90°	20.34	24.30	44.64	148.08	-103.44	PK
0.0216	90°	17.50	24.20	41.70	120.92	-79.22	AVG
0.0216	90°	19.76	24.20	43.96	140.92	-96.96	PK
0.0375	90°	18.03	23.19	41.22	116.12	-74.90	AVG
0.0375	90°	20.26	23.19	43.45	136.12	-92.67	PK
0.0426	90°	17.75	22.87	40.62	115.02	-74.40	AVG
0.0426	90°	20.35	22.87	43.22	135.02	-91.80	PK
0.2548	90°	17.23	20.39	37.62	99.48	-61.86	AVG
0.2548	90°	20.45	20.39	40.84	119.48	-78.64	PK
1.2345	90°	18.33	19.58	37.91	65.77	-27.87	QP

Remark:

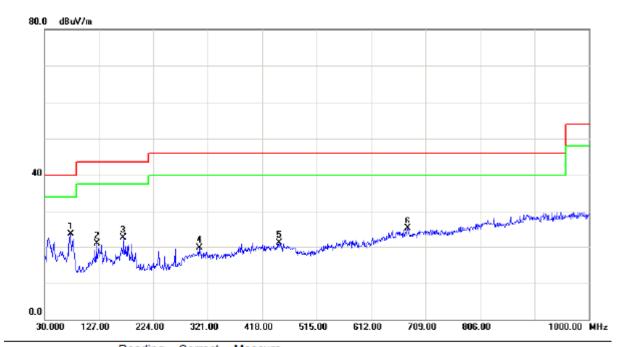
- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHZ)

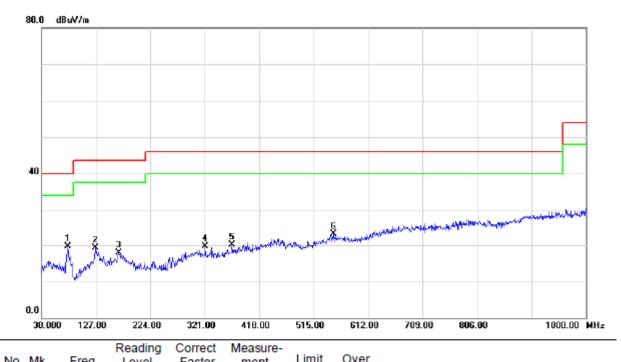
Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	54 %	
Test Voltage:	AC 120V/60Hz	Polarization:	Vertical
Test Mode:	TX B MODE CHANNE	L 01 (Adapter: AD835321)	
80.0 dBuV/m			


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	76.5600	40.54	-16.99	23.55	40.00	-16.45	peak	
2		123.1200	34.25	-13.72	20.53	43.50	-22.97	peak	
3		170.6500	34.93	-12.73	22.20	43.50	-21.30	peak	
4		262.8000	33.37	-14.52	18.85	46.00	-27.15	peak	
5		400.5400	31.10	-9.87	21.23	46.00	-24.77	peak	
6		676.9900	30.39	-5.16	25.23	46.00	-20.77	peak	

EUT:			Tablet			Mo	odel Nan	ne:	P1640	
Temp	era	ure:	25 ℃					umidity:	54 %	
Test V			AC 120\				larizatio		Horizontal	
Test N	/lod	e:	TX B MC	ODE CHA	NNEL 01 ((Adapt	er: AD8	35321)		
:	80.0	dBuV/m								
	40									
	N [*]	ma lan	www.youwa	all we are the	an with the state of the second state of the s	munud	S. Anna and and and and and and and and and	Weinhouse where the states	n de definistration de la constante de la const	
I	0.0 30.0	000 127.0	00 224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
No.	30.0		Reading		418.00 Measure- ment	515.00 Limit	612.00 Over	709.00	806.00	1000.00 MHz
	30.0 Mk.	Freq.	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	Detector	806.00 Comment	1000.00 MHz
No.	30.0 Mk.	Freq. MHz 77.5300	Reading Level dBuV 35.93	Correct Factor dB -17.13	Measure- ment dBuV/m 18.80	Limit dBuV/m 40.00	Over dB -21.20	Detector peak		1000.00 MHz
No. 1 2	30.1 Mk.	Freq. MHz 77.5300 126.0300	Reading Level dBuV 35.93 31.99	Correct Factor dB -17.13 -13.56	Measure- ment dBuV/m 18.80 18.43	Limit dBuV/m 40.00 43.50	Over dB -21.20 -25.07	Detector peak peak		1000.00 MHz
No.	30.1 Mk.	Freq. MHz 77.5300	Reading Level dBuV 35.93 31.99	Correct Factor dB -17.13	Measure- ment dBuV/m 18.80	Limit dBuV/m 40.00	Over dB -21.20	Detector peak		1000.00 MHz
No. 1 2	30.1 Mk.	Freq. MHz 77.5300 126.0300	Reading Level dBuV 35.93 31.99 30.15	Correct Factor dB -17.13 -13.56	Measure- ment dBuV/m 18.80 18.43	Limit dBuV/m 40.00 43.50	Over dB -21.20 -25.07	Detector peak peak		1000.00 MHz
No. 1 2 3	30.1 Mk.	Freq. MHz 77.5300 126.0300 321.9700	Reading Level dBuV 35.93 31.99 30.15 30.96	Correct Factor dB -17.13 -13.56 -11.34	Measure- ment dBuV/m 18.80 18.43 18.81	Limit dBuV/m 40.00 43.50 46.00	Over dB -21.20 -25.07 -27.19	Detector peak peak peak		1000.00 MHz


EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	54 %
Test Voltage:	AC 120V/60Hz	Polarization:	Vertical
Test Mode:	TX B MODE CHANNEL 06 (Ad	apter: AD835321)	

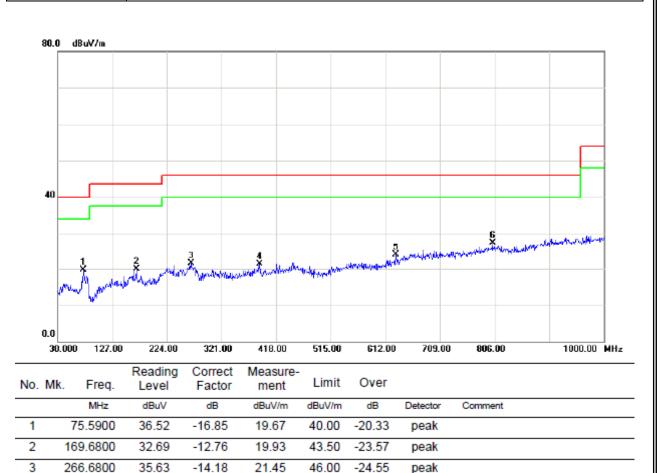
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	76.5600	40.44	-16.99	23.45	40.00	-16.55	peak		
2		123.1200	34.65	-13.72	20.93	43.50	-22.57	peak		
3		170.6500	35.33	-12.73	22.60	43.50	-20.90	peak		
4		305.4800	31.03	-11.27	19.76	46.00	-26.24	peak		
5		448.0700	30.10	-8.94	21.16	46.00	-24.84	peak		
6		676.9900	30.29	-5.16	25.13	46.00	-20.87	peak		

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	54 %
Test Voltage:	AC 120V/60Hz	Polarization:	Horizontal
Test Mode:	TX B MODE CHANNEL 06 (Ac	lapter: AD835321)	

NO.	MI	<. ⊢req.	Level	Factor	ment	LIIIII	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	77.5300	36.74	-17.13	19.61	40.00	-20.39	peak	
2		126.0300	32.80	-13.56	19.24	43.50	-24.26	peak	
3		167.7400	30.82	-12.93	17.89	43.50	-25.61	peak	
4		321.9700	30.96	-11.34	19.62	46.00	-26.38	peak	
5		369.5000	31.00	-10.85	20.15	46.00	-25.85	peak	
6		549.9200	30.75	-7.65	23.10	46.00	-22.90	peak	

EUT:		Tablet			M	odel Nar	me:	P1640	
Tempera	ature:	25 ℃			Re	elative H	lumidity:	54 %	
Test Vol	Itage:	AC 120\	//60Hz		Po	olarizatio	on:	Vertical	
Test Mo	ode:	ТХ В МС	DDE CHA	ANNEL 11	(Adap	ter: AD8	35321)		
80.0) dBuV/m								
40									
	Mut Mu	3 Mumaliju	i tan		hally hoter related	and the second second	Loin-meri	in a start of the second	urnastichtenterin
0.0	Mut Mu	3 Muunalyk	~~~			J-MALLET"			
0.0	1.000 127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	(Inno.)#Ebddo.afferia 1000.00 MHz
0.0		224.00 Reading Level	~~~		515.00	J-MALLET"			
0.0 30.		Reading	321.00 Correct	418.00 Measure-	515.00	612.00			
0.0 30.	k. Freq.	Reading Level	321.00 Correct Factor	418.00 Measure- ment	515.00 Limit	612.00 Over	709.00	806.00	
0.0 30 No. Mk	k. Freq. MHz	Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector	806.00	
0.0 30 No. Mk	k. Freq. MHz 76.5600	Reading Level dBuV 40.28	321.00 Correct Factor dB -16.99	418.00 Measure- ment dBuV/m 23.29	515.00 Limit dBuV/m 40.00	612.00 Over dB -16.71	709.00 Detector peak	806.00	
0.0 30. No. Mk	k. Freq. MHz 76.5600 170.6500	Reading Level dBuV 40.28 35.17	321.00 Correct Factor dB -16.99 -12.73	418.00 Measure- ment dBuV/m 23.29 22.44	515.00 Limit dBuV/m 40.00 43.50	612.00 Over dB -16.71 -21.06	709.00 Detector peak peak	806.00	
0.0 30 No. Mk	k. Freq. MHz 76.5600 170.6500 262.8000	Reading Level dBuV 40.28 35.17 32.11	321.00 Correct Factor dB -16.99 -12.73 -14.52	418.00 Measure- ment dBuV/m 23.29 22.44 17.59	515.00 Limit dBuV/m 40.00 43.50 46.00	612.00 Over dB -16.71 -21.06 -28.41	709.00 Detector peak peak peak	806.00	

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	54 %
Test Voltage:	AC 120V/60Hz	Polarization:	Horizontal
Test Mode:	TX B MODE CHANNEL 11 (Ad	apter: AD835321)	


		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	77.5300	37.61	-17.13	20.48	40.00	-19.52	peak	
2		126.0300	33.67	-13.56	20.11	43.50	-23.39	peak	
3		167.7400	31.69	-12.93	18.76	43.50	-24.74	peak	
4		321.9700	30.83	-11.34	19.49	46.00	-26.51	peak	
5		452.9200	31.31	-8.99	22.32	46.00	-23.68	peak	
6		549.9200	30.62	-7.65	22.97	46.00	-23.03	peak	

EUT:		Tablet			Mod	del Nam	ie:	P1640			
Tempe	erature:	25 ℃			Rela	ative Hu	umidity:	54 %			
est Vo	oltage:	AC 120V/	'60Hz		Pola	arization	ו:	Vertica	ıl		
Fest M	lode:	TX B MO	DE CHAN	NNEL 01 (A	Adapte	er: W12-	010N3A)			
	80.0 dBuV/m										
	40										
	May May	and Man Street	of the first of the first of	5 not al al al al and the control of	Lord george and desired	S. Mariana La	- Martin and	umundh	and the high of a large	nerel de roller	-
	a.a 30.000 127.1	3 0 0 0 0 0 224.00	ر المعرب. 321.00	5 niji).eleetheenerr ⁴ 10.44e 418.00	515.00	6 512.00				1000.00	
	0.0	Reading	321.00 Correct Factor			en inden Mithen					
	0.0 30.000 127. Mk. Freq.	Reading Level dBuV	Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB			90		
No.	0.0 30.000 127.0 Mk. Freq. MHz * 81.4100	Reading Level dBuV 42.20	Correct Factor	418.00 Measure- ment dBuV/m	515.00 Limit	612.00 Over	709.00	906.0	90		
No.	0.0 30.000 127. Mk. Freq.	Reading Level dBuV 42.20	Correct Factor dB	418.00 Measure- ment dBuV/m 24.60	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector	906.0	90		
No.	0.0 30.000 127.0 Mk. Freq. MHz * 81.4100	Reading Level dBuV 42.20 32.76	Correct Factor dB -17.60	418.00 Measure- ment dBuV/m 24.60 19.20	515.00 Limit dBuV/m 40.00	612.00 Over dB -15.40	709.00 Detector peak	906.0	90		
No.	0.0 30.000 127.1 Mk. Freq. MHz * 81.4100 126.0300	Reading Level dBuV 42.20 32.76 37.09	Correct Factor dB -17.60 -13.56	418.00 Measure- ment dBuV/m 24.60 19.20 24.07	515.00 Limit dBuV/m 40.00 43.50	612.00 Over dB -15.40 -24.30	709.00 Detector peak peak	906.0	90		
No.	0.0 30.000 127.0 Mk. Freq. MHz * 81.4100 126.0300 166.7700	Reading Level dBuV 42.20 32.76 37.09 32.82	Correct Factor dB -17.60 -13.56 -13.02	418.00 Measure- ment dBuV/m 24.60 19.20 24.07 17.85	515.00 Limit dBuV/m 40.00 43.50 43.50	612.00 Over dB -15.40 -24.30 -19.43	709.00 Detector peak peak peak	906.0	90		

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	54 %
Test Voltage:	AC 120V/60Hz	Polarization:	Horizontal
Test Mode:	TX B MODE CHANNEL 01 (Ad	apter: W12-010N3A)

4

5

6

*

388.9000

630.4300

802.1200

31.63

30.45

30.37

-10.23

-6.55

-3.14

21.40

23.90

27.23

46.00

46.00

46.00

-24.60

-22.10

-18.77

peak

peak

peak

EUT:		Tablet			Mc	del Nam	ne:	P1640		
Temp	erature:	25 ℃			Re	lative Hu	umidity:	54 %		
Test V	/oltage:	AC 120V	/60Hz		Po	larizatio	n:	Vertical		
Test N	Node:	ТХ В МО	DE CHA	NNEL 06	(Adapt	er: W12	-010N3A)		
:	80.0 dBuV/m									1
	40									
	1 X // 2	n)		4	5X		man	more aller an apporte	angen dit internetter da	
	My put	WWWWWWWWWWW	والملاحات والمستوريقيم	ullalattermenter	here guerra a harri	ndihaminan katur				
	0.0 30.000 127.00		321.00	418.00	515.00	612.00	709.00	806.00	1000.00	
						anodanjekovo				
	30.000 127.00 Mk. Freq. MHz	0 224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure- ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector			
No.	30.000 127.00 Mk. Freq. MHz * 81.4100	224.00 Reading Level dBuV 41.94	321.00 Correct Factor dB -17.60	418.00 Measure- ment dBuV/m 24.34	515.00 Limit dBuV/m 40.00	612.00 Over dB -15.66	709.00 Detector peak	806.00		
No. 1 2	30.000 127.00 Mk. Freq. MHz * 81.4100 126.0300	224.00 Reading Level dBuV 41.94 32.50	321.00 Correct Factor dB -17.60 -13.56	418.00 Measure- ment dBuV/m 24.34 18.94	515.00 Limit dBuV/m 40.00 43.50	612.00 Over dB -15.66 -24.56	709.00 Detector peak peak	806.00		
No.	30.000 127.00 Mk. Freq. MHz * 81.4100 126.0300 166.7700	224.00 Reading Level dBuV 41.94 32.50 36.83	321.00 Correct Factor dB -17.60 -13.56 -13.02	418.00 Measure- ment dBuV/m 24.34 18.94 23.81	515.00 Limit dBuV/m 40.00 43.50 43.50	612.00 Over dB -15.66 -24.56 -19.69	709.00 Detector peak peak peak	806.00		
No.	30.000 127.00 Mk. Freq. MHz * 81.4100 126.0300 166.7700 372.4100	224.00 Reading Level dBuV 41.94 32.50 36.83 30.00	321.00 Correct Factor dB -17.60 -13.56 -13.02 -10.75	418.00 Measure- ment dBuV/m 24.34 18.94 23.81 19.25	515.00 Limit dBuV/m 40.00 43.50 43.50 46.00	612.00 Over dB -15.66 -24.56 -19.69 -26.75	709.00 Detector peak peak peak peak	806.00		
No.	30.000 127.00 Mk. Freq. MHz * 81.4100 126.0300 166.7700	224.00 Reading Level dBuV 41.94 32.50 36.83	321.00 Correct Factor dB -17.60 -13.56 -13.02	418.00 Measure- ment dBuV/m 24.34 18.94 23.81	515.00 Limit dBuV/m 40.00 43.50 43.50	612.00 Over dB -15.66 -24.56 -19.69	709.00 Detector peak peak peak	806.00		

EUT:	Tablet	Model Name:	P1640
Temperature:	25 ℃	Relative Humidity:	54 %
Test Voltage:	AC 120V/60Hz	Polarization:	Horizontal
Test Mode:	TX B MODE CHANNEL 06 (Ad	apter: W12-010N3A)

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	75.5900	37.26	-16.85	20.41	40.00	-19.59	peak	
2		169.6800	33.42	-12.76	20.66	43.50	-22.84	peak	
3		266.6800	36.36	-14.18	22.18	46.00	-23.82	peak	
4		388.9000	32.37	-10.23	22.14	46.00	-23.86	peak	
5		630.4300	30.19	-6.55	23.64	46.00	-22.36	peak	
6		678.9300	30.04	-5.12	24.92	46.00	-21.08	peak	

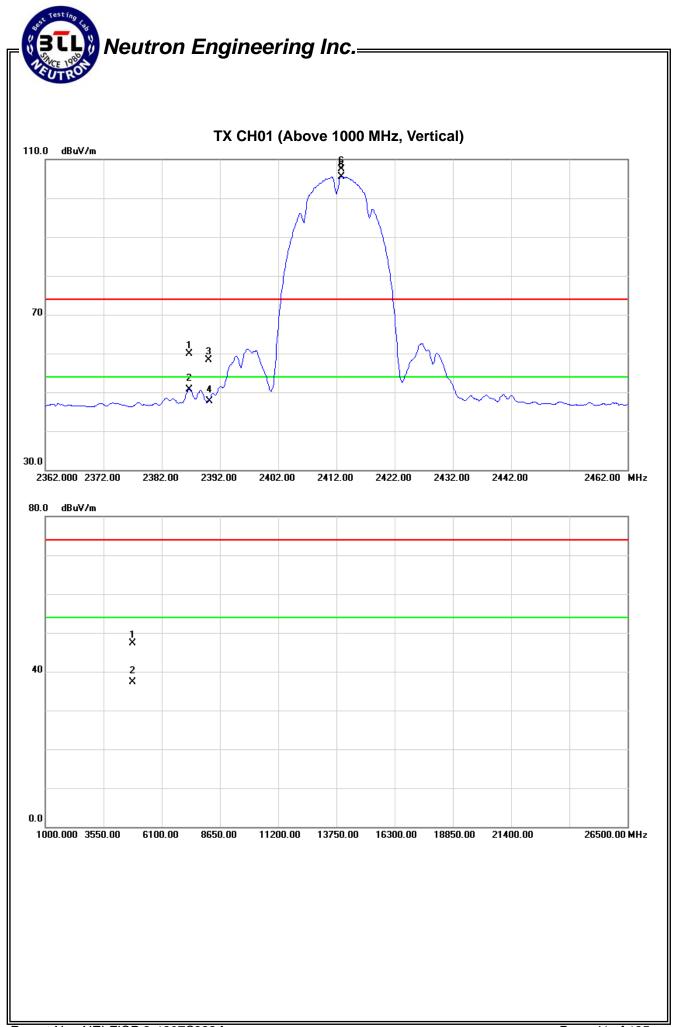
EUT:				Tablet			Mc	del Nar	me:	P1640		
Tempe	era	ture:		25 ℃			Re	lative H	lumidity:	54 %		
Fest V	/olta	age:		AC 120\	V/60Hz		Po	larizatio	on:	Vertical		
Fest N	/lod	le:		ТХ В МО	ODE CHA	ANNEL 11	(Adapt	er: W12	2-010N3A	()		
	80.0	dBu	√/m									
	40 .	Ŵ	8	2 WWW.	langnah stain New Salah	ww.linamanay	5 X	-marsan de	Langer	a south and the second states	and a start and the start a	
	0.0 30.	.000	127.00	224.00) 321.00	418.00	515.00	612.00	0 709.00	806.00	1000.00 MHz	
No.	Mk	t. F	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Over				
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	*		4100	42.71	-17.60	25.11	40.00	-14.89	peak			
2			0300	33.27	-13.56	19.71	43.50	-23.79	peak			
3			7700	37.60	-13.02	24.58	43.50	-18.92	peak			
4			4100	30.77	-10.75	20.02	46.00	-25.98	peak			
		E00.	7200	24 47	0.06	22.11	46.00	-23.89	peak			
5		523. 615.		31.17 31.03	-9.06 -7.30	23.73	46.00	-22.27	peak			

EUT	•		-	Tablet			N	lodel Na	ame:	P1640		
Tem	реі	ature:	1	25 °C			R	elative l	Humidity:	54 %		
Test	Vo	ltage:	1	AC 120)V/60Hz		Р	olarizati	ion:	Horizontal		
Test	Mo	ode:	-	TX B N	IODE CI	HANNEL 1	1 (Adap	oter: W1	2-010N3A	A)		
	80.0 T	dBuV/m										1
												ł
]
		_										1
	40											
					9			5	5	way would be and a	aller will	i i
			Number	ž "dula	a the same	un fundante	on her allowed	S X Marina Marin	M. ACHINAN MAR	where the second state of		
		m Jon	NUMBER	u _r w -	. We see a second		eMiket.					
		a.										
	0.0											
	L	.000 12	7.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00	MHz
No.	Mk	. Fre		Reading Level	Correct Factor		Limit	Over				
		MH	z	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1	*	75.590	00	38.01	-16.85	21.16	40.00	-18.84	peak			
		169.68	10	34.17	-12.76	21.41	43.50	-22.09	peak			
2		109.000	00	34.17								
2 3		266.68		37.11	-14.18	22.93	46.00	-23.07	peak			
			00			22.93 22.89	46.00 46.00	-23.07 -23.11	peak peak			
3		266.68	00	37.11	-14.18				· ·			

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2412MHz		

Freq.	Ant.Pol.	Ant Pol Reading		Ant./CF	A	ct.	Liı		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2386.70	V	25.77	16.67	34.08	59.85	50.75	74.00	54.00	X/E
2390.00	V	24.24	13.62	34.09	58.33	47.71	74.00	54.00	X/E
2412.90	V	73.41	71.38	34.16	107.57	105.54			X/F
4823.81	V	40.87	30.89	6.43	47.30	37.32	74.00	54.00	X/H

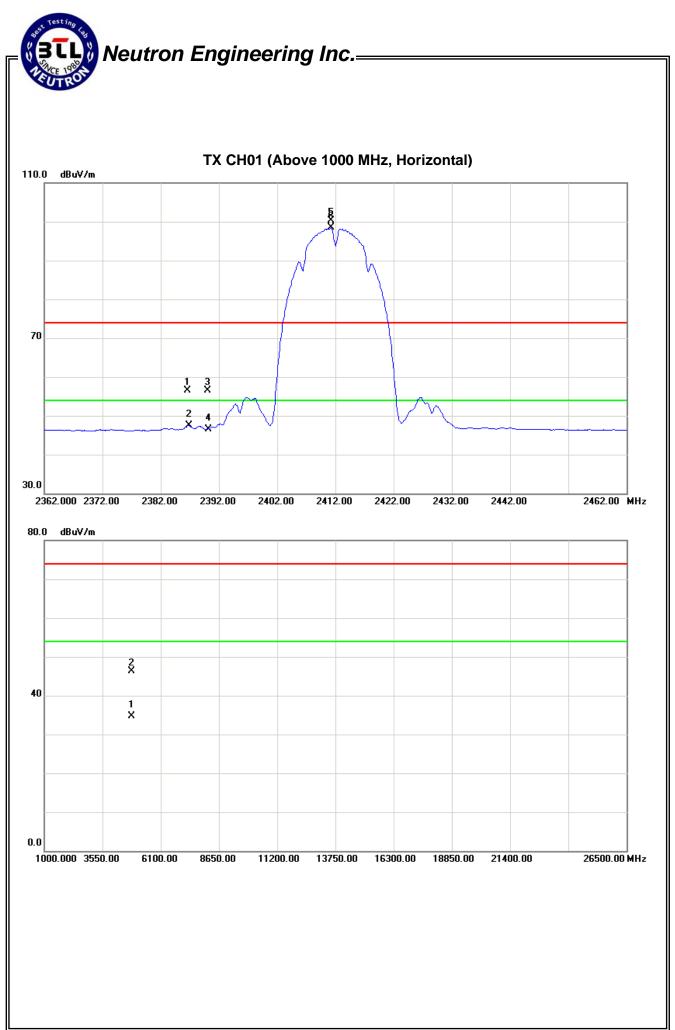

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

(6) EUT Orthogonal Axis:

"X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand

(7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

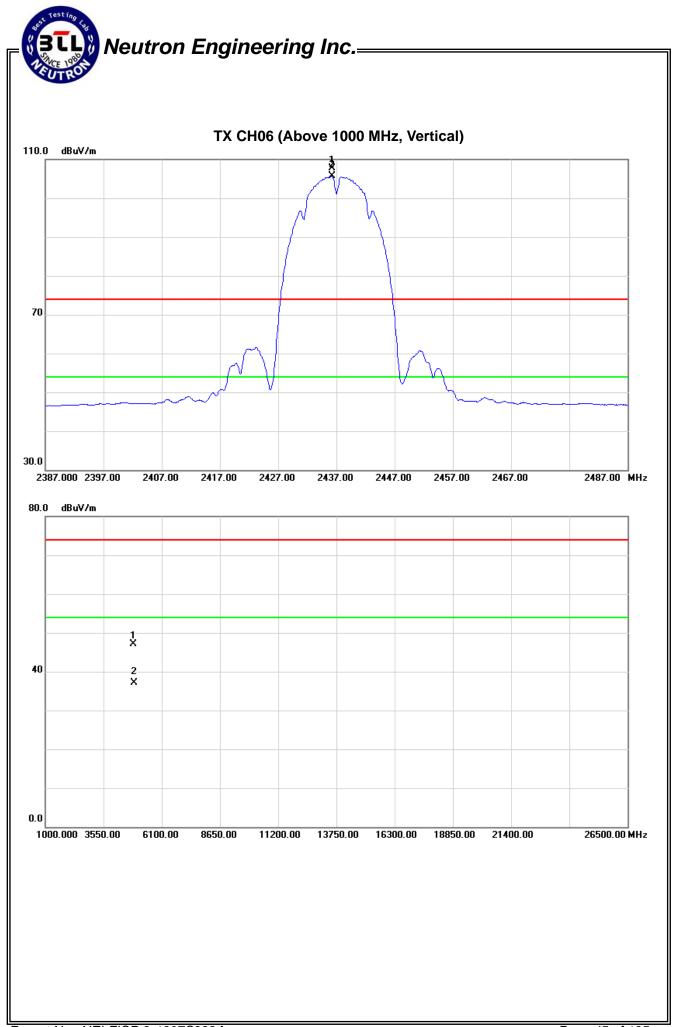

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	A	ct.	Lir	nit	
1164.		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2386.60	Н	22.39	13.47	34.08	56.47	47.55	74.00	54.00	X/E
2390.00	Н	22.39	12.45	34.09	56.48	46.54	74.00	54.00	X/E
2411.20	Н	66.22	64.27	34.16	100.38	98.43			X/F
4824.23	Н	39.84	28.22	6.43	46.27	34.65	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

(6) EUT Orthogonal Axis:

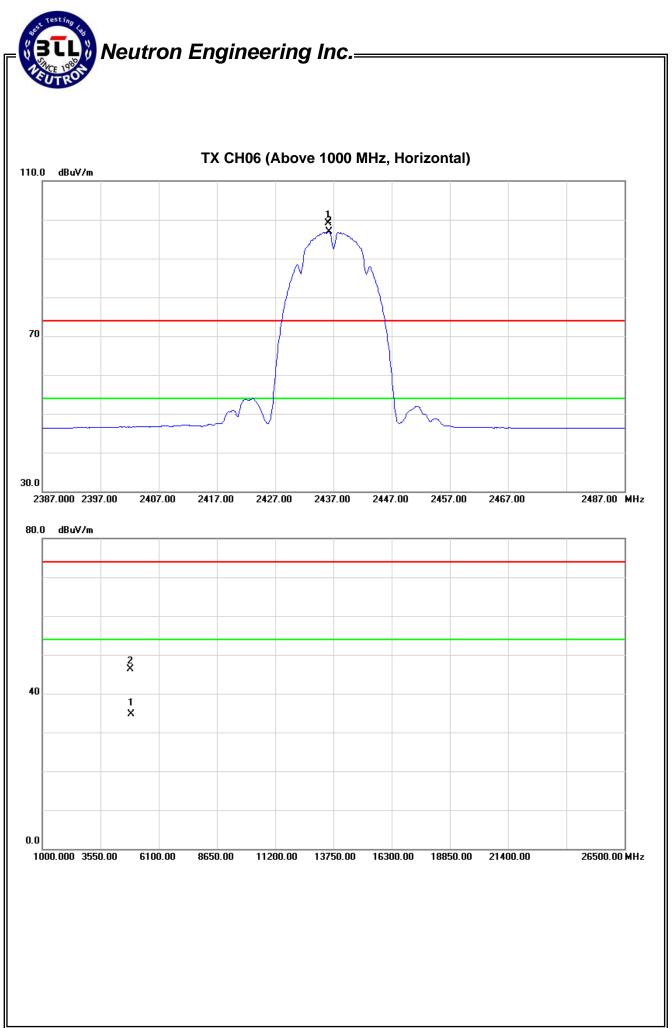
- "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2437MHz		

Freq.	Ant.Pol.		ding	Ant./CF	A	ct.	Lir	nit	
rieq.	Ant.Fui.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2436.20	V	73.43	71.43	34.23	107.66	105.66			X/F
4873.87	V	40.43	30.52	6.58	47.01	37.10	74.00	54.00	X/H

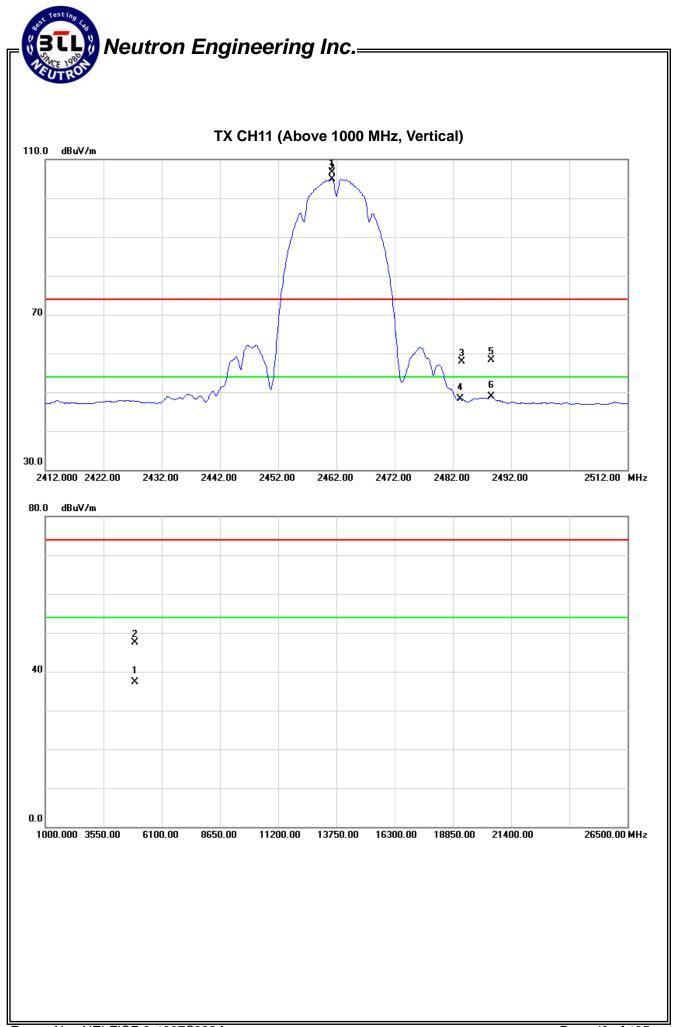
- (1) All readings are Peak unless otherwise stated QP in column of "Note ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis: "X" - denotes Laid on Table; "Y" - denotes Vertical Stand; "Z" - denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2437MHz		

Freq.	Ant.Pol.	Reading		Ant.Pol. Reading Ant./CF Act.		ct.	Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2436.10	Н	64.80	62.76	34.23	99.03	96.99			X/F
4874.32	Н	39.71	28.12	6.58	46.29	34.70	74.00	54.00	X/H

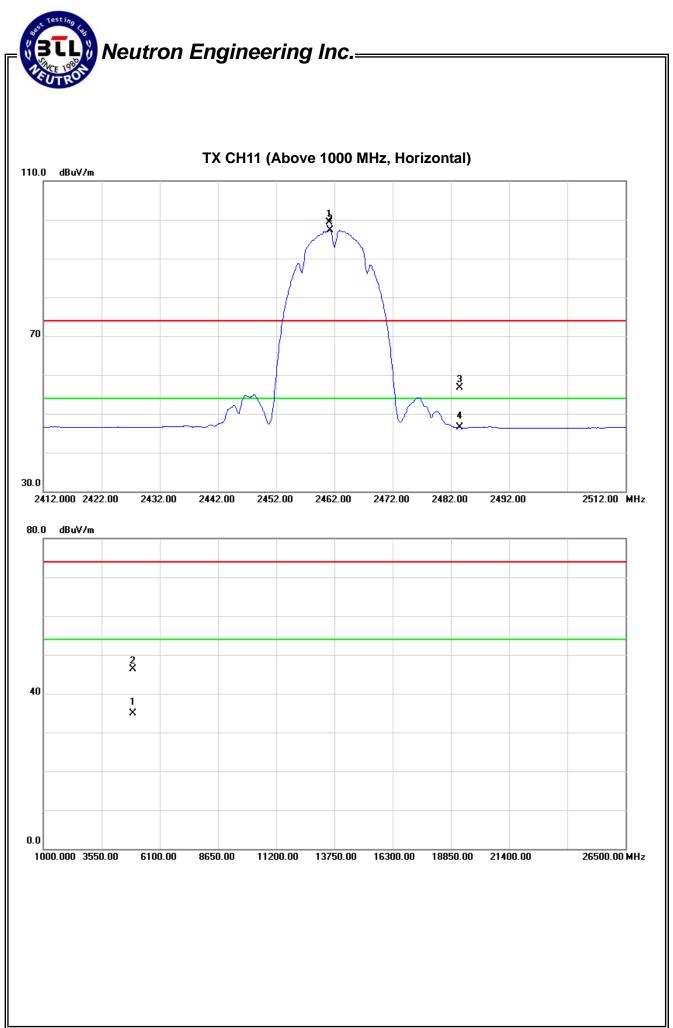
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	A	Act.		Limit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2461.20	V	72.42	70.64	34.31	106.73	104.95			X/F
2483.50	V	23.44	13.96	34.37	57.81	48.33	74.00	54.00	X/E
2488.60	V	23.88	14.54	34.38	58.26	48.92	74.00	54.00	X/E
4924.72	V	40.74	30.68	6.72	47.46	37.40	74.00	54.00	X/H

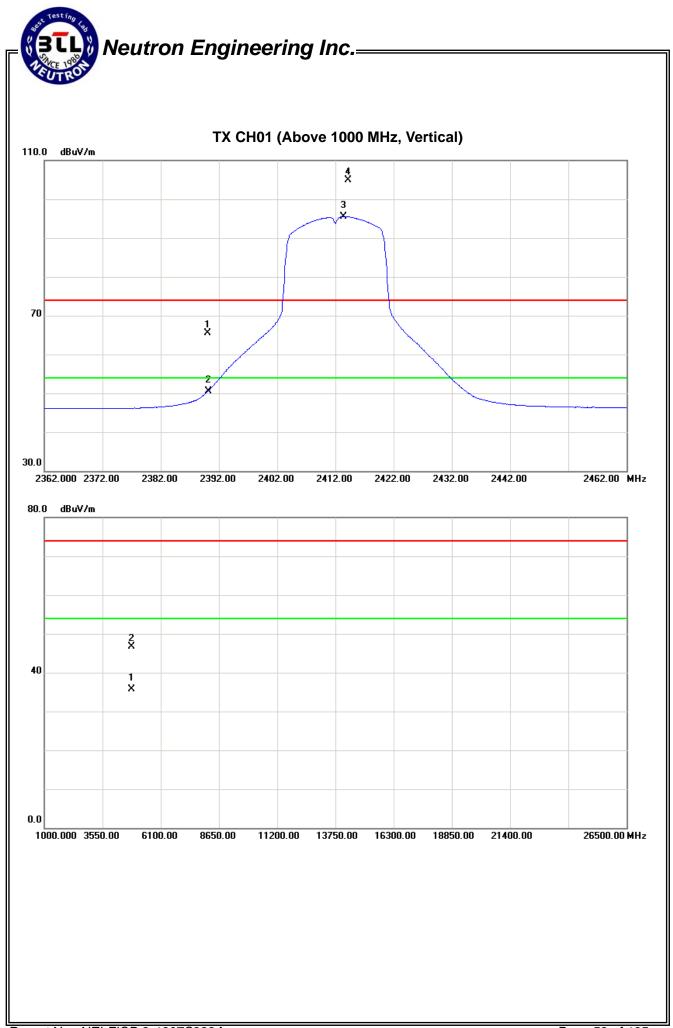
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2461.10	Н	65.01	63.01	34.31	99.32	97.32			X/F
2483.50	Н	22.25	12.16	34.37	56.62	46.53	74.00	54.00	X/E
4925.16	Н	39.50	28.15	6.74	46.24	34.89	74.00	54.00	X/H

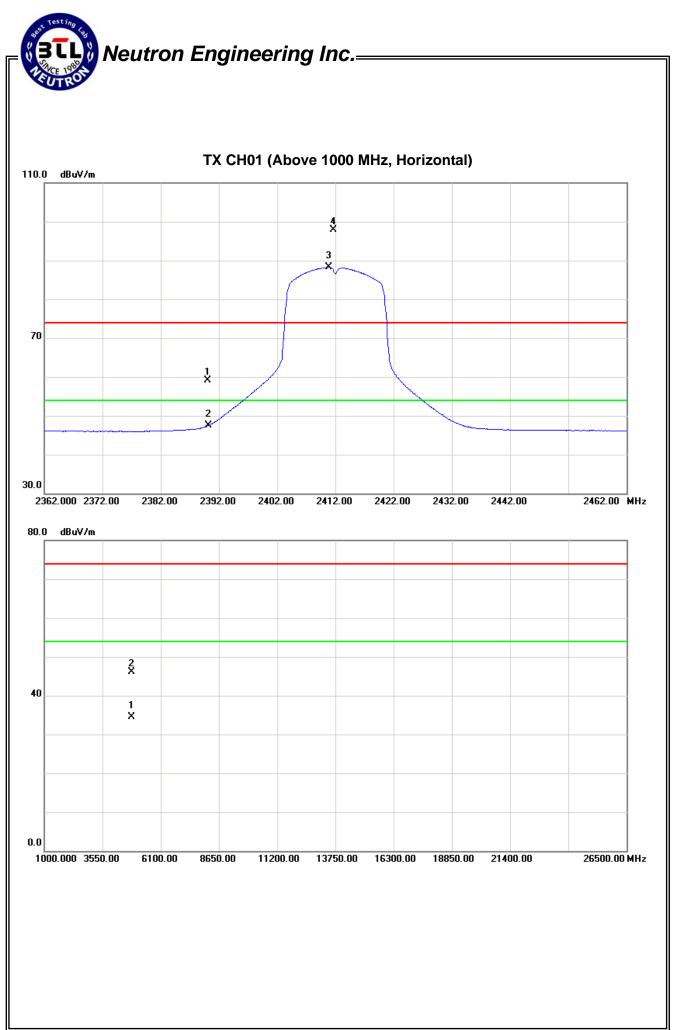
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2412MHz		

Γ	Freq.	Ant.Pol.	Rea	ding	Ant./CF	Act.		Lir		
			Peak	AV		Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
	2390.00	V	31.50	16.34	34.09	65.59	50.43	74.00	54.00	X/E
	2414.20	V	70.73	61.41	34.16	104.89	95.57			X/F
	4824.88	V	40.27	29.30	6.43	46.70	35.73	74.00	54.00	X/H

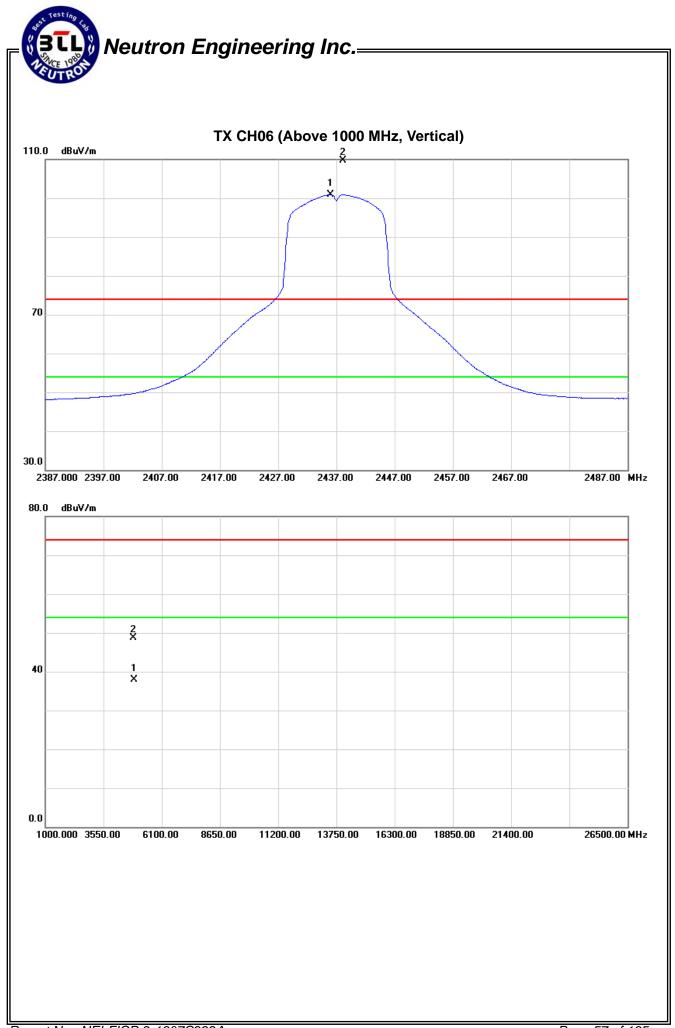
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2412MHz		

Γ	Freq.	Ant.Pol.	Rea	Reading		Act.		Lir		
			Peak	AV		Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
	2390.00	Н	25.01	13.32	34.09	59.10	47.41	74.00	54.00	X/E
	2411.70	Н	63.73	54.06	34.16	97.89	88.22			X/F
	4826.12	Н	39.71	28.13	6.45	46.16	34.58	74.00	54.00	X/H

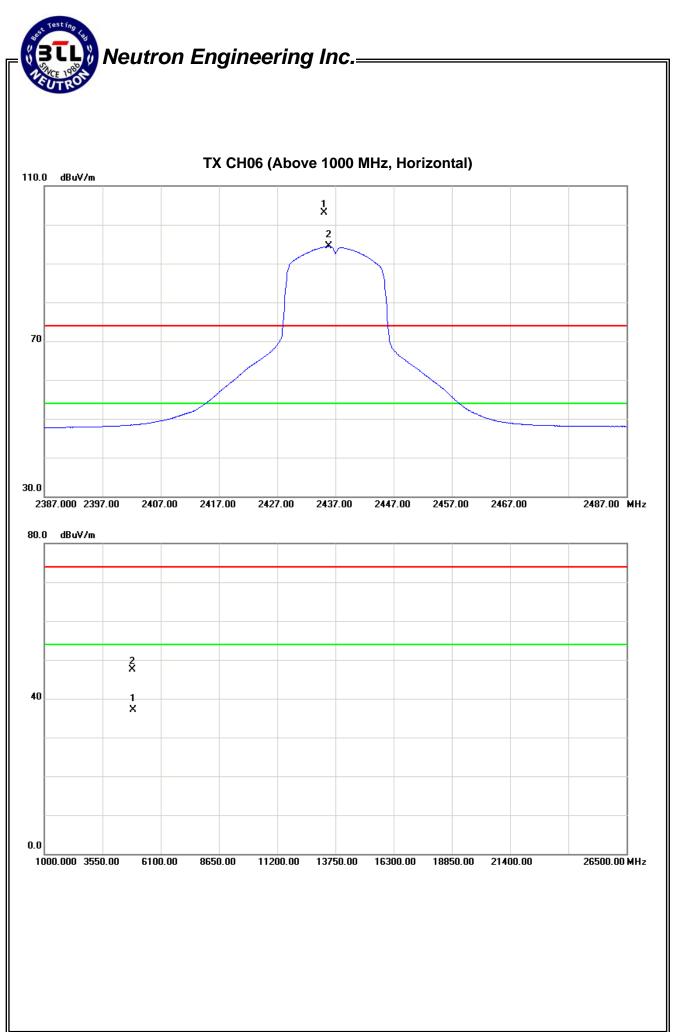
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2437MHz		

Freq.	Ant.Pol.	Reading Ant./C		Ant./CF	Act.		Limit		
rieq.	Ant.i 01.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2438.10	V	75.51	66.72	34.23	109.74	100.95			X/F
4874.93	V	42.06	31.26	6.58	48.64	37.84	74.00	54.00	X/H

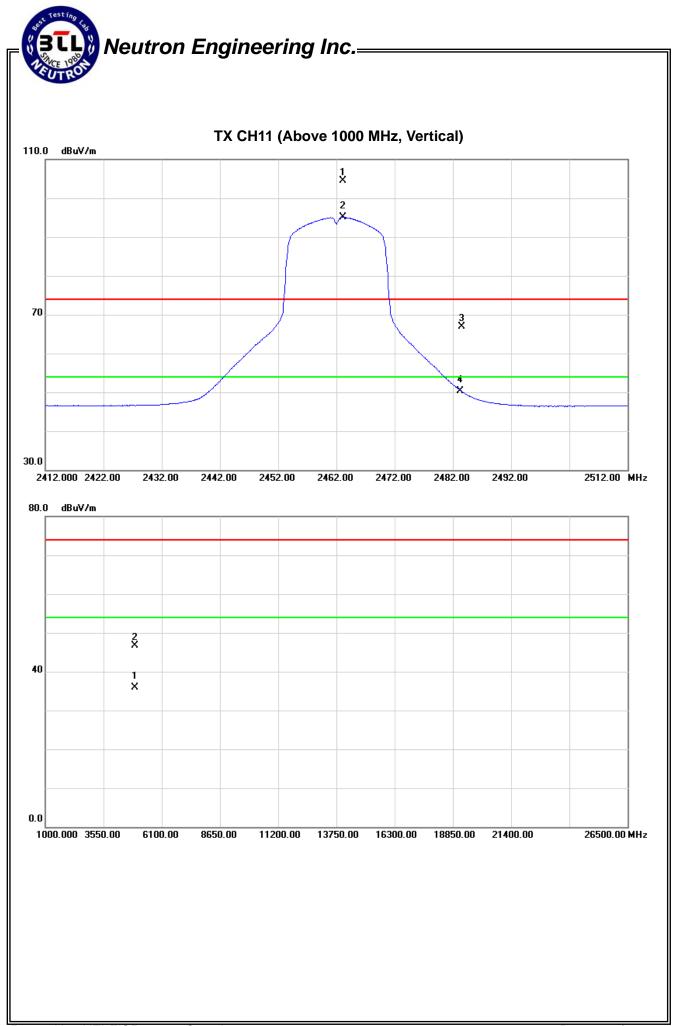
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2437MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
rieq.	Ant.i Oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2435.00	Н	68.95	60.18	34.23	103.18	94.41			X/F
4875.26	Н	40.82	30.46	6.60	47.42	37.06	74.00	54.00	X/H

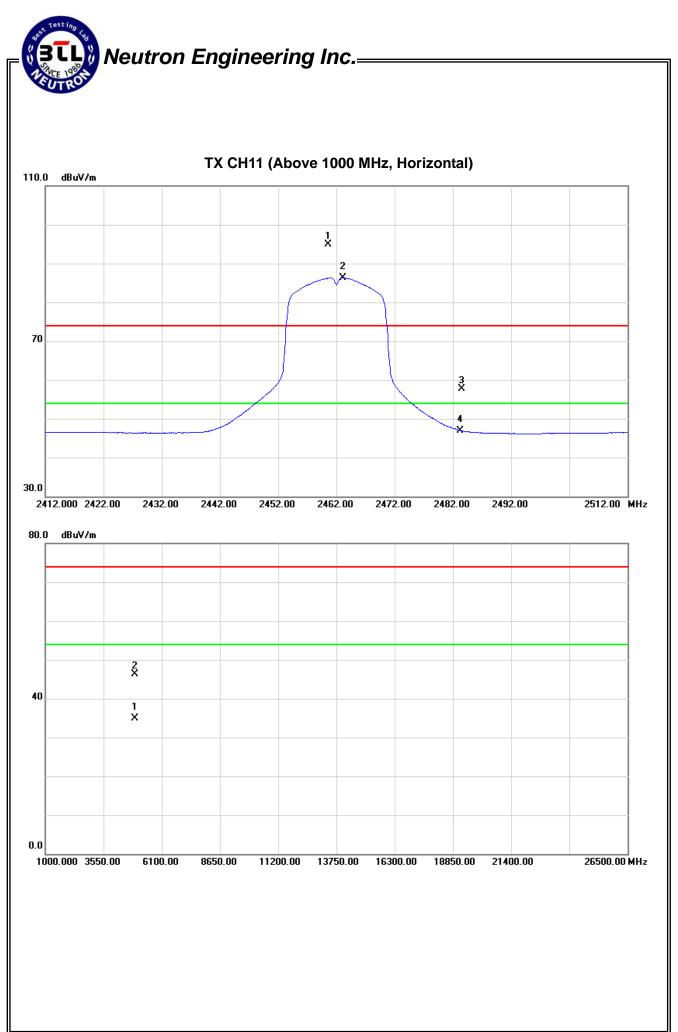
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2463.10	V	70.18	60.80	34.31	104.49	95.11			X/F
2483.50	V	32.54	15.89	34.37	66.91	50.26	74.00	54.00	X/E
4924.96	V	40.06	29.16	6.72	46.78	35.88	74.00	54.00	X/H

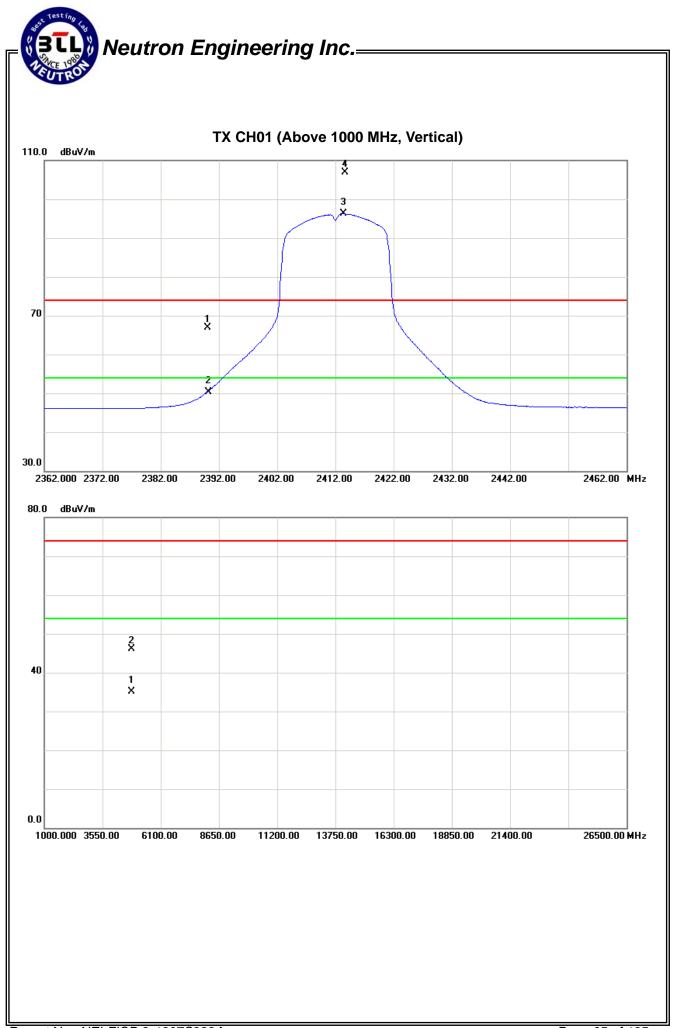
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2460.60	Н	60.63	52.01	34.30	94.93	86.31			X/F
2483.50	Н	23.33	12.58	34.37	57.70	46.95	74.00	54.00	X/E
4925.42	Н	39.60	28.12	6.74	46.34	34.86	74.00	54.00	X/H

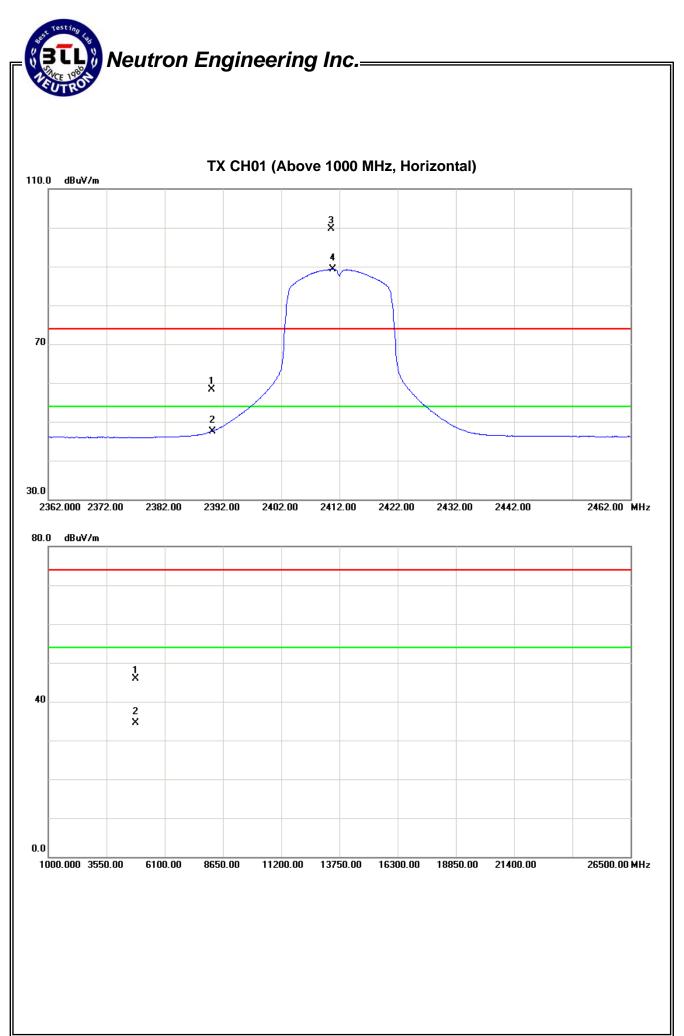
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	32.74	16.28	34.09	66.83	50.37	74.00	54.00	X/E
2413.70	V	72.68	62.12	34.16	106.84	96.28			X/F
4825.35	V	39.65	28.76	6.45	46.10	35.21	74.00	54.00	X/H

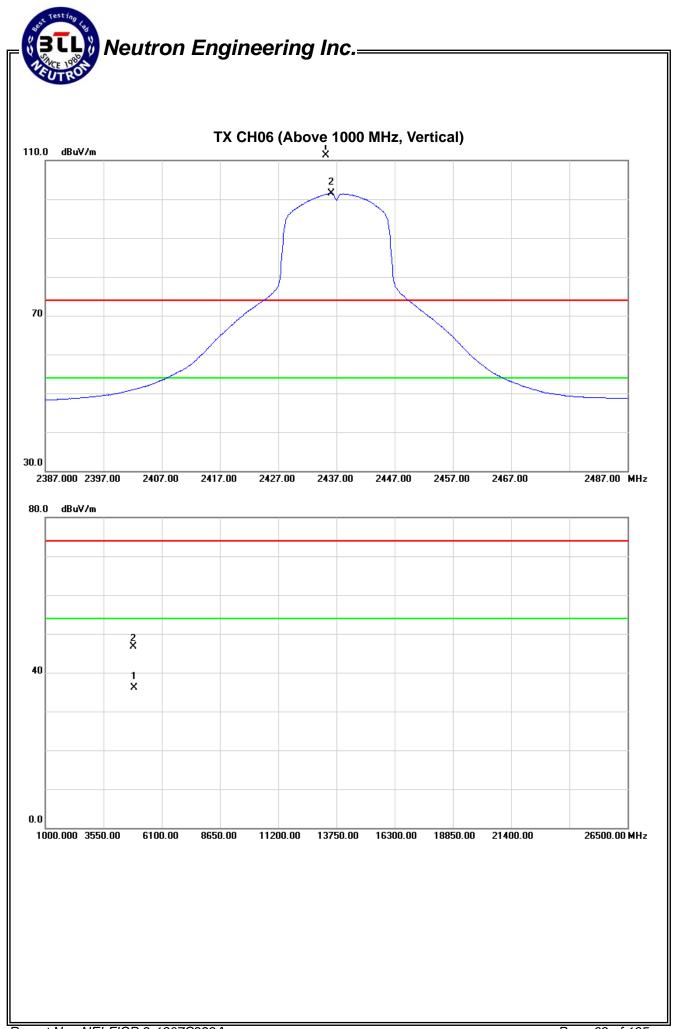
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	24.12	13.40	34.09	58.21	47.49	74.00	54.00	X/E
2410.60	Н	65.61	55.17	34.15	99.76	89.32			X/F
4822.92	Н	39.38	28.10	6.43	45.81	34.53	74.00	54.00	X/H

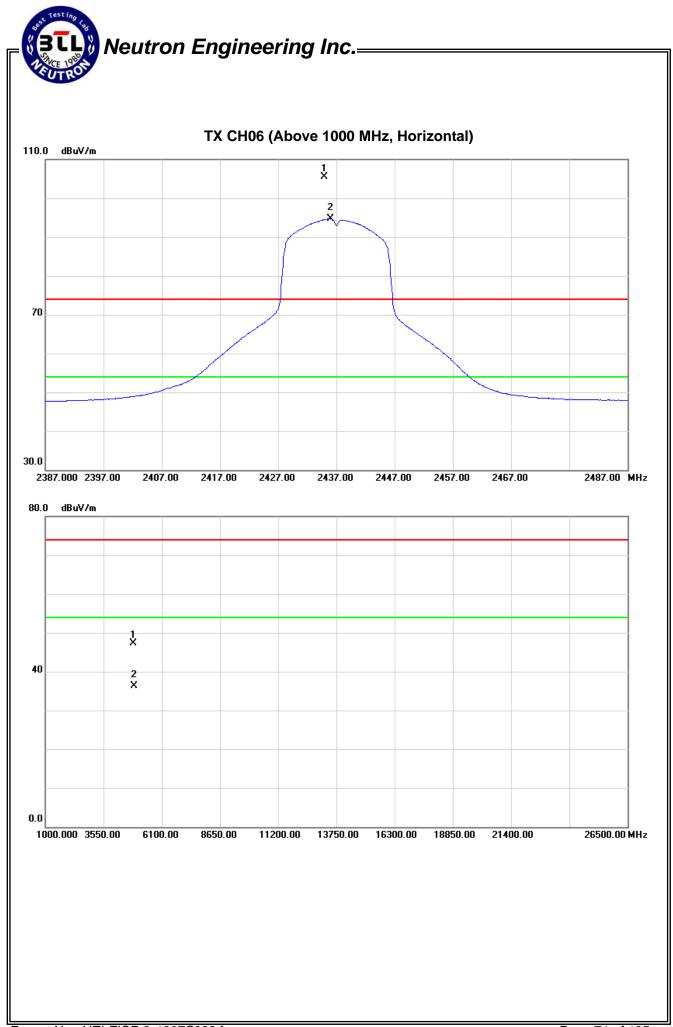
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2437MHz		

Freg.	Ant.Pol.	Reading Ant./CF		Ant./CF	Act.		Limit		
rieq.	Ant.i 01.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2435.20	V	77.17	67.20	34.23	111.40	101.43			X/F
4875.49	V	40.15	29.49	6.60	46.75	36.09	74.00	54.00	X/H

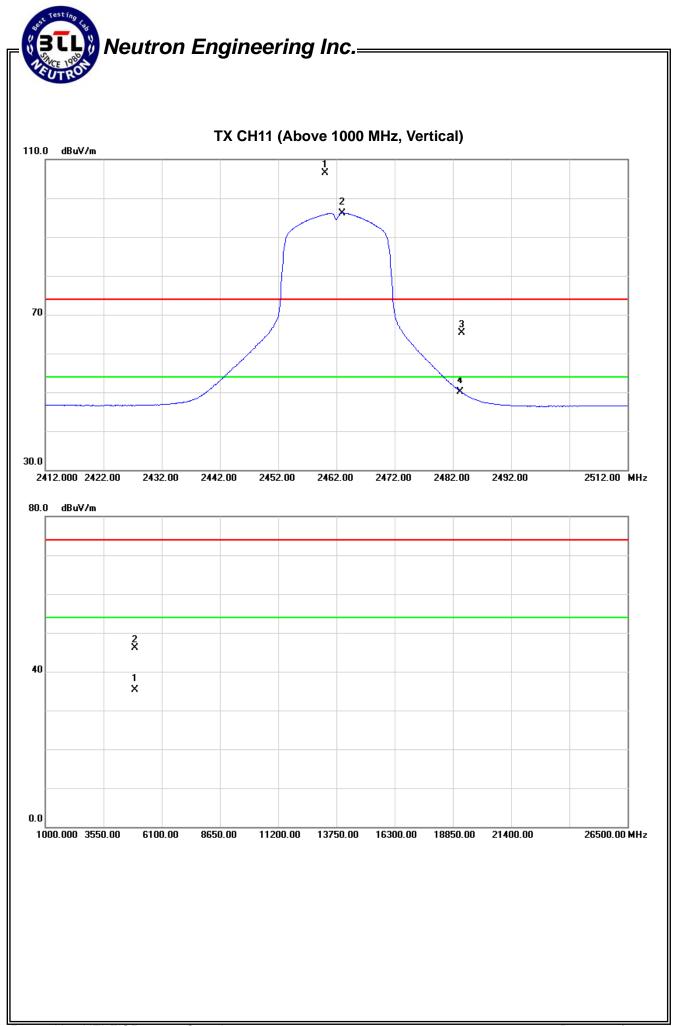
- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2437MHz		

Freq.	Ant.Pol.	Reading Ant./CF		Act.		Limit			
rieq.	Ant.i 01.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2434.90	H	71.21	60.48	34.23	105.44	94.71			X/F
4872.76	Н	40.65	29.75	6.58	47.23	36.33	74.00	54.00	X/H

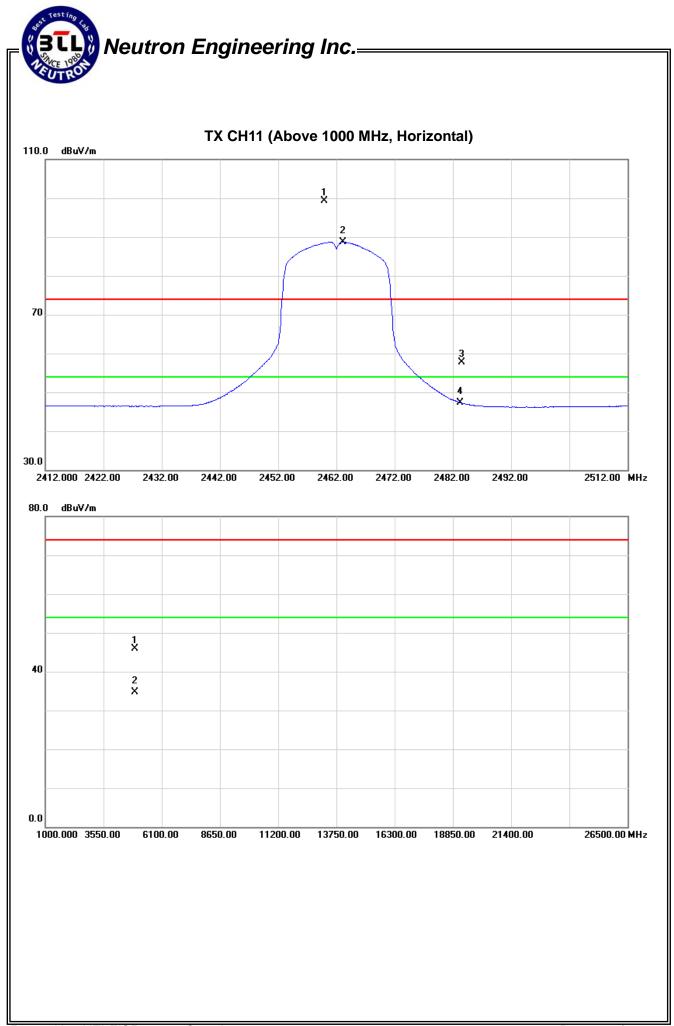
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2462MHz	·	

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2460.10	V	72.20	61.89	34.30	106.50	96.19			X/F
2483.50	V	30.87	15.67	34.37	65.24	50.04	74.00	54.00	X/E
4925.65	V	39.27	28.49	6.74	46.01	35.23	74.00	54.00	X/H

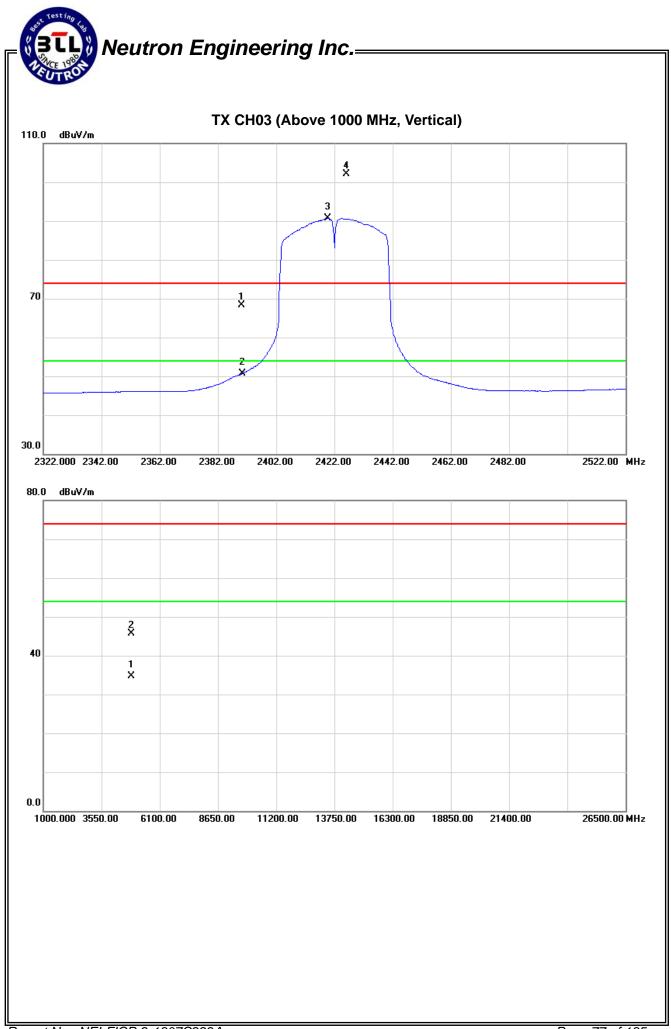
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-20M MODE 2462MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2459.90	Н	64.97	54.42	34.30	99.27	88.72			X/F
2483.50	Н	23.38	12.83	34.37	57.75	47.20	74.00	54.00	X/E
4922.95	Н	39.15	28.05	6.72	45.87	34.77	74.00	54.00	X/H

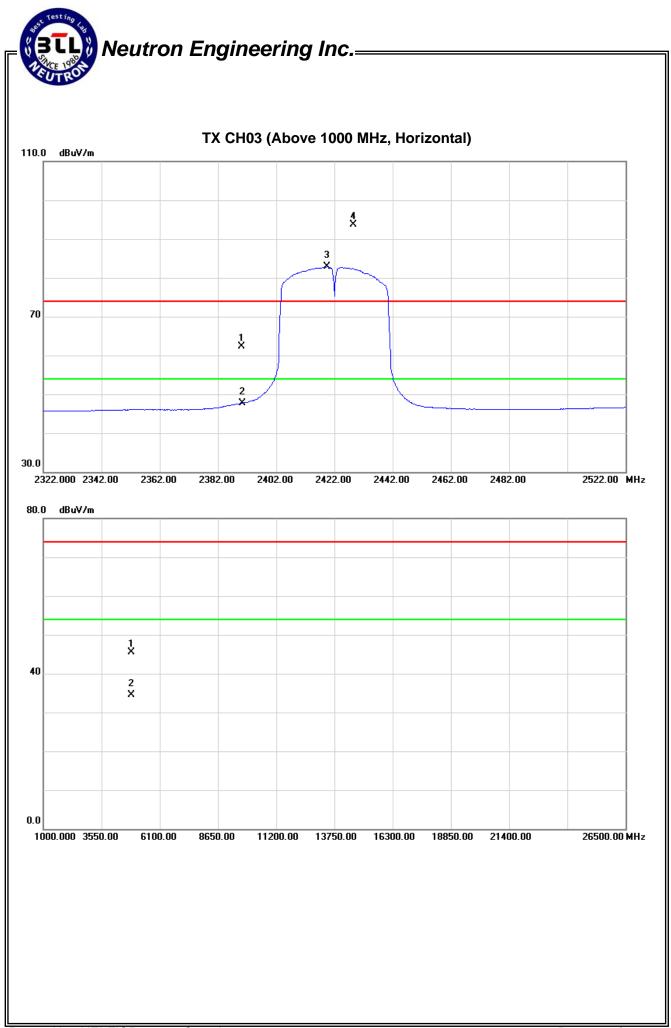
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2422MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	34.15	16.53	34.09	68.24	50.62	74.00	54.00	X/E
2426.20	V	67.96	56.47	34.20	102.16	90.67			X/F
4845.62	V	39.20	28.17	6.50	45.70	34.67	74.00	54.00	X/H

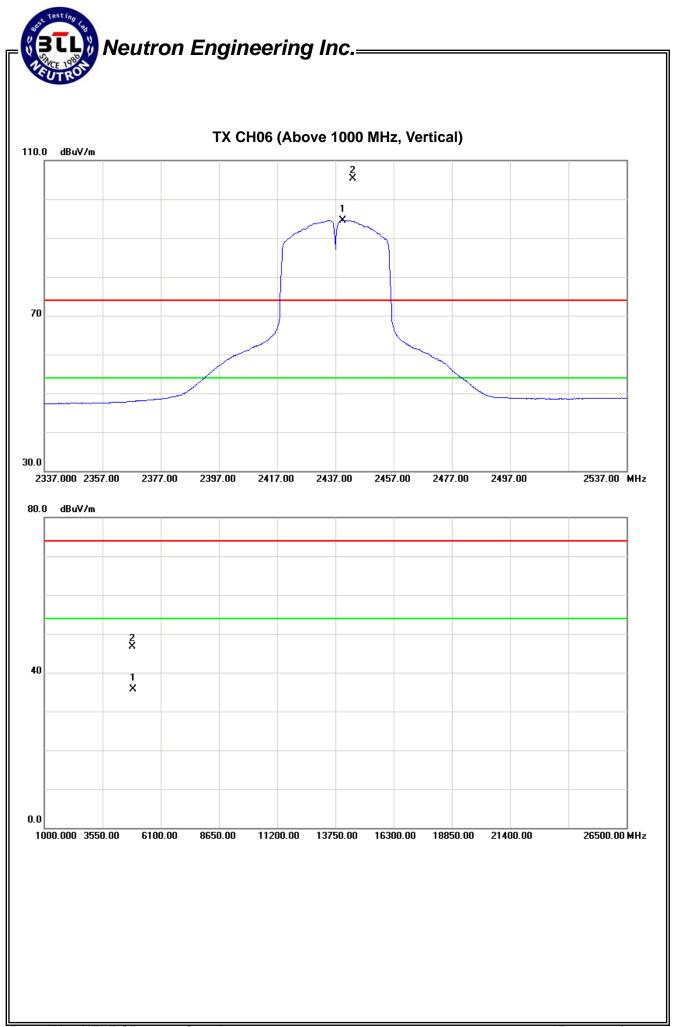
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2422MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	28.23	13.56	34.09	62.32	47.65	74.00	54.00	X/E
2428.60	Н	59.54	48.69	34.21	93.75	82.90			X/F
4843.22	Н	39.08	28.00	6.50	45.58	34.50	74.00	54.00	X/H

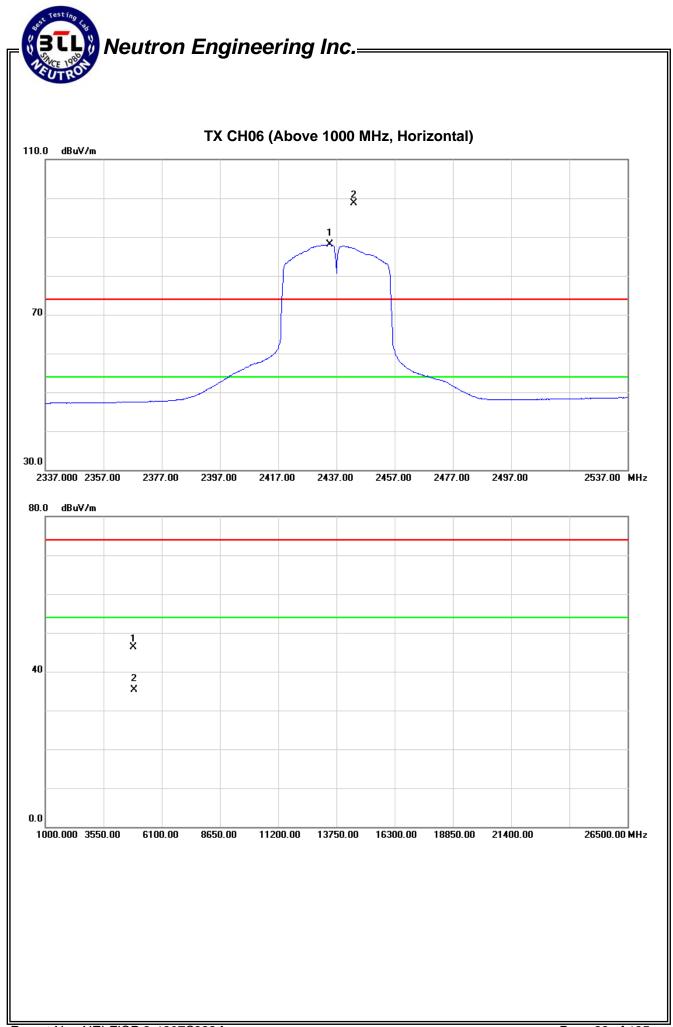
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2437MHz		

Freg.	Ant.Pol.	Reading Ant./CF		Ant./CF	Act.		Limit		
rieq.	Ant.i OI.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2443.00	V	71.03	60.33	34.25	105.28	94.58			X/F
4874.96	V	40.09	29.05	6.58	46.67	35.63	74.00	54.00	X/H

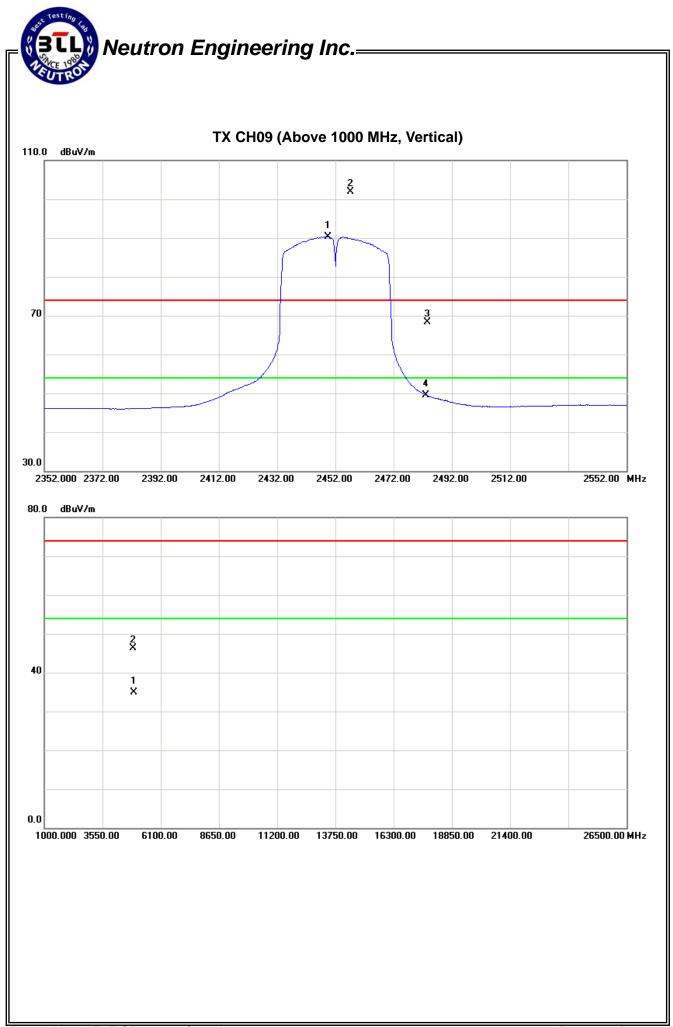
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2437MHz		

Freq.	Ant.Pol.	Reading Ar		Ant./CF	Act.		Limit		
i ieq.	Ant.r oi.	Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2443.00	Н	64.38	53.92	34.25	98.63	88.17			X/F
4872.85	Н	39.82	28.64	6.58	46.40	35.22	74.00	54.00	X/H

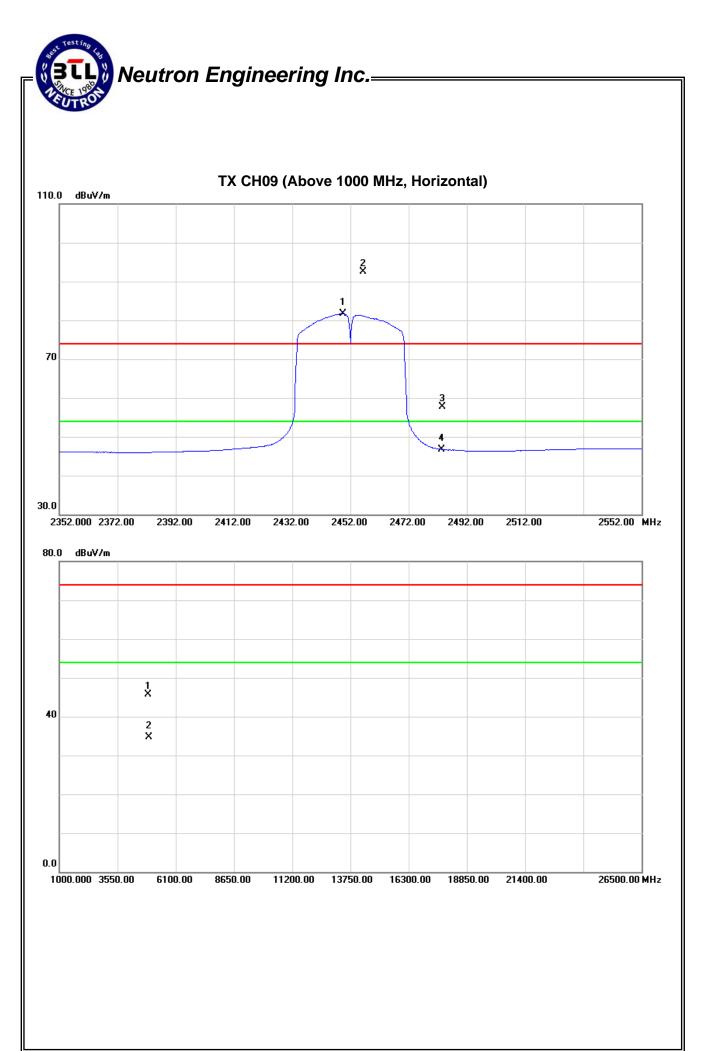
- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2452MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Lir		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2457.20	V	67.59	56.13	34.29	101.88	90.42			X/F
2483.50	V	33.87	15.05	34.37	68.24	49.42	74.00	54.00	X/E
4905.57	V	39.60	28.15	6.67	46.27	34.82	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	51 %
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE 2452MHz		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2456.40	Н	58.26	47.44	34.29	92.55	81.73			X/F
2483.50	Н	23.37	12.38	34.37	57.74	46.75	74.00	54.00	X/E
4902.94	Н	39.10	28.02	6.67	45.77	34.69	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

Neutron Engineering Inc.

5. BANDWIDTH TEST

5.1 Applied procedures

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-210				
Section Test Item Frequency Range (MHz) Result				
15.247(a)(2)				
RSS-GEN section 4.6.1	Bandwidth	2400-2483.5	PASS	
RSS-210 Annex 8 (A8.2(a))				

5.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

5.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

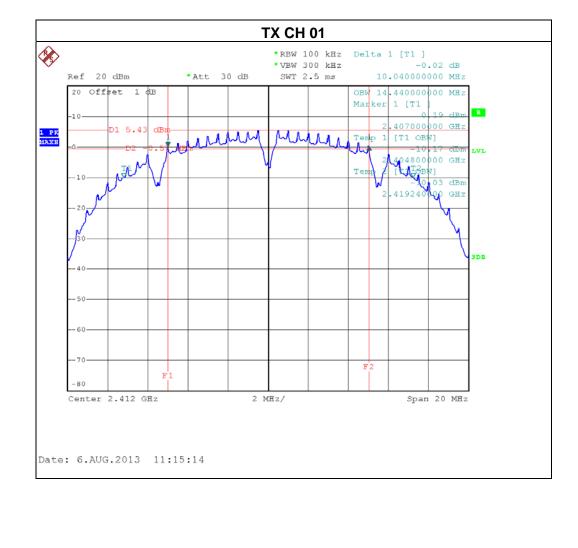
5.1.3 DEVIATION FROM STANDARD

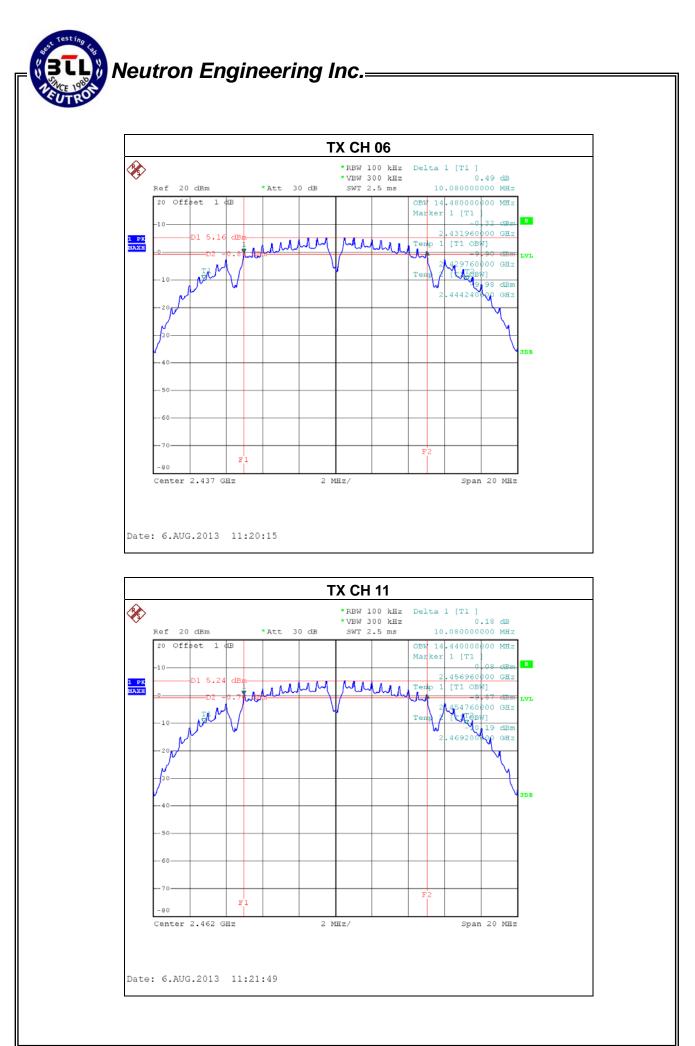
No deviation.

5.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.5 EUT OPERATION CONDITIONS

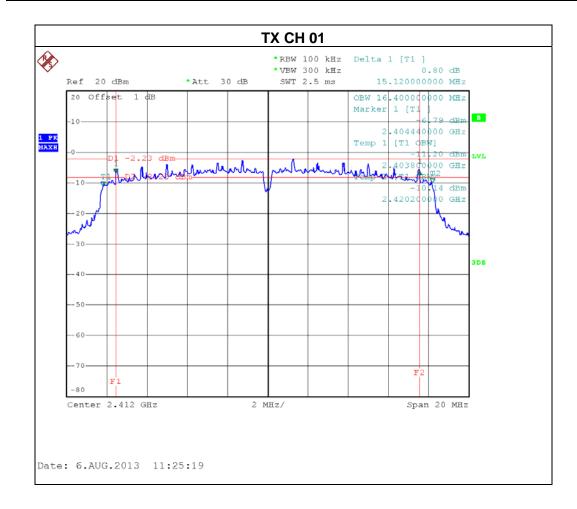

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

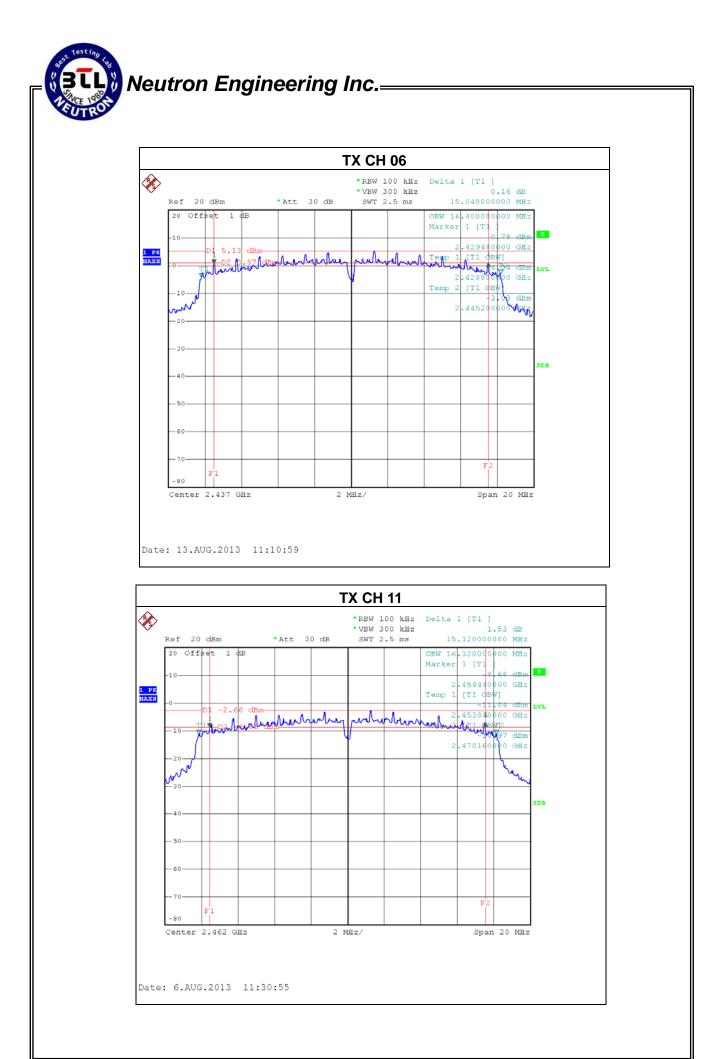


5.1.6 TEST RESULTS

EUT:	Tablet	Model Name. :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE /CH01, CH06, CH11		

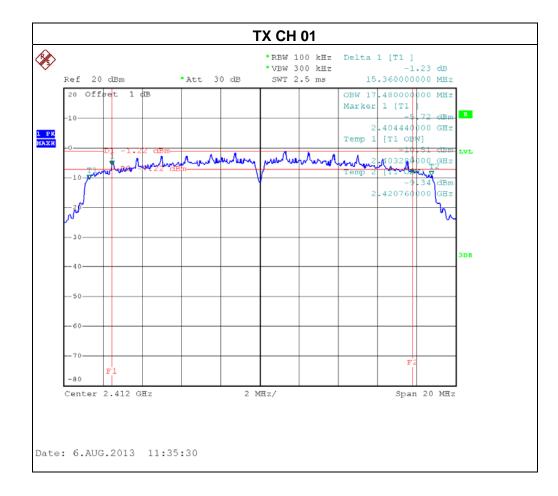
Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied Bandwith (MHz)	Result
CH01	2412	10.04	14.44	PASS
CH06	2437	10.08	14.48	PASS
CH11	2462	10.08	14.44	PASS

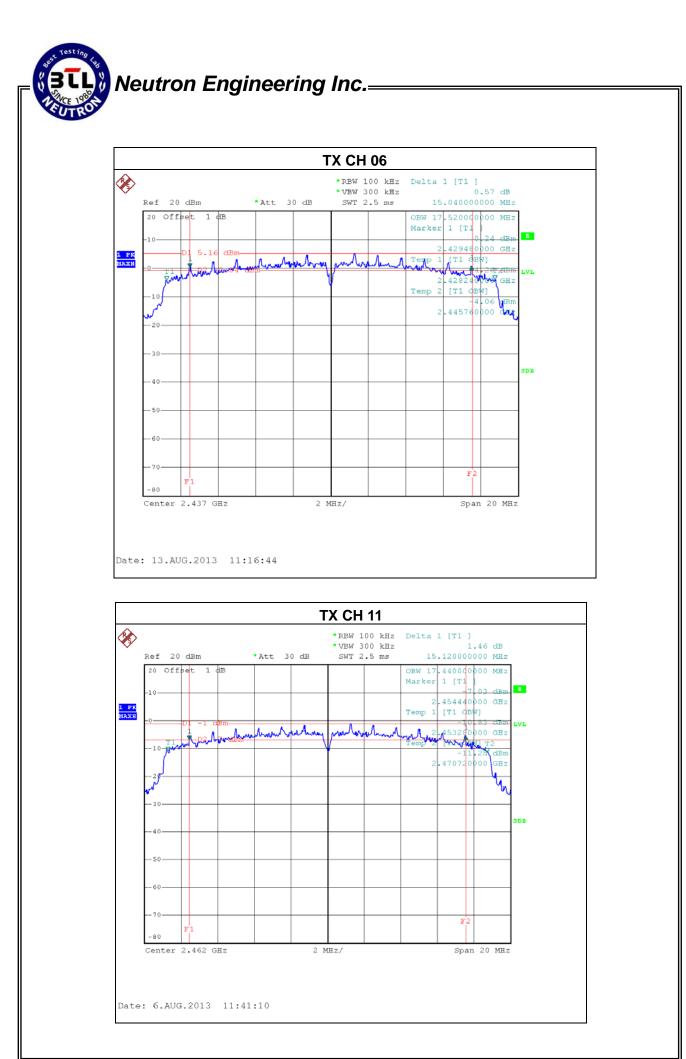



Report No.: NEI-FICP-2-1307C222A

EUT:	Tablet	Model Name. :	P1640	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX G MODE /CH01, CH06, CH11			

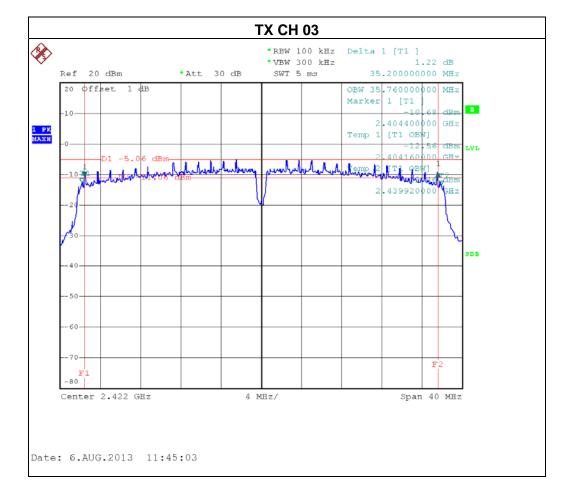
Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied Bandwith (MHz)	Result
CH01	2412	15.12	16.40	PASS
CH06	2437	15.04	16.40	PASS
CH11	2462	15.12	16.32	PASS

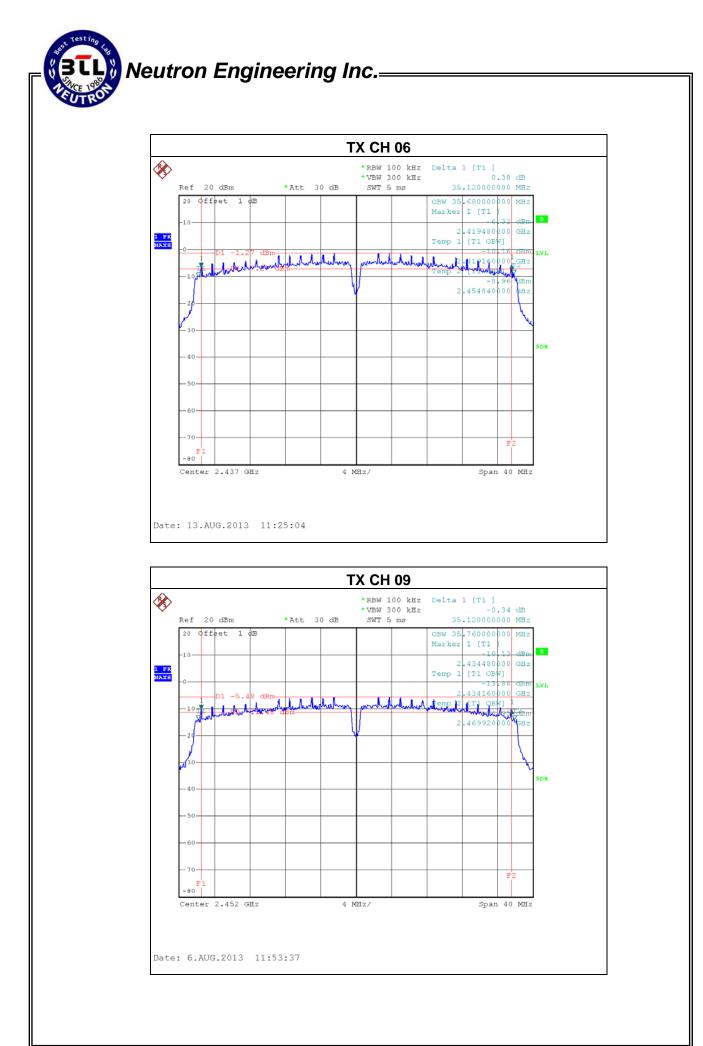



Report No.: NEI-FICP-2-1307C222A

EUT:	Tablet	Model Name. :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N MODE -20MHz/ CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied Bandwith (MHz)	Result
CH01	2412	15.36	17.48	PASS
CH06	2437	15.04	17.52	PASS
CH11	2462	15.12	17.44	PASS




Report No.: NEI-FICP-2-1307C222A

EUT:	Tablet	Model Name. :	P1640	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N MODE -40MHz/ CH03, CH06, CH09			

Test Channel	Frequency (MHz)	Bandwidth (MHz)	99% Occupied Bandwith (MHz)	Result
CH03	2422	35.20	35.76	PASS
CH06	2437	35.12	35.68	PASS
CH09	2452	35.12	35.76	PASS

Report No.: NEI-FICP-2-1307C222A

Neutron Engineering Inc.=

6. MAXIMUM OUTPUT POWER TEST

6.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C/ RSS-210					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3) RSS-210 Annex 8.4(4)	Maximum Output Power	1 Watt or 30dBm	2400-2483.5	PASS	

6.1.1 MEASUREMENT INSTRUMENTS LIST

I	ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
	1	P-series Power meter	Agilent	N1911A	MY45100473	Apr. 25, 2014
	2	Wireband Power sensor	Agilent	N1921A	MY51100041	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

6.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.3 of FCC KDB 558074 D01 DTS Meas Guidance v03r01.

6.1.3 DEVIATION FROM STANDARD

No deviation.

6.1.4 TEST SETUP

EUT	

Power Meter

6.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.6 TEST RESULTS

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	AC 120V/60Hz	
Test Mode :	TX B MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH01	2412	17.47	30	1
CH06	2437	17.79	30	1
CH11	2462	17.62	30	1

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	AC 120V/60Hz	
Test Mode :	TX G MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH01	2412	13.16	30	1
CH06	2437	21.83	30	1
CH11	2462	12.40	30	1

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	AC 120V/60Hz	
Test Mode :	TX N-20M MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH01	2412	13.88	30	1
CH06	2437	22.06	30	1
CH11	2462	16.87	30	1

EUT:	Tablet	Model Name :	P1640	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1016 hPa	016 hPa Test Voltage :		
Test Mode :	TX N-40M MODE /CH03, CH06, CH09			

Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Limit (Watt)
CH03	2422	15.56	30	1
CH06	2437	19.54	30	1
CH09	2452	15.15	30	1

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 Applied procedures / limit

20dB in any 100 KHz bandwidth outside the operating frequency band, In case the emission fall within the restricted band specified on 15.205(a) & RSS-210 section 2.2& Annex 8 (A8.5), then the 15.209(a) & RSS-GEN limit in the table below has to be followed.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3 meters)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

7.1.1 MEASUREMENT INSTRUMENTS LIST

ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

7.1.2 TEST PROCEDURE

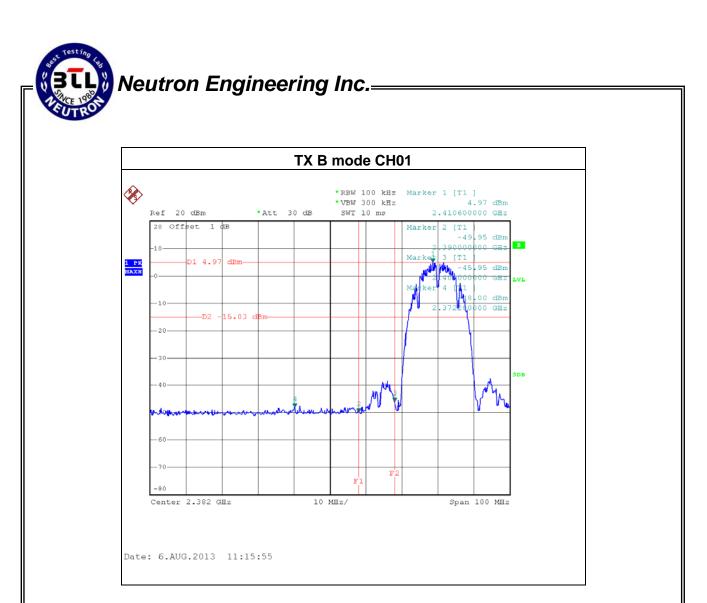
a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

7.1.3 DEVIATION FROM STANDARD

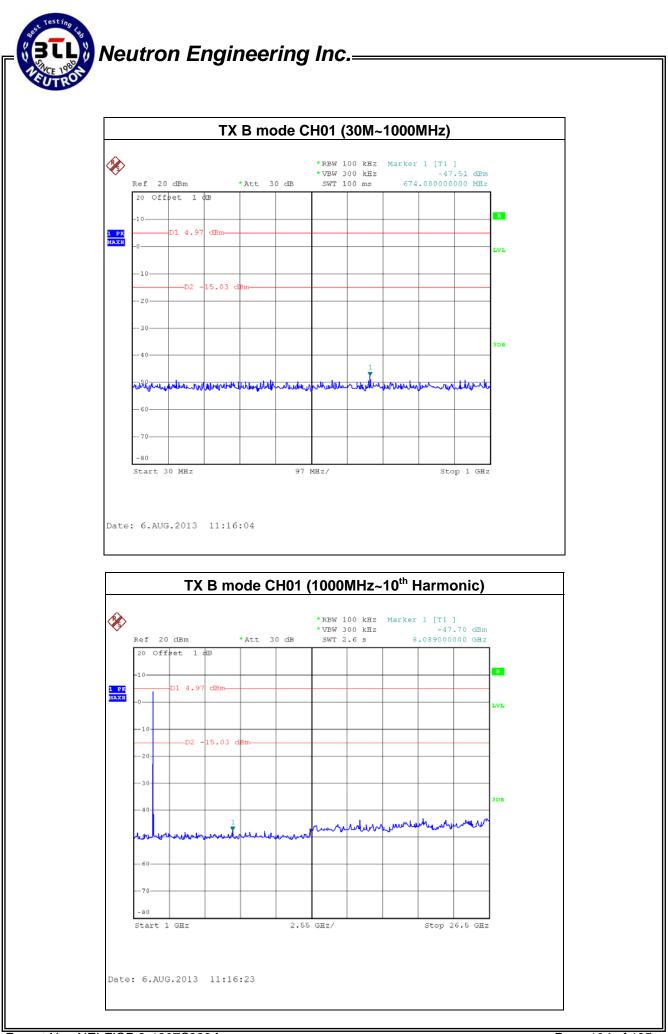
No deviation.

TEST SETUP	
EUT	ANALYZER
EUT OPERATION COND	

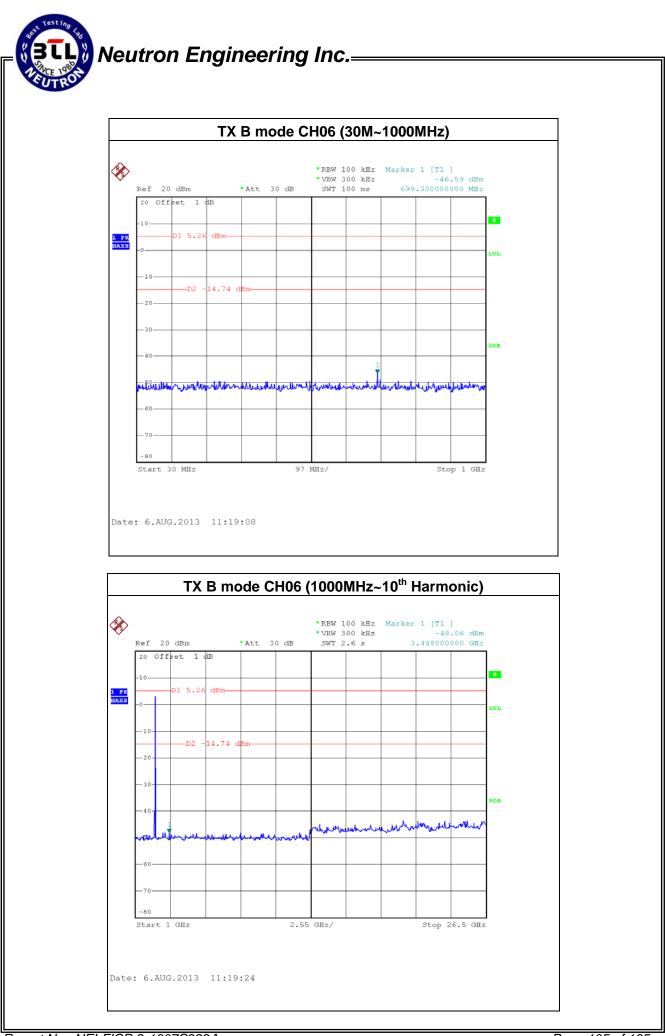


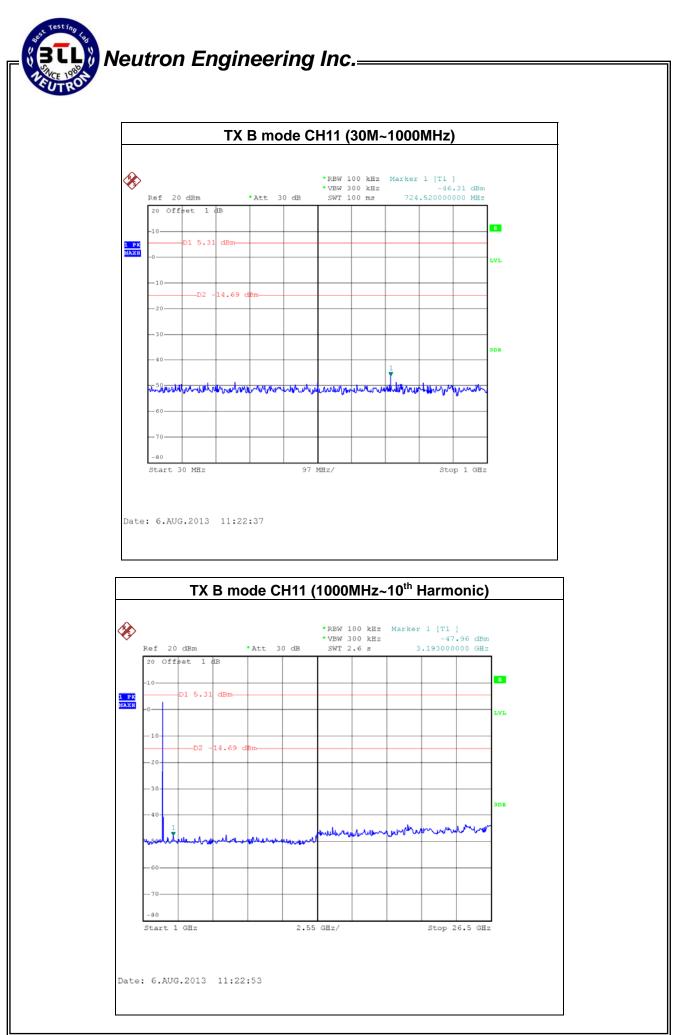

7.1.6 TEST RESULTS

EUT:	Tablet	Model Name :	P1640		
Temperature:	25 ℃	Relative Humidity:	58 %		
Pressure:	1016 hPa Test Voltage : AC 120V/60Hz				
Test Mode :	TX B MODE /CH01, CH06 , CH11				


Channel of Worst Data: CH01				
The max. radio frequent bandwidth outside		The max. radio frequency power in any 100 KHz bandwidth within the frequency band.		
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)	
2400.00	-45.95	2488.40	-48.19	
Result				

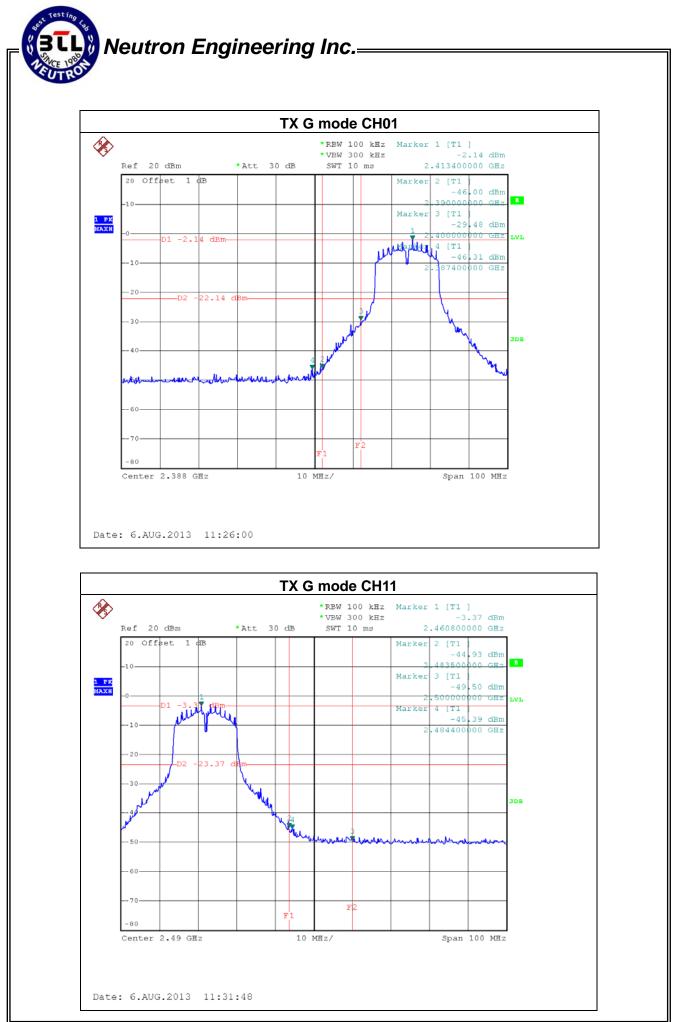
In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest lever of the desired power.

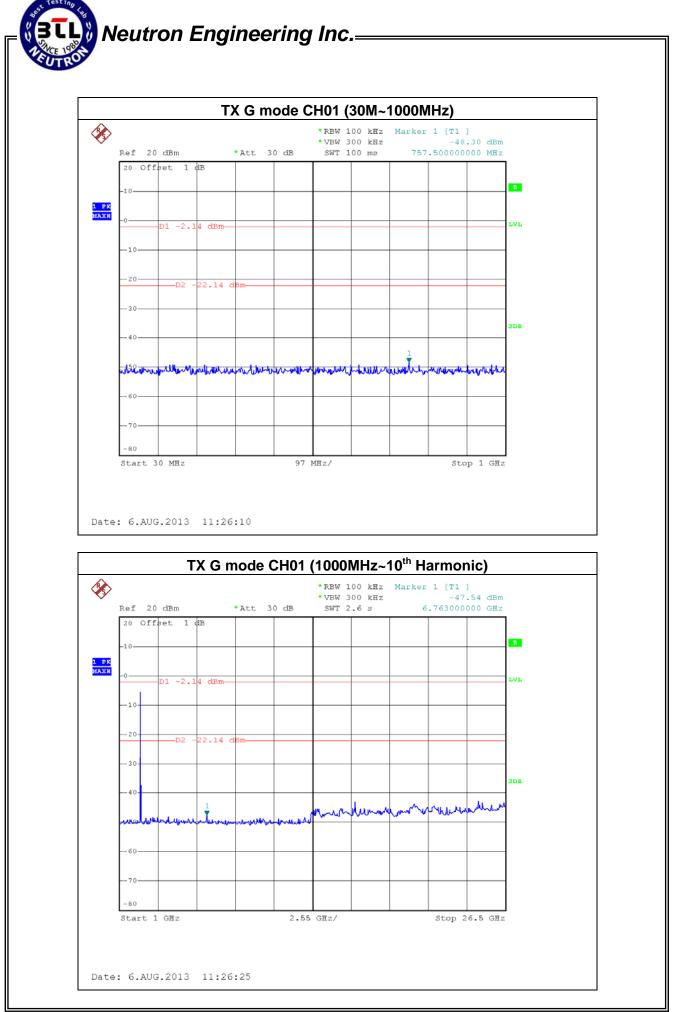



Report No.: NEI-FICP-2-1307C222A

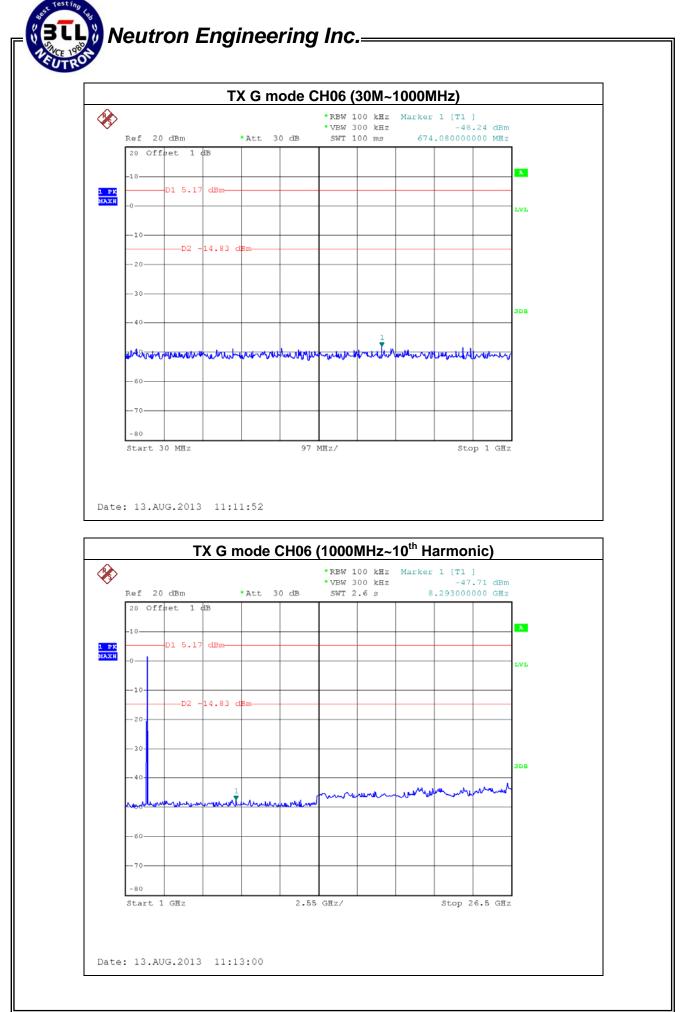
Report No.: NEI-FICP-2-1307C222A

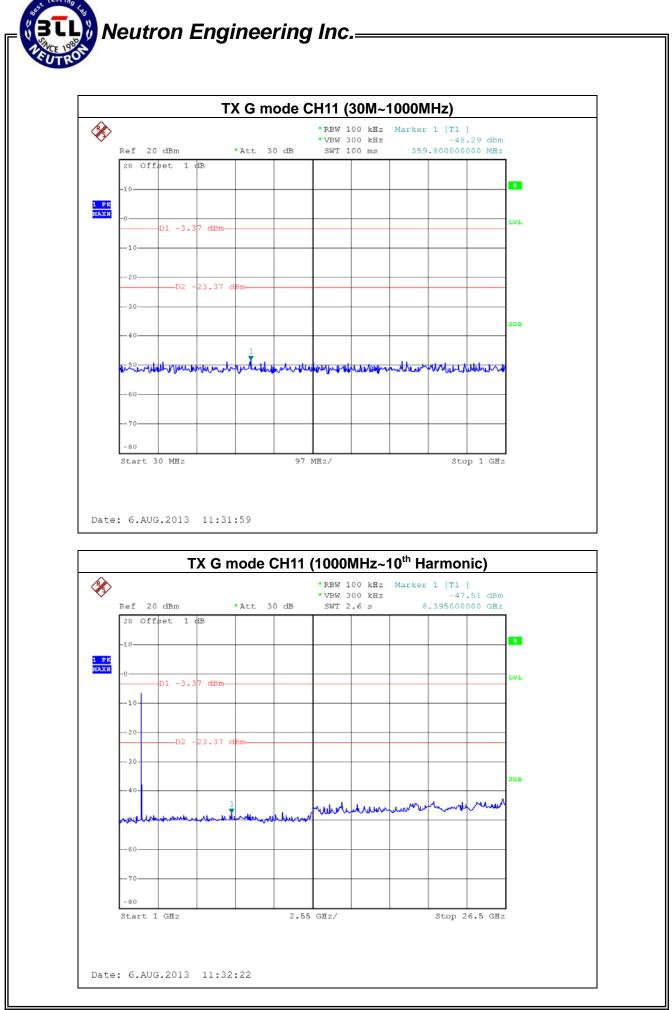
Report No.: NEI-FICP-2-1307C222A


Report No.: NEI-FICP-2-1307C222A


EUT:	Tablet	Model Name :	P1640		
Temperature:	25 °C	Relative Humidity:	58 %		
Pressure:	1016 hPa Test Voltage : AC 120V/60Hz				
Test Mode : TX G MODE / CH01, CH06 , CH11					

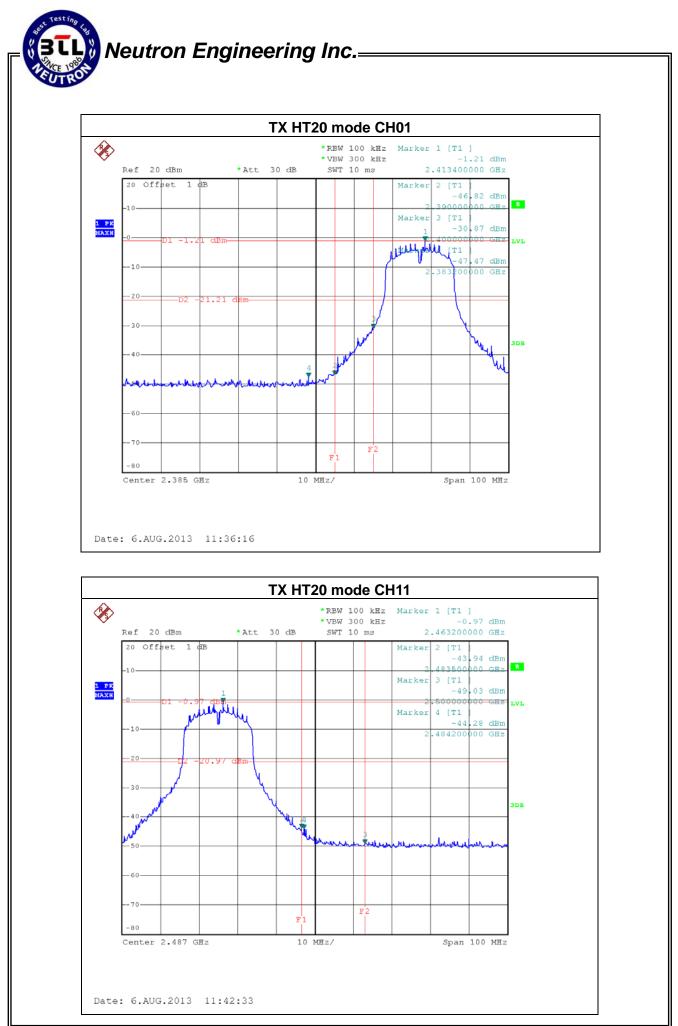
Channel of Worst Data: CH01				
The max. radio frequent bandwidth within the second		The max. radio frequency power in any 100 KHz bandwidth outside the frequency band.		
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)	
2400.00	-29.48	2483.50	-44.93	
Result				

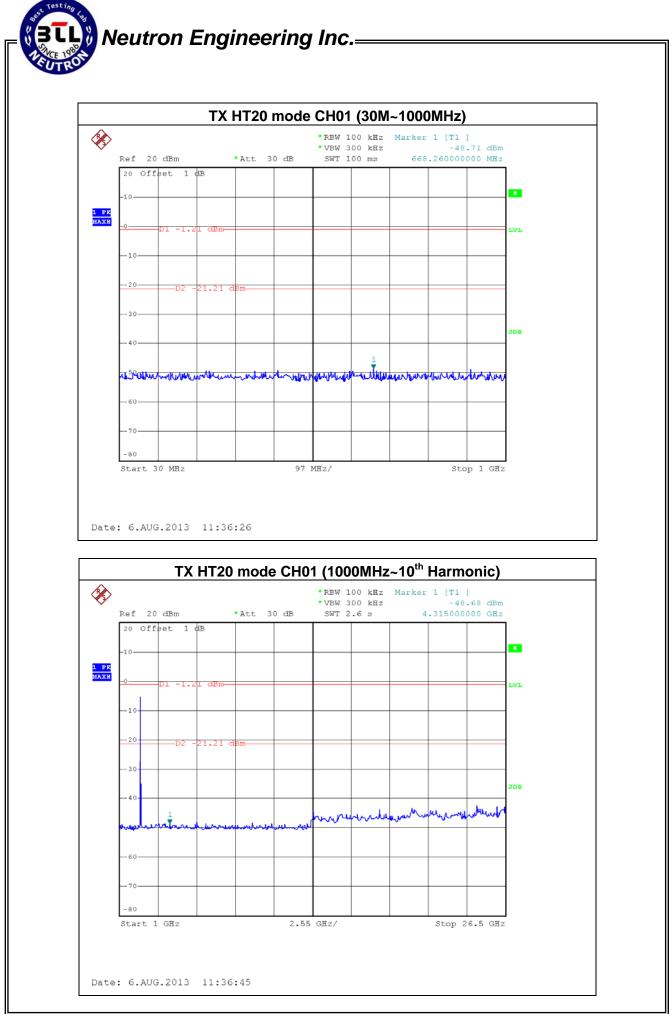

In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest lever of the desired power.


Report No.: NEI-FICP-2-1307C222A

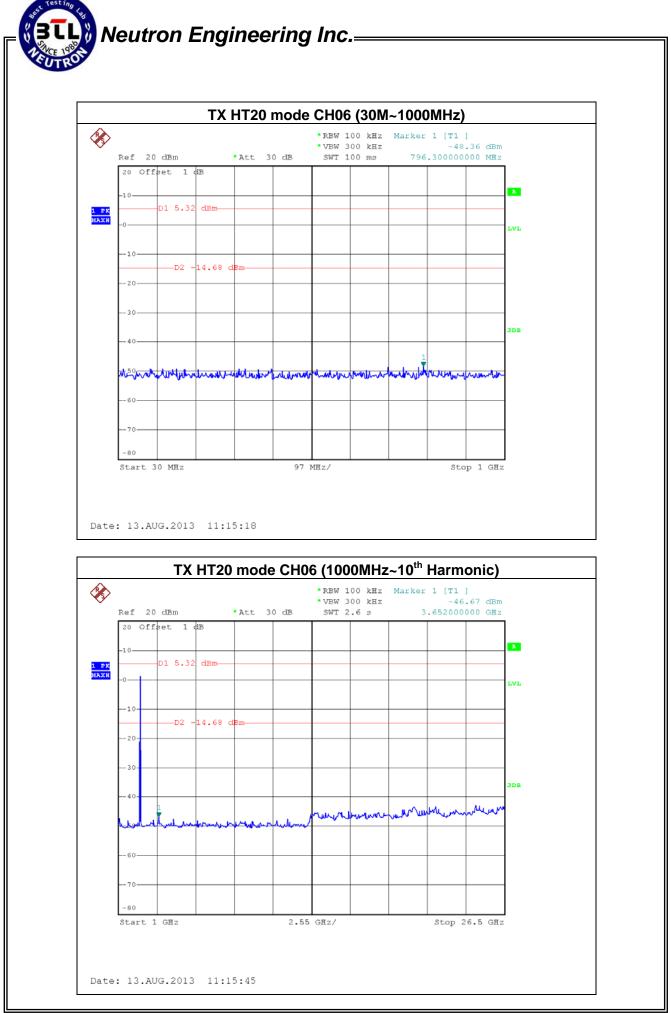
Report No.: NEI-FICP-2-1307C222A

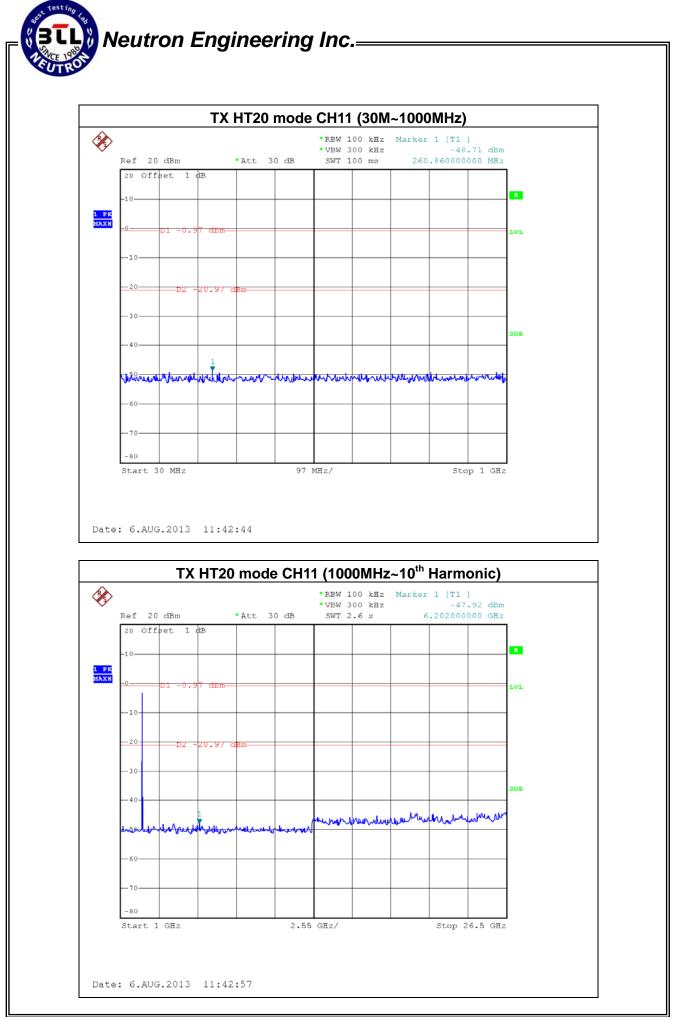
Report No.: NEI-FICP-2-1307C222A


Report No.: NEI-FICP-2-1307C222A


EUT:	Tablet	Model Name :	P1640	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N-20M MODE / CH01, CH06 , CH11			

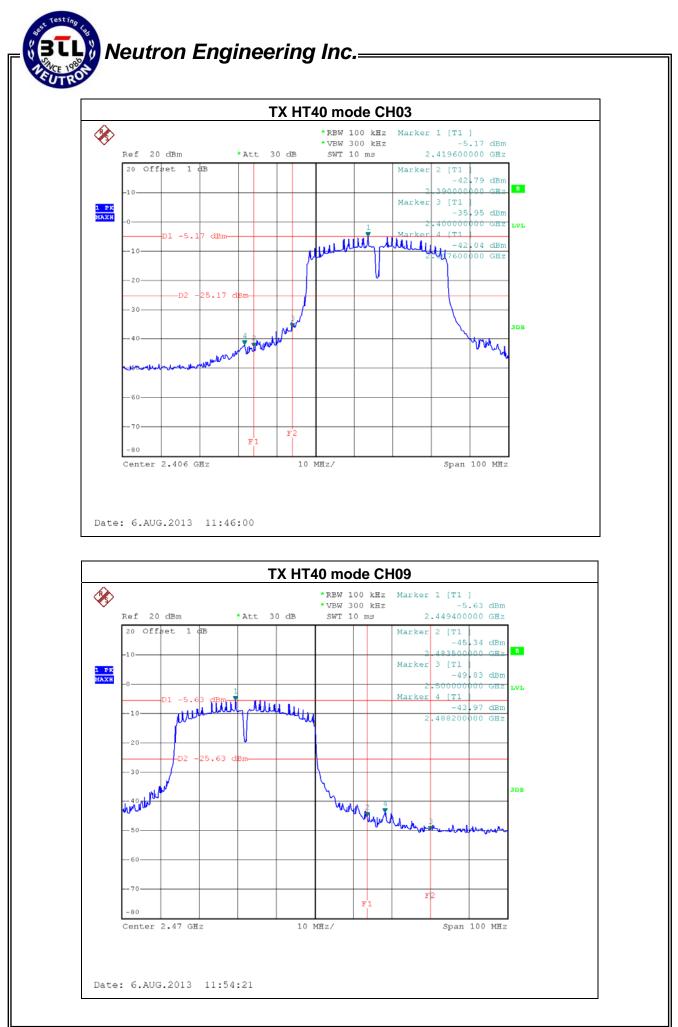
Channel of Worst Data: CH01					
The max. radio frequency power in any 100KHz The max. radio frequency power in any 100 KHz bandwidth within the frequency band.					
FREQUENCY(MHz) POWER(dBm) FREQUENCY(MHz) POWER(dBm)					
2400.00 -30.87 2483.50 -43.94					
	Re	sult			

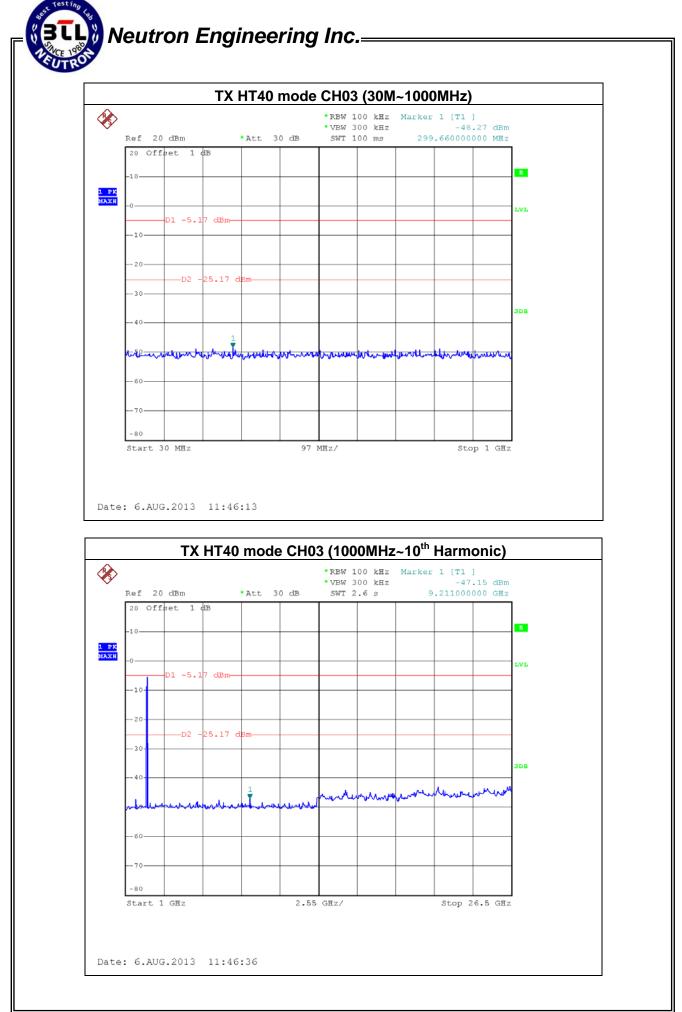

In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest lever of the desired power.


Report No.: NEI-FICP-2-1307C222A

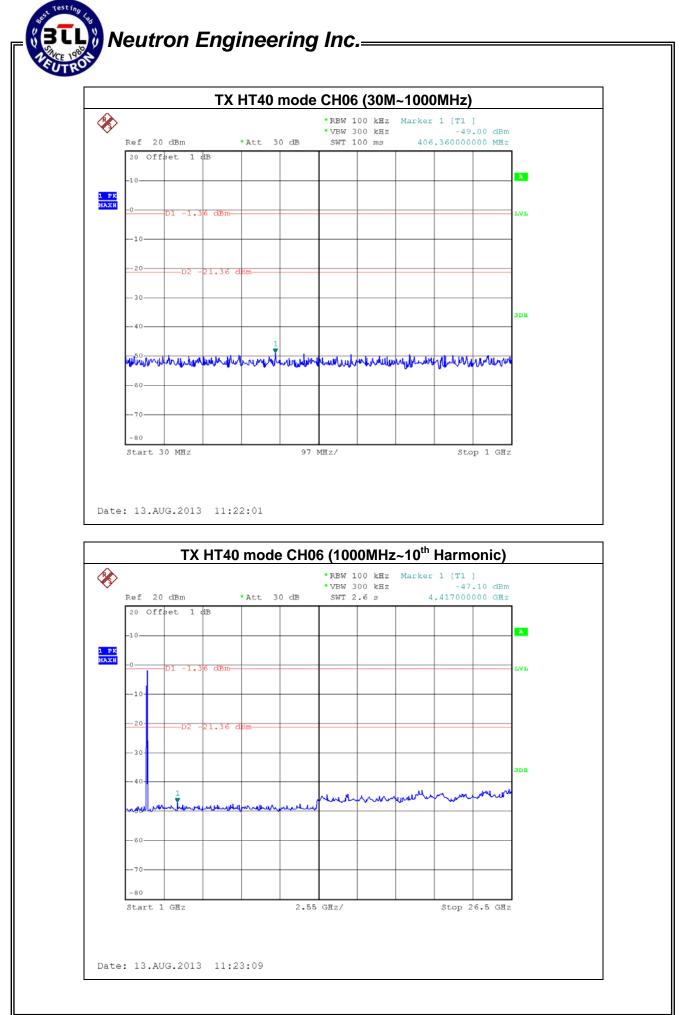
Report No.: NEI-FICP-2-1307C222A

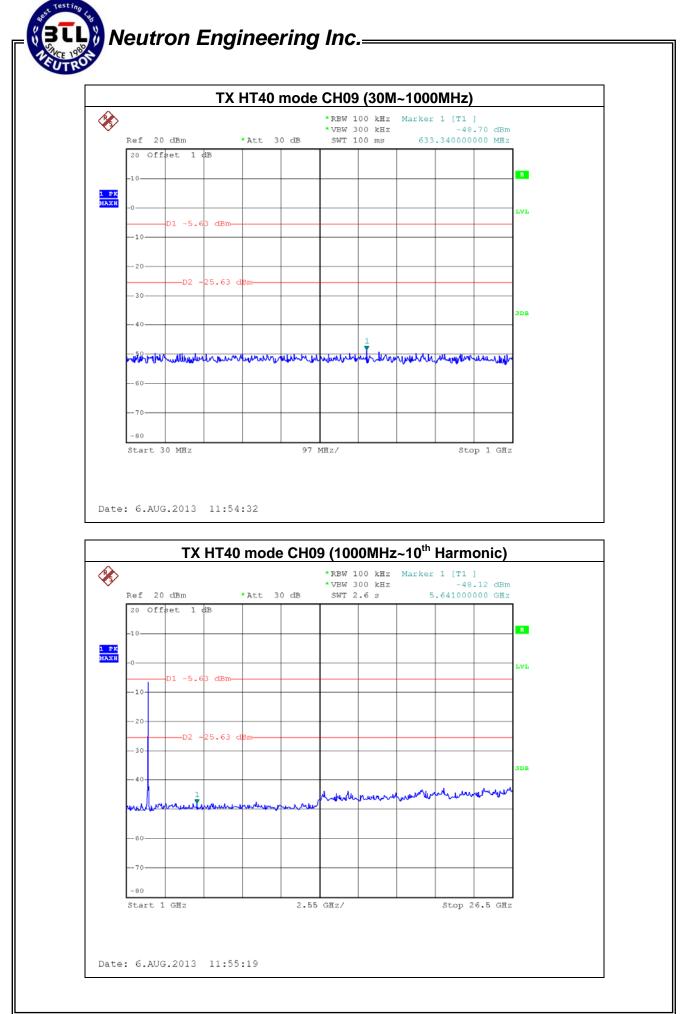
Report No.: NEI-FICP-2-1307C222A


Report No.: NEI-FICP-2-1307C222A


EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N-40M MODE / CH03, CH06 , CH09		

Channel of Worst Data: CH03					
The max. radio frequency power in any 100KHz The max. radio frequency power in any 100 KH bandwidth within the frequency band					
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)		
2400.00 -35.95 2488.20 -43.97					
	Result				


In any 100KHz bandwidth outside the frequency band, the radio frequency power is at least 20dB below that in the 100KHz bandwidth within the band that contains the highest lever of the desired power.


Report No.: NEI-FICP-2-1307C222A

Report No.: NEI-FICP-2-1307C222A

Report No.: NEI-FICP-2-1307C222A

Report No.: NEI-FICP-2-1307C222A

Neutron Engineering Inc.=

8. POWER SPECTRAL DENSITY TEST

8.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C / RSS-210				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(e) RSS-210 Annex 8(A8.2(b))	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

8.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 16, 2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

8.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

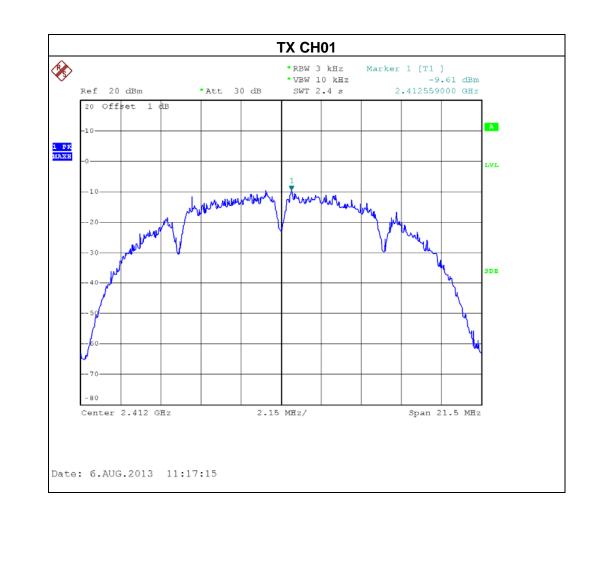
8.1.3 DEVIATION FROM STANDARD

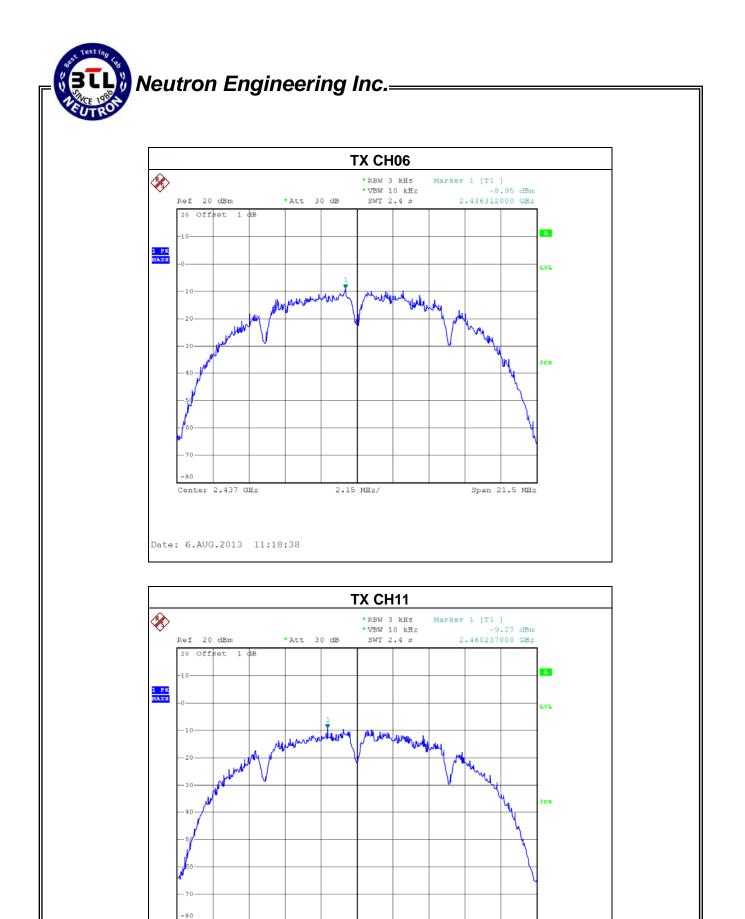
No deviation.

8.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.1.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.



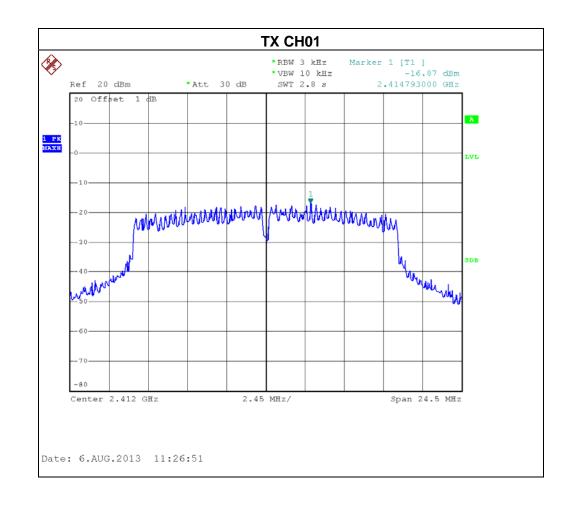
8.1.6 TEST RESULTS

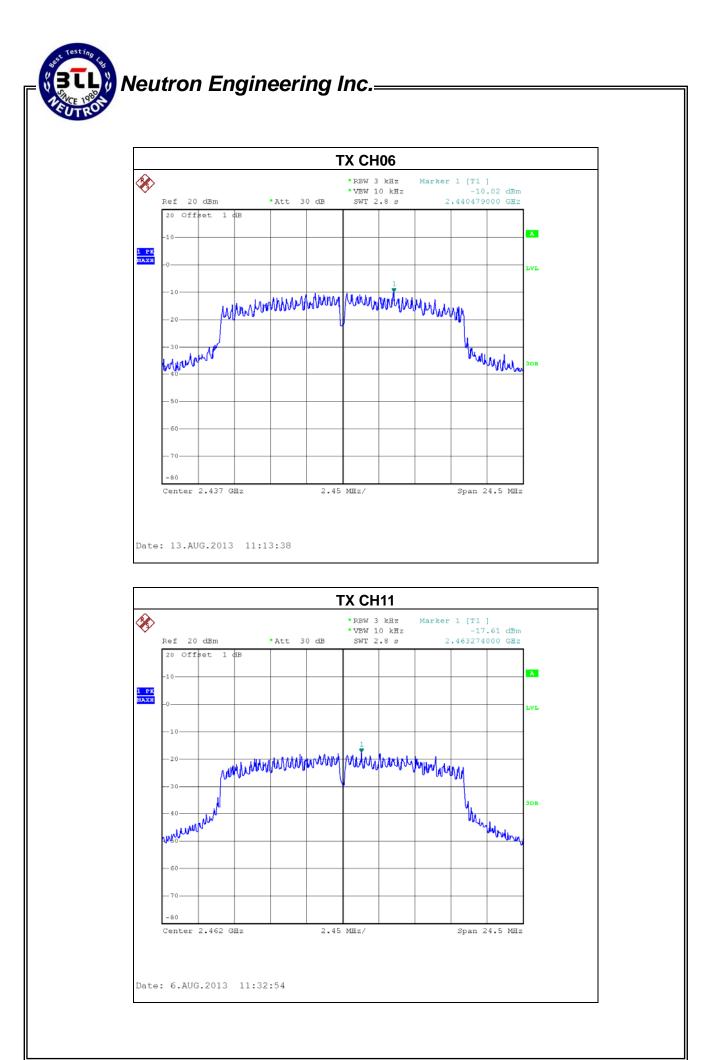
EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX B MODE /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Power Density (dBm)	Limit (dBm)
CH01	2412	-9.61	8
CH06	2437	-8.95	8
CH11	2462	-9.27	8

2.15 MHz/

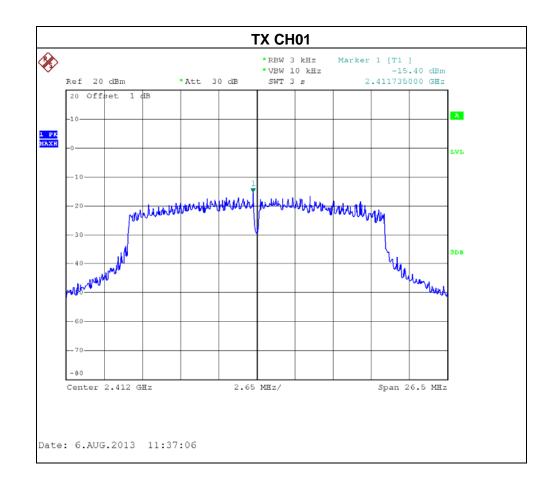
Span 21.5 MHz

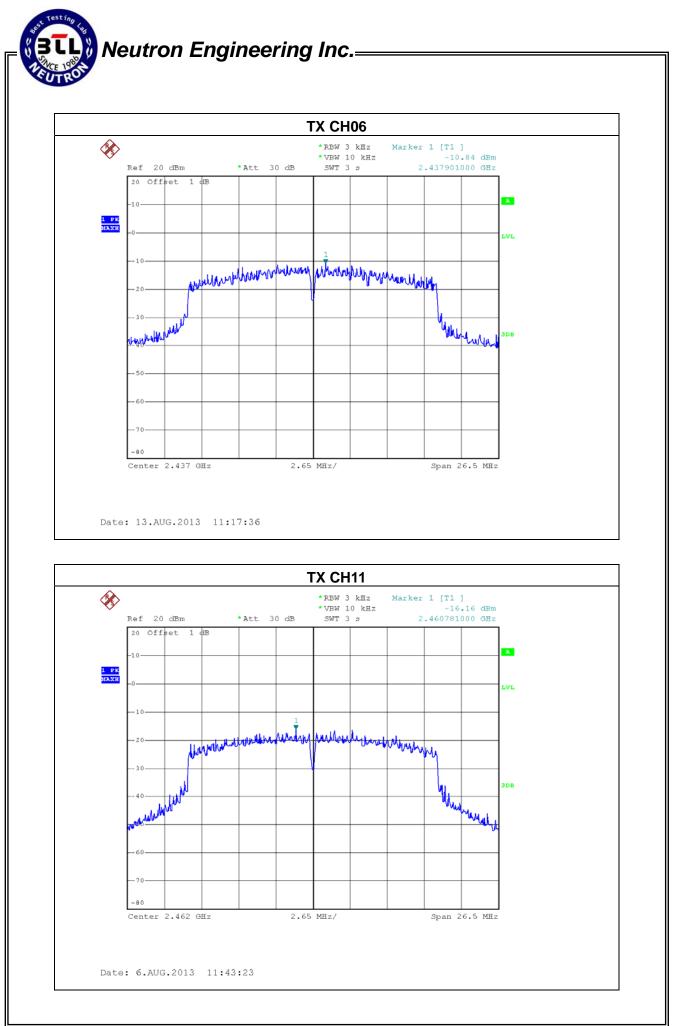

Center 2.462 GHz


Date: 6.AUG.2013 11:23:10

EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX G MODE /CH01, CH06, CH11		

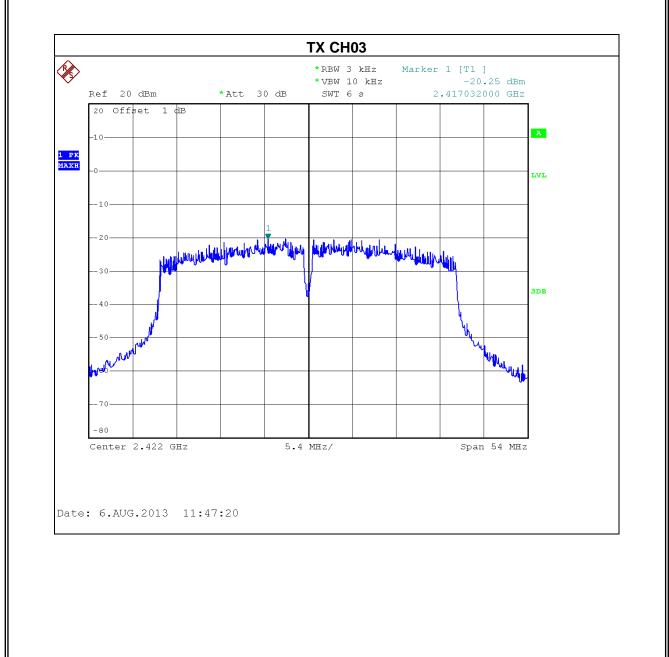
Test Channel	Frequency (MHz)	Power Density (dBm)	Limit (dBm)
CH01	2412	-16.87	8
CH06	2437	-10.02	8
CH11	2462	-17.61	8

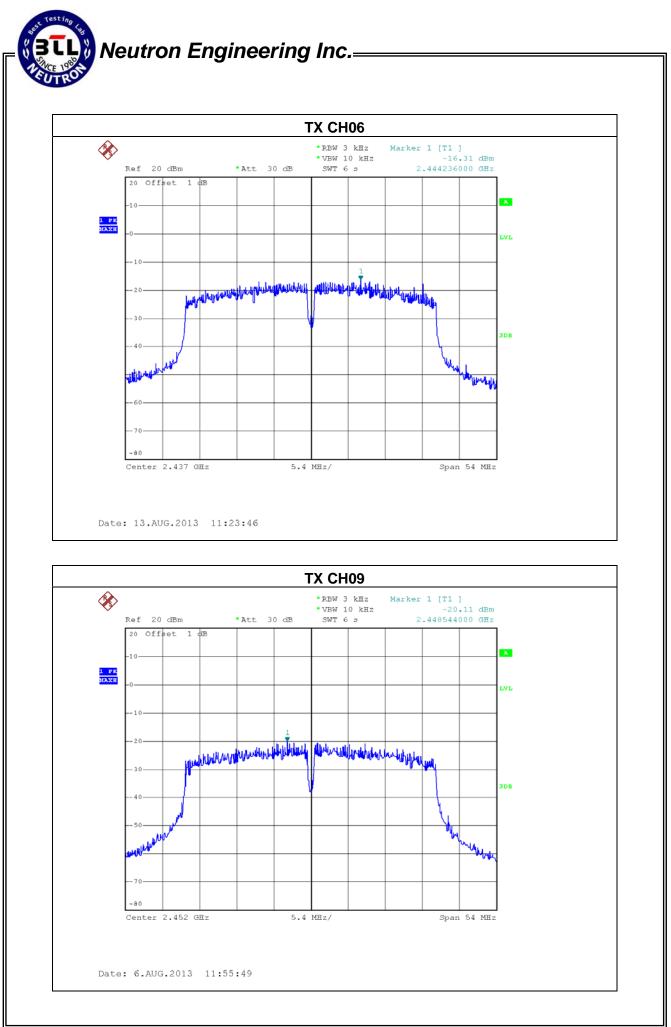




EUT:	Tablet	Model Name :	P1640
Temperature:	25 ℃	Relative Humidity:	58 %
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX N MODE-20MHz /CH01, CH06, CH11		

Test Channel	Frequency (MHz)	Power Density (dBm)	Limit (dBm)
CH01	2412	-15.40	8
CH06	2437	-10.84	8
CH11	2462	-16.16	8




Report No.: NEI-FICP-2-1307C222A

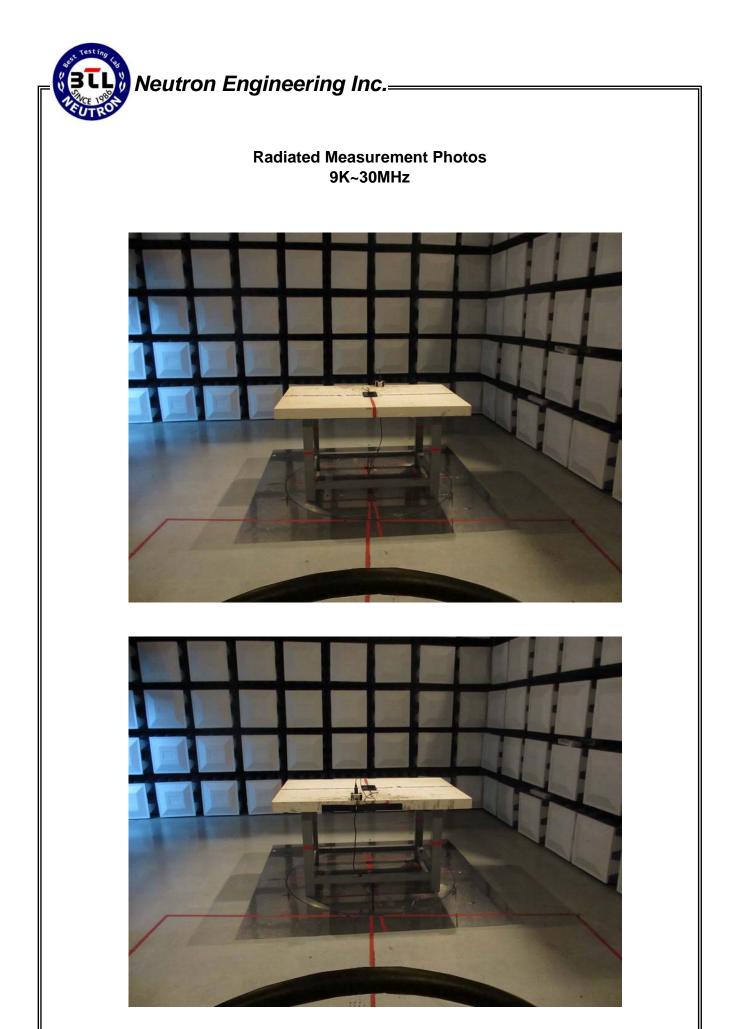
EUT:	Tablet	Model Name :	P1640	
Temperature:	25 ℃	Relative Humidity:	58 %	
Pressure:	1016 hPa	Test Voltage :	AC 120V/60Hz	
Test Mode :	TX N MODE-40MHz /CH03, CH06, CH09			

Test Channel	Frequency (MHz)	Power Density (dBm)	Limit (dBm)
CH03	2422	-20.25	8
CH06	2437	-16.31	8
CH09	2452	-20.11	8

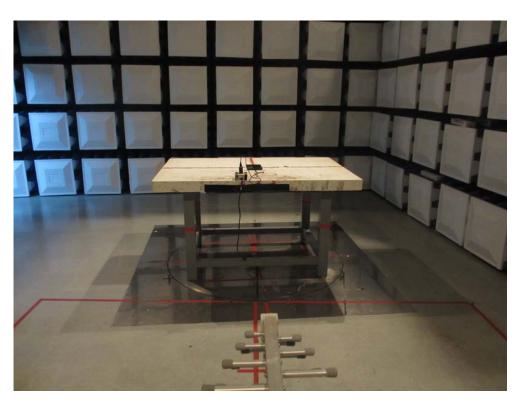
Report No.: NEI-FICP-2-1307C222A

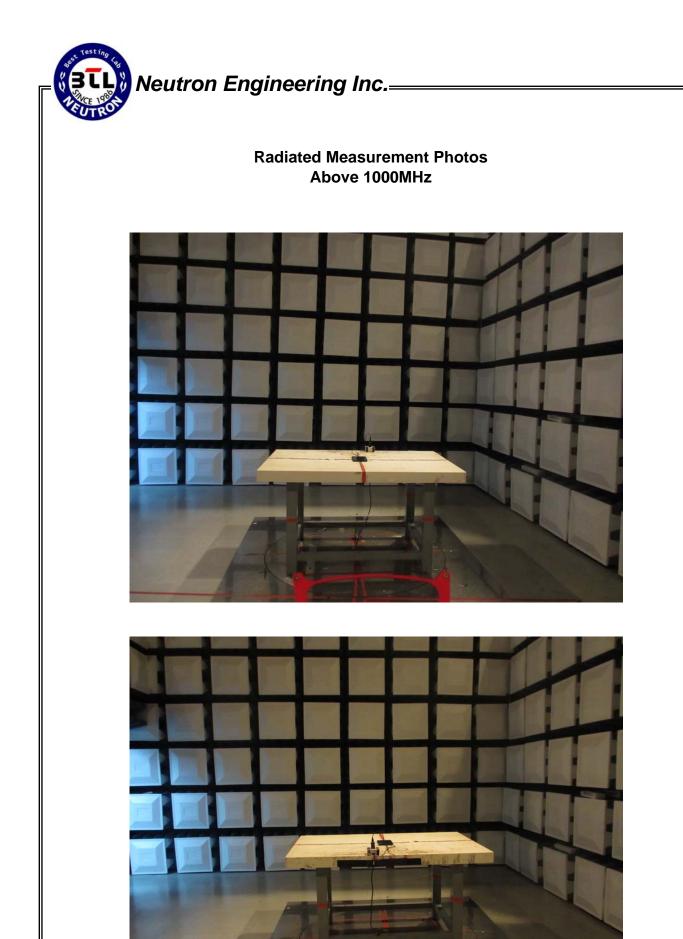
9. EUT TEST PHOTO

Conducted Measurement Photos Adapter: AD835321



Conducted Measurement Photos Adapter: W12-010N3A





Radiated Measurement Photos 30~1000MHz

