

SAR EVALUATION REPORT

For

NVIDIA Corporation

2701 San Tomas Expressway,

Santa Clara, CA 95050, USA

FCC ID: VOB-NB099HA IC: 7361А-NB099HA

Report Type: Original Report		Product Type: 802.11 a/b/g/n and Bluetooth combo PCI-E Module for Tablet PC Model E1290
Test Engineer:	Quinn Jia	ang
Report Number:		
Report Date: Reviewed By:	Victor Zh	nang
Prepared By: (84)	Bay Area 1274 Anv Sunnyval Tel: (408)	a Compliance Laboratories Corp. vilwood Avenue, le, CA 94089, USA b) 732-9162 B) 732 9164

Summary of Test Results				
Rule Part(s):	FCC §2.1093 IC RSS-102, Issue 4			
Test Procedure(s):	FCC Bulletin 650ET -C; IEEE 1528-2003 RSS-102, Issue 4			
Device Category: Exposure Category:	Portable Device General Population/Uncontrolled Exposure			
Device Type:	Tablet PC with WLAN/BT Combo Module			
Modulation Type:	GFSK, QPSK, BPSK for FHSS CCK, DQPSK,DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM			
TX Frequency Range:	Bluetooth: 2402-2480 MHz 802.11b/g/n: 2412–2462 MHz 802.11 a/n: 5150-5250 MHz, 5250-5350 MHz, 5470-5725 MHz, 5745-5825 MHz			
Maximum Conducted Power Tested:	Bluetooth: 10.03 dBm 802.11 b/g/n 2.4 GHz: 15.89 dBm 802.11 a/n W52: 11.64 dBm 802.11 a/n W53: 11.68 dBm 802.11 a/n W56: 11.30 dBm 802.11 a/n W58: 11.05 dBm			
Antenna:	2.4 GHz: 2.5 dBi; 5 GHz: 5.5 dBi			
Body-Worn Accessories:	None			
Face-Head Accessories:	None			
Max. SAR Level (s) Measured:	0.317 W/Kg, Body 1g Tissue (2.4 GHz Band) 0.444 W/Kg, Body 1g Tissue (W52 Band) 0.514 W/Kg, Body 1g Tissue (W53 Band) 1.05 W/Kg, Body 1g Tissue (W56 Band) 1.13 W/Kg, Body 1g Tissue (W58 Band)			

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	EUT TECHNICAL SPECIFICATION	5
2	TES	ST FACILIYT	6
3	RE	FERENCE, STANDARDS AND GUILDELINES	
U	3.1	SAR LIMITS	
4		SCRIPTION OF TEST SYSTEM	
4		IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters	
	4.1 4.2	IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS MEASUREMENT SYSTEM DIAGRAM	
	4.3	System Components	
	4.4	DASY4 MEASUREMENT SERVER	
	4.5	DATA ACQUISITION ELECTRONICS	
	4.6	PROBES	
	4.7 4.8	ET3DV6 PROBE SPECIFICATION E-Field Probe Calibration Process	
	4.9	DATA EVALUATION	
	4.10	LIGHT BEAM UNIT	
	4.11	Medium	
	4.12	SAM TWIN PHANTOM	
	4.13 4.14	DEVICE HOLDER FOR SAM TWIN PHANTOM System Validation Kits	1/ 18
	4.15	ROBOT	
5	EO	UIPMENT LIST AND CALIBRATION	20
5	5.1	EQUIPMENTS LIST & CALIBRATION INFO.	
		Ο ΜΕΛΑΝΤΟΕΝΤΕΝΤΟ ΟΧΟΤΕΝΤΑΝΤΕΙΟ ΑΤΡΙΟΝΙ	
6		R MEASUREMENT SYSTEM VERIFICATION	
0	6.1	System Accuracy Verification	21
U	6.1 6.2	System Accuracy Verification IEEE P1528 recommended reference value for head	21
U	6.1	System Accuracy Verification	
7	6.1 6.2 6.3 6.4	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM	
	6.1 6.2 6.3 6.4 EU'	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY	21 21 22 22 22 23
	6.1 6.2 6.3 6.4	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION	21 21 22 22 22 23 23 23 24
	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION	21 21 22 22 22 23 23 23 24 24
	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	21 21 22 22 23 23 23 24 24 24 25
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE	21 21 22 22 22 23 23 23 24 24 24 24 25 26
	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE	21 22 22 22 23 23 23 24 24 24 24 25 26 27
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA 8.1	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT	21 22 22 22 23 23 23 24 24 24 24 25 26 26 27
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA 8.1 8.2	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION. TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR. CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN	21 22 22 22 23 23 23 24 24 24 24 25 26 27 27 27
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA 8.1	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN	21 22 22 22 23 23 23 24 24 24 24 25 26 26 27 27 27 27 28
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA: 8.1 8.2 8.3	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION. TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR. CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN	21 22 22 22 23 23 23 24 24 24 25 26 26 27 27 27 27 27 28 28
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA 8.1 8.2 8.3 8.4 8.5	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN ZOOM SCAN POWER DRIFT MEASUREMENT	21 22 22 22 23 23 24 24 24 24 25 26 26 27 27 27 27 27 27 28 28 28
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA 8.1 8.2 8.3 8.4 8.5	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY. T TEST STRATEGY AND METHODOLOGY. TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE SY4 SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN ZOOM SCAN POWER DRIFT MEASUREMENT Z-SCAN OUTPUT VERIFICATION	21 22 22 22 23 23 23 24 24 24 24 24 25 26 27 27 27 27 27 27 27 28 28 28 28 28
7 8 9	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA: 8.1 8.2 8.3 8.4 8.5 RF 9.1	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD	21 22 22 22 23 23 24 24 24 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27
7	6.1 6.2 6.3 6.4 EU' 7.1 7.2 7.3 7.4 7.5 DA: 8.1 8.2 8.3 8.4 8.5 RF 9.1	SYSTEM ACCURACY VERIFICATION IEEE P1528 RECOMMENDED REFERENCE VALUE FOR HEAD SYSTEM SETUP BLOCK DIAGRAM LIQUID AND SYSTEM VALIDATION T TEST STRATEGY AND METHODOLOGY. T TEST STRATEGY AND METHODOLOGY. TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR CHEEK/TOUCH POSITION EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE SY4 SAR EVALUATION PROCEDURE POWER REFERENCE MEASUREMENT AREA SCAN ZOOM SCAN POWER DRIFT MEASUREMENT Z-SCAN OUTPUT VERIFICATION	21 22 22 22 23 23 23 24 24 24 24 25 26 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 29 29 29

11	APPENDIX A – MEASUREMENT UNCERTAINTY	34
12	APPENDIX B – PROBE CALIBRATION CERTIFICATES	
13	APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	58
14	APPENDIX D - SYSTEM VERIFICATIONS SCAN RESULTS	79
15	APPENDIX E – EUT SCAN RESULTS	83
16	APPENDIX G – TEST SETUP PHOTOS	
16. 16. 16. 16. 16. 16.	 TOP-TOUCH SETUP PHOTO (2.4GHz) LEFT-TOUCH SETUP PHOTO (2.4GHz) BACK-TOUCH SETUP PHOTO (5GHz) BOTTOM-TOUCH SETUP PHOTO (5GHz) 	
17	APPENDIX H – EUT PHOTOS	
17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	 EUT- BACK SIDE VIEW	105 106 106 107 107 108 108 108 109 109
18	APPENDIX I - INFORMATIVE REFERENCES	

1 GENERAL DESCRIPTION

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *NVIDIA Corporation* and their product, *model: NB099H, FCC ID: VOB-NB099HA, IC: 7361A-NB099HA* or the "EUT" as referred to this report. The EUT is 802.11 a/b/g/n (HT20 only) and Bluetooth combo module that is embedded into the NVIDIA Tablet PC (model: E1290).

1.2 EUT Technical Specification

Item	Description
Modulation	GFSK, QPSK, BPSK for FHSS CCK, DQPSK,DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
Frequency Range	Bluetooth: 2402-2480 MHz 802.11b/g/n 2.4 GHz: 2412-2462 MHz 802.11 a/n W52 :5150-5250 MHz 802.11a/n W53 : 5250-5350 MHz 802.11a/n W56 : 5470-5725 MHz 802.11a/n W58 : 5745-5825 MHz
Output Power	Bluetooth: 10.03 dBm 802.11 b/g/n 2.4 GHz: 15.89 dBm 802.11 a/n W52: 11.64 dBm 802.11 a/n W53: 11.68 dBm 802.11 a/n W56: 11.30 dBm 802.11 a/n W58: 11.05 dBm
EUT Dimensions (L*W*H)	30 mm (L) x 27 mm (W) x 3 mm (H)
EUT Weight	3.5 g
Host System Dimensions (L*W*H)	258mm(L) x 163mm(W) x 10 mm(H)
Host System Weight	650 g (with battery)
Normal Operation	Body-worn

The test data gathered are from typical production sample, serial number: *112566* with host system NVIDIA tablet PC E1290 serial number: 0412911036188, provided by manufacture.

2 TEST FACILIYT

The test site used by Bay Area Compliance Laboratories Corp. (BACL) to collect data is located at 1274 Anvilwood Ave, Sunnyvale, California 94089, USA.

BACL is a National Institute of Standards and Technology (NIST) accredited laboratory under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0).

The current scope of accreditations can be found at: http://ts.nist.gov/Standards/scopes/2001670.htm

3 REFERENCE, STANDARDS AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The CE requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits? SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

3.1 SAR Limits

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

FCC Limit (1g Tissue)

CE Limit (10g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

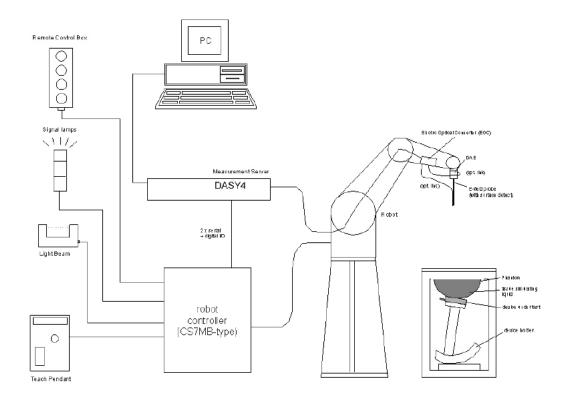
General Population/Uncontrolled environments Spatial Peak limit 1.6 W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

4 DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter:

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB.


The phantom used was the Generic Twin Phantom". The ear was simulated as a spacer of 4 mm thickness between the earpiece of the phone and the tissue simulating liquid. The Tissue simulation liquid used for each test is in according with the FCC OET65 supplement C as listed below.

Ingredients	Frequency (MHz)									
(% by weight)	45	450 835		35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

4.1 IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters

Frequency	Head	Fissue	Body	⁷ Tissue
(MHz)	εr	O' (S/m)	εr	O' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.2 Measurement System Diagram

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.

- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing system validation.

4.3 System Components

- DASY4 Measurement Server
- Data Acquisition Electronics
- Probes
- Light Beam Unit
- Medium
- SAM Twin Phantom
- Device Holder for SAM Twin Phantom
- System Validation Kits
- Robot

4.4 DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

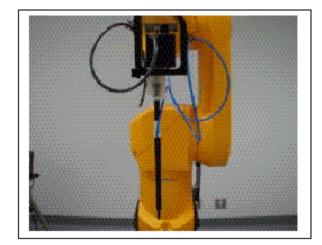
The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pin out and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server.

4.5 Data Acquisition Electronics

The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

4.6 Probes

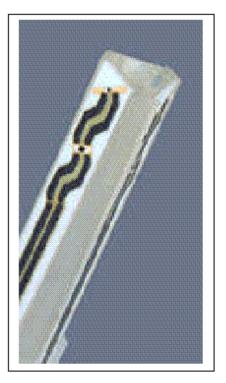
The DASY system can support many different probe types.


Dosimetric Probes: These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor $(\pm 2 \text{ dB})$. The dosimetric probes have special calibrations in various liquids at different frequencies.

Free Space Probes: These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.)

Temperature Probes: Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes.

4.7 ET3DV6 Probe Specification


Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy \pm 8%) Frequency 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 3 GHz) Directivity ± 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: $\pm 0.2 \text{ dB}$ Surface ± 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm

Photograph of the probe

Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

Inside view of ET3DV6 E-field Probe

4.8 E-Field Probe Calibration Process

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

4.9 Data Evaluation

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	dcpi

Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{ll} {\rm E-field probes:} & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ {\rm H-field probes:} & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \end{array}$$

With Vi = compensated signal of channel i (i =x, y, z) Norm_i = sensor sensitivity of channel i (i =x, y, z) $\mu V/ (V/m)^2$ for E-field probes

- ConF = sensitivity enhancement in solution
- a_{ij} = sensor sensitivity factors for H-field probes
- f = carrier frequency [GHz]
- Ei = electric field strenggy of channel i in V/m
- H_i = diode compression point (DASY parameter)

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

- With SAR = local specific absorption rate in mW/g
 - E_{tot} = total field strength in V/m
 - σ = conductivity in [mho/meter] or [Siemens/meter]
 - ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid.

4.10 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

4.11 Medium

Parameters

The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003).

Parameter measurements

Several measurement systems are available for measuring the dielectric parameters of liquids:

- The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate acuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process.
- The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method.
- The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity.
- The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious.

4.12 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The phantom table comes in two sizes: A $100 \times 50 \times 85$ cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a $100 \times 75 \times 85$ cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option).

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation.
- Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week).
- Do not use other organic solvents without previously testing the phantom's compatibility.

4.13 Device Holder for SAM Twin Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

4.14 System Validation Kits

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced.

System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request).

The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole.

4.15 Robot

The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchronous motors; no stepper motors)
- Low ELF interference (the closed metallic construction shields against motor control fields)

For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard- and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information.

5 EQUIPMENT LIST AND CALIBRATION

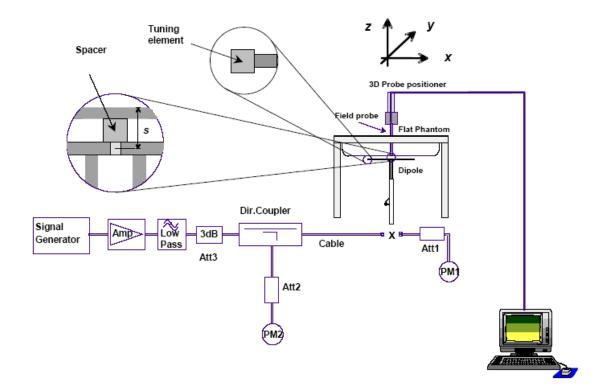
5.1 Equipments List & Calibration Info

Type / Model	Cal. Due Date	S/N
DASY4 Professional Dosimetric System	N/A	N/A
Robot RX60L	N/A	CS7MBSP / 467
Robot Controller	N/A	F01/5J72A1/A/01
Dell Computer Dimension 3000	N/A	N/A
SPEAG EDC3	N/A	N/A
SPEAG DAE3	2012-12-07	456
DASY4 Measurement Server	N/A	1176
SPEAG E-Field Probe ET3DV2	2012-08-25	3019
SPEAG E-Field Probe EX3DV4	2012-08-23	3619
Antenna, Dipole, D-2450-S-1	2012-07-25	BCL-141
Antenna, Dipole, D5GHzV2	2013-08-23	1001
SPEAG Generic Twin Phantom	N/A	N/A
SPEAG Flat Phantom	N/A	1004
Muscle Equivalent Matter (2450 MHz)	Each Time	N/A
Muscle Equivalent Matter (5200 MHz)	Each Time	N/A
Muscle Equivalent Matter (5600 MHz)	Each Time	N/A
Muscle Equivalent Matter (5800 MHz)	Each Time	N/A
Agilent, Spectrum Analyzer E4440A	2012-05-10	MY44303352
Microwave Amp. 8349A	N/A	2644A02662
Power Meter Agilent E4419B	2012-09-01	MY4121511
Power Sensor Agilent E9301A	2012-05-09	US39211706
Dielectric Probe Kit HP85070A	N/A	US99360201
HP, Signal Generator, 83650B	2012-06-21	3614A00276
Amplifier, ST181-20	N/A	E012-0101
Antenna, Horn DRH-118	N/A	A052704

6 SAR MEASUREMENT SYSTEM VERIFICATION

6.1 System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.


6.2 IEEE P1528 recommended reference value for head

Frequency (MHz)	1 g SAR (W/Kg)	10 g SAR (W/Kg)	Local SAR at surface (above feed point)	Local SAR at surface (v=2cm offset from feed point)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9.5	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72.1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

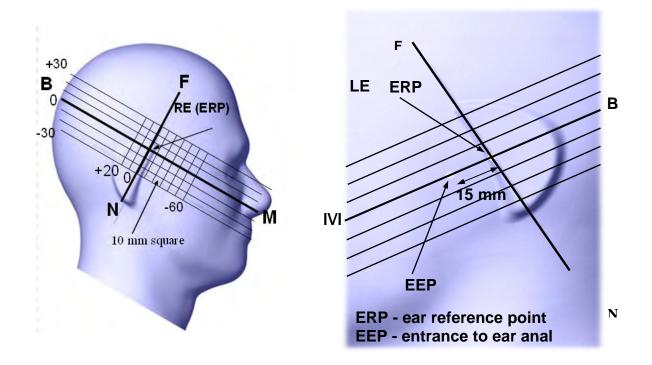
DASY4 Manual recommended reference value at 5 GHz

Enggranger		Head Tissue			Body Tissue	
Frequency (MHz)	1 g SAR (W/Kg)	10 g SAR (W/Kg)	SAR Peak	1 g SAR (W/Kg)	10 g SAR (W/Kg)	SAR Peak
5000	72.9	20.7	285.6	68.1	19.2	260.3
5100	74.6	21.1	297.5	78.8	19.6	272.3
5200	76.5	21.6	310.3	71.8	20.1	284.7
5500	83.3	23.4	349.4	79.1	22.0	326.3
5800	78.0	21.9	340.9	74.1	20.5	324.7

6.3 System Setup Block Diagram

6.4 Liquid and System Validation

Measured Date	Simulant	Freq. [MHz]	Parameters	Liquid Temp [°C]	Target Value	Measured Value	Deviation [%]	Limits [%]
			٤r	23	52.7	50.7	-3.8	± 5
2011-12-22	Body	2450	σ	23	1.95	2.02	3.59	± 5
			1g SAR	23	53.115	54.8	3.17	± 10
			εr	23	49.0	47.2	-3.67	± 5
2011-12-27	Body	5200	σ	23	5.3	5.3	0	± 5
			1g SAR	23	74.9	69.58	-7.1	± 10
			٤r	23	48.6	46.9	-3.50	± 5
2011-12-27	Body	5500	σ	23	5.65	5.8	2.65	± 5
			1g SAR	23	79.3	82.68	4.26	± 10
			٤r	23	48.2	48.5	0.62	± 5
2011-12-27	Body	5800	σ	23	6.0	6.22	3.67	± 5
			1g SAR	23	74.2	69.85	-5.87	± 10

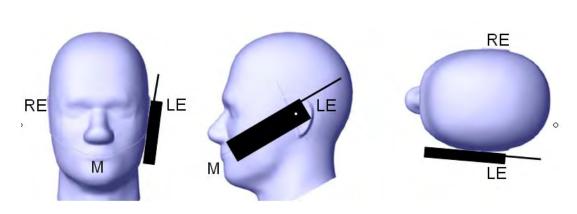

Report Number: R1111165-WLAN SAR

7 EUT TEST STRATEGY AND METHODOLOGY

7.1 Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¹/₄ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. An "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:


7.2 Cheek/Touch Position

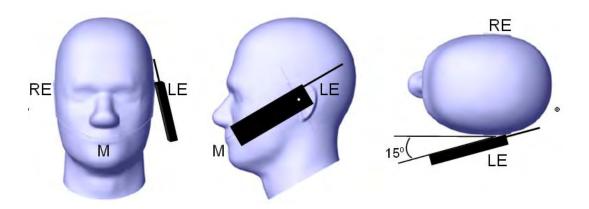
The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position


7.3 Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15 80° so that the device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

7.4 Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

7.5 SAR Evaluation Procedure

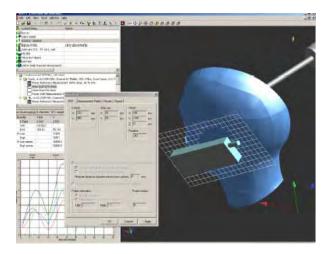
The evaluation was performed with the following procedure:

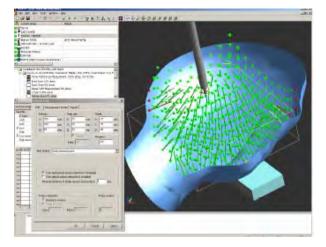
- **Step 1:** Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- **Step 2:** The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 15 mm x 15 mm. Based on these data, the area of the maximum absorption was determined by line interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 21 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1. The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- **Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

8 DASY4 SAR EVALUATION PROCEDURE

8.1 **Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7mm for an ET3DV6 probe type).


8.2 Area Scan

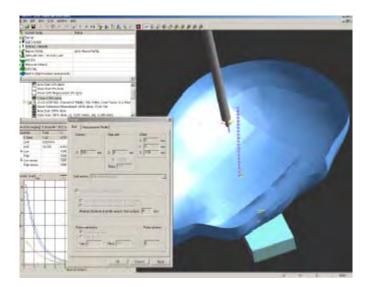

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids.

The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

After measurement is completed, all maxima and their coordinates are listed in the Results property page. The maximum selected in the list is highlighted in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima within x dB condition. Only the primary maximum and any secondary maxima within x dB from the primary maximum and above this limit will be measured.

8.3 Zoom Scan


Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

8.4 Power drift measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

8.5 Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. A user can anchor the grid to the section reference point, to any defined user point or to the current probe location. As with any other grids, the local Z axis of the anchor location establishes the Z axis of the grid.

9 RF OUTPUT VERIFICATION

9.1 Test Results

Mode	Frequency	Conducted Avera	ge Output Power
Mode	(MHz)	(dBm)	(mW)
		2.4 GHz	
	2412	15.89	38.82
802.11b	2437	15.78	37.84
Γ	2462	15.75	37.58
	2412	14.51	28.25
802.11g	2437	14.72	29.65
	2462	14.70	29.51
	2412	12.70	18.62
802.11n20	2437	12.62	18.28
	2462	12.65	18.41
L. L		5 GHz	
	5180	11.42	13.87
	5200	11.40	13.80
	5240	11.46	14.00
	5260	11.44	13.93
	5280	11.25	13.34
902 11	5320	11.26	13.37
802.11a	5500	10.88	12.25
-	5580	11.02	12.65
-	5700	11.21	13.21
-	5745	11.05	12.74
-	5785	10.90	12.30
-	5825	10.91	12.33
	5180	9.94	9.86
-	5200	9.95	9.89
-	5240	10.08	10.19
-	5260	10.22	10.52
-	5280	10.24	10.57
802 11 20	5320	10.41	10.99
802.11n20	5500	9.68	9.29
F	5580	9.96	9.91
F	5700	10.35	10.84
F	5745	10.20	10.47
F	5785	9.72	9.38
F	5825	9.83	9.62

Note: According to KDB248227, SAR is not required for 802.11g/n20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b.

Bluetooth Output Power:

Mode	Frequency	Conducted Averag	ge Output Power
Widue	(MHz)	(dBm)	(mW)
		Bluetooth	
	2402	9.79	9.53
GFSK	2440	10.03	10.07
	2480	9.69	9.31
	2402	9.76	9.46
QPSK	2440	10	10.00
	2480	9.67	9.27
	2402	9.78	9.51
8PSK	2440	10.01	10.02
	2480	9.67	9.27

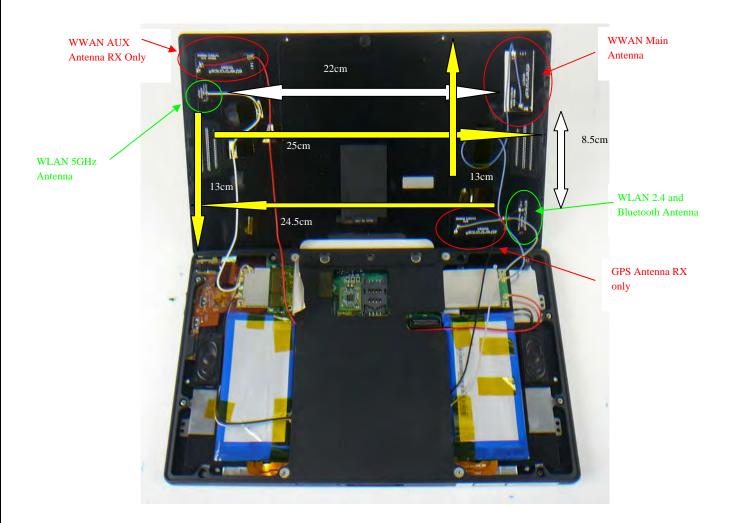
Note: The EIRP of the Bluetooth is 10.03 dBm + 2.5 dBi = 12.53 dBm = 17.91mW. According to KDB248227, 17.91mW < 60/f = 60/2.480 = 24.2 mW. So the Bluetooth SAR is not required. Since Bluetooth SAR stand alone is not required, then the SIMULTANEOUS TRANSMITION SAR for Bluetooth is not required as well.

10 SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device, could be found in Appendix E.

10.1 Test Environmental Conditions

Temperature:	22-24 ^o C
Relative Humidity:	45-50 %
ATM Pressure:	101 – 102kPa


Testing was performed by Quinn Jiang on 2011-12-22 through 2011-12-29 in SAR chamber.

Radio Mode	EUT Test Position	Frequency (MHz)	Antenna	Liquid	Phantom	SAR Value (W/kg) 1g	Limit (W/kg) 1g	Plot #
	-	2.4	GHz Band				-	-
	Back Touch (Mid CH)	2437	Integral	Body	Flat	0.317	1.6	1
802.11b	Left Side Touch (Mid CH)	2437	Integral	Body	Flat	0.151	1.6	2
	Top Side Touch (Mid CH)	2437	Integral	Body	Flat	0.027	1.6	3
	-	5	GHz Band	=			-	-
	Back Touch (High CH)	5240	Integral	Body	Flat	0.444	1.6	4
	Right Side Touch (High CH)	5240	Integral	Body	Flat	0.062	1.6	5
	Bottom Side Touch (High CH)	5240	Integral	Body	Flat	0.063	1.6	6
	Back Touch (Low CH)	5260	Integral	Body	Flat	0.514	1.6	7
	Right Side Touch (Low CH)	5260	Integral	Body	Flat	0.075	1.6	8
	Bottom Side Touch (Low CH)	5260	Integral	Body	Flat	0.072	1.6	9
	Back Touch (Low CH)	5500	Integral	Body	Flat	0.95	1.6	10
802.11a	Back Touch (Mid CH)	5580	Integral	Body	Flat	1.05	1.6	11
802.11a	Back Touch (High CH)	5700	Integral	Body	Flat	0.981	1.6	12
	Right Side Touch (High CH)	5700	Integral	Body	Flat	0.090	1.6	13
	Bottom Side Touch (High CH)	5700	Integral	Body	Flat	0.080	1.6	14
	Back Touch (Low CH)	5745	Integral	Body	Flat	1.11	1.6	15
	Back Touch (Mid CH)	5785	Integral	Body	Flat	0.993	1.6	16
	Back Touch (High CH)	5825	Integral	Body	Flat	1.13	1.6	17
	Right Side Touch (Low CH)	5745	Integral	Body	Flat	0.101	1.6	18
	Bottom Side Touch (Low CH)	5745	Integral	Body	Flat	0.076	1.6	19

Report Number: R1111165-WLAN SAR

KDB648474 SIMULTANEOUS TRANSMITION CONSIDERATION

The NVIDIA tablet PC (Model: E1290) contains two radio modules inside, namely WLAN/BT combo and WWAN radios, each internal radio has individual registration identifiers, the TX antenna distance between BT/WLAN and WWAN antenna is more than 5 cm (please refer to the antenna location below), therefore simultaneously transmit SAR is not required.

Orientation Exception Evaluation

The tablet computer supports all 4 screen orientations: according to the antenna location above (See the YELLOW Arrow),

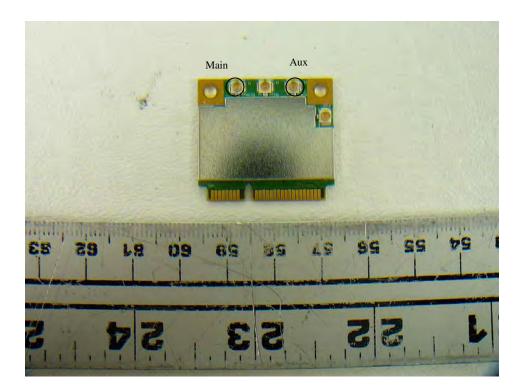
For 5GHz: the antenna to left side and top side distance are all more then 10cm. So the left side touch and top side touch is not necessary. The scans in this report are all base on three positions: Back touch, bottom side touch and right side touch.

For 2.4GHz: the antenna to right side and bottom side distance are all more then 10cm. So the right side and bottom side touch is not necessary. The scans in this report are all base on three positions: Back touch, left side touch and top side touch.

Antenna Configuration Evaluation

The EUT has two antennas for 802.11 a/b/g/n, one is for 5 GHz only with 5.5 dBi Max antenna gain, one if for 2.4 GHz only with 2.5 dBi Max antenna gain.

NB099H is 1x1 802.11n. It only supports SISO. The two antennas are for diversity. It will operate on only one antenna at a time.



2.4 GHz Antenna

The Main antenna port only connects to the 2.4 GHz antenna, the Aux antenna port only connects to the 5 GHz antenna.

11 APPENDIX A – MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table.

		ASY4 Un Accordin			t			
Error Description	Uncertainty Value	Prob. Dist.	Div.	(c i) 1g	(c i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v i) veff
		Measur	rement Sy	ystem				
Probe Calibration	± 6.0 %	Ν	1	1	1	± 6.0 %	\pm 6.0 %	\sim
Axial Isotropy	± 4.7 %	R	$\sqrt{3}$	0.7	0.7	± 1.9 %	± 1.9 %	\sim
Hemispherical Isotropy	± 9.6 %	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %	\sim
Boundary Effects	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	\propto
Linearity	± 4.7 %	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %	∞
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	\propto
Readout Electronics	± 0.3 %	Ν	1	1	1	± 0.3 %	± 0.3 %	∞
Response Time	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	\sim
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %	∞
RF Ambient Conditions	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Probe Positioner	± 0.4 %	R	$\sqrt{3}$	1	1	± 0.2 %	± 0.2 %	\sim
Probe Positioning	± 2.9 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	∞
Max. SAR Eval.	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	∞
		Test Sa	ample Re	lated				
Device Positioning	± 2.9 %	Ν	1	1	1	± 2.9 %	± 2.9 %	145
Device Holder	± 3.6 %	Ν	1	1	1	± 3.6 %	± 2.6 %	5
Power Drift	± 5.0 %	R		1	1	± 2.9 %	± 2.9 %	∞
		Phante	om and S	etup				
Phantom Uncertainty	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %	œ
Liquid Conductivity (Target)	± 5.0 %	R	$\sqrt{3}$	0.64	0.43	± 1.8 %	± 1.2 %	œ
Liquid Conductivity (meas.)	± 2.5 %	Ν	1	0.64	0.43	± 1.6 %	± 1.1 %	\sim
Liquid Permittivity (Target)	± 5.0 %	R	$\sqrt{3}$	0.6	0.49	± 1.7 %	± 1.4 %	œ
Liquid Permittivity (Target)	± 2.5 %	Ν	1	0.6	0.49	± 1.5 %	± 1.0 %	∞
Combined Std. Uncertainty	-	-	-	-	-	± 10.8 %	± 10.6 %	330
Expanded STD Uncertainty	-	-	-	-	-	± 21.6 %	± 21.1 %	-

Measurement Uncertainty for 300 MHz to 3 GHz

	SA	ASY4 Un	certaint	y Budge	t			
Error Description	Uncertainty Value	Prob. Dist.	Div.	(c i) 1g	(c i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v i) veff
		Measur	rement Sy	ystem				
Probe Calibration	± 6.55 %	Ν	1	1	1	± 6.55 %	± 6.55 %	\sim
Axial Isotropy	± 4.7 %	R	$\sqrt{3}$	0.7	0.7	± 1.9 %	± 1.9 %	\sim
Hemispherical Isotropy	± 9.6 %	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %	\sim
Boundary Effects	± 1.0 %	R	$\sqrt{3}$	1	1	± 1.2 %	± 1.2 %	\sim
Linearity	± 4.7 %	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %	\sim
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	\sim
Readout Electronics	± 0.3 %	Ν	1	1	1	± 0.3 %	± 0.3 %	\sim
Response Time	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	\sim
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %	\sim
RF Ambient Conditions	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	\sim
RF Reflections	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	\sim
Probe Positioner	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	\sim
Probe Positioning	± 9.9 %	R	$\sqrt{3}$	1	1	± 5.7 %	± 5.7 %	\sim
Max. SAR Eval.	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %	\sim
		Test Sa	ample Re	lated				
Device Positioning	± 2.9 %	Ν	1	1	1	± 2.9 %	± 2.9 %	145
Device Holder	± 3.6 %	Ν	1	1	1	± 3.6 %	± 2.6 %	5
Power Drift	± 5.0 %	R		1	1	± 2.9 %	± 2.9 %	\propto
		Phante	om and S	etup				
Phantom Uncertainty	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %	\sim
Liquid Conductivity (Target)	± 5.0 %	R	$\sqrt{3}$	0.64	0.43	± 1.8 %	± 1.2 %	\sim
Liquid Conductivity (meas.)	± 2.5 %	Ν	1	0.64	0.43	± 1.6 %	± 1.1 %	\sim
Liquid Permittivity (Target)	± 5.0 %	R	$\sqrt{3}$	0.6	0.49	± 1.7 %	± 1.4 %	œ
Liquid Permittivity (Target)	± 2.5 %	Ν	1	0.6	0.49	± 1.5 %	± 1.2 %	∞
Combined Std. Uncertainty	-	-	-	-	-	± 12.8 %	± 12.6 %	330
Expanded STD Uncertainty	-	-	-	-	-	± 25.6 %	± 25.2 %	-

Measurement Uncertainty for 3 GHz to 6 GHz

12 APPENDIX B – PROBE CALIBRATION CERTIFICATES

Engineering AG eughausstrasse 43, 8004 Zur	Dry Of	HAC MRA	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredi he Swiss Accreditation Servi Iultilateral Agreement for the	ce is one of the signatories	s to the EA	No.: SCS 108
lient BACL	recognition of campration		ES3-3019_Aug11
CALIBRATION	CERTIFICATE		
Object	ES3DV2 - SN:30	19	
Calibration procedure(s)		A CAL-12.v7, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	August 25, 2011		1. 10 M
The measurements and the uno	certainties with confidence pr	onal standards, which realize the physical units robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate.
The measurements and the uno	certainties with confidence pr ucted in the closed laborator	robability are given on the following pages and	are part of the certificate.
The measurements and the und All calibrations have been cond Calibration Equipment used (M-	certainties with confidence pr ucted in the closed laborator	robability are given on the following pages and	are part of the certificate.
The measurements and the und All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874	robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate. and humidity < 70%.
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E44198 Power sensor E4412A	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	Arrive Solution Service Action Servi	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12
The measurements and the und All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
The measurements and the unor All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Arrive Solution Service Action Servi	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) 0 0 0 0 0 0 0 0 0 0 0 0 0	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 3013 SN: 654 ID US3642U01700 US37390585	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unor All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
The measurements and the uno All calibrations have been cond Calibration Equipment used (M. Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 3013 SN: 654 ID US3642U01700 US37390585	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the uno All calibrations have been cond Calibration Equipment used (M- Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	certainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: ES3-3019_Aug11

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWIS,

BRP

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3019_Aug11

Page 2 of 11

ES3DV2 - SN:3019

August 25, 2011

Probe ES3DV2

SN:3019

Manufactured: Calibrated:

December 5, 2002 August 25, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3019_Aug11

Page 3 of 11

Report Number: R1111165-WLAN SAR

Page 38 of 111

SAR Evaluation Report

ES3DV2-SN:3019

August 25, 2011

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.03	1.15	0.96	± 10.1 %
DCP (mV) ⁸	101.8	103.0	105.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)	
10000	CW	CW	0.00	X	0.00	0.00	1.00	128.3	±3.0 %
			Y	0.00	0.00	1.00	147.1		
			Z	0.00	0.00	1.00	122.4		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3019_Aug11

Page 4 of 11

ES3DV2-SN 3019

August 25, 2011

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019

t (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.76	6.76	6.76	0.13	1.20	± 13.4 %
835	41.5	0.90	6.22	6.22	6.22	0.76	1.09	± 12.0 %
900	41.5	0.97	6.07	6.07	6.07	0.63	1.16	± 12.0 %
1810	40.0	1.40	4.93	4.93	4.93	0.41	1,54	± 12.0 %
1900	40.0	1.40	4.87	4.87	4.87	0.45	1.40	± 12.0 %
2450	39.2	1.80	4.12	4.12	4.12	0.44	1.40	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁷ At frequencies below 3 GHz, the validity of tissue parameters (is and is) can be relaxed to ± 10% if liquid compensation formula is applied to

¹ At frequencies below 3 GHz, the validity of tissue parameters (is and iii) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ic and iii) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3019_Aug11

Page 5 of 11

ES3DV2-SN:3019

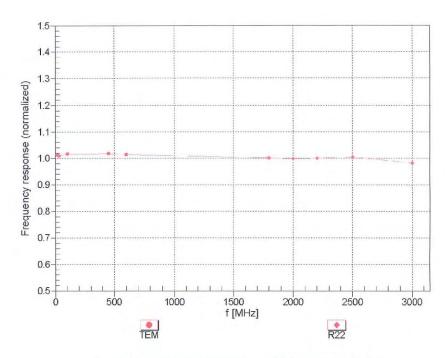
August 25, 2011

DASY/EASY - Parameters of Probe: ES3DV2- SN:3019

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.19	7.19	7.19	0.06	1.20	± 13.4 %
835	55.2	0.97	6.19	6.19	6.19	0.76	1.11	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.73	1.13	± 12.0 %
1810	53.3	1.52	4.57	4.57	4.57	0.49	1.57	± 12.0 %
1900	53.3	1.52	4.38	4.38	4.38	0.41	1.81	± 12.0 %
2450	52.7	1.95	3.87	3.87	3.87	0.46	1.30	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

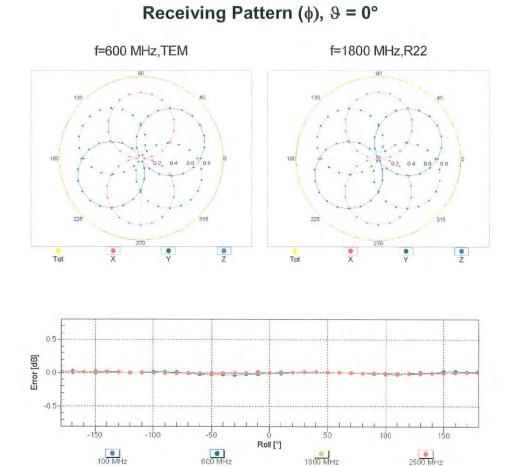

Certificate No: ES3-3019_Aug11

Page 6 of 11

ES3DV2-SN:3019

August 25, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Certificate No: ES3-3019_Aug11

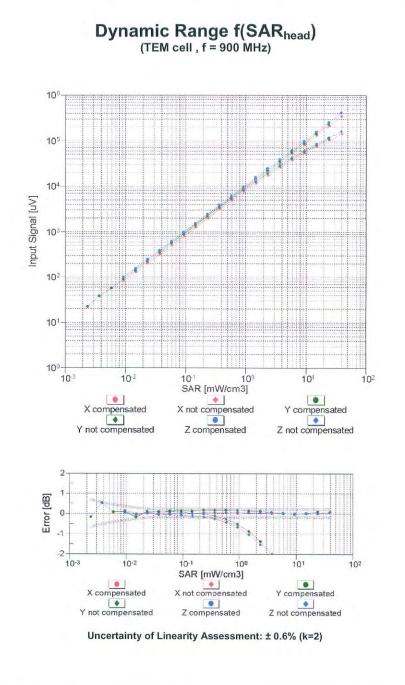
Page 7 of 11

NVIDIA Corporation

ES3DV2- SN:3019

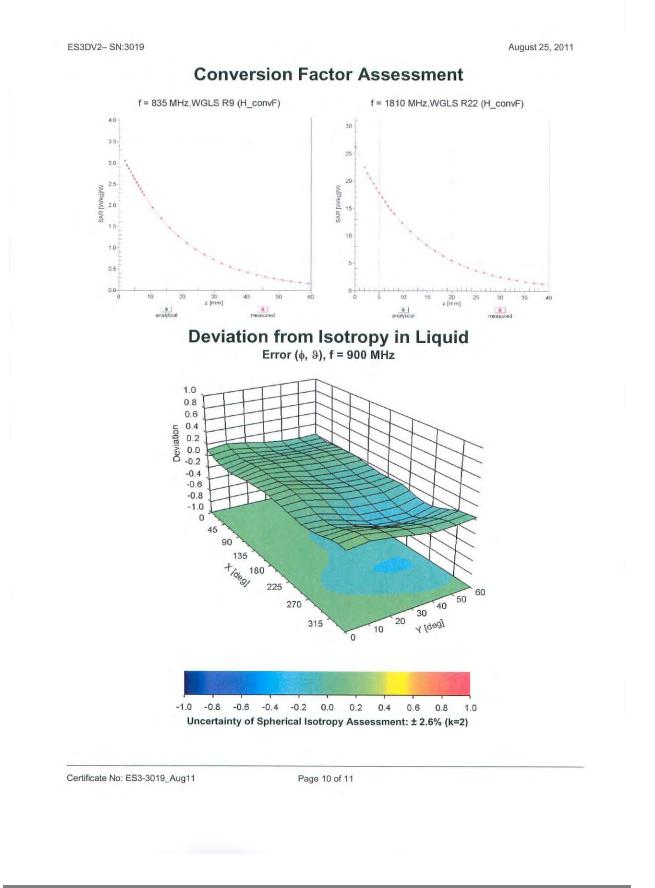
August 25, 2011

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3019_Aug11

Page 8 of 11

NVIDIA Corporation


ES3DV2-SN:3019

August 25, 2011

Certificate No: ES3-3019_Aug11

Page 9 of 11

ES3DV2- SN:3019

August 25, 2011

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3019

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3019_Aug11

Page 11 of 11

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zuri	ory of ich, Switzerland	Hac MRA	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredit he Swiss Accreditation Servin Iultilateral Agreement for the	ce is one of the signatorie	s to the EA	No.: SCS 108
lient BACL			EX3-3619_Aug11
CALIBRATION	CERTIFICATI	E	
Object	EX3DV4 - SN:36	19	
Calibration procedure(s)		DA CAL-14.v3, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	August 29, 2011		
This calibration certificate docur The measurements and the unc	certainties with confidence p	onal standards, which realize the physical units robability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a	are part of the certificate.
This calibration certificate docur The measurements and the unc All calibrations have been condu	vertainties with confidence pructed in the closed laborator	robability are given on the following pages and	are part of the certificate.
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8	vertainties with confidence pructed in the closed laborator	robability are given on the following pages and	are part of the certificate.
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards	vertainties with confidence p ucted in the closed laborator &TE critical for calibration)	robability are given on the following pages and y facility: environment temperature (22 \pm 3)°C e	are part of the certificate. and humidity < 70%.
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B	ertainties with confidence purcharmed in the closed laborator STE critical for calibration)	robability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%, Scheduled Calibration
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence p ucted in the closed laborator &TE critical for calibration) ID GB41293874	robability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12
This calibration certificate docur The measurements and the unc All calibrations have been condu- Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence providence of the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	cobability are given on the following pages and a synthesis of the provided synthesis of the provid	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	Exertainties with confidence provide the closed laborator and the close	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01373)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power sensor E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ertainties with confidence provide the closed laborator at a close	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	Exertainties with confidence provide the closed laborator and the close	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01373)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence provide the closed laborator at a close	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence provide the closed laborator and the closed	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence provide the closed laborator and the closed	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Arrainties with confidence provided in the closed laborator acted in the closed laborator array of the calibration of the calib	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence provide the closed laborator and the closed	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01369) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11
This calibration certificate docum The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	Arrent Series with confidence provided in the closed laborator acted in the closed laborator	Cal Date (Certificate No.) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 31-Mar-11 (No. 217-01372) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01369) 29-Mar-11 (No. 217-01370) 29-Mar-11 (No. 217-01370) 29-Dec-10 (No. ES3-3013_Dec10) 3-May-11 (No. DAE4-654_May11) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-12 Apr-12 Apr-12 Apr-12 Apr-12 Dec-11 May-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: EX3-3619_Aug11

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S C NBRANS

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

oroodary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3619_Aug11

Page 2 of 11

August 29, 2011

Probe EX3DV4

SN:3619

Manufactured: Calibrated:

July 3, 2007 August 29, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3619_Aug11

Page 3 of 11

August 29, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.45	0.38	0.40	± 10.1 %
DCP (mV) ^B	95.7	95.3	93.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)		
10000	CW	CW	CW	0.00	X	0.00	0.00	1.00	137.6	±3.0 %
			Y	0.00	0.00	1.00	136.9			
			Z	0.00	0.00	1.00	128.4			

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3619_Aug11

Page 4 of 11

August 29, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5200	36.0	4.66	4.53	4.53	4.53	0.40	1.80	±13.1 %
5600	35.5	5.07	4.02	4.02	4.02	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.00	4.00	4.00	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^d Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3619_Aug11

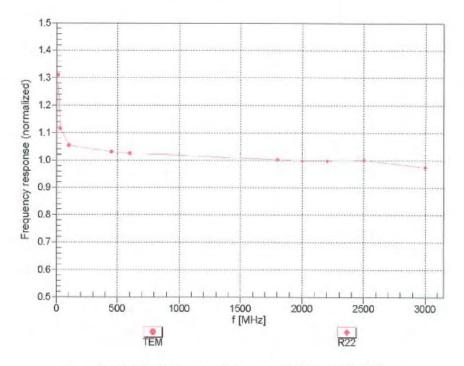
Page 5 of 11

August 29, 2011

DASY/EASY - Parameters of Probe: EX3DV4- SN:3619

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5200	49.0	5.30	3.73	3.73	3.73	0.55	1.95	±13.1 %
5600	48.5	5.77	3.37	3.37	3.37	0.60	1.95	± 13.1 %
5800	48.2	6.00	3.82	3.82	3.82	0.55	1.95	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

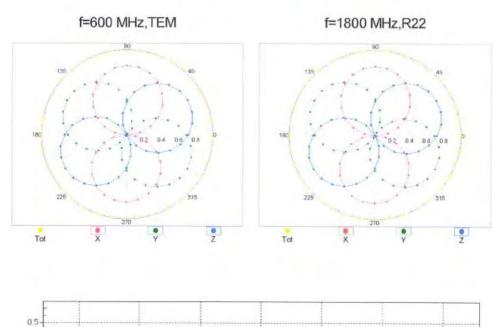

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters.

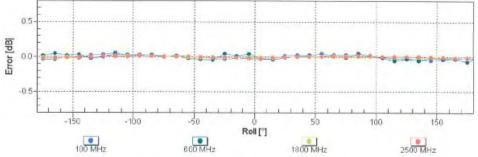
Certificate No: EX3-3619_Aug11

Page 6 of 11

August 29, 2011

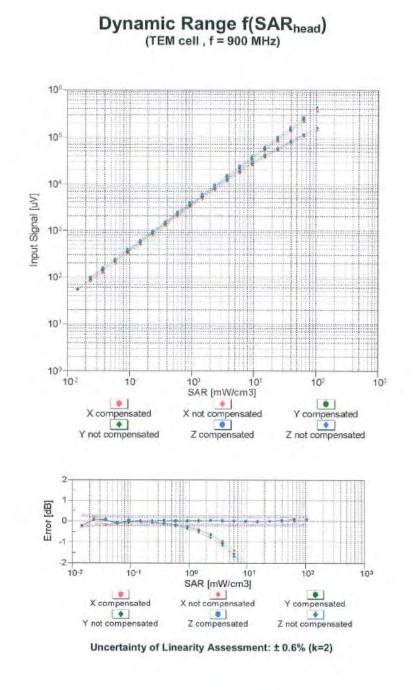
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Certificate No: EX3-3619_Aug11

Page 7 of 11

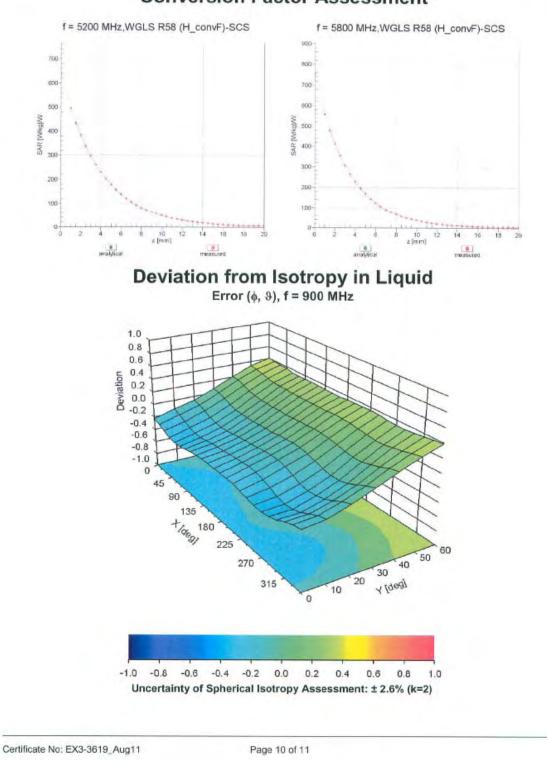
August 29, 2011



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3619_Aug11

Page 8 of 11


August 29, 2011

Certificate No: EX3-3619_Aug11

Page 9 of 11

August 29, 2011

Conversion Factor Assessment

August 29, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3619_Aug11

Page 11 of 11

13 APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1285 Project Number: BACL-dipole-cal-5612

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

BACL Validation Dipole (Head & Body)

Manufacturer: APREL Laboratories Part number: D-2450-S-1 Frequency: 2450 MHz Serial No: BCL-141

Customer: Bay Area Compliance Laboratory

Calibrated: 25th July 2011 Released on: 27th July 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

IBRATION LABORATORIES Suite 102, 303 Terry Fox Dr. Division of APREL Lab.

Kanata, ONTARIO CANADA K2K 3J1

TEL: (613) 435-8300 FAX: (613) 432-8306

Division of APREL Laboratories.

Conditions

Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards Instrument

Power meter Anritsu MA2408A Power Sensor Anritsu MA2481D Attenuator HP 8495A (70dB) 1 Network Analyzer Anritsu MT8801C Secondary Measurement Standards Signal Generator Agilent E4438C

Serial Number	Cal due date
245025437	Nov.4, 2011
103555	Nov 4, 2011
944A10711	Sept. 14, 2011
MB11855	Feb. 8, 2012
-506 MY55182336	June 7, 2012

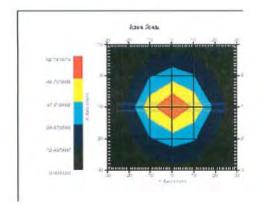
This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	51.5 mm
Height:	30.4 mm

Electrical Specification 2450MHz

Tissue Type	Return Loss:	SWR:	Impedance:
Head	-29.565	1.076u	52.887
Body	-25.834	1.111u	55.110

System Validation Results

Tissue	Frequency	1 Gram	10 Gram	Peak
Head	2450MHz	54.075	24.19	113.98
Body	2450MHz	53.115	24.011	109.960

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole BCL-141. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	20 °C +/- 0.5°C

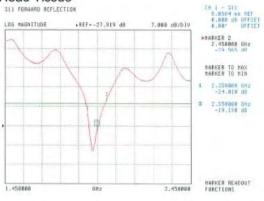
Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical	1%
Positioning Error	1.22%
Electrical	1.7%
Tissue	2.2%
Dipole Validation	2.2%
TOTAL	8.32% (16.64% K=2)

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.


Tissue Type	Measured Epsilon	Measured Sigma
Head	38.06	1.86
Body	50.22	2.03

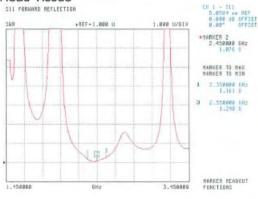
Electrical Calibration

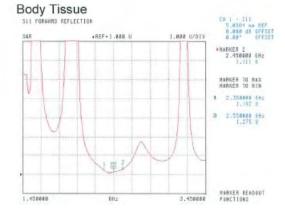
The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

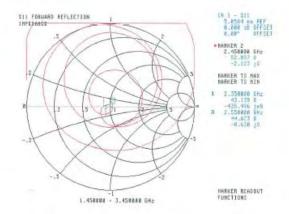
Head Tissue

Body Tissue

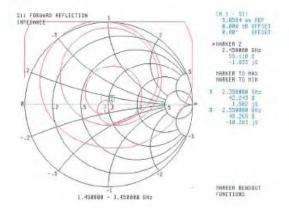

This page has been reviewed for content and attested to by signature within this document.


Division of APREL Laboratories.

Tissue Type	Measured Epsilon	Measured Sigma	
Head	38.06	1.86	
Body	50.22	2.03	


This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.


Tissue Type	Measured Epsilon	Measured Sigma
Head	38.06	1.86
Body	50.22	2.03

Smith Chart Dipole Impedance

Head Tissue

Body Tissue

This page has been reviewed for content and attested to by signature within this document.

Report Number: R1111165-WLAN SAR

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List

This page has been reviewed for content and attested to by signature within this document.

Calibration Laboratory of	
Schmid & Partner	
Engineering AG	
Zeughausstrasse 43, 8004 Zurich, Switzerland	đ

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

SWISS

RUBRAT

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BACL

Certificate No: D5GHz-1001_Aug11

Object	D5GHzV2 - SN: 1	1001	
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	August 23, 2011		
The measurements and the unce	rtaintles with confidence p	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature (22 ± 3)°(d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
ower sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
	SN: 5047.2 / 06327		
	Chi 2502	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503 SN: 601	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11)	Apr-12 Mar-12 Jul-12
Reference Probe EX3DV4 DAE4		04-Mar-11 (No. EX3-3503_Mar11)	Mar-12
Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	SN: 601	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11)	Mar-12 Jul-12
Peterence Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # MY41092317 100005	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Peterence Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 601	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Mar-12 Jul-12 Scheduled Check In house check: Oct-11
Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # MY41092317 100005	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
Perference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 601 ID # MY41092317 100005 US37390585 S4206	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	04-Mar-11 (No. EX3-3503_Mar11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Mar-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D5GHz-1001_Aug11

Page 1 of 13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS S BRD

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHz-1001_Aug11

Page 2 of 13

22.0 mW /g ± 16.5 % (k=2)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 d) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.21 mW / g

normalized to 1W

Head TSL parameters at 5500 MHz

SAR for nominal Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.79 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.6 mW / g ± 16.5 % (k=2)

Certificate No: D5GHz-1001_Aug11

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.23 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	72.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW / g ± 16.5 % (k=2)

Certificate No: D5GHz-1001_Aug11

Page 4 of 13

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.50 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.9 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW / g ± 17.6 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.94 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.3 mW / g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.21 mW / g

Certificate No: D5GHz-1001_Aug11

Page 5 of 13

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	6.27 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.2 mW / g ± 18.1 % (k=2)
3		,
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.06 mW / g

Certificate No: D5GHz-1001_Aug11

Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.4 Ω - 10.1 jΩ	
Return Loss	- 20.0 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	51.3 Ω - 2.1 jΩ
Return Loss	- 32.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Ω - 0.3 jΩ	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.5 Ω - 9.6 jΩ
Return Loss	- 20.4 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	49.3 Ω - 1.6 jΩ	
Return Loss	- 35.2 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.8 Ω + 1.8 jΩ	
Return Loss	- 26.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 02, 2003	

Certificate No: D5GHz-1001_Aug11

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 22.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN: 1001

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.49 mho/m; ϵ_r = 35.7; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.79 mho/m; ϵ_r = 35.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.09 mho/m; ϵ_r = 34.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

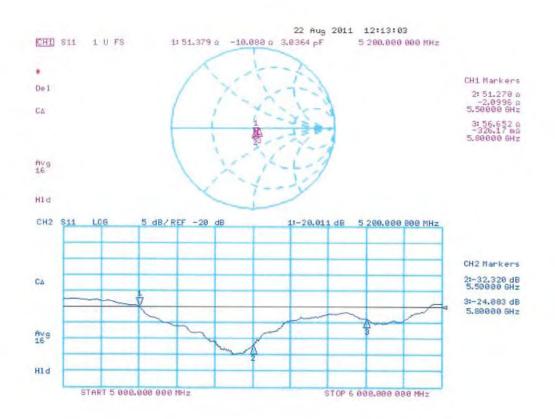

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.587 V/m; Power Drift = -0.0082 dB Peak SAR (extrapolated) = 28.409 W/kg SAR(1 g) = 7.7 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 17.676 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.924 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 31.429 W/kg SAR(1 g) = 7.96 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 19.046 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.308 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 30.086 W/kg SAR(1 g) = 7.23 mW/g; SAR(10 g) = 2.05 mW/g Maximum value of SAR (measured) = 17.772 mW/g

Certificate No: D5GHz-1001_Aug11

Page 8 of 13


Certificate No: D5GHz-1001_Aug11

Page 9 of 13

Report Number: R1111165-WLAN SAR

SAR Evaluation Report

Impedance Measurement Plot for Head TSL

Certificate No: D5GHz-1001_Aug11

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 23.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN: 1001

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.45 mho/m; ϵ_r = 48.8; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.86 mho/m; ϵ_r = 48.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.27 mho/m; ϵ_r = 47.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

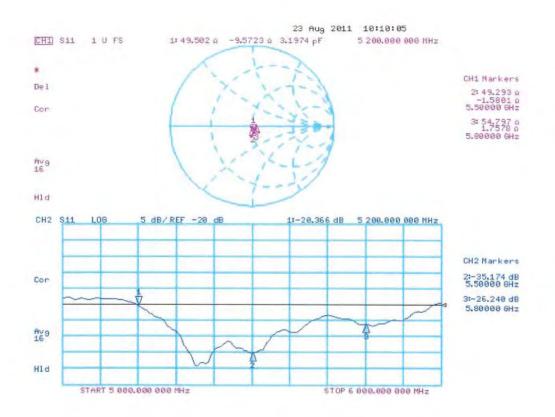
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.015 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 29.052 W/kg SAR(1 g) = 7.5 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 17.252 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.704 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.735 W/kg SAR(1 g) = 7.94 mW/g; SAR(10 g) = 2.21 mW/g Maximum value of SAR (measured) = 19.001 mW/g

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.075 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 34.299 W/kg SAR(1 g) = 7.43 mW/g; SAR(10 g) = 2.06 mW/g Maximum value of SAR (measured) = 18.305 mW/g

Certificate No: D5GHz-1001_Aug11

Page 11 of 13



0 dB = 18.300 mW/g

Certificate No: D5GHz-1001_Aug11

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D5GHz-1001_Aug11

Page 13 of 13

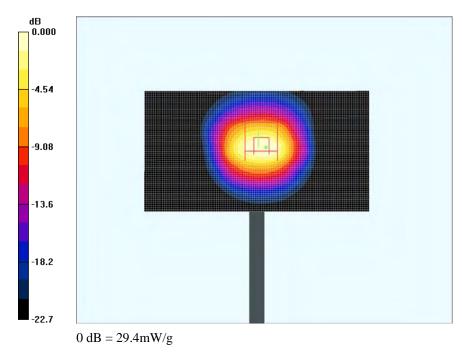
14 APPENDIX D - SYSTEM VERIFICATIONS SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Performance Test (2450 MHz, Body Tissue)

Dipole 2450 MHz; Type: D-2450-S-1; Serial: SN: BCL-141

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 2.02 mho/m; ϵ_r = 50.7; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV2 SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial: 1004
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.5W/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 29.7 mW/g

d =10 mm, Pin = 0.5W/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 122.6 V/m; Power Drift = -0.143 dB Peak SAR (extrapolated) = 55.3 W/kg

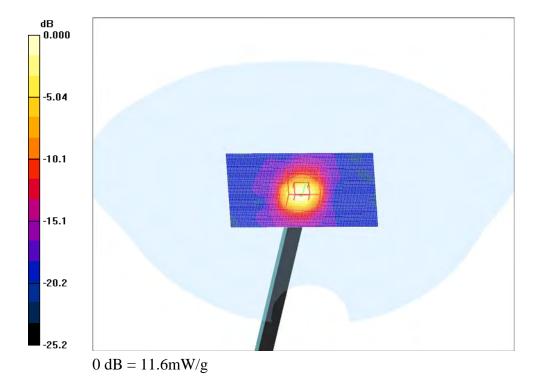
SAR (1 g) = 27.4 mW/g; SAR (10 g) = 12.5 mW/g Maximum value of SAR (measured) = 29.4 mW/g

2450 MHz System Validation with Body Tissue

System Performance Test (5200 MHz Body)

DUT: D5GHzV2; Type: 5GHz; Serial: SN: 1001

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.3 mho/m; ϵ_r = 47.2; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.074W/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 13.0 mW/g

d =10 mm, Pin = 0.074W/Zoom Scan (10x10x8)/Cube 0:Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 33.5 V/m; Power Drift = -0.649 dB Peak SAR (extrapolated) = 25.7 W/kg

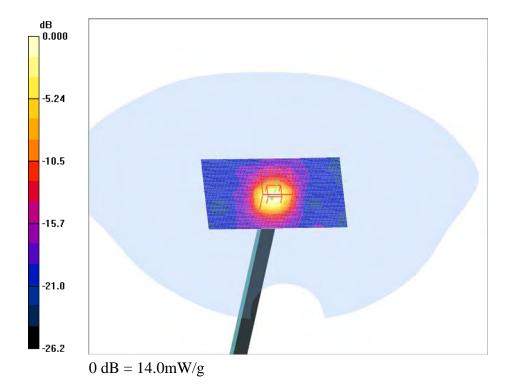
SAR (1 g) = 5.15 mW/g; SAR (10 g) = 1.42 mW/gMaximum value of SAR (measured) = 11.6 mW/g

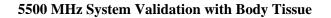
5200 MHz System Validation with Body Tissue

System Performance Test (5500 MHz Body)

DUT: D5GHzV2; Type: 5GHz; Serial: SN: 1001

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.8 mho/m; ϵ_r = 46.9; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.37, 3.37, 3.37); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.074W/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.4 mW/g

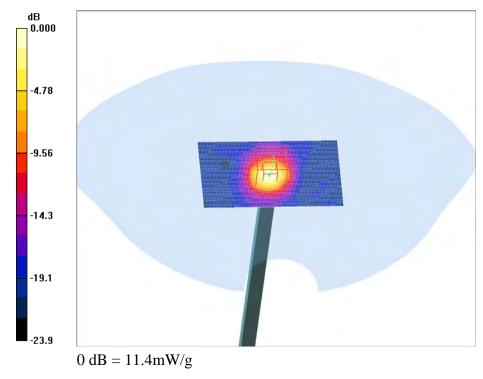
d =10 mm, Pin = 0.074W/Zoom Scan (10x10x8)/Cube 0:Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 33.6 V/m; Power Drift = -0.258 dB Peak SAR (extrapolated) = 33.3 W/kg

SAR (1 g) = 6.12 mW/g; SAR (10 g) = 1.65 mW/gMaximum value of SAR (measured) = 14.0 mW/g

System Performance Test (5800 MHz Body)

DUT: D5GHzV2; Type: 5GHz; Serial: SN: 1001

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5800 MHz; σ = 6.22 mho/m; ϵ_r = 48.5; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

d =10 mm, Pin = 0.074W/Area Scan (61x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.0 mW/g

d =10 mm, Pin = 0.074W/Zoom Scan (10x10x8)/Cube 0:Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 29.7 V/m; Power Drift = -0.151 dB Peak SAR (extrapolated) = 32.0 W/kg

SAR (1 g) = 5.17 mW/g; SAR (10 g) = 1.4 mW/g Maximum value of SAR (measured) = 11.4 mW/g

5800 MHz System Validation with Body Tissue

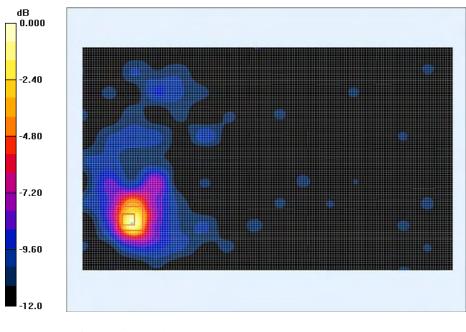
15 APPENDIX E – EUT SCAN RESULTS

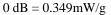
Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Back Side Touch to the Phantom (Middle Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY4 Configuration:


- Probe: ES3DV2 SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial:
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Back Side Touch to the Phantom/Area Scan (101x151x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.318 mW/g

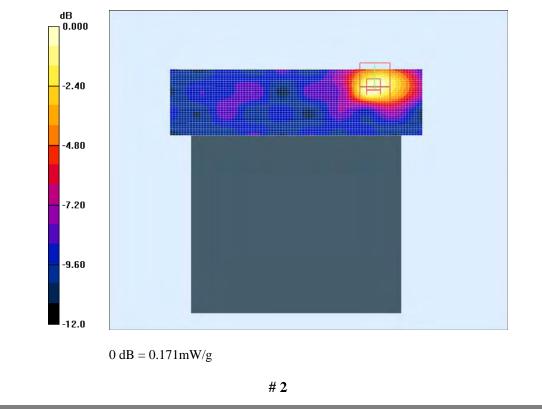
Back Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.18 V/m; Power Drift = -1.56 dB Peak SAR (extrapolated) = 0.730 W/kg

SAR (1 g) = 0.317 mW/g; SAR (10 g) = 0.132 mW/gMaximum value of SAR (measured) = 0.349 mW/g

Left Side Touch to the Phantom (Middle Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY4 Configuration:

- Probe: ES3DV2 SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial:
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Side Touch to the Phantom/Area Scan (31x91x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.187 mW/g

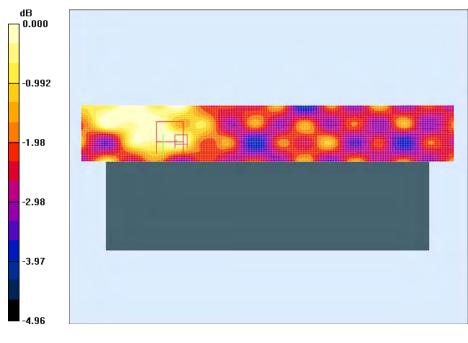
Left Side Touch to the Phantom /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.80 V/m; Power Drift = -1.42 dB Peak SAR (extrapolated) = 0.288 W/kg

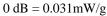
SAR (1 g) = 0.151 mW/g; SAR (10 g) = 0.075 mW/gMaximum value of SAR (measured) = 0.171 mW/g

Top Side Touch to the Phantom (Middle Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY4 Configuration:


- Probe: ES3DV2 SN3019; ConvF(3.87, 3.87, 3.87); Calibrated: 8/25/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4; Serial:
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Left Side Touch to the Phantom/Area Scan (31x151x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.034 mW/g

Left Side Touch to the Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.92 V/m; Power Drift = -1.04 dB Peak SAR (extrapolated) = 0.126 W/kg

SAR (1 g) = 0.027 mW/g; SAR (10 g) = 0.017 mW/g Maximum value of SAR (measured) = 0.031 mW/g

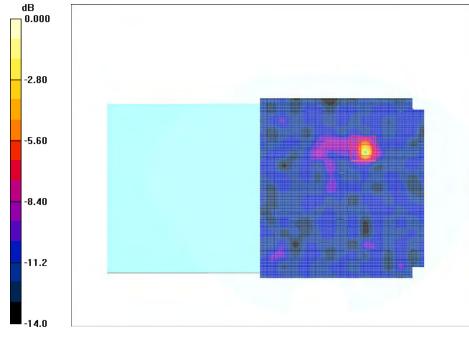
Back Side Touch to the Phantom (High Channel)

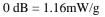
DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5240 MHz; $\sigma = 5.4$ mho/m; $\epsilon_r = 47.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.752 mW/g


Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.60 V/m; Power Drift = -1.59 dB Peak SAR (extrapolated) = 3.52 W/kg

SAR (1 g) = 0.444 mW/g; SAR (10 g) = 0.128 mW/g Maximum value of SAR (massured) = 1.16 mW/g

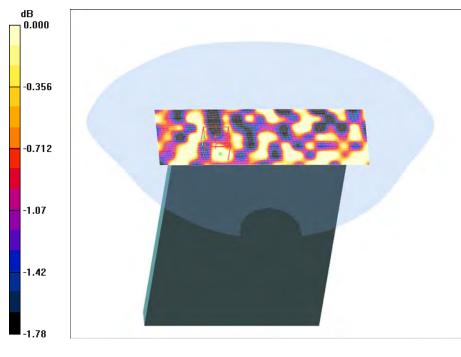
Maximum value of SAR (measured) = 1.16 mW/g

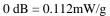
Right Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Tablet PC; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5240 MHz; $\sigma = 5.4$ mho/m; $\epsilon_r = 47.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Right Side Touch to the Phantom/Area Scan (61x181x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.146 mW/g

Right Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 4.12 V/m; Power Drift = -1.43 dB Peak SAR (extrapolated) = 0.206 W/kg

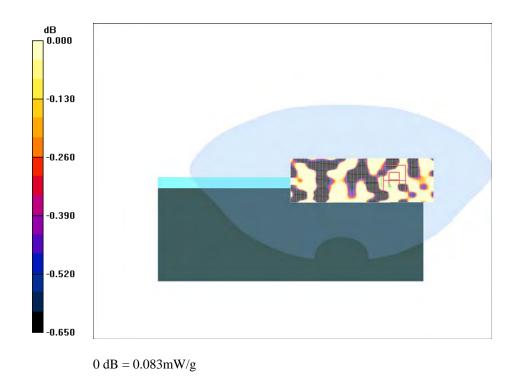
SAR (1 g) = 0.062 mW/g; SAR (10 g) = 0.049 mW/gMaximum value of SAR (measured) = 0.112 mW/g

Bottom Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R111165-1

Communication System: 802.11a; Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5240 MHz; $\sigma = 5.4$ mho/m; $\epsilon_r = 47.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Bottom Side Touch to the Phantom/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.116 mW/g

Bottom Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 3.37 V/m; Power Drift = -1.32 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR (1 g) = 0.063 mW/g; SAR (10 g) = 0.058 mW/g Maximum value of SAR (measured) = 0.083 mW/g

#6

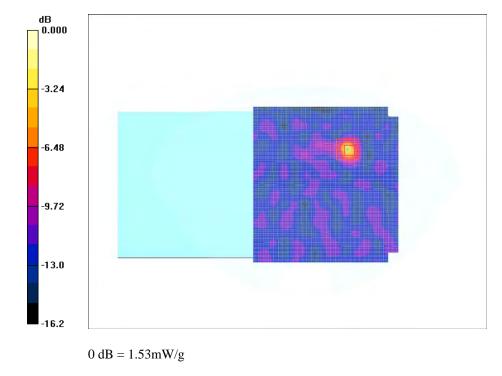
Back Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5280 MHz; $\sigma = 5.5 \text{ mho/m}$; $\varepsilon_r = 48.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011 •
- Sensor-Surface: 2mm (Mechanical Surface Detection) •
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010 •
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 •
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.696 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 3.56 V/m; Power Drift = -1.08 dB

Peak SAR (extrapolated) = 4.70 W/kg

SAR (1 g) = 0.514 mW/g; SAR (10 g) = 0.134 mW/g

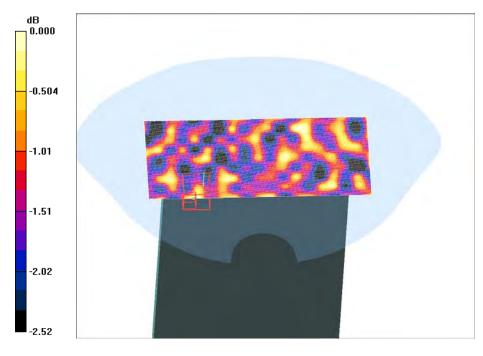
Maximum value of SAR (measured) = 1.53 mW/g

Right Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5280 MHz; σ = 5.5 mho/m; ϵ_r = 48.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Side Touch to the Phantom/Area Scan (81x181x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.127 mW/g

Right Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 4.30 V/m; Power Drift = -1.50 dB Peak SAR (extrapolated) = 0.120 W/kg

SAR (1 g) = 0.075 mW/g; SAR (10 g) = 0.070 mW/g Maximum value of SAR (measured) = 0.123 mW/g

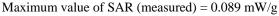
 $0 \, dB = 0.123 \, mW/g$

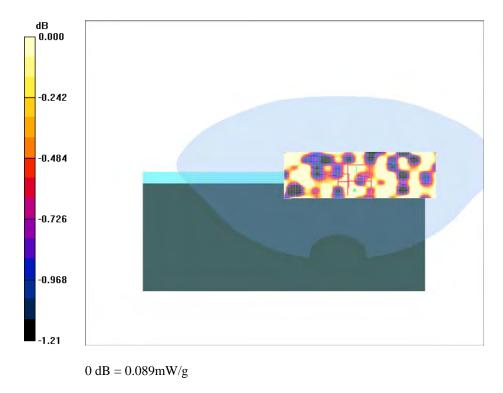
Bottom Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5280 MHz; σ = 5.5 mho/m; ϵ_r = 48.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.73, 3.73, 3.73); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Bottom Side Touch to the Phantom/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.119 mW/g

Bottom Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.76 V/m; Power Drift = -1.89 dB Peak SAR (extrapolated) = 0.128 W/kg

SAR (1 g) = 0.072 mW/g; SAR (10 g) = 0.067 mW/g Maximum value of SAP (measured) = 0.089 mW/g

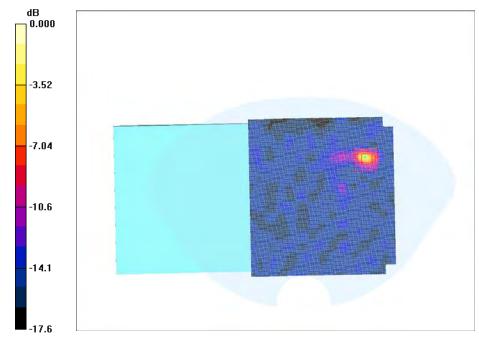
Back Side Touch to the Phantom (Low Channel)

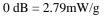
DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.8 mho/m; ε_r = 46.9; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.37, 3.37, 3.37); Calibrated: 8/29/2011 •
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010 .
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.64 mW/g


Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.74 V/m; Power Drift = -0.915 dBPeak SAR (extrapolated) = 7.49 W/kg

SAR (1 g) = 0.950 mW/g; SAR(10 g) = 0.212 mW/g

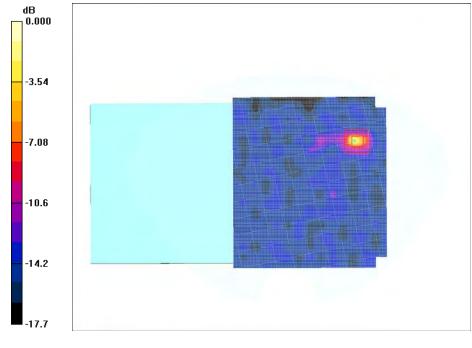
Maximum value of SAR (measured) = 2.79 mW/g

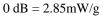
Back Side Touch to the Phantom (Mid Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5580 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz; σ = 5.91 mho/m; ϵ_r = 47.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.37, 3.37, 3.37); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.81 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 4.20 V/m; Power Drift = -1.81 dB Peak SAR (extrapolated) = 8.73 W/kg

SAR (1 g) = 1.05 mW/g; SAR (10 g) = 0.231 mW/gMaximum value of SAR (measured) = 2.85 mW/g

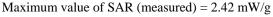
Report Number: R1111165-WLAN SARPage 93 of 111SA

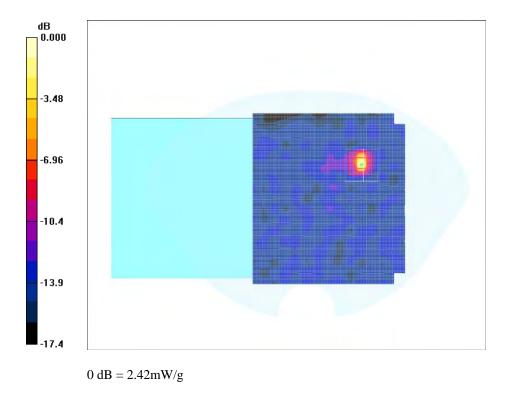
Back Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; σ = 6.1 mho/m; ε_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011 •
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010 .
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.00 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.83 V/m; Power Drift = -0.946 dBPeak SAR (extrapolated) = 7.84 W/kg

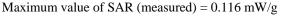
SAR (1 g) = 0.981 mW/g; SAR (10 g) = 0.218 mW/g

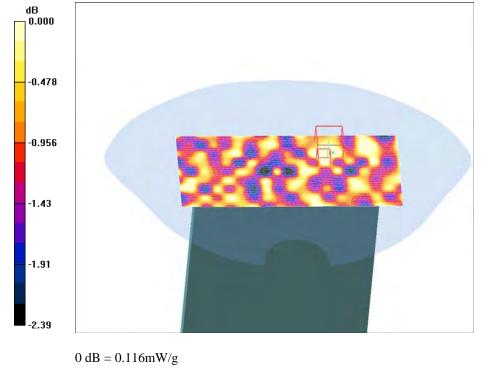
Right Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; σ = 6.1 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Right Side Touch to the Phantom/Area Scan (81x181x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.135 mW/g

Right Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.32 V/m; Power Drift = 0.076 dB Peak SAR (extrapolated) = 0.154 W/kg

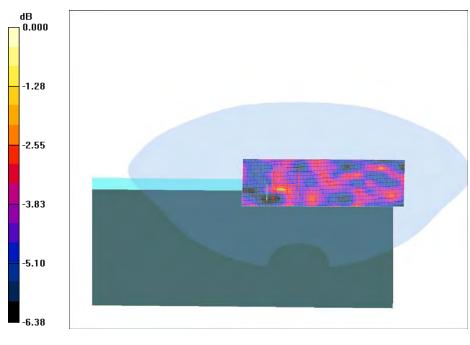
SAR (1 g) = 0.090 mW/g; SAR (10 g) = 0.078 mW/g Maximum value of SAR (measured) = 0.116 mW/g

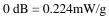
Bottom Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; σ = 6.1 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Bottom Side Touch to the Phantom/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.138 mW/g

Bottom Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 3.84 V/m; Power Drift = -1.88 dB

Peak SAR (extrapolated) = 0.118 W/kg

SAR (1 g) = 0.080 mW/g; SAR (10 g) = 0.076 mW/gMaximum value of SAR (measured) = 0.224 mW/g

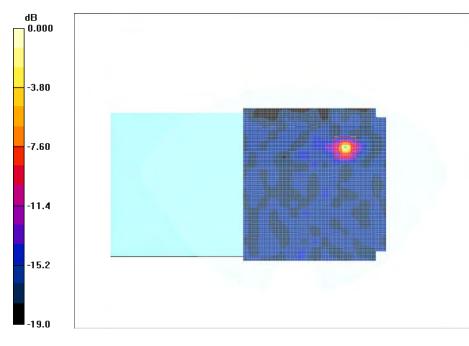
Report Number: R1111165-WLAN SAR	Page 96 of 111	SAR Evaluation Report

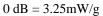
Back Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R111165-1

Communication System: 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; $\sigma = 6.15$ mho/m; $\epsilon_r = 48.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.42 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 3.32 V/m; Power Drift = -1.72 dB

Peak SAR (extrapolated) = 8.29 W/kg

SAR (1 g) = 1.11 mW/g; SAR (10 g) = 0.254 mW/gMaximum value of SAR (measured) = 3.25 mW/g

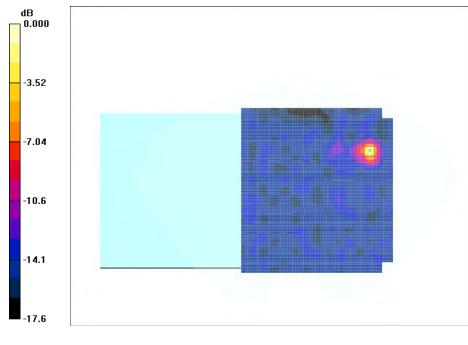
Report Number: R1111165-WLAN SAR	Page 97 of 111	SAR Evaluation Report

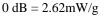
Back Side Touch to the Phantom (Mid Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R111165-1

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5785.34 MHz; σ = 6.2 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.18 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 2.98 V/m; Power Drift = 1.68 dB

Peak SAR (extrapolated) = 7.79 W/kg

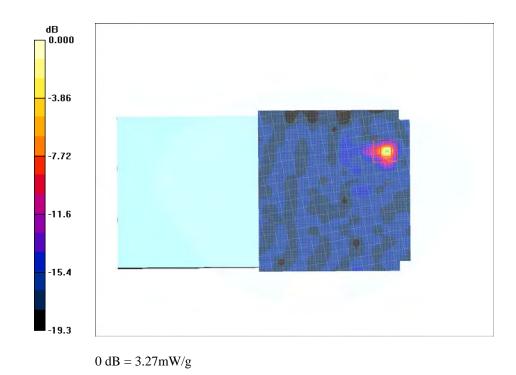
SAR (1 g) = 0.993 mW/g; SAR (10 g) = 0.225 mW/g Maximum value of SAR (measured) = 2.62 mW/g

Back Side Touch to the Phantom (High Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R111165-1

Communication System: 802.11a; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5825 MHz; σ = 6.25 mho/m; ϵ_r = 48.9; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Back Side Touch to the Phantom/Area Scan (161x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.52 mW/g

Back Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm Reference Value = 3.47 V/m; Power Drift = -1.28 dB

Peak SAR (extrapolated) = 8.33 W/kg

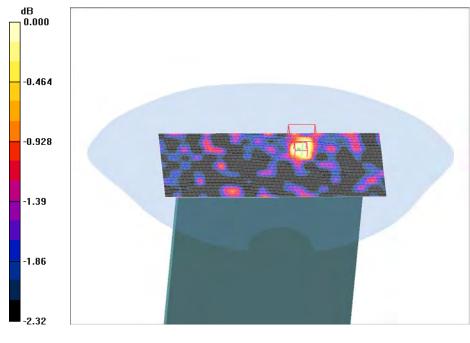
SAR (1 g) = 1.13 mW/g; SAR (10 g) = 0.249 mW/gMaximum value of SAR (measured) = 3.27 mW/g

Right Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; σ = 6.15 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186

Right Side Touch to the Phantom/Area Scan (81x181x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.169 mW/g

Right Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

Reference Value = 3.15 V/m; Power Drift = -0.593 dB Peak SAR (extrapolated) = 0.238 W/kg

SAR (1 g) = 0.101 mW/g; SAR (10 g) = 0.080 mW/g Maximum value of SAR (measured) = 0.135 mW/g

 $0 \, dB = 0.135 mW/g$

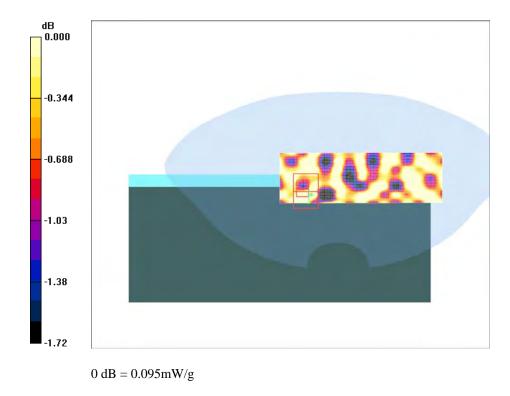
Bottom Side Touch to the Phantom (Low Channel)

DUT: NVIDIA Corporation; Type: Portable device; Serial: R1111165-1

Communication System: 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; σ = 6.15 mho/m; ϵ_r = 48.2; ρ = 1000 kg/m³ Phantom section: Flat Section

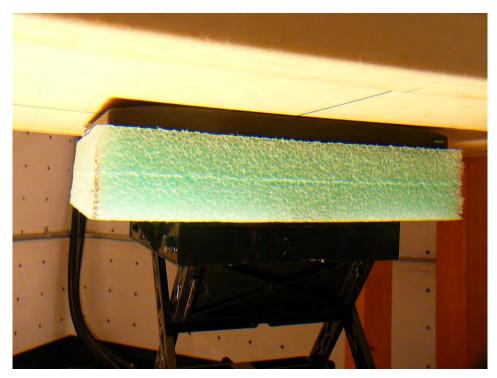
DASY4 Configuration:

- Probe: EX3DV4 SN3619; ConvF(3.82, 3.82, 3.82); Calibrated: 8/29/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn456; Calibrated: 12/7/2010
- Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032
- Measurement SW: DASY4, V4.7 Build 80; Post processing SW: SEMCAD, V1.8 Build 186


Bottom Side Touch to the Phantom/Area Scan (61x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.123 mW/g

Bottom Side Touch to the Phantom/Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.33mm, dy=3.33mm, dz=3mm

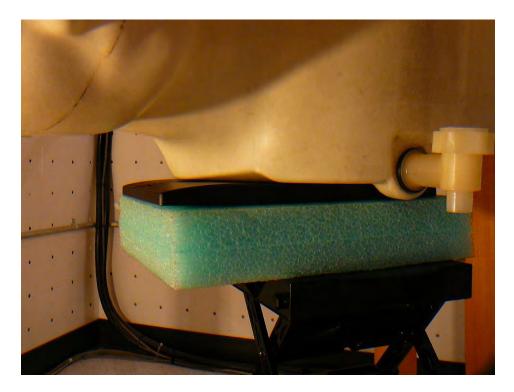
Reference Value = 3.71 V/m; Power Drift = -1.03 dB Peak SAR (extrapolated) = 0.102 W/kg


SAR (1 g) = 0.076 mW/g; SAR (10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.095 mW/g

16 APPENDIX G – TEST SETUP PHOTOS

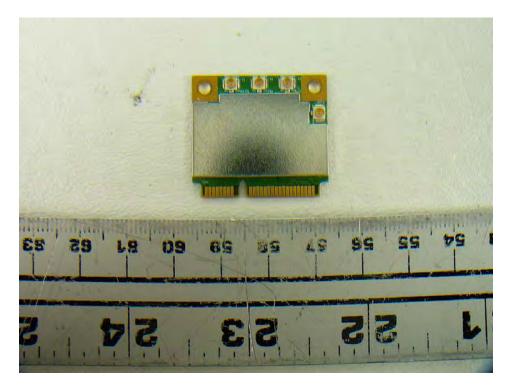
16.1 Back-Touch Setup Photo (2.4GHz)


16.2 Top-Touch Setup Photo (2.4GHz)

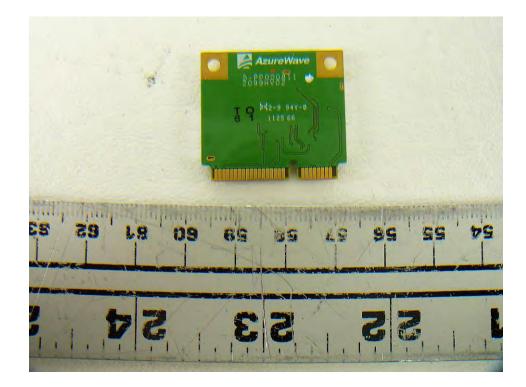

16.3 Left-Touch Setup Photo (2.4GHz)

16.4 Back-Touch Setup Photo (5GHz)

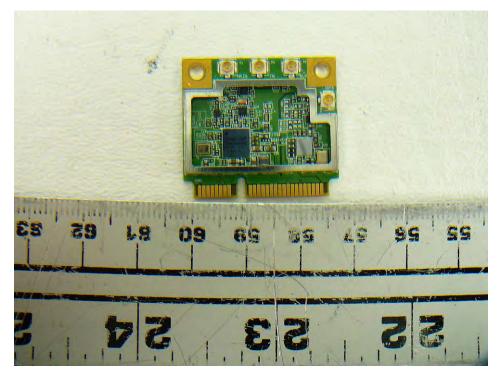
16.5 Bottom-Touch Setup Photo (5GHz)

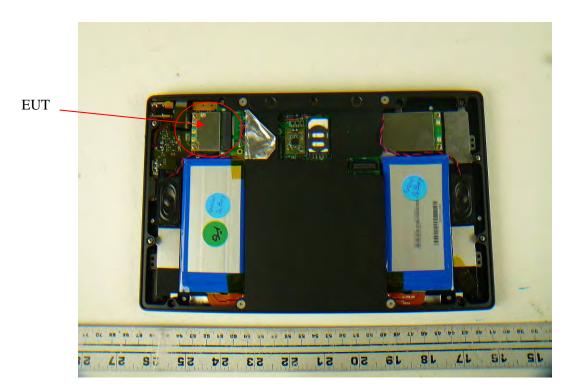


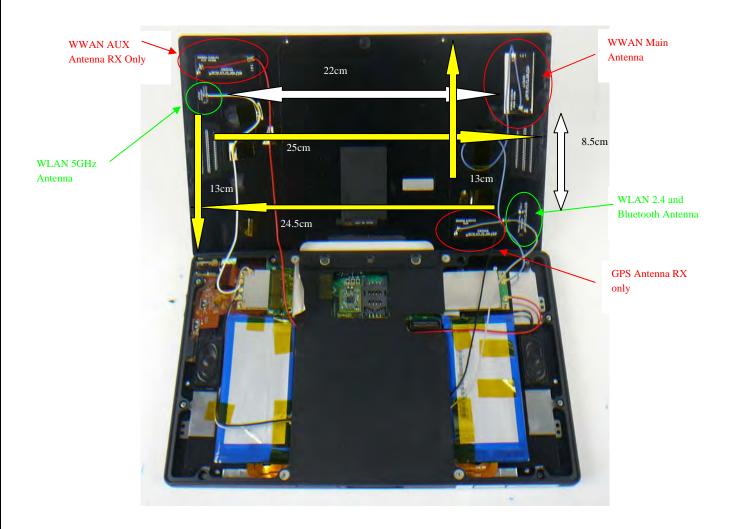
16.6 Right-Touch Setup Photo (5GHz)



17 APPENDIX H – EUT PHOTOS


17.1 EUT- Front Side View


17.2 EUT- Back Side View


17.3 EUT- Front Side View (Without Shielding)

17.4 EUT on the Support Host PC View



Report Number: R1111165-WLAN SAR

17.5 WWAN Module Built into the Tablet PC (Motion E1290) Detail View

17.6 Tablet PC - Front View

17.7 Tablet PC -Back View

17.8 Tablet PC - Port View (1)

17.9 Tablet PC - Port View (2)

Report Number: R1111165-WLAN SAR

17.10 Tablet PC - Top Side View

18 APPENDIX I - INFORMATIVE REFERENCES

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.

[2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.

[3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.

[4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.

[5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.

[6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

[7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.

[8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172-175.

[9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The depen-dence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.

[10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.

[11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9

[13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.

[14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

[15] FCC KDB 616217, KDB 648474, KDB 248227

--- END OF REPORT ---

Report Number: R1111165-WLAN SAR