

FCC Part 15

TEST REPORT

For

Bluetooth Headset (Class 2)

Model Name: BH-320

FCC ID: VO8BH-320

Report No.: GZAGC132080301E6

Date of Issue: Apr.01, 2008

Prepared For

GuangZhou LIWEI Electronics Co., Ltd.

No.33, Zhenzhongbei Road, Shenshan Industrial Park,

Baiyun District, Guangzhou 510460, P.R. China

Tel: 86-020 8606 2626

Fax: 86-020 8606 2626

Prepared By

Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd.

Suite B11/B12, 4F, Huafeng Mall, Chuangye 2nd Road,

25 District, Bao'an, Shenzhen

Tel: 86-755-2974 2358

Fax: 86-755-2600 8484

Applicant:	GuangZhou LIWEI Electronics Co., Ltd.
Manufacturer	GuangZhou LIWEI Electronics Co., Ltd.
Product Description:	Bluetooth Headset (Class 2)
Brand Name:	Bluedio
Model Number:	BH-320
FCC ID	VO8BH-320
Report Number:	GZAGC132080301E6
Date of Test:	Mar.25, 2008-Apr.01, 2008

VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by **Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd.** The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Randy He

King Zhang

Tested By: -

Tony Tian Apr.01, 2008

Randy He

Checked By:

Apr.01, 2008

Authorized By

Kny 2houg

Apr.01, 2008

TABLE OF CONTENTS

1. G	ENE	ERAL INFORMATION	4
1 1	.1 .2	PRODUCT DESCRIPTION RELATED SUBMITTAL(S) / GRANT (S)	4 4
1	.3	TEST METHODOLOGY	4
1	.4	TEST FACILITY	4
1	.5	SPECIAL ACCESSORIES	4
1	.6	EQUIPMENT MODIFICATIONS	4
2. S	YST	EM TEST CONFIGURATION	5
2	.1	CONFIGURATION OF TESTED SYSTEM	5
2	.2	EQUIPMENT USED IN TESTED SYSTEM	5
3. S	UMN	MARY OF TEST RESULTS	6
4. C	ESC	RIPTION OF TEST MODES	6
5. C	ONE	DUCTION EMISSIONS	7
5	.1	MEASUREMENT PROCEDURE:	7
5	.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	7
5	.3	MEASUREMENT EQUIPMENT USED:	7
5	.4	LIMITS AND MEASUREMENT RESULT:	8
6. N	ΙΑΧΙ	MUM OUTPUT POWER	9
6	.1	MEASUREMENT PROCEDURE:	9
6	.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	9
6	.3	MEASUREMENT EQUIPMENT USED:1	1
6	.4	LIMITS AND MEASUREMENT RESULT:	2
7. 2	0 DE	BANDWIDTH1	4
7	.1	MEASUREMENT PROCEDURE1	4
7	.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)1	4
7	.3	MEASUREMENT EQUIPMENT USED:1	4
7	.4	LIMITS AND MEASUREMENT RESULTS:1	4
8. N	IAXI	MUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY1	6
8	.1	MEASUREMENT PROCEDURE:1	6
8	.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)1	6
8	.3	MEASUREMENT EQUIPMENT USED:1	6
8	.4	LIMITS AND MEASUREMENT RESULT:	6
9. C	OUT (OF BAND EMISSION1	9
9	.1	MEASUREMENT PROCEDURE:1	9
9	.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)1	9
9	.3	MEASUREMENT EQUIPMENT USED:	9
9	.4	LIMITS AND MEASUREMENT RESULT:	9

10. NUN	IBER OF HOPPING FREQUENCY	26
10.1	MEASUREMENT PROCEDURE	26
10.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	26
10.3	MEASUREMENT EQUIPMENT USED	26
10.4	LIMITS AND MEASUREMENT RESULT:	
11. TIME	E OF OCCUPANCY (DWELL TIME)	
11.1	MEASUREMENT PROCEDURE	
11.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	28
11.3	MEASUREMENT EQUIPMENT USED	
11.4	LIMITS AND MEASUREMENT RESULT	28
12. FRE	QUENCY SEPARATION	31
12.1	MEASUREMENT PROCEDURE	31
12.2	TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	31
12.3	MEASUREMENT EQUIPMENT USED	31
12.4	LIMITS AND MEASUREMENT RESULT	31
APPEN	DIX 1	
рното	GRAPHS OF SET UP	
APPEN	DIX 2	
рното	GRAPHS OF EUT	35

1. GENERAL INFORMATION

1.1 **PRODUCT DESCRIPTION**

The EUT is a short range, lower power; **Bluetooth Headset (Class 2)** designed as an "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following:

Operation Frequency	2.402 GHz to 2.480 GHz
Rated Output Power	-6.19 dBm
Modulation	FHSS
Number of channels	79
Antenna Designation	Dedicated Antenna with Maximum 3 dBi
Power Supply	DC 3.7V Power by Battery

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **V08BH-320** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.3 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4 TEST FACILITY

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Co., Ltd. 1-2/F, Dachong Keji Building, No.28 of Tonggu Road, Nanshan District, Shenzhen, China FCC Registration Number: 989301

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1 CONFIGURATION OF TESTED SYSTEM

2.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
1	Bluetooth Headset	Bluedio	BH-320	VO8BH-320	
2	Computer	HP	520		
3	Charger				

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.207	Conduction Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Maximum Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Band Edges	Compliant
§15.247	Spurious Emission	Compliant
§15.247	Frequency Separation	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Peak Power Density	Compliant

3. SUMMARY OF TEST RESULTS

4. DESCRIPTION OF TEST MODES

- 1. The EUT has been set to operate continuously on the lowest, the middle and the highest operation frequency individually.
- 2. The EUT stays in continuous transmitting mode on the operation frequency being set.
- 3. The EUT also be tested under charging Mode.

5. CONDUCTION EMISSIONS

5.1 MEASUREMENT PROCEDURE:

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3 MEASUREMENT EQUIPMENT USED:

CONDUCTED EMISSION TEST SITE											
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.						
EMI TEST RECEIVER	HP	8546A/8546 0A	3625A00349 3448A00325	2007/10	2008/10						
LISN	AFJ	LS16	16010222119	2007/04	2008/04						

5.4 LIMITS AND MEASUREMENT RESULT:

FREQ	PEAK	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	RAW	RAW	RAW	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.247	47.66			63.23	53.23	-15.57	-5.57	L1
0.487	40.19			56.34	46.34	-16.15	-6.15	L1
0.741	35.44			56.00	46.00	-20.56	-10.56	L1
1.214	37.18			56.00	46.00	-18.82	-8.82	L1
2.162	33.29			56.00	46.00	-22.71	-12.71	L1
								L1
0.232	46.19			63.65	53.65	-17.46	-7.46	L2
0.448	39.88			57.46	47.46	-17.58	-7.58	L2
0.684	33.19			56.00	46.00	-22.81	-12.81	L2
0.982	36.27			56.00	46.00	-19.73	-9.73	L2
1.595	30.22			56.00	46.00	-25.78	-15.78	L2
								L2

(The chart below shows the highest readings taken from the final data)

L1 = Line One (Hot side) / L2 = Line Two (Neutral side)

**NOTE:

"---" denotes the peak emission level was or more than 2dB below the Average limit, so no re-check anymore.

6. MAXIMUM OUTPUT POWER

6.1 MEASUREMENT PROCEDURE:

CONDUCTED METHOD

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Set SPA Centre Frequency = Operation Frequency, RBW= 1 MHz,
- VBW= 1 MHz.
- 5. Set SPA Trace 1 Max hold, then View.

RADIATED METHOD According to ANSI C63.4:2003

6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

CONDUCTED METHOD

RADIATED METHOD RADIATED MISSION TEST SETUP BELOW 1000MHz

RADIATED EMISSION TEST SETUP UP ABOVE 1000MHz

6.3 MEASUREMENT EQUIPMENT USED:

3M ANECHOIC CHAMBER RADIATION TEST SITE										
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.					
EMI Test Receiver	R&S	ESCS30	100343	04/16/2007	04/15/2008					
AMPLIFIER	HP	HP8447E	2945A02715	04/16/2007	04/15/2008					
ANTENNA	Sunol Sciences Corp.	JB3	A021907	04/16/2007	04/15/2008					
ANTENNA	ANTENNA Sunol Sciences Corp.		A021907	04/16/2007	04/15/2008					
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2007	04/15/2008					

	LIMITS AND MEASUREMENT RESULT										
Applicable	Froquonov		Measurement Res	sult							
Limits	Frequency	EIRP (dBm)	Conducted (dBm)	Criteria							
30 dBm	2.402GHz	-6.19	-8.14	PASS							
30 dBm	2.441GHz	-6.57	-8.90	PASS							
30 dBm	2.480GHz	-8.84	-11.44	PASS							

6.4 LIMITS AND MEASUREMENT RESULT:

🔆 Ag	ilent 13	:17:14	Mar 3	1,2008					R	Т	Peak Search
Ref 20	dBm		•Atten	30 dB			Mk	r1 2.4	402 000 -8.1	0 GHz 4 dBm	Next Peak
Peak Log 10 dB/											Next Pk Right
						\$					Next Pk Left
LgAv											Min Search
M1 S2 S3 FC											Pk-Pk Search
€(f): FTun Swp											Mkr → CF
Center #Res B	2.402 W 1 MH	000 0 z	GHz	V	BW 1 M	lz	Sv	veep 1	Span 20 ms (60	00 kHz 1 pts)	More 1 of 2
uuery	INTER	RUPTE	U								

TEST PLOT OF MIDDLE CHANNEL

TEST PLOT OF TOP CHANNEL

🔆 Ag	ilent 15	:56:21	Mar 31	1,2008					F	t 1	Trac	е
Ref 20 Peak	dBm		•Atten	30 dB			Mk	r1 2.4	180 000 -11.4	0 GHz 4 dBm	<u>1</u> 2	Trace 3
Log 10 dB/											Clear	Write
						1 					Max	k Hold
LgAv											Mir	n Hold
M1 S2 S3 FC												View
€(f): FTun Swp												Blank
Center 2.480 000 0 GHz #Res BW 1 MHz					3W 1 M	Hz	Sw	eep 1	Span 2 ms (60	00 kHz 1 pts)		More 1 of 2
auer y	INTER	NUPIE										

7. 20 DB BANDWIDTH

7.1 MEASUREMENT PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in Section 6.2

7.3 MEASUREMENT EQUIPMENT USED:

The same as described in Section 6.3

7.4 LIMITS AND MEASUREMENT RESULTS:

LIMITS AND MEASUREMENT RESULT								
Applicable Limite		Measurement Result						
	Test Da	Criteria						
	Bottom Channel	1.005	PASS					
	Middle Channel	1.003	PASS					
	Top Channel	1.014	PASS					

TEST PLOT OF BANDWIDTH FOR BOTTOM CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR TOP CHANNEL

8. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

8.1 MEASUREMENT PROCEDURE:

- (1). The EUT was placed on a turn table which is 0.8m above ground plane.
- (2). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (3), Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (4). Set SPA Centre Frequency = Operation Frequency, RBW= 3 KHz,
- VBW= 10 KHz., Sweep time= Auto
- (5). Set SPA Trace 1 Max hold, then View.

8.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

RF Cable

EUT

8.3 MEASUREMENT EQUIPMENT USED:

SHIELDING ROOM									
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.				
Spectrum Analyzer	Agilent	E4440A	US41421290	04/16/2007	04/15/2008				

8.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT								
Applicable Limite		Measurement Res	sult					
	Test Data (dl	Criteria						
	Bottom Channel	-24.44	PASS					
8 dBm / 3KHz	Middle Channel	-22.30	PASS					
	Top Channel -23.53		PASS					

TEST PLOT OF SPECTRAL DENSITY – BOTTOM CHANNEL

TEST PLOT OF SPECTRAL DENSITY – MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY - TOP CHANNEL

9. OUT OF BAND EMISSION

9.1 MEASUREMENT PROCEDURE:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW= 100 KHz.
- 4. Set SPA Trace 1 Max hold, then View.

9.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The Same as described in section 6.2

9.3 MEASUREMENT EQUIPMENT USED:

The Same as described in section 6.3

9.4 LIMITS AND MEASUREMENT RESULT:

LIMITS AND MEASUREMENT RESULT								
Applicable Limits	Measurement R	esult						
	Test Data	Criteria						
In any 100 KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS						
100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS						

TEST PLOT OF BAND ELDG FOR TOP CHANNEL

🔆 Agilent L Trace Mkr1 4.80 GHz Trace -52.93 dBm Ref Ø dBm Atten 20 dB 2 3 #Peak Log 10 **Clear Write** dB/ $\frac{1}{0}$ Max Hold DI –24.3 dBm Min Hold LgAv Start 3.00 GHz Stop 26.50 GHź #Res BW 100 kHz View VBW 100 kHz Sweep 2.833 s (601 pts) Type Freq X Axis 4.80 GHz Amplitude -52.93 dBm Trace (1) Marker Blank Copyright 2000-2003 Agilent Technologies

TEST PLOT OF OUT OF BAND EMISSIONS FOR BOTTOM CHANNEL - 2

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 1

TEST PLOT OF OUT OF BAND EMISSIONS FOR MIDDLE CHANNEL - 2

TEST PLOT OF OUT OF BAND EMISSIONS FOR TOP CHANNEL - 2

Emission for Bottom/Middle/Top Channel Below 1GHz Charging mode & Transmitting										
Frequency	Antenna Pol.	Field Strength	ield Strength Field Strength Limit (PK) Limit (AV)							
MHz	H/V	dBuV/m (PK)	dBuV/m (PK) dBuV/m (AV) dBuV/m							
	H/V			*						
	H/V									
	H/V									
	H/V									

RADIATED EMISSION TEST RESULT:

Band Edge Emission for Bottom Channel											
Frequency	Antenna Pol.	Antenna Pol. Field Strength Field Strength Limit (PK) Limit (AV)									
GHz	H/V	dBuV/m	dBuV/m	Memo							
2.390	Н	74	54	*							
2.386	Н	50.41	44.39	74	54	*					
2.384	Н	47.52	41.72	74	54	*					
2.390	V	42.33	36.71	74	54	*					
2.386	2.386 V 47.82 42.19										
2.384	.84 V 45.28 38.74										

Band Edge Emission for Top Channel										
Frequency	Antenna Pol. Field Strength Field Strength Limit (PK) Limit (AV)									
GHz	H/V	dBuV/m (PK)	dBuV/m (AV)	dBuV/m	dBuV/m	Memo				
2.483	2.483 H 52.19 46.63 74 5									
2.496	Н	54	*							
2.485	Н	51.31	45.19	74	54	*				
2.483	V	50.04	44.29	74	54	*				
2.496	V 42.87 36.85 74 54									
2.485	V	48.82	41.78	74	54	*				

Restricted Band Emission for Bottom Channel											
Frequency	Antenna Pol.	tenna Pol. Field Strength Field Strength Limit (PK) Limit (AV)									
GHz	H/V	H/V dBuV/m (PK) dBuV/m (AV) dBuV/m dBuV/m									
4.81	Н	55.82	43.19	74	54	*					
4.81	V	51.38	38.64	74	54	*					
Above	ve H 74 54										
4.81 GHz	54	*									

Restricted Band Emission for Middle Channel											
Frequency	Antenna Pol.	ntenna Pol. Field Strength Field Strength Limit (PK) Limit (AV)									
GHz	H/V	dBuV/m	Memo								
4.88	Н	56.23	44.26	74	54	*					
4.88	V	52.19	39.87	74	54	*					
Above	Above H 74 54										
4.88 GHz V 74 54											

Restricted Band Emission for Top Channel										
Frequency	Antenna Pol.	tenna Pol. Field Strength Field Strength Limit (PK) Limit (AV)								
GHz	H/V	dBuV/m	Memo							
4.95	Н	54	*							
4.95	V	50.44	38.96	74	54	*				
Above H 74 54										
4.95GHz	V			74	54	*				

Note: "--" Indicated the test value is much lower to limit.

10.NUMBER OF HOPPING FREQUENCY

10.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz, Sweep = Auto
- 4. Set the Spectrum Analyzer as RBW = VBW = 1MHz

10.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

10.3 MEASUREMENT EQUIPMENT USED

The Same as described in section 6.3

10.4 LIMITS AND MEASUREMENT RESULT:

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS - 1

		TES	ST PL	OT F	OR NO	D. OF	ΤΟΤΑ	LCH	ANNE	LS – 2	
🔆 Ag	ilent 14:	57 : 17 ƙ	Apr 1,	2008					R	T	Marker
Ref 10 Peak	dBm	•f	Atten 2	20 dB				Mkr1	2.450 -9.3	96 GHz 5 dBm	Select Marker <u>1</u> 2 3 4
10 10 dB/	Å	~~~~	~~~	~~~~	~~~~		~~~~			2 0	Normal
											Delta
LgAv											Delta Pair (Tracking Ref) Ref <u>▲</u>
Start 2 #Res B Mark	2.450 00 W 1 MHz er Tr	GHz ace	Type	 ₽V	BW 1 M	Hz Axis	S۲	Stop Veep 1	2.482 (ms (60 Amplite	00 GHz 1 pts) ^{ude}	Span Pair Span <u>Center</u>
12	C C	1) 1)	Freq Freq		2.450 2.480	96 GHz 19 GHz			-9.35 (-9.69 (dBm dBm	Off
											More 1 of 2
uuery	INTERR	UPTED									

11. TIME OF OCCUPANCY (DWELL TIME)

11.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0 Hz,

11.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

11.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

11.4 LIMITS AND MEASUREMENT RESULT

The dwell time = Time Slot Length * Hop Rate / Number of Hopping Channels * 0.4 * 79

L-CH: DH1 Time Slot = 0.370 (ms) * (1600/(2*79))*31.6 = 118.4 (ms)

M-CH: DH1 Time Slot = 0.371 (ms) * (1600/(2*79))*31.6 = 118.7 (ms)

H-CH: DH1 Time Slot = 0.365 (ms) * (1600/(2*79))*31.6 = 116.8 (ms)

DWELL TIME TEST PLOT OF BOTTOM CHANNEL

		0			1201	LO					
🔆 🔆 Ag	jilent								F	1 5	Marker
Ref 11 #Peak	dBm		•Atten	30 dB				∆ Mki	r1 – –0	365 µs .08 dB	Select Marker <u>1</u> 234
Log 10 dB/										1R �	Normal
											Delta
LgAv											Delta Pair (Tracking Ref) <u>Ref</u> ▲
V1 S2 S3 FC	***\#%#\4	Mploy-star	ann a fhan a	\$-two-	Hynninia	M ^{ul}				Into	Span Pair Span <u>Center</u>
€(f): FTun											Off
Center Res Bl	2.441 1 MHz	000 GI	łz	V	BW 1 M	Hz	s	weep 1	Spa ms (60	n 0 Hz 1 pts)	More 1 of 2
Query	INTER	RUPTE	D								

DWELL TIME TEST PLOT OF MIDDLE CHANNEL

siz an	n 4 4 0			0 0000		1120	51 01	101			Manlana
🔆 Ag	plient 18	0:55:17	Mar Z	8,2008						K I	marker
Ref 11 #Peak	dBm		•Atten	30 dB				▲ Mk	r1 -3 (371.7 µ 0.00 dB	Select Marker <u>1</u> 2 3 4
Log 10 dB/						·	1R				Normal
											Delta
LgAv											Delta Pair (Tracking Ref) <u>Ref</u> ▲
V1 S2 S3 FC	were the state	unnin	W				Lady	on Arban	affrann ag th	marcal	Span Pair Span <u>Center</u>
£(f): F⊤un											Off
Center Res Bk	2.480 1 MHz	000 GH	Iz	VE	BW 1 MH	lz	S	weep 1	Sp ms (6	an 0 Hz 01 pts)	More 1 of 2
Query	INTER	RUPTE	D								

DWELL TIME TEST PLOT OF TOP CHANNEL

12. FREQUENCY SEPARATION

12.1 MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- 3. Set center frequency of spectrum analyzer = Middele of Operating frequency
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 5 MHz,

12.2 TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

12.3 MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

12.4 LIMITS AND MEASUREMENT RESULT

CHANNEL SEPARATION	LIMIT	RESULT		
KHz	KHz	Pass		
1000	>=25 KHz or 2/3 20 dB BW			

TEST PLOT FOR FREQUENCY SEPARATION

₩ Ag	Marker								
Ref 20 Peak	dBm		•Atten 3	80 dB		Mkr4	2.406 0 -7.9	08 GHz 9 dBm	Select Marker 1 2 3 <u>4</u>
Log 10 dB/			1 0	2 •	3		\$		Normal
									Delta
LgAv									Delta Pair (Tracking Ref) Ref <u>▲</u>
Start 2	2.402 0	00 GHz				Stop	2.407 0	00 GHz	Span Pair
#Res E	3W 1 MH	Z		VBW 1 M	1Hz	Sweep :	1 ms (60	1 pts)	Span Center
Mark	(er T	race (1)	Type Frea	2,403	X Axis 008 GHz		Amplit -8.02	ude dBm	
2		(1)	Freq	2.404	000 GHz		-8.03	dBm	
3		(1) (1)	Freq Freq	2.405 2.406	008 GHz 008 GHz		-7.95 -7.99	dBm dBm	Uff
									More 1 of 2
Query	INTER	RUPTE	D						

Report No.:GZAGC132080301E6

APPENDIX 1

PHOTOGRAPHS OF SET UP

Page 32 of 39

RADIATED EMISSION TEST SETUP – CHARGING

Report No.:GZAGC132080301E6

CONDUCTED EMISSION TEST - CHARGING

Report No.:GZAGC132080301E6

APPENDIX 2

PHOTOGRAPHS OF EUT

FRONT VIEW OF SAMPLE

BOTTOM VIEW OF EUT

LEFT VIEW OF SAMPLE

RIGHT VIEW OF SAMPLE

Report No.:GZAGC132080301E6

TOP VIEW OF SAMPLE

BOTTOM VIEW OF SAMPLE

INTERNAL VIEW OF SAMPLE - 1

INTERNAL VIEW OF SAMPLE – 2

----END OF REPORT----