GENERAL DESCRIPTION

The IS1632N is an integrated monolithic chip for Bluetooth mono headset application. It is a single-chip, Bluetooth v2.0 + EDR baseband with an integrated transceiver.

The IS1632N integrates most external components for a mono headset including voice codec, Li-Ion battery charger, and one low drop regulator. The reductions of external components can be used for a tiny headset easily.

A new voice manage structure achieve lower noise level and higher signal level. This implementation improves the audio quality to fit human's vocal experience and keep audio quality even under terrible environment.

FEATURES

- Bluetooth 2.0 + EDR which is backward-compatible with BT1.1 and 1.2
- Programmable output power control meets specific requirements
- A lowest eBOM in the current market
- Integrated Power Manager Unit (PMU) that can charge a Li-ion battery, LED driver and low drop regulator
- Better audio quality
- Capable charging voltage from a zero battery, and sustain direct DC input for adaptor from 4.8V ~ 6.5 V
- Support standard HCI commands for test requirements
- Standard QFN 48 package that size is only 7x7 mm2

Figure 1: Functional Block Diagram

Processor

ROM

EDR MODEM

Baseband

PLL

PMU

UART

Voice CODEC

Contents

1	1 FEATURES	3
2	2 PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	5
3	RADIO TRANSCEIVER	8
	3.1 TRANSMITTER 3.2 RECEIVER 3.3 SYNTHESIZER	8
4	4 MODEM	9
	4.1 BASIC DATA RATE MODEM (BDR)	9
5	5 POWER MANAGE UNIT	
6	6 VOICE CODEC	11
7	7 TEST MODE AND UART INTERFACE	
8	S CLOCK GENERATION	
	8.1 LOAD CAPACITOR	14
9	ELECTRICAL CHARACTERISTICS	
10	10 PACKAGE INFORMATION	
A	APPENDIX A. REFLOW PROFILE	25
A	APPENDIX B. BQB CERTIFICATION	26

1 Features

System Specification

- Bluetooth Specification v.2.0 with EDR in 2.4 GHz ISM band
- Both BDR and EDR eSCO supported.
- Main input clock of 16MHz frequency
- Full Bluetooth RF Interface & Lower Link Controller functions
- Support 64 kb/s PCM format (A-Law or μ-Law), or CVSD (Continuous Variable Slope Delta Modulation) for SCO channel operation.

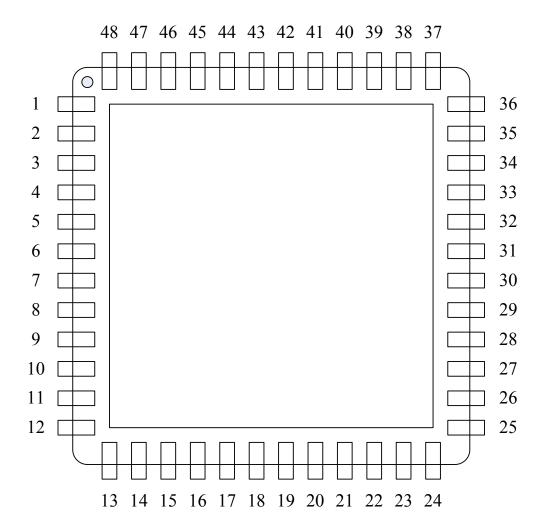
RF Hardware

- Combined TX/RX RF terminal simplifies external matching and reduces external antenna switches.
- +2dBm output power with level control.
- For Class2/3, transmitter support without the requirement for external power amplifier or TR switch at the same time..
- Fully integrated synthesizer has been created. There requires no external VCO, varactor diode, resonator and loop filter.
- Crystal oscillation with build-in digital trimming for temperature/process variations.
- Fully support for power saving mode includes Park, Hold and Sniff

Power Manager Unit

- Battery protection features including over voltage and under voltage protect.
- A Li-ion poly-battery charging features with adjustable charging current
- Internal Low Drop Regulator (LDO) that can eliminate the external coil inductor
- Voltage Detection circuit is used for battery monitoring in portable applications

Flexible HCI interface


- An embedded UART (Universal Asynchronous Receiver Transmitter) is included in this chip that support HCI-UART I/O interface
- Standard Bluetooth HCI test commands sets

Package

• QFN 48 standard package

2 Pin Assignments and Signal Descriptions

Pin No.	I/O	Pin Name	Pin Descriptions			
1	0	LOUT+	Differential audio output (+). 1.6Vp-p maximum			
			differential output used in conjunction with LINE_OUT			
			DC offset relative to ground typically 0.85V. Output			
			impedance of 20~30 ohms, with 1K ohm minimum load.			
2	О	LOUT-	Differential audio output (-). 1.6Vp-p maximum			
			differential output used in conjunction with LINE_OUT+.			
			DC offset relative to ground typically 0.85V. Output			
			impedance of 20~30 ohms, with 1K ohm minimum load.			
3		AGND	Analog ground for audio CODEC.			
			Connect to common ground.			
4		VDD_CORE	Digital core logic power.			
			Connect to 1.8V supply.			
5		GND	Digital Ground.			
			Connect to common ground.			
6		VDD_IO	Digital I/O Power.			
			Connect to 1.8V supply.			
7	I	RST_N	External reset signal input			
8		NC	NC			
9		NC	NC			
10		LED1	LED1 sinking point.			
11	_	LED0	LED0 sinking point.			
12	I	PowerKey	Power enables input and the Multi-Function Button as the			
			default setting.			
13		SYS_PW	Internal system power output			
14		LDO18_O	LDO 1.8V output.			
15		VDD_SAR	SAR 1.8V input power			
16	ΑI	BAT_IN	A Li-ion battery positive input point			
17	ΑI	ADP_IN	A DC adaptor positive input point			
18		VDD_CORE	Digital core logic power.			
			Connect to 1.8V supply.			
19	I	HCI_RXD	HCI UART Serial Port Receive Data.			
20 21	О	HCI_TXD	HCI UART Serial Port Transmit Data.			
21		NC	NC			
22		GND	Digital Ground.			
			Connect to common ground.			
23		NC	NC			
24 25	I	TEST	Test mode by configure it LOW.			
25	I	VOL-	General purpose I/O, Volume Down key as the default			
			setting. It's active when receive a LOW level signal.			

Pin No.	I/O	Pin Name	Pin Descriptions
26	I	VOL+	General purpose I/O, Volume Up key as the default
			setting. It's active when receive a LOW level signal.
27	_	NC	NC
28	O	SCL	EEPROM interface Clock signal
29	I/O	SDA	EEPROM interface for Data signal
30 31	_	NC	NC
31		VDD_IO	Digital I/O Power.
			Connect to 1.8V supply.
32 33		XO_P	16MHz Crystal input positive
		XO_N	16MHz Crystal input negative
34		EP_GND	RF ground
35		NC	No connection
36		VCC_RF	1.8V input power for RF VCO and Transceiver
37	I/O	RF_TP6	RF test pin
38	I/O	RF_TP3	RF test pin
39	I/O	RF_TP5	RF test pin
40		RX_CLS1	Class 1 signal input
41		EP	RF ground
42		RTX	Combined RF T/R path
43		EP	RF ground
44		AGND	CODEC ground
45	I	LIN-	Differential audio input signal (-). 160mVp-p maximum
			differential input range.
46	I	LIN +	Differential audio input signal (+). 160mVp-p maximum
			differential input range.
47	AO	MIC_BIAS	Microphone's bias voltage output when SCO is
			established
48	_	AVDD	Audio CODEC power.
			Connect to a clean 1.8V supply.
49	_	EPGND	System thermal ground at backside. (1)

Notes:

(1) The backside for thermal ground on PCB must be as large as possible.

3 Radio Transceiver

The IS1632N is design optimized for use in Bluetooth 2.4 GHz system. It provide low-power, low-cost with high receive sensitivity and high transmit power that extend the effective communicate range.

3.1 TRANSMITTER

The internal PA has a maximum output power of +2dBm with level control 8dB from amplitude control. This is applied into Class2/3 radios without external RF PA. If you want a larger output power for Class1 application, the external PA must be used.

The transmitter features IQ direct conversion to minimize the frequency drift. And it can excess 30dB power range with temperature compensation machine.

3.2 RECEIVER

The LNA can be operated into two type modes. One type is TR-combined mode for single port application. The other type is TR-separated mode for dual port application that used an external PA/LNA application.

The ADC is utilized to sample input analogue wave to convert into digital for de-modulator analysis. Before the ADC, a channel filter has been integrated into receiver channel that can reduce the external component count and increase the anti-interference capacity.

There is an RSSI signal to the processor that it can control the power to make a good tradeoff for effective distance and current consumption.

3.3 SYNTHESIZER

The internal loop filter is used to reduce external RC components. This can reduce cost and variations for components. This internal LC tank for VCO is utilized to reduce variation for components. The cost is down at the same time.

A fully integrated synthesizer has been created. There requires no external VCO, varactor diode, resonator and loop filter

4 MODEM

There are three different modulations for Bluetooth v2.0 + EDR. In figure 2, we summarized these modulations and data rate.

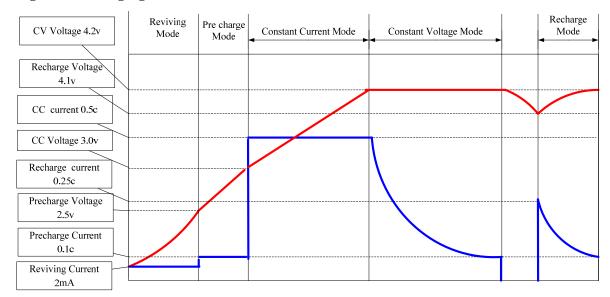
Figure 2 – Modulation type for Bluetooth v2.0 + EDR

Data Rate	Modulation	Bits/Symbol
BDR: 1 Mbps	GFSK	1
EDR: 2 Mbps	π/4 DQPSK	2
EDR: 3 Mbps	8DPSK	3

4.1 Basic Data Rate MODEM (BDR)

On the Bluetooth v1.2 specification and below, 1 Mbps was the standard data rate based on Gaussian Frequency Shift Keying (GFSK) modulation scheme. This basic rate modem meets BDR requirements of Bluetooth v2.0+EDR specification

4.2 Enhanced Data Rate MODEM (EDR)


On the Bluetooth v2.0+EDR specification, Enhanced Data Rate (EDR) has been introduced to provide 2 and 3 Mbps data rates as well as 1 Mbps. This enhanced data rate modem meets EDR requirements of Bluetooth v2.0+EDR specification. For the viewpoint of baseband, both BDR and EDR utilize the same 1MHz symbol rate and 1.6 KHz slot rate. For BDR, 1 symbol represents 1 bit. However each symbol in the payload part of EDR packets represents 2 or 3 bits. This is achieved by using two different modulations, $\pi/4$ DQPSK and 8DPSK

5 Power Manage Unit

The PMU inside the chip have two main features, charging a Li-ion battery and some regulators for voltage translation. A power switch is used to switch over the power source between battery and adaptor automatically. The charging current is configured in the EEPROM. Whenever the adaptor is plug-in, charging circuit is active. Reviving, Precharging, Constant Current and Constant Voltage modes are implemented and re-charging function is also included.

The 10-bit Successive-Approximation-Register analog to digital converter (SAR ADC) provides one dedicated channel for battery voltage level detection. The warning level is programmable and stored in the EEPROM. The built-in voltage converter is used to convert the battery or adaptor power for RF or digital IO power supply. It also integrates hardware architecture to control power on/off procedure.

Figure 3 - Charging curve

6 Voice CODEC

The mono audio codec is described by the following figure. There are several stages for input and output that all can be programmed for varying gain response characteristics. At the microphone input side, you may use single-end input or differential input. One critical point in maintaining a high quality signal is to provide a stable bias voltage source for the condenser microphone's FET. DC blocking capacitors may be used at both positive and negative sides of input. Internally, this analog signal is converted to 15-bit 8 kHz linear PCM data.

The voice data taken from common memory is converted to an analogue value by a DAC. A multistage amplifier drives the audio signal and provides a differential signal between Line_out+ and Line_out-. The output amplifier is capable of driving a speaker directly if its impedance is greater or equal to 16Ω .

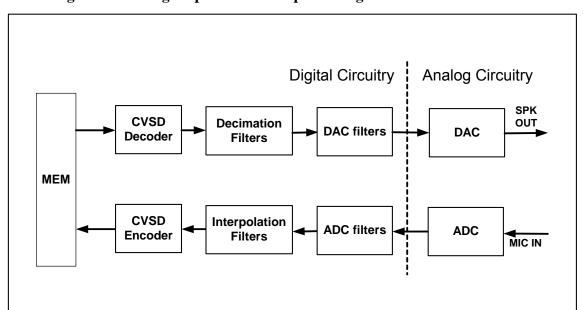
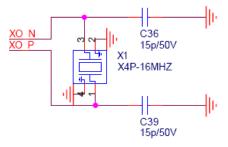


Figure 4: The signal path for audio processing

7 Test Mode and UART Interface

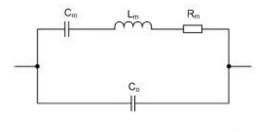
Hardwired control logic is presented in front of the UART devices for HCI protocol handling and packet buffering. This control logic is part of the HCI controller defined in Bluetooth specification 1.2. This logic is partially responsible for the HCI protocol handling to/from the host and it also maps the registers of the UART devices indirectly to the 8051 such that the system can receive or send a HCI packet to/from the respective host interface. The UART physical interface with adjustable baud rates from 2400 bps to 115200 bps.


These HCI commands through UART interface fully supports Bluetooth test mode as defined in Bluetooth specification 2.0. By some hardware change, the device supports testing features to complete RF qualification. And some specify commands to achieve audio test and analog circuit calibration. These features include:

- Fixed carrier frequency transmission
- Received fixed frequency carrier
- Fixed frequency transmission with PRBS-9 pattern
- Transmitter test
 - Hopping on or off
 - Multiple packet types supported or not
 - Multiple data pattern supported or not
- Receiver test
 - Multiple packet types supported or not
 - Multiple data pattern supported or not
- Audio loop back test
- Calibration for voltage detector

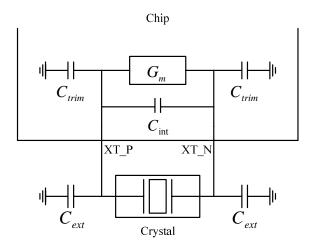
8 Clock Generation

IS1632N is composed of an integrated crystal oscillation function. With an external crystal and two specified load capacitors, a high quality system reference timer source is obtained. A typical schematic diagram is shown as bellow.


Figure 5: The clock source for IS1632N

8.1 LOAD CAPACITOR

In general, the resonant frequency of a crystal is determined by its motional inductor L_m and motional capacitor C_m as shown in Figure 6 in nature. However, accompanying with oscillator circuitry, its oscillating frequency somehow can be fine trimmed by equivalent load capacitance.


Figure 6: Electrical equivalent circuit for a crystal

A conceptual diagram of a crystal oscillator is shown in Figure 7. With the given Lm, the resonant oscillating frequency is determined by

$$f = \frac{1}{2\pi\sqrt{L_m C_L}}$$

Figure 7: The conceptual diagram for a crystal oscillator

And C_L is *overall load capacitanc*e seen by crystal terminals.

$$C_L = C_{\text{int}} + \frac{C_{trim}}{2} + \frac{C_{ext} \times C_{ext}}{C_{ext} + C_{ext}}$$

Where C_{ext} is on-board *external load capacitor*, C_{trim} is on-chip *internal trim capacitor*, and Cint is *on-chip fix capacitor*.

8.2 FREQUENCY TRIM

IS1632N enables frequency adjustments to be made. This feature is typically used to remove the initial tolerance frequency errors associated with the crystal and its equivalent load capacitance in mass production. Frequency trim is achieved by adjusting the crystal load capacitance through on-chip trim capacitors C_{trim} integrated in chip.

The value of trimming capacitance is around 200fF per LSB at 5 bits word, therefore

$$C_{trim} = 200 \text{fF} * (1 \sim 31)$$

The overall adjustable clock frequency is around 40 KHz.

9 Electrical Characteristics

Table 1: Absolute Maximum Voltages

Symbol	Parameter	Min	Typical	Max	Unit
VDD_CORE	Digital core supply voltage		1.8	1.98	V
VDD_SAR	SAR ADC supply voltage				
AVDD	CODEC supply voltage				
VDD_IO	I/O supply voltage	1.7		1.9	V
VCC_RF	RF supply voltage				
VIN_LDO18	LDO supply voltage	2.1		5	V
ADP_IN	Input voltage for adaptor	4.5		6.5	V
BAT_IN	Input voltage for battery			4.2	V
T _{OPERATION}	Operating temperature range	TBD		TBD	°C
T_{STORE}	Storage temperature	-40		+125	°C

Notes:

(2)

Table 2: Recommended operate condition for power supply

Symbol	Parameter	Min	Typical	Max	Unit
VDD_CORE	Digital core supply voltage		1.8	1.98	V
VDD_SAR	SAR ADC supply voltage				
AVDD	CODEC supply voltage				
VDD_IO	I/O supply voltage		1.8		V
VCC_RF	RF supply voltage				
VIN_LDO18	LDO supply voltage	3.1		4.2	V
ADP_IN	Input voltage for adaptor		5		V
BAT_IN	Input voltage for battery	3.1		4.2	V

Notes:

(3)

Table 3: LDO Electrical Specifications

Symbol	Parameter	Min	Typical	Max	Unit
V_{IN}	Input voltage	3.1		4.2	V
V_{OUT}	Output voltage		1.8		V
I_{MAX}	Maximum load current		100		mA
C_{LOAD}	Load capacitance		1		μF
V_{RIPPLE}	Output ripple		20		mV_{RMS}

Table 4: Digital I/O pins

Symbol	Parameter	Min	Typical	Max	Unit
V_{IH}	High-level input voltage	1.5			V
$V_{\scriptscriptstyle \mathrm{IL}}$	Low-level input voltage	-0.3		8.0	V
V_{OH}	High-level output voltage	1.56			V
	$I_{OH} = 4mA$				
$ m V_{ m OL}$	Low-level output voltage			0.4	V
	$I_{OL} = 4mA$				

Table 5: Current consumption

$V_{\rm BAT~IN} = 3.8 V$ Temperature = 20 °C and output power = 0 dBm					
Conditions	Typical	Unit			
HV3 connection with 500 ms interval sniff mode	14.4	mA			
HV3 connection with no sniff mode	20	mA			
2EV3 connection	18	mA			
ACL connection with 1.28s interval sniff mode	400	μΑ			
Leakage current when system shutdown	2	μA			

Notes:

(4)

Table 6: Audio section

Audio Codec,16Bit Resolution	Min	Тур	Max	Unit
Microphone Amplifier				•
Input scale		160		mVp-p
Gain resolution				
Stage 1(two levels)	0		14	dB
Stage 2 : 0~26dB, 16 steps		1.73		dB/Step
Microphone input impedance		20		ΚΩ
Common Mode Voltage		0.85		V
Bandwidth	3.2		3.84	KHz
Analogue to Digital Converter		1	•	•
Input Sample Rate		2		MSample/s
Output Sample Rate		8		KSamples/s
Digital to Analogue Converter			•	
Gain Resolution : -20dB~0dB, 8 Steps		-2.85		dB/Step
Min gain		-20		dB
Max gain		0		dB
Loudspeaker Driver				•
Output Voltage Full Scale Swing (differential)		1.6		V Pk-Pk
Output Impedance	16			Ω
Common Mode Voltage		0.85		V
Bandwidth		3.3		KHz
Audio loop test			•	
Send Distortion and Noise (SD + N)		TBD		
Sending Idle Channel Noise		TBD		
Receive Distortion and Noise (SD + N)		TBD		
Receiving Idle Channel Noise		TBD		

Table 7: Charger section

	Min	Тур	Max	Unit
Total power dissipation				mW
Supply voltage		5		V
Operation Current		5		mA
VDD Sleep Current		10		uA
Output Voltage		4.2		V
Current Regulation Threshold		100		mV
Charge Terminated Current Detect Threshold		100		mV
Precharge Threshold		3		V
Precharge Current Regulation		100		mV
Recharge Threshold		4.1		V
Charging Current	1		100	mA

Table 8: Transmitter section for BDR

VCC_RF = 1.8V	Temperat	ure = 25°C		
Parameter	Min	Тур	Max	Unit
Frequency range	2402		2480	MHz
Output power	-2	0	2	dBm
Channel spacing		1		MHz
Power control range	2		8	dB
2 nd Harmonic Content				dBm
3 rd Harmonic Content				dBm
20db bandwidth for modulated carrier		920		kHz
Adjacent channel transmit power F = F0 ± 2Mhz				dBm
Adjacent channel transmit power F = F ₀ ± 3Mhz				dBm
Adjacent channel transmit power F = F ₀ ≥ 3Mhz				dBm
∆f1avg Maximum Modulation	140	155	170	kHz
$\Delta f2_{\text{avg}}$ Minimum Modulation		140		kHz
Δ f1avg / Δ f2avg		0.95		
In-Band spurious emission				
± 500 KHz			-20	dBc
Out-Band spurious emission				
746 MHz to 764 MHz				dBm/Hz
851 MHz to 894 MHz				dBm/Hz
925 MHz to 960 MHz				dBm/Hz
1805 MHz to 1880 MHz				dBm/Hz
1930 MHz to 1990 MHz				dBm/Hz
2110 MHz to 2170 MHz				dBm/Hz
LO performance				
Lock time				μs
Initial carrier frequency tolerance				kHz
Frequency Drift				
DH1 packet				kHz
DH3 packet				kHz
DH5 packet				
Drift Rate				kHz/50us

Table 9: Transmitter section for EDR

VCC_RF = 1.8V Temperatu	Тур	Unit	
Maximum RF transmit power		2.0	dBm
Output power variation		1.5	dB
Relative transmit power		-1.5	dB
π/4 DQPSK max carrier frequency stability w ₀			kHz
π/4 DQPSK max carrier frequency stability wi			kHz
π/4 DQPSK max carrier frequency stability w ₀ + w _i			kHz
8DPSK max carrier frequency stability w₀			kHz
8DPSK max carrier frequency stability wi			kHz
8DPSK max carrier frequency stability w ₀ + w	i		kHz
	RMS DEVM		%
π/4 DQPSK Modulation Accuracy	99% DEVM		%
	Peak DEVM		%
	RMS DEVM		%
8 DPSK Modulation Accuracy	99% DEVM		%
	Peak DEVM		%
In-band spurious emissions	F > F ₀ + 3MHz		dBm
	F < F ₀ - 3MHz		dBm
	F = F0 - 3MHz		dBm
	F = F ₀ - 2MHz		dBm
	F = F ₀ – 1MHz		dB
	$F = F_0 + 1MHz$		dB
	$F = F_0 + 2MHz$		dBm
	$F = F_0 + 3MHz$		dBm
EDR Differential Phase Encoding			%

Table 10: Receiver section for BDR

VCC_RF = 1.8V Temperature = 25°C					
Parameter		Min	Тур	Max	Unit
Frequency range		2402		2480	MHz
	2402 MHz		-88		dBm
Rx sensitivity at 0.1% BER	2441 MHz		-88		dBm
	2480 MHz		-88		dBm
Input IP3			1		dBm
Maximum received signal at 0.	1% BER				dBm
Interference Performance					
C/I co-channel (5)					dB
C/I +1 MHz adjacent channel					dB
C/I -1 MHz adjacent channel					dB
C/I +2 MHz adjacent channel					dB
C/I -2 MHz adjacent channel					dB
C/I +3 MHz adjacent channel					dB
C/I -3 MHz adjacent channel					dB
C/I over 3 MHz adjacent channel					dB
C/I Image channel					dB
C/I 1 MHz adjacent to image of	hannel				dB
Inter modulation Performance	ee				
Maximum level of inter-modula interference (6)					dBm
Spurious Emission performa	nce			•	•
30 MHz to 1 GHz					dBm/Hz
1 GHz to 6 GHz					dBm/Hz

Notes:

- (5) Measured at channel frequency 2441 MHz
- (6) Measured at f1 f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c, i.e., wanted signal at -64dBm
- F1 = -39dBm sine wave and f2 = -39dBm Bluetooth-modulated signal, f0 = 2f1-f2, and |f2-f2| = n*1MHz, where n is 3, 4, or 5. For the typical case, n = 5

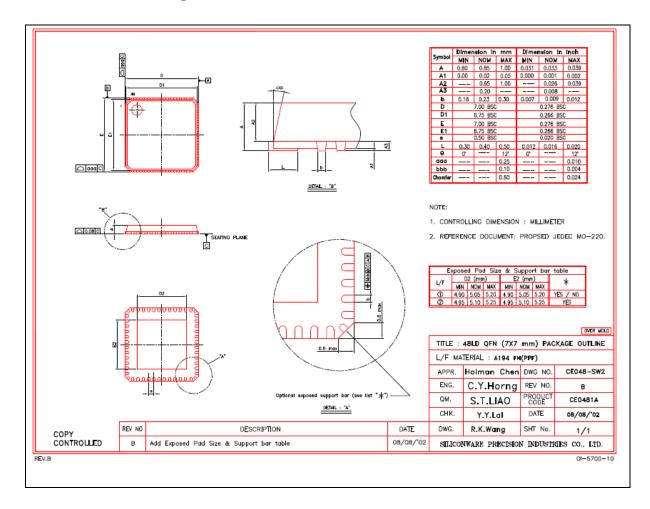
Table 11: Receiver section for EDR at $\pi/4$ DQPSK modulated signal

VCC_RF = 1.8V Temperature = 25°C					
Parameter		Min	Тур	Max	Unit
Frequency range		2402		2480	MHz
	2402 MHz		-88		dBm
Rx sensitivity at 0.1% BER	2441 MHz		-88		dBm
	2480 MHz		-88		dBm
Input IP3			1		dBm
Maximum received signal at 0).1% BER				dBm
Interference Performance					
C/I co-channel (5)					dB
C/I +1 MHz adjacent channe					dB
C/I -1 MHz adjacent channel					dB
C/I +2 MHz adjacent channel					dB
C/I -2 MHz adjacent channel					dB
C/I +3 MHz adjacent channel					dB
C/I -3 MHz adjacent channel					dB
C/I over 3 MHz adjacent channel					dB
C/I Image channel					dB
C/I 1 MHz adjacent to image	channel				dB
Inter modulation Performan	ce				
Maximum level of inter-modul interference (6)	ation				dBm
Spurious Emission perform	ance				
30 MHz to 1 GHz					dBm/Hz
1 GHz to 6 GHz					dBm/Hz

Notes:

- (7) Measured at channel frequency 2441 MHz
- (8) Measured at f1 f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c, i.e., wanted signal at -64dBm
- F1 = -39dBm sine wave and f2 = -39dBm Bluetooth-modulated signal, f0 = 2f1-f2, and |f2-f2| = n*1MHz, where n is 3, 4, or 5. For the typical case, n = 5

Table 12: Receiver section for EDR at 8DPSK modulated signal


VCC_RF = 1.8V Temperature = 25°C					
Parameter		Min	Тур	Max	Unit
Frequency range		2402		2480	MHz
	2402 MHz		-82		dBm
Rx sensitivity at 0.1% BER	2441 MHz		-82		dBm
	2480 MHz		-82		dBm
Input IP3			1		dBm
Maximum received signal at 0	.1% BER				dBm
Interference Performance					
C/I co-channel (5)					dB
C/I +1 MHz adjacent channel					dB
C/I -1 MHz adjacent channel					dB
C/I +2 MHz adjacent channel					dB
C/I -2 MHz adjacent channel					dB
C/I +3 MHz adjacent channel					dB
C/I -3 MHz adjacent channel					dB
C/I over 3 MHz adjacent channel					dB
C/I Image channel					dB
C/I 1 MHz adjacent to image	channel				dB
Inter modulation Performan					_
Maximum level of inter-modula interference (6)	ation				dBm
Spurious Emission performa	ance				
30 MHz to 1 GHz					dBm/Hz
1 GHz to 6 GHz					dBm/Hz

Notes:

- (9) Measured at channel frequency 2441 MHz
- (10) Measured at f1 f2 = 5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CA/05/c, i.e., wanted signal at -64dBm
- F1 = -39dBm sine wave and f2 = -39dBm Bluetooth-modulated signal, f0 = 2f1-f2, and |f2-f2| = n*1MHz, where n is 3, 4, or 5. For the typical case, n = 5

10 Package Information

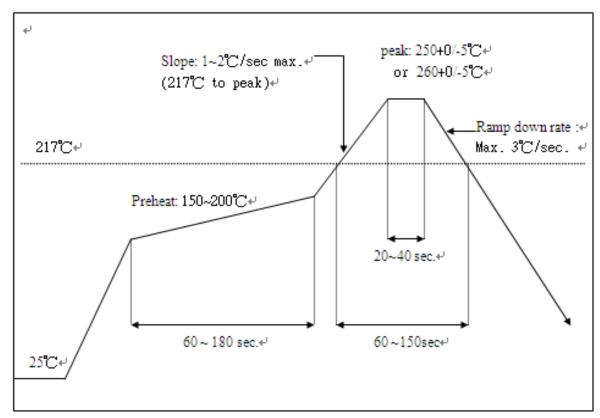
Appendix A. Reflow Profile

1.) Follow: IPC/JEDEC J-STD-020 C

2.) Condition:

Average ramp-up rate $(217^{\circ}\mathbb{C} \text{ to peak})$: $1\sim2^{\circ}\mathbb{C}/\text{sec max}$.

Preheat: 150~200C \cdot 60~180 seconds


Temperature maintained above $217^{\circ}\text{C}:60\sim150\text{ seconds}$ Time within 5°C of actual peak temperature: $20\sim40\text{ sec.}$

Peak temperature : $250+0/-5^{\circ}$ C or $260+0/-5^{\circ}$ C

Ramp-down rate : 3° C/sec. max.

Time 25° C to peak temperature : 8 minutes max.

Cycle interval: 5 minus

Time (sec)↔

Appendix B. BQB certification

https://www.blustooth.org/tpg/Certificate.cfm?QID=13820

Assessment Date:

March/21/2008

Listing Date:

March/21/2008

Revision1.0

Bluetooth

Bluetooth SIG Qualification Design (QDL) Certificate

QDL Certificate: This certificate represents the Specifications declared by the Member as having passed the Bluetooth Qualification/Certification Process as specified within the Bluetooth Specifications and as required within the PRD 2.0.

Design Name: Bluetooth 2.1+EDR Baseband controller

This Product Design has passed the Bluetooth Qualification Process! Certified

Specification Version: 2.1/2.1+EDR () Bluetooth

QDID: B013820

Declared Specifications: Baseband Conformance, Radio, Link Manager, Summary ICS, Product Type

Member Company: Requirements: Project Dates:

Integrated System Solution

3F, No.2-1, Industry East Rd., 2. Documentation

1, Science-Based Industrial Park

Hsinchu, Taiwan 300

Jan-Willem Vonk

Testing

3. Assessment

4. Declaration Listing 6. Marking

7. Compliance to Auditing and

Enforcement

1 of 1 21-Mar-08 15:24

CONTACT INFORMATION

ISSC Corporate Headquarters (Taiwan):

3F, No.2-1, Industry East Rd. I, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C. 300

TEL: 886-3-577-8385 FAX: 886-3-577-8501

ISSC Sales Office (China, Shanghai):

2F., Building 59, No. 461, Hongcao Rd., Xu Hui District, Shanghai 200233, P.R.C.

TEL: 86-21-6485-6299 # 6701 FAX: 86-21-5427-6519

ISSC Sales Office (China, Shenzhen)

NO.1,11F,Southern International Plaza#B, No.3013, Yitian Road, Futian District, Shenzhen P.R.C.

TEL: 86-755-8378-2810 FAX: 86-755-8378-2770

ISSC Sales Office (Taiwan):

4F, No.116, Joutz St., Neihu District Taipei Taiwan, R.O.C. 114

TEL: 886-2-2659-7699 FAX: 886-2-2659-7967

© 2009 Integrated System Solution Corp.

All rights are reserved.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without any notice.

.....