AVR2025: IEEE 802.15.4 MAC Software Package
- User Guide -

Features

Portable and highly configurable MAC stack based on IEEE 802.15.4
Atmel MAC architecture and implementation introduction

Support of several microcontroller families

Support of all Atmel IEEE 802.15.4 transceivers and single chips,
i.e. ATmega128RFA1, AT86RF212, AT86RF231, and AT86RF230
Example application description

1 Introduction

This document is the user guide for the Atmel MAC software for IEEE 802.15.4
transceivers. The mechanisms and functionality of the IEEE 802.15.4 standard is the
basis for the entire MAC software stack implementation. Therefore it is highly
recommended to use it as a reference. Basic concepts that are introduced by the
IEEE standard are assumed to be known within this document.

The user guide describes the MAC software package AVR2025 release 2.5.2.

The software contains the 2" generation MAC, which

Allows a highly flexible firmware configuration to adapt to the application
requirements

Supports different microcontrollers and platforms/boards
Supports different 802.15.4 based transceivers and single chips
Allows easy and quick platform porting

Provides project files for two supported IDEs (IAR Embedded Workbench, AVR
Studio / WinAVR)

Supports star networks and peer-to-peer communication
Supports nonbeacon and beacon-enabled networks

The MAC software package is a reference implementation demonstrating the use of
Atmel's IEEE 802.15.4 transceivers. It follows a generic approach and is not
optimized to any specific application requirement. The user needs can be adapted to
its specific application requirements.

AIMEL

2025H-MCU Wireless-08/10 I ——

AlIEL

®

AVR G-NK
MCU Wireless
Solutions

Application Note

Preliminary

AIMEL

T

2 General Architecture

The MAC software package follows a layered approach based on several stack
modules and applications. Figure 2-1 shows the stack’s architecture. The stack
modules are from the bottom up:

e Platform Abstraction Layer (PAL) (see section 2.1.1)

e Transceiver Abstraction Layer (TAL) (see section 2.1.2) and Transceiver Feature
Access (TFA) (see section 2.2.4)

¢ MAC including MAC Core Layer and MAC-API (see section 2.1.3)

e Security Abstraction Layer (SAL) and Security Toolbox (STB) (see section 2.2.2 and
2.2.3)

¢ Resource Management including Buffer and Queue Management (BMM and QMM)
(see section 2.2.1)

e Alternativly the Tiny-TAL with less footprint can be used for simple applications
requiring less functionality (see section 2.2.5)

Figure 2-1. MAC Architecture

Application
MAC
STB (MCL incl.
MAC API)
Resource
— Management
(BMM, QMM)
SAL TINY_TAL TAL TFA TPS
Peripherals (TRX Access, Timers, GPIO, IRQ, Stream I/O)
Hardware Platform (i.e. Microcontroller, Board, Configuration)

For a complete description of the API of each layer and component please refer to the “AVR2025
IEEE 802.15.4 MAC Reference Manual” (MAC_readme.html) located in the AVR2025 top
directory.

2.1 Main Stack Layers

The main MAC stack software consists of three layers starting from the bottom up:

e Platform Abstraction Layer - PAL
e Transceiver Abstraction Layer - TAL
¢ MAC Core layer — MCL

2 AVR2025 —2()25H-|v|cuvvire|ess-os/1()

For other stack layers please refer to section 2.2.

2.1.1 Platform Abstraction Layer (PAL)

The Platform Abstraction Layer (PAL) contains all platform (i.e. MCU and board)
specific functionality (required by the MAC software packages) and provides interfaces
to the upper modules. Therefore, all upper modules are independent from the
underlying platform. Since some components of the PAL maybe dependent on the
actual platform/board, certain functionality within the PAL has to be implemented for
each setup, like LEDs and buttons.

For each microcontroller a separate implementation exists within the PAL layers. The
board and application needs are adapted via a board configuration file (pal_config.h).
This board configuration file exists exactly once for each supported hardware platform.

The PAL provides interfaces to the following components:

¢ Transceiver access functionality, i.e. via SPI or direct memory access

¢ GPIO control (access from microcontroller to the GPIO pins connected to the
transceiver)

e Low-level interrupt handling

e Timers (high-priority and software timers)

e Serial stream 1/O support (via USB or UART)
¢ Access to persistent storage (e.g. EEPROM)
e LED control or button access support

These components are implemented as software blocks and are ported based on the
target microcontroller. The transceiver access module provides interface to the registers
and frame buffer of the transceiver. The timer module implements software timer
functionality used by the MAC, TAL, and application layer. The serial stream 1/O module
provides communication services for transmission and reception of serial data, e.g.
UART/USB communication. The GPIO module controls the general purpose I/O pins of
the microcontroller. The interrupt module handles the transceiver interrupt(s). Hardware
timer interrupts and other interrupts are handled internally by the PAL.

The function prototypes for all PAL API functions are included in file PAL/Inc/pal.h.

2.1.2 Transceiver Abstraction Layer (TAL)

2025H-MCU Wireless-08/10

The Transceiver Abstraction Layer (TAL) contains the transceiver specific functionality
used for the 802.15.4 MAC support and provides interfaces to the MAC Core Layer
which is independent from the underlying transceiver. Besides that, the TAL API can be
used to interface from a basic application. There exists exactly one implementation for
each transceiver using transceiver-embedded hardware acceleration features. The TAL
(on top of PAL) can be used for basic applications without adding the MCL.

The following components are implemented inside the TAL:

e Frame transmission unit (including automatic frame retries)

e Frame reception unit (including automatic acknowledgement handling)
e State machine

e TAL PIB storage

¢ CSMA module

e Energy detect scan

e Power management

AIMEL 3

2.1.3 MAC Core Layer (MCL)

2.1.3.1 Stack Task Functionality

2.1.3.2 MAC-API

4

AVR2025

AIMEL

T

e Interrupt handling
e Initialization and reset

The Transceiver Abstraction Layer uses the services of the Platform Abstraction Layer
for its operation. The Frame Transmission Unit generates and transmits the frames
using PAL functionality. The Frame Reception Unit reads/uploads the incoming frames
and pushes them into the TAL-Incoming-Frame-Queue. The TAL handles the Incoming-
Frame-Queue and invokes the receive callback function of the MCL. The operation of
the TAL is controlled by the TAL state machine. The CSMA-CA module is used for
channel access. The PIB attributes related to the TAL are stored in the TAL PIB
storage.

The function prototypes for the TAL features are provided in file TAL/Inc/tal.h. The
implementation of a TAL is located in a separate subdirectory for each transceiver.

The MAC Core Layer (MCL) abstracts and implements IEEE 802.15.4-2006 compliant
behavior for nonbeacon-enabled and beacon-enabled network support. The
implemented building blocks are:

¢ MAC Dispatcher

¢ MAC Data Service

¢ MAC Management Service (like start, association, scan, poll, etc.)

¢ MAC Beacon Manager

¢ MAC Incoming Frame Processor

¢ MAC PIB Module

¢ MAC-API

¢ MAC stack task functions

The MAC Core layer provides an API that reflects the IEEE 802.15.4 standard ([4]).

The stack (consisting of PAL, TAL, and MCL) task functionality consists of the following
API:

e Initialization
The function wpan_init() initializes all stack resources including the microcontroller
and transceiver using functions provided by the TAL and the PAL.

e Task handling
The function wpan_task() is the stack task function and is called by the application. It
invokes the corresponding task functions of the MCL, TAL, and PAL. Using the MAC
software package it is required to call this function frequently supporting a round
robin approach. This ensures that the different layers’ state machines are served
and their queues are processed.

The application interfaces the MAC stack via the MAC-API (see file mac_api.h in
directory MAC/Inc).

It sends requests and responses to the stack by calling the functions provided by the
MAC-API. The MAC-API places these requests and responses in the NHLE-MAC-

2025H-MCU Wireless-08/10

Queue. It also invokes the confirmation and indication callback functions implemented
by the user.

2.1.3.3 MAC Core Layer Functionality

2.1.4 Usage of the Stack

2025H-MCU Wireless-08/10

The MAC Dispatcher reads the NHLE-MAC-Queue and passes the requests or
responses to the MAC Data Service or the MAC Management Service. The MAC
Dispatcher also reads the internal event queue (TAL-MAC-Queue) and calls the
corresponding event handler.

The MAC Data Service transmits data using the frame transmission services of the
Transceiver Abstraction Layer and invokes the confirmation function mcps_data_conf(),
which is implemented in the MAC-API. This function in turn calls the
usr_mcps_data_conf() callback function implemented by the application. The indirect
data requests are queued into the Indirect-Data-Queue, where the frames are re-
fetched from when a corresponding data request (poll request) is received from a
device.

Receiving a data frame from the TAL through MAC Incoming Frame Processor, the
MAC Data Service invokes the indication function mcps_data_ind(), which is
implemented by the MAC-API. This function calls the usr_mcps_data_ind() callback
function implemented by the application.

The MAC Management Service processes the management requests and responses
through TAL and PAL and if applicable invokes the respective confirm function
implemented by the MAC-API. This function in turn calls the usr_mime_xyz_conf()
callback function implemented by the application.

Receiving a command frame from the TAL through the MAC incoming frame processor,
the MAC Management Service invokes the indication function mime_xyz_ind(), which is
implemented by the MAC-API if required. The mime_xyz_ind() function calls the
usr_mlme_xyz_ind() callback function implemented by the application.

The MAC Incoming Frame Processor receives frames from the TAL and depending on
the type of the frame, passes it to the MAC Data Service or the MAC Management
Service for further processing.

The MAC PIB attributes are stored in the MAC PIB and are accessed by the MAC Data
Service, the MAC Management Service and the Beacon Manager. PIB attributes that
are used by the TAL module are stored within the TAL.

The Beacon Manager generates the beacon frames which are transmitted using the
TAL. The beacon manager is also responsible for beacon reception at the start of a
superframe and its synchronization. The received beacons are processed based on the
current state of the MAC and if required indications or notifications are given to the
MAC-API.

An application can use any layer as desired depending on the required functionality. An
application that is based on a standard IEEE 802.15.4 MAC uses the MAC-API based
on the stack built by PAL, TAL, and MCL. Another application (e.g. a simple data pump)
may want to use only the basic channel access mechanism, automatic handling of
Acknowledgments, etc. In this case potentially only the TAL API based on a stack
consisting of PAL and TAL will be used. A very simple application may even only use
the PAL API based on the PAL layer. What kind of stack is actually being used by the
application is always depending on the end user needs and the available resources.

AIMEL 5

AIMEL

T

In order to specify which layer of the stack the application is actually based on (i.e.
which API it is using), the build switch HIGHEST_STACK_LAYER needs to be set
properly. Depending on this switch only the required resources from the stack are used
for the entire application. For further information about the wusage of
HIGHEST_STACK_LAYER please see section 6.1.1.1HIGHEST_STACK_LAYER.

The following picture shows which layers of the stack are available for the application
depending on the build switch HIGHEST_STACK_LAYER. Obviously a trade-off needs
to be found between required functionality on one hand and the footprint on the other
hand.

Figure 2-2. Stack Usage

User App

Additional Stack

Layer
Atmel MAC Stack Application
Layers
Application User defined
Stack Layer
Application NWK NWK
Application
Application i MAC MAC MAC
Application
pplicat Tiny-TAL TAL TAL TAL TAL
PAL PAL PAL PAL PAL PAL
HIGHEST_ HIGHEST_ HIGHEST _ HIGHEST _ HIGHEST _ HIGHEST _
STACK_LAYER STACK_LAYER STACK_LAYER STACK_LAYER STACK_LAYER STACK_LAYER
= PAL =TINY_TAL =TAL =MAC =NWK =

2.2 Other Stack Components

2.2.1 Resource Management

6

AVR2025

The Resource Management provides access to resources to the stack or the
application. These resources are:

1. Buffer Management (Large and small buffers): provides services for dynamically
allocating and freeing memory buffers

2. Queue Management: provides services for creating and maintaining the queues

The following queues are used by the software:

1. Queue used by MAC Core Layer
a. NHLE-MAC-Queue
b. TAL-MAC-Queue
c. Indirect-Data-Queue
d. Broadcast-Queue
2. Queue used by TAL
a. TAL-Incoming-Frame-Queue

2025H-MCU Wireless-08/10

3. Additional queues and buffers can be used by higher layers, like application such as
the MAC-NHLE-Queue.

2.2.2 Security Abstraction Layer

2.2.3 Security Toolbox

The SAL (Security Abstraction Layer) provides an API that allows access to low level
AES engine functions abstraction to encrypt and decrypt frames. These functions are
actually implemented dependent on the underlying hardware, e.g. the AES engine of
the transceiver. The API provides functions to set up the proper security key, security
scheme (ECB or CBC), and direction (encryption or decryption).

For more information about the SAL-API see file SAL/Inc/sal.h.

For information about the usage of the SAL for application security see section 4.6.

The STB (Security Toolbox) is a high level security abstraction layer providing an easy-
to-use crypto API for direct application access. It is placed on top of the SAL and
abstracts and implements transceiver or MCU independent security functionality that
encrypts or decrypts frames using CCM* according to 802.15.4 / ZigBee.

For more information about the STB-API see file STB/Inc/stb.h.

For information about the usage of the SAL for application security see section 4.6.

2.2.4 Transceiver Feature Access

2.2.4.1 Introduction

2.2.4.2 Features

2025H-MCU Wireless-08/10

The current 802.15.4 stack is designed to be fully standard compliant. On the other
hand Atmel transceivers provide a variety of additional hardware features that are not
reflected in the standard. In order to have a clear design separation between the
standard features and additional features, a new software block has been introduced —
TFA (Transceiver Feature Access).

If the TFA shall be used within the application a special build switch needs to be set in
ordet get access to these specific features (see 6.1.4.3).

The following features have been implemented within the TFA:

¢ Additional PIB attribute handling
o Function for reading or writing special PIB attributes (not defined within
[4]) are provided
o Example: Transceiver Rx Sensitivity (see the Data Sheets of the
transceivers for more information about the Transceiver Rx Sensitivity)
¢ Single CCA
o Based on [4] a function is implemented to initiate a CCA request to
check for the current state of the channel
The result is either PHY_IDLE or PHY_BUSY
Allows for CCA measurements independent from the MAC-based
CSMA-CA algorithm
¢ Single ED measurement

o Based on [4] a function is implemented to initiate a single ED
measurement separate from the cycle of a full ED scanning

AIMEL 7

AIMEL

T

¢ Reading transceiver's supply voltage
¢ Continuous transmission

o For specific measurements a continuous transmission on a specific is
required

o In order to support this feature functions are implemented to initiate or
stop a continuous transmission

e Temperature Measurment (Single Chip transceivers only)

o A function is implemented to read the temperature value from the
integrated temperature sensor in degree celsius

For more information about the TFA implementation see file TFA/Inc/tfa.h and the
source code for the various transceivers (TFA/tal_type/Src/tfa.c).

2.2.5 Tiny Transceiver Abstraction Layer (Tiny-TAL)

2.2.5.1 Introduction

The Tiny-TAL (Tiny Transceiver Abstraction Layer) is a lightweight version of the TAL
with less functionality and thus less footprint requirements. While the TAL is mainly
used can be used as base layer for the MCL (although it can be used as the highest
stack layer as well), the Tiny-TAL is always to be used as the highest stack layer (it
cannot serve the MCL as base layer).

The Tiny-TAL contains generally the same functionality as the TAL, except for the
following features, which are not available in the Tiny-TAL:
¢ No beacon mode (function tal_tx_beacon() is not implemented)

¢ No ED Scanning (functions tal_ed_start() and tal_ed_end_cb() are not
implemented),

¢ No buffer management included, only utilization of simple static memory for frame
reception

e Less static variables required

e Removal of frame_info_t structure, handling of simple frame arrays including octets
(i.e. type uint8_t) building free format frames

e No internal queue used
e Timestamping not supported
e No filter tuning or PLL calibration supported

¢ Reduced PIB base (several PIB attributes are not implemented in the Tiny-TAL,
such as attributes for beacon support, etc.)

¢ No API function for reading PIB attributes residing inside the Tiny-TAL

Applications which shall use the Tiny-TAL as base stack layer shall set the build switch

HIGHEST_STACK_LAYER = TINY_TAL in the corresponding Makefiles or project files
(see 6.1.1.1).

An example application based on the Tiny-TAL can be found in section 9.2.4.

2.2.5.2 Tiny-TAL Frame Handling
The function for transmitting a frame by an application using the Tiny-TAL is defined as

void tal_tx_frame(uint8_t *tx_frame, csma_mode_t csma_mode,

8 AVR2025 —2()25H-|v|cuvvire|ess-os/1()

2.3 Application

2025H-MCU Wireless-08/10

bool perform_frame_retry)

The callback function for indicating a received frame to the application residing on top of
the Tiny-TAL is:

void tal_rx_frame_cb(uint8_t *rx_frame)

Both frame handling functions are simplified compared to the implementation within the
original TAL by accepting/providing the frame in a simple array of octets (compare to
the filled structure of type frame_info_t in the TAL). This enables easy handling of the
fames in the application, especially for non-IEEE-confirm frames and allows for the
easy development of applications using free format frames and/or user defined frame
exchange protocol. For example, such user defined frame formats do not necessary
require the MAC Header information as defined in [4], but instead could create its own
frame header scheme.

The callback function after the frame transmission attempt

void tal_tx_frame_done_cb(retval_t status)
only contains the status of the transmission. The reference to the frame buffer is
omitted (compared to the original TAL implementation), since buffer management is not
used inside the Tiny-TAL.

The application uses the services provided by the MAC-API. Besides that, the
application can use the resource hooks, like timer functionality of the PAL, buffer and
gueue management.

It is in the responsibility of the application to implement the callback functions as
confirmation and indication primitives for respective MAC data/management services.

For further explanation of applications and the included example applications please
refer chapter 9.

AIMEL 9

AIMEL

T

3 Understanding the Software Package

The following chapter describes the content of the MAC software package and explains
some general guidelines how the various software layers are structured.

3.1 MAC Package Directory Structure

Once the MAC package has been extracted into the proper place the directory structure
looks as follows:
MAC_v_2_5_2
I—Applications
I—Helper_Files
| I—SIO_Support
I—MAC_E xamples

I—App_l_Nobeacon
I——Coordinator
| —AT86RF212_ATMEGA1281_RCB_5_3_PLAIN

I—AT86RF2 12_ATXMEGA128A1_REB_5_0_STK600
I—AT86RF23OB_AT9 0USB1287_USBSTICK_C

I—App_Z_Nobeacon_Indirect_Traffic
I——Coordinator

|

o

| | —ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD
|| b—ine

| | Lsrc

| I——Device

N

N

| | L_src

| I——Inc

| L—src
I—Basic_Sensor_Network
R ——

| |——Inc

| L _src
I—Promiscuous_Mode_Demo
| ..

| I——Inc

| L _src

|
10 AV R2025 2025H-MCU Wireless-08/10

|—Star_Nobeacon

—. . .
I——Inc

L—src
PAL_Examples
I—Simple_Remote_LED_Control
I——ATMEGA128RFA1_RCB_6_3_PLAIN
I——Inc
L _src
STB_Examples
I—Secure_Remote_Control
| —. . .
| -—ATMEGA128RFA1_RCB_6_3_PLAIN
| -—ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD
| I——Inc
| L src
|—Secure_Sensor

—-—pbData_sink

|
| I—Inc

| L_src
I——Inc
I——Sensor

| . ..
| I—Inc

| L src
L _src

—TAL_Examples
| I—Performance_Test
|
|
|
L

TINY_TAL_Examples
L wireles s_UART

—. . .
I——Inc

L—src
|—Bu1 1d
| L puild_MAC
| —oacc
| | L—avr
| L—12aR
| —ar
| L —avR
F—-poc

| I—Application_Guide

AIMEL

2025H-MCU Wireless-08/10 I ——

|
|
|
|
|
|
|
|
|
| | —ATMEGA128RFA1_RCB_6_3_SENS_TERM_BOARD
|
|
|
|
|
|
|
|

11

12

AVR2025

AIMEL

T

I—Reference_Manual

|

|| b—ac

I N

| | L pAl,_ ATMEGA128RFA1_RCB_6_3_PLAIN
| L us er_Guide

I—Include
—uac
| I—Inc

| L__src

F—~AT915aMX256
I——Bo ards
| L REB 5_0_REX_ARM REV_3
| L___REB 2 3_REX_ARM REV_2

I——Inc
I——Src

|——Startup
F—~AaT91sAM7XC256

I—Generic
| I——Inc

|
|
|
| | L REB 4 0_2_ REX_ARM REV_3
|
|
|

| L—src

—~avr
—AT90USB1287
| I——Boards

| | L—usesTICK C

| I——Inc

| L _src
—~ATMEGA1281
I——Boards

| F——RCB_3_2_BREAKOUT_BOARD

| F—RCB_3_2_PLAIN

| —RCB_3_2_SENS_TERM_BOARD
| —RCB_4_0_BREAKOUT_BOARD

| F—RCB_4_0_PLAIN

| —RCB_4_0_SENS_TERM_BOARD
| F—RCB_4_1_BREAKOUT_BOARD

| b—mRcB_4_1_PLAIN

| —RCB_4_1_SENS_TERM_BOARD
| F—RCB_5_3_BREAKOUT_BOARD

| F—RCB_5_3_PLAIN

| —RCB_5_3_SENS_TERM_BOARD
| F—REB_2_3_STK500_STK501

| F—REB_4_0_STK500_STK501

| F—REB_4_1_STK500_STK501

| L REB 5_0_STK500_STK501

2025H-MCU Wireless-08/10

| I——Inc

| L_src
—ATMEGA2561
| I——Boards

| | L REB 2_3_STK500_STK501

| I——Inc

| L—src
—ATMEGR644P
| I——Boards

| | L REB 2 3 STK500

| I——Inc

| L _src

L_Generic
I——Inc
L—src

Inc

MEGA_RF

—ATMEGA128RFAL
I——Boards

| F—=x2

| ——RCB_6_3_BREAKOUT_BOARD

|
|
|
| | F—RCB_6_3_PLAIN
|
|
|

| L RCB_6_3_SENS_TERM_BOARD

R

L—src
L_Generic
I——Inc
L _src
L xMEGA
—ATXMEGA128A1
I——Boards

|

| | F—REB_2_3_STK600
| | —REB_4_0_STK600
| | F—=REB_4_1 STK600
| | L REB_5_0_STK600
|

|

I——Inc

L—src
F—ATXMEGA256A3
—ATXMEGA256D3
L__Generic

|——Inc

L_src

I—Resources

2025H-MCU Wireless-08/10

I—Buffer_Management

| |—Inc

| L src

|—Queue_Management

AIMEL 13

AIMEL

T

| I—Inc

| L_src
—saL
—AT86RF2xx

| L src
—ATMEGARF_SAL
| L src
—ATXMEGA_SAL

| L__src

I—Inc

L sw_AES_SAL

—AT86RF212
| I—Inc

| L—src
—AT86RF230B

|

|

|

|

| | I—Inc

| | L__src

| —AT86RF231

| | I—Inc

| | L src

| —ATMEGARF_TAL_1
|
|
|
|

| I—Inc

| L__src

I—Inc

L__src

—AT86RF212

|

| | L_src

| —aT86RF230B

| | L—src

| —aT86RF231

| | L_src

| —ATMEGARF_TAL_1
| | L_src

| L 1Inc

L TINY TAL

—aT86RF212
| I—Inc

| L—src
—AT86RF230B

| F—1nc

| L src

—AT86RF231

|
14 AV R2025 2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

| I—Inc

| L src
—ATMEGARF_TAL_1

| I—Inc

| L src

I—Inc

L src

These directories contain the following items (in alphabetical order):

Applications:

o The MAC package comes with a variety of applications which comprise
MAC applications (using the MAC-API on top of the MAC Core Layer),
TAL applications (using the TAL API), and STB Applications (Secure
Remote Control using the TAL API, Secure Sensor using the MAC-API
on top of the MAC Core Layer).

o Makefiles and AVR Studio and IAR Embedded Workbench project files
are available for every supported microcontroller / transceiver / board
configuration and can be used as quick start.

o Hexfiles to be downloaded onto available hardware are provided

Build: This directory contain Windows batch files, that can be easily used to rebuilt
any desired (MAC, TAL, or STB) application or all applications at once.

Doc:

o This directory contains the MAC reference manual in html format, which
can be started by double clicking file MAC _readme.html in the root
directory of the MAC package.

o Also this MAC User Guide is located here.

Include: This directory contains header files that are of general interest both for
applications and for all layers of the stack, such as IEEE constants, data types,
return values, etc.

MAC: This directory contains the MAC Core Layer (MCL) and the MAC-API.

PAL: This directory contains the Platform Abstraction Layer with subdirectories for
each microcontroller family. It provides all required source and header files for each
microcontroller and the supported board configurations.

Resources: This directory contains the buffer and queue management
implementation used internally inside MCL and TAL. Also hooks for application
usage are provided.

SAL: This directory contains the Security Abstraction Layer providing specific
security implementations based on available hardware support.

STB: This directory contains the Security Toolbox implementing an independent
crypto API.

TAL: This directory contains the Transceiver Abstraction Layer with subdirectories
for each supported transceiver providing specific implementations addressing the
specific needs of each transceiver.

TFA: This directory contains the Transceiver Feature Access with subdirectories for
each supported transceiver providing access to unique transceiver features, like
receiver sensitivity configuration, etc.

AIMEL 18

AIMEL

T

e TINY_TAL: This directory contains the Tiny Transceiver Abstraction Layer with
subdirectories for each supported transceiver providing the lightweight version of the
TAL

3.2 Header File Naming Convention

16

AVR2025

The different modules or building blocks of the stack are structured very similar. Once
the reader is familiar with the provided file structure, it becomes very easy to find any
required information.

Each stack layer directory or building block has a directory named Inc:

e MAC/Inc

e PAL/Inc

e SAl/Inc

e STB/Inc

e TAL/Inc

e TFA/Inc

e TINY_TAL/Inc

These directories contain basic header files that are generic for the entire block
(independent from the specific implementation) or required for the upper layer.

Additionally there are further Inc subdirectories designated to specific implementations.
Each transceiver implementation inside the TAL has its own Inc directories (e.g.
TAL/AT86RF231/Inc) or each microcontroller family and each single microcontroller
have their own Inc directories (e.g. PAL/XMEGA/Generic/Inc or
PAL/AVR/ATMEGA1281/Inc).

Generally the following header file naming conventions are followed:

1. layer.h:

o This file contains global information that forms the layer or building
block API such as function prototypes, global variables, global macros,
defines, type definitions, etc.

o Each upper layer that wants to use services from a lower layer needs to
include this file.

o Examples: mac.h, tal,h, pal,h, stb.h, sal.h, tfa.h
2. layer_internal.h:

o This file contains stack internal information only. No other layer or
building block shall include such a file.

o Examples: MAC/Inc/mac_internal.h, TAL/AT86RF212/Inc/tal_internal.h,
PAL/AVR/Generic/Inc/pal_internal.h

3. layer_types.h:

o This file contains the definitions for the supported types of each
category that can be used with Makefiles or project files to differentiate
between the various implementations and make sure that the proper
code is included.

o Whenever a new type of this category is introduced (for example a new
hardware board type), the corresponding file needs to be updated.

o Examples: tal_types.h, pal types.h, sal_types.h, pal_boardtypes.h,
vendor_boardtypes.h

4. layer_config.h:

2025H-MCU Wireless-08/10

o This file contains definitions of layer specific stack resources such as
timers or buffers.

For further information see section 4.3.
Examples: mac_config.h, tal_config.h, pal_config.h

AIMEL 17

2025H-MCU Wireless-08/10 I |

AIMEL

T

4 Understanding the Stack

The following chapter explains how an end user application is configured. Generally the
stack is formed by every software portion logically below the application.

The stack can comprise

¢ Only the PAL, or

e The Tiny-TAL based on PAL, or

e The TAL based on PAL, or

¢ The MAC based on TAL and PAL, or

¢ A network layer (NWK) based on MAC, TAL, and PAL

¢ Any other layer residing below the application

For configuring the stack appropriately please refer to chapter 6.

4.1 Frame Handling Procedures

4.1.1 Frame Transmission Procedure

18

AVR2025

This section shall explain the stack layer interworking for the transmission of a MAC
data frame. The payload of such a frame requires special treatment, since it is handed
over from the higher layer or application, whereas other MAC frames are generated
inside the MAC layer itself.

The stack is always separated into a stack domain and an application domain. The
application resides on the stack layer called Highest Stack Layer (see section 2.1.4).
The AVR2025 software package can be utilized in the following two different
archictectures:

(1) An Application residing on top of the MAC layer: The application interacts with the
MAC Layer by means of functions call (residing in file mac_api.c) and callbacks
(residing in files usr_*.c). The MAC-API in return interacts with the MAC Core Layer
(MCL) by means of messages handled with an internal queue.

(2) An application residing on top of another layer (above the MAC layer): The
application interacts with the “Highest Stack Layer” by means of function calls and
callback to be implemented within the highest stack layer and/or the application. The
stack layer above the MAC (i.e. the Network Layer — NWK) interacts with the MAC by
means of messages handled with an internal queue (similar to (1)).

2025H-MCU Wireless-08/10

AVR2025

4.1.1.1 Part 1 - Data Frame Creation and Transmission

Figure 4-1. Data Frame Transmission Procedure — Part 1

App

(based on @

Highest Stack

App
(based on
AC)

ayer

&)

NWK
’
NHLE-MAC- ‘

Queue [—

wpan_mcps_data_req(

L
Q
>
®
*
-

mcps_data_[request() mcps_data_request()

MCL

D
tal_tx_frame() ftal_tx_frame_done_cb() f tal_rx_frame_cb()

(E) TAL
(F

7\
)

PAL /
HW

How is the procedure for a MAC Data frame which shall be transmitted?

(A) In case the MAC application wants to initate a frame transmission, it call the MAC-
API function wpan_mcps_data_req() function with the corresponding parameters (see
file MAC/Inc/mac_api.h). As part of the parameter list the application needs to specify
the proper MAC addressing information and the actual application payload.

In case the application resides on another higher layer than the MAC, the Highest Stack
Layer needs to provide a similar API than the MAC and should handle the request of
the application for a frame transmission similarly (A’).

(B) Within file mac_api.c the corresponding MAC message is generated and queued
into the NHLE-MAC-Queue (which handles all MAC layer request and response
messages). During this process the actual application payload is copied once into the
proper position of the MCPS message. This is actually the only the data payload is
copied during the entire frame transmission process. During the further processing of
the frame, the payload is not copied further (except for the utilization of MAC security).

In case the application resides on another higher layer than the MAC, the Highest Stack
Layer needs to generate the corresponding message accordingly and queued this into

the proper queue. Here the application payload is also copied only once at the interface
of the Highest Stack Layer (B’). If the application is already at the right position, is it not

AIMEL 19

2025H-MCU Wireless-08/10 I ——

20

AIMEL

T

necessary to copy the application payload again during the further process of the frame
in all lower layers down to the MAC layer (B”).

The subsequent handling of the frame transmission attempt is identical independent
from the stack layer the application is actually residing on.

(C) Within the MAC Core Layer (MCL) the dispatcher reads the message form the
NHLE-MAC-Queue and call the corresponding function mcps_data_request() (see file
MAC/Src/mac_mcps_data.c). The following functions are performed:

¢ Parsing of MAC address information

e Creation of the actual MAC frame by filling the information structure (structure
frame_info_t — see file TAL/Inc/tal.h)

¢ The frame_info_t structure for the data frame contains a fully formatted MAC frame
including the MAC Header information and the MSDU (i.e. the MAC payload of the
frame); the MSDU is not copied again during this process of the MAC frame creation

(D) Once the MAC frame is properly formatted, the corresponding TAL-API function is
called in order to initiate the actual frame transmission (see function tal_tx_frame();
declaration in TAL/Inc/tal.h). The TAL functions required the frame_info_t structure as
input.

(E) Inside the TAL no further formatting of the MAC frame is done. The frame is
transmitted using the requested CSMA-CA scheme and retry mechanism. This is done
by means of using PAL functions and the provided hardware (F). For further information
check function tal_tx_frame() in file TAL/tal_type/tal_tx.c.

AVR2025

2025H-MCU Wireless-08/10

AVR2025

4.1.1.2 Part 2 - Data Frame Clean-up and Confirmation

Figure 4-2. Data Frame Transmission Procedure — Part 2

App
®

(based on @
Highest Stack

Layer
App * ;

i
|
|
|
|
|
|
|
(basedon | | | Highest
|
|
|
|
|
|
|
|
|

MAC Stack-layer
!e! H !
usr_mcps_data_conf() I I
mac_callback_ NWK

wrapper.c

mcps_data_conf()

MAC-NHLE-
Queue

MCL

(o

tal_tx_frame() tal_tx_frame_done_cb() tal_rx_frame_cb()

() TAL
7\
@)
PAL /
HW

(a)(b) Once the MAC frame has been transmitted (either successfully or unsuccessfully)
by means of using PAL functions and the provided hardware, the TAL calls the frame
transmission callback function tal_tx_frame_done_cb() residing inside the MAC (see
MAC/Src/mac_process_tal _tx_frame_status.c) (c).

(d) Inside the MCL the corresponding callback message is generated including the
frame transmission status code for the MAC DATA frame and queued into the MAC-
NHLE-Queue (which handles all MAC layer confirmation and indication messages).

(e) The dispatcher extracts the confirmation message and calls the corresponding
callback function (mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c) if the
application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback functions
are implemented inside the higher stack layers (e’)(e”).

(f)(F’) Finally the application is notified about the status of the attempt to transmit a data
frame by means of the callback function (usr_mcps_data_conf() if the application
resides on top of the MAC layer) to be implemented inside the application itself.

AIMEL 21

2025H-MCU Wireless-08/10 I ——

AIMEL

T

4.1.2 Frame Reception Procedure

22

This section shall explain the stack layer interworking by for the reception of a MAC
data frame.

As already explained in section 4.1.1 the stack is always separated into a stack domain
and an application domain.

Figure 4-3. Data Frame Reception Procedure

®

App
(based on Highest
Stack Layer)

®

App (based on
MAC)

usr_mcps_data_ind()4 \®

mac_callback_wrapper.c

mcps_data_ind() (G)
Nt
MAC-NHLE- | I
Queue mac_task() TALIMAC-
MCL O Queue

tal_rx_frame_cb()

Highest Stack
Layer

tal_tx_frame()* ftal_tx_frame_done_cb()

process_incoming_
frame()

PAL/
HW

How is the procedure for a MAC Data frame which is received?

(A) Once the frame has been received by the hardware the ISR is invoked and function
handle_received_frame_irq() (located in file TAL/tal type/Src/tal rx.c) is called within
the ISR contect. In this function the following tasks are performed:

e Reading of the ED value of the current frame

¢ Reading of the frame length

¢ Uploading of the actual frame including the LQI octet appended at the end of the
frame

AVR2025

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

¢ Constructing the “mdpu” array of the frame_info_t structure for the received frame by
additionally appending the ED value after the LQI value (for more information about
the structure of the received frame see section 4.2.1.2)

e Reading of the timestamp of received frame if required

¢ Queueing the received frame into the TAL-Incoming-Frame-Queue for further
processing in the main context

(B) During the subsequent call to tal_task() (see file TAL/tal _type/Src/tal.c) the frame is
extracted from the TAL-Incoming-Frame-Queue and function
process_incoming_frame() (see file TAL/tal type/Src/tal_rx.c) is called

(C) Within function process_incoming_frame() further handling of the frame is
performed (such as calculation of the normalized LQI value based on the selected
algorithm for LQI handling) and the callback function tal_rx_frame_cb() residing inside
the MAC (see file MAC/Src/mac_data_ind.c) is called

(D) The callback function tal_rx_frame_cb() pushes the TAL frame indication message
into the TAL-MAC-Queue for further processing inside the MCL

(E) During the subsequent call to mac_task() (see file MAC/Src/mac.c) the TAL
indication message is extracted from the TAL-MAC-Queue and function
mac_process_tal_data_ind() (see file MAC/Src/mac_data_ind.c) is called

(F) Within MCL the following task are performed once function
mac_process_tal_data_ind() is executed

e Depending on the current state of the MCL the frame type is derived and the
function handling the specific frame type is invoked

¢ In case of a received MAC Data Frame received during regular state of operation
(i.,e. no scanning is ongoing, etc.) the corresponding function is
mac_process_data_frame() residing in MAC/Src/mac_mcps_data.c

¢ Within function mac_process_data_frame() the MAC Header information is extracted
from the received frame and the corresponding MCPS-DATA.indication primitive
message is assembled

¢ The formatted MCPS-DATA.indication message is pushed into the MAC-NHLE-
Queue

(G) The dispatcher extracts the indication message and calls the corresponding
callback function (mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c) if the
application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback functions
are implemented inside the higher stack layers (G’)(G”).

(H)(H’) Finally the application is notified about the reception of a Data frame data by
means of the callback function (usr_mcps_data_ind() if the application resides on top of
the MAC layer) to be implemented inside the application itself.

Once the received frame content is uploaded from the hardware into software, during
the further process of the reception of a MAC Data frame, the actual payload of the
Data frame only needs to be copied once within the receiving application on top of the
MAC layer (or on top of another Highest Stack Layer). Wihtin the stack itself the
payload handling is very efficient and the content never needs to be copied.

AIMEL 2

4.2 Frame Buffer Handling

AIMEL

T

4.2.1 Application on top of MAC-API

This section explains the buffer handling for applications residing on top of the MAC-
API (HIGHEST_STACK_LAYER = MAC).

4.2.1.1 Frame Transmission Buffer Handling

24

AVR2025

The following section describes how the buffers are used inside the stack during the
procedure of the transmission of a MAC Data Frame.

Figure 4-4. Frame Buffer Handling during Data Frame Transmission — Part 1

MAC-API MCL TAL
(Step 1) (Step 2) (Step 3)

cmd_code | A L | _
T (=MCPS_DATA_REQUEST) | I (=MCPS_MESSAGE) | T (=MCPS_MESSAGE)
é SrcAddrMode | |§ *buffer_header peoes | T!-? *buffer_header
—_ =
o DstAddrMode | IE, msduHandle | ; msduHandle
& DstPANId | /f persistence_time | = persistence_time
_g // E (only for indirect transmission) ~% | (only for indirect transmission)
[] indirect_in_transit | =] indirect_in_transit
- DstAddr J/ E v for ind o - o o
3 /, | = (only orﬁlrrﬁgecsttt:ll‘:spmlssmn) | = |(only forﬁur']ggecsttt:;%mussuon)
5} = — —
k] msduHandle % (Only filled after Tx) 3 (Only filled after Tx)
%‘ TxOptions I ¥ *mpdu i l *mpdu
I msdulLength : :
L *msdu —
| Free Area | Free Area
Free Area | Length of MPDU - | - Length of MPDU
A
3 | MPDU | =
g | (= MAC Header | MPDU a
E + Data Payload) 2
& | MSDU (= Data payload) | |
=]
: ! !
g I I
Space for FCS | Space for FCS | Space for FCS v
wpan_mcps_data_req() I mcps_data_request() I tal_tx_frame() in tal_tx.c
in mac_api.c in mac_mcps_data.c
to f
L uint8_t
buf_header < *tal_frame_to_tx
array

Step 1: If an application based on the MAC layer as Highest Stack Layer shall transmit
a frame to another node, the MAC needs to generate a MAC Data frame. Initially the
application calls function wpan_mcps_data_req() (located in file mac_apic.). In this
function a new (large) buffer is requested from the Buffer Management Module (BMM)

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

by means of the function bmm_buffer_alloc(). After the successful allocation of the
buffer the structure of type mcps_data_req_tis overlayed over the actual buffer body:

mcps_data_req =
(mcps_data_req_t *)BMM_BUFFER_POINTER (buffer_header);

For more information about the mcps_data _req_t structure see file
MAC/Inc/mac_msg_types.h.

The mcps_data_req_t structure is filled according to the parameters passed to function
wpan_mcps_data_req() and the Data frame payload (MSDU) is copied to the proper
place within this buffer. This is the only time the actual payload is copied during frame
transmission inside the entire stack. The MSU will reside right at the end of the buffer
(with additional space for the FCS). The size of such a buffer fits the maximum possible
payload (according to [4]). Also the parameter msdu is updated to point right at the
beginning of the MSDU content.

The entire frame buffer is then queued as an MCPS_DATA_REQUEST message into
the NHLE-MAC-Queue.

Step 2: Once the MCPS_DATA_REQUEST message has been dequeued and the
dispatcher has called the corresponding function mcps_data_request() (see file
MAC/Src/mac_mcps_data.c), the structure of type frame_info_tis overlayed over the
actual buffer body:

frame_info_t *transmit_frame =
(frame_info_t *)BMM_BUFFER_POINTER((buffer_t *)msg);

For more information about the frame_info_t structure see file
MAC/Inc/mac_msg_types.h.

Afterwards the corresponding elements of the frame_info_t structure are filled
accordingly:

¢ The message_type parameter is set to MCPS_MESSAGE
¢ The MSDU handle is copied to the proper place

e The parameter in_transit (only utilized during indirect transmission) is set to the
default value

e The buffer_header parameter is set to point to the actual buffer header; this is
required once the transmission has finished to free the buffer properly

As the last step the complete frame (i.e. the MPDU) is formatted. This is done by simply
adding the required MAC Header information fields at the correct location in front of the
MSDU (i.e. the Data payload). The first element of the MPDU fill then contain the length
of the entire MPDU to be transmitted, and the mpadu pointer within the frame_info_t
structure is updated to point to the befinning of the frame.

This step within the MCL is finalized by initiating the actual frame transmission by
calling the TAL function tal_tx_frame().

Step 3: Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a
pointer is set to the location of the actual MPDU inside the frame buffer (member mpdu
of structure frame_info_{). This pointer is used for initiating the frame transmission (by
means of function send_frame() with the appropriate parameters for CSMA-CA and
frame retry.

AIMEL 25

Figure 4-5. Frame Buffer Handling during Data Frame Transmission — Part 2

TAL MCL MAC-API
(Step 4) (Step 5) (Step 6)

'y g_| I cmd_code I cmd_code
5 (=MCPS MESSAGE) | # | (=MCPS_DATA_CONFIRM) | E | (=mcPs DATA CONFIRM)
g 7 ¥
5 *buffer_header | | msduHandle |€ msduHandle
— =3 i
s msduHandle |g|: status |§ o status
= persistence_time E - 2 -
E (only for indirect transmission) I [time_stamp I time_stamp
= indirect_in_transit | |
& | (only for indirect transmission)
S time_stamp | [
= (Filled after Tx) |
E *mpdu | I
I
I I
I I
I I
I I
| Free Area | Free Area
I I
Free Area | |
I I
I I
I I
I I
I I
| I
handle_tx_end_irq() | mac_gen_mcps_data_conf() | mcps_data_conf() in
and tx_done_handling() in mac_mcps_data.c mac_callback_wrapper.c

in tal_tx.c

Step 4: Once the transmission of the frame has been finished (either successfully or
unsuccessfully), the transveicer generates an interrupt indicating the end of the
transmission. This interrupt is handled in function handle_tx_end_irq() located in file
TAL/tal_type/Src/tal_tx.c. In case timestamping is enabled, the time_stamp parameter
is written into the proper location of the frame_into_f structure of the frame buffer. This
happens in the context of the Interrupt Service Routine.

Aferwards function tx_done_handling() (located in TAL/tal_type/Src/tal_tx.c) is called in
the main execution context. Here the timestamp is updated and the corresponding
callback function tal_tx_frame_done_cb() inside the MCL is called.

Step 5: Function tal_tx_frame_done_cb() (residing in file MAC/Src/
mac_process_tal_tx_frame_status.c) calls a number of other functions inside the MCL,
which (in the case of a processed Data frame) finally will end up in function
mac_gen_mcps_data_conf() in file mac_mcps_data.c. Here the structure of type
mcps_data_conf_t is overlayed over the actual buffer body:

mcps_data_conf_t *mdc =

(mcps_data_conf_t *)BMM_BUFFER_POINTER (buf) ;

|
26 AV R2025 2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

For more information about the mcps_data_conf_t structure see file
MAC/Inc/mac_msg_types.h.

The mcps_data_conf_t structure is filled accordingly and the entire buffer is then
queued as an MCPS_DATA_CONFIRM message into the MAC-NHLE-Queue.

Step 6: Once the MCPS_DATA_ CONFIRM message has been dequeued and the
dispatcher has called the corresponding function mcps_data_conf() (see file
MAC/Src/mac_callbcak_wrapper.c), the structure of type mcps_data_conf t is again
overlayed over the message (which is the actual buffer body):

pmsg =
(mcps_data_conf_t *)BMM_BUFFER_POINTER(((buffer_t *)m));

Finally the corresponding parameters of the callback function inside the application
(function usr_mcps_data_conf()) are filled by the corresponding members of the
mcps_data_conf_t structure and the buffer is freed again by calling function
bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (6) the same buffer is used.

AIMEL

27

AIMEL

T

4.2.1.2 Frame Reception Buffer Handling

28

AVR2025

Figure 4-6. Frame Buffer Handling during Data Frame Reception

TAL MCL MAC-API
(Step 1) (Step 2) (Step 3)

1 I A cmdcode | y cmd_code
(=TAL_DATA_INDICATION) | (=MCPS_DATA IND.) | S (=MCPS_DATA IND.)
*buffer_header | _E Src Addr Info | g Src Addr Info
& = msduHandle = z
g E (not used for Rx) | & Dst Addr Info l & Dst Addr Info
1 persistence_time | & mpduLinkQuality | = mpduLinkQuality
! only for indirect transmission = o
Z, indirect_in_transit | DSN | = DSN
ERs (only for.indirect transmission) | ; Timestamp ' E Timestamp
time_stamp | = msduLength | msduLength
! *mpdu | v *msdu | ' *msdu
Free Area | Free Area i| | Free Area
Frame length DR Lengthof MPDU | l Length of MPDU
(uploaded from TRX) | |
MPDU
(PHY frame) I MPDU | MPDU
(uploaded from TRX) | |
FCS
(uploaded from TRX) : FCs :
L] Lal
(uploaded from TRX) | |
ED value
(read from TRX register) I ED value l
handle_received_frame_irq() | mac_process_tal_data_ind() | mcps_data_ind() in
and in mac_data_ind.c / mac_callback_wrapper.c
process_incoming_frame() mac_process_data_frame()
in tal_rx/ in mac_mcps_data.c
tal_rx_frame_cb()
in mac_data_ind.c
to
buf_header -<
array

Step 1: Once the transceivers raises an interrupt indicating the reception of a frame,
function handle_received_frame_irq() (located in file TAL/tyl type/Src/tal_rx.c) is called
in the context of an ISR. Here a structure of type frame_info_t is overlayed over the
current receive buffer body:

frame_info_t *receive_frame;

receive_frame =
(frame_info_t*)BMM_BUFFER_POINTER (tal_rx_buffer) ;
After reading the ED value of the current frame and the frame length, the entire frame is
uploaded from the transceiver and the ED value is stored at the location after the LQI
(which automatically was uploaded from the transceiver). The mpdu pointer of the
frame_info_t structure points to the proper location where the actual frame starts within

2025H-MCU Wireless-08/10

4.2.2 Application on top of TAL

2025H-MCU Wireless-08/10

the buffer. Afterwards the entire buffer is pushed into the TAL-Incoming_Frame-Queue
for further processing outside the ISR context.

After removing the buffer from the TAL-Incoming-Frame-Queue function
process_incoming_frame() (also located in file TAL/tal type/Srctal rx.c) is called. Here
again a structure of type frame_info_t is overlayed over the receive buffer body:

frame_info_t *receive_frame =
(frame_info_t*)BMM_BUFFER_POINTER (buf_ptr);

Before the callback function inside the MAC is called, the proper buffer header is stored
inside the buffer_header element of structure frame_info_t:

receive_frame->buffer_header = buf_ptr;

The processing inside the TAL is done once tal_rx_frame_cb() is called. Although this
function resides inside the MCL (see file MAC/Src/mac_data_ind.c), the functionality is
considered here being logically part of the TAL. Here the msg_type of the frame
residing in the current buffer is specified as TAL_DATA_INDICATION and the buffer is
pushed into the TAL-MAC-Queue.

Step 2: Once the TAL_DATA_INDICATION message has been dequeued from the
queue the dispatcher calles the corresponding function mac_process_tal_data_ind()
(see file MAC/Src/mac_data_ind.c). In this function the receveived frame is parsed and
eventually the dedicated function handling the particular frame type is invoked, which is
mac_process_data_frame() in file MAC/Srcmac_mcps_data.c.

Here a structure of type mcps_data_ind _tis overlayed over the receive buffer body:

mcps_data_ind_t *mdi =
(mcps_data_ind_t *)BMM_BUFFER_POINTER (buf_ptr);

For more information about the mcps data ind_t structure see file
MAC/Inc/mac_msg_types.h.

The members of the mcps_data_ind_t structure are filled based on the information
within the received MAC Data frame. The message is identified as a
MCPS_DATA_INDICATION message and is queued into the MAC-NHLE-Queue.

Step 3: Once the dispatcher removes the MCPS_DATA_INDICATION from the queue,
the corresponding function for handling this message is called - mcps_data_ind() in file
MAC/Src/mac_callback_wrapper.c. Here the structure of type mcps_data _ind_tis
overlayed again over the actual buffer body:

pmsg =

(mcps_data_ind_t *)BMM_BUFFER_POINTER(((buffer_t *)m));
Finally the corresponding parameters of the callback function inside the application
(function usr_mcps_data_ind()) are filled by the corresponding members of the
mcps_data_ind_t structure and the buffer is freed again by calling function
bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (3) the same buffer is used.

While an application on top of the MAC-API is logically decoupled from the actual buffer
handling inside the entire stack (such an application does neither need to allocate nor
free a buffer), an application on top of the TAL requires more interworking with the stack

AIMEL 20

AIMEL

LG}
in regards of buffer handling and internal frame handling structures. This is explained in
the subsequent section.

As an example for an application residing on top of the TAL
(HIGHEST_STACK_LAYER = TAL) is described in 9.2.2.1.

4.2.2.1 Frame Transmission Buffer Handling using TAL-API

30

The following section describes how buffers are used inside the stack during the
procedure of the transmission of a Frame using the TAL-API.

While the application on top of the TAL needs to free buffers received by the frame
reception callback function (since these buffers are always alloated inside the TAL
automatically), for frame transmission two different approaches are available:

1. Application uses buffer management module provided by stack including allocation
and freeing of buffers for frame transmission, or

2. Application uses static frame transmission buffer without the need for allocating or
freeing buffers dynamically

Approach (2) will be used subsequently (similar to the source code based on example
application 9.2.2.1).

Important Note: Independent from the selected approach regarding the buffer
management, it is important that the frame finally presentated to the TAL for
transmission follows the scheme in the figure below. The frame needs to be stored at
the end of the buffer (right in front of the space for the FCS). This is required in order to
fit a frame using the maximum frame length according to [4] into a buffer of size
LARGE_BUFFER_SIZE. If this scheme is not proper applied, memory corruption may
occur.

AVR2025

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

Figure 4-7. Frame Buffer Handling during Frame Transmission using TAL-API

T msg_type p - £ | T msg_type b =
i‘ *buffer_header % 5 | g *buffer_header E E
] = t
r msduHandle & ;’ | ; msduHandle 5 S
Ia' persistence_time E b | £ persistence_time ; Y
} (only for indirect transmission) £l 33 ~ L(only for indirect transmission) c ﬁ
g indirect_in_transit S A | = indirect_in_transit T
I | (only for indirect transmission - I |(only for indirect transmission ~n
E 2 time_stamp ! I H time_stamp !
&
- l *mpdu pe-- I l *mpdu
5 I
L=
" I
i: Free Area | Free Area
=, | static frame buffer for
E Tx I
w1
- I
= Length of MPDU - | - Length of MPDU
3 |
m
3
& MAC Header | 2
T i - I i
_z | MPDU i
%
EF I
'5‘ MSDU |
I '
Space for FCS | Space for FCS
I tal_tx_frame() in tal_tx.c
uint8_t *frame_ptr ¢=---- &
uint8_t

*tal_frame_to_tx

Step 1: The application (not using dynamic buffer management for frame transmission)
requires a static buffer for frame to be transmitted, such as:

static uint8_t storage_buffer [LARGE_BUFFER_SIZE];

A large buffer is big enough to incorporate the longest potential frame to be transmitted
based on [4].

Later a structure of type frame_info_tis overlayed over the static transmit buffer:

tx_frame_info = (frame_info_t *)storage_buffer;

For more information about the frame_info_t structure see file TAL/Inc/tal.h.

The static frame buffer is filled with the MSDU (i.e. the actual application payload) and
the MAC Header information as required by this frame. Note that also a free format
frame not compliant with [4] can be created within the application. The octet in front of
the MAC header needs to store the actual length of the frame.

Afterwards the mpdu pointer (member of the frame_info_t structure) is updated to point
at the start of the MPDU (i.e. the octet containing the length of the actual frame). Since
dynamic buffer management is not used for frame transmission, the other members of
the frame_info_t structure are not used in this frame transmission approach.

Once the frame formatting is completed, the frame is handed over to the TAL for
transmission by calling function tal_tx_frame().

AIMEL 31

AIMEL

T

Step 2: Within the TAL in function tal_tx_frame() (see file TAL/tal type/Src/tal tx.c) a
pointer is set to the location of the actual MPDU inside the frame buffer (member mpdu
of structure frame_info_f). This pointer is used for initiating the frame transmission (by
means of function send_frame() with the appropriate parameters for CSMA-CA and
frame retry.

Step 3 (not included in figure above): After the frame has been transmitted the TAL acts
as similar at described in section 4.2.1.1. Once the TAL frame transmission callback
function tal_tx_frame_done_cb() (residing inside the application) is called, no further
handling is required in case of the usage of a static frame transmission approach. The
static frame buffer can immediately be re-used for forther fransmission attempts. In
case of dynamic buffer handling the Tx frame buffer needed to be freed addionally by
calling function bmm_buffer_free().

4.2.2.2 Frame Reception Buffer Handling using TAL-API

32

The following section describes how buffers are used inside the stack during the
procedure of the reception of a Frame using the TAL-API.

AVR2025

2025H-MCU Wireless-08/10

Figure 4-8. Frame Buffer Handling during Frame Reception using TAL-API

TAL Appl.
(Step 1) (Step 2)

A msg_type A msg_type
*buffer_header +---- g *buffer_header +----
- T
i 3l msduHandle '5 msduHandle
E- E persistence_time E persistence_time
|'1 = (only for indirect transmission) = (only for indirect transmission)
& § indirect_in_transit 2 indirect_in_transit
?h o (only for indirect transmission) .«3;- (only for indirect transmission)
time_stamp time_stamp
* *
v mpdu v mpdu
Free Area Free Area

Frame length

(uploaded from TRX) Frame length

(PHY frame) MPDU
(uploaded from TRX)
FCS
(uploaded from TRX) FCS
LQl
(uploaded from TRX) Lal
ED value ED value

(read from TRX register)

tal_rx_frame_cb
handle_received_frame_irq() -~ —cb()

MPDU ;

and
process_incoming_frame()
in tal_rx
to
to buf_header "
buf_header ----- array
array

Step 1: The processing of a received frame in side the TAL is independent from the
layer residing on top of the TAL. The same mechanisms as described in section 4.2.1.2
apply within in the TAL layer.

AIMEL 33

2025H-MCU Wireless-08/10 I ——

4.3 Configuration Files

34

AVR2025

AIMEL

T

Step 2: Once the TAL frame reception callback function tal_rx_frame_cb()
(implemented inside the application) is called, the application can access the frame
buffer via a frame_inof t structure. At the end it is necessary to free the receive buffer
by calling the function bmm_buffer_free(). A new buffer for frame reception is
automatically allocated inside the TAL itself, so the application does not need to take for
Rx buffer allocation.

The stack contains a variety of configuration files, which allow

e The stack to configure the required stack resources according to the application
needs based on the required functionality, and

e The application to configure its own resources.

Throughout the various layers and thus directories within the software package the
following configuration files are available:

e app_config.h

e stack_config.h

e pal_config.h

e tal_config.h

e mac_config.h

e mac_build_config.h

e mac_user_build_config.h

The meaning of these configuration files are described in more detail in the following
sections.

The following picture shows the “#include™hierarchy (#include “file_name.h”) for
these configuration files.

2025H-MCU Wireless-08/10

Figure 4-9. Configuration File #include-Hierarchy
A

Application Domain

stack_config.h

»
»

nwk_config.h

F 3

mac_config.h <

tal_config.h

mac_build_config.h

Stack Domain

v

4.3.1 Application Resource Configuration — app_config.h

Each application is required to provide its own configuration file app config.h usually
located in Inc directory of the application.

This configuration file defines the following items:

e Timers required only within the application domain (independent from the timers
used within the stack): Here the number of application timers and their timer IDs are
defined

AIMEL 3

2025H-MCU Wireless-08/10

AIMEL

T

e Large and small buffers required only within the application domain (independent
from the buffers used within the stack)

¢ Additional settings regarding the buffer size of USB or UART buffers
¢ Any other resources as required

In order to allow for proper resource configuration (e.g. to calculate the overall number
of timers) app_config.h includes the file stack_config.h which contains resource
definitions from the stack domain (without the application).

This file can be adjusted by the end user according to its own needs.

4.3.2 Stack Resource Configuration — stack_config.h

The stack uses its own configuration file stack config.h located in directory Include.
This configuration file defines the following items:

¢ IDs of the currently known stack layers (PAL up to NWK)
¢ Size of large and small buffers
e Total number of buffers and timers

Depending on the setting of the build switch HIGHEST_STACK_LAYER the
configuration file of the highest layer of the stack (tal_config.h, mac_config.h, etc.) is
included in order to calculate the resource requirements at compile time.

This file must not be changed by the end user.

4.3.3 PAL Resource Configuration — pal_config.h

The PAL layer does not require own resources such as timer or buffers, so this does
not need to be taken into consideration in the resource calculation for the application.
Nevertheless there exists a unique pal_config.h file for each platform type (e.g. for each
board) which can be found in the directories
PAL/pal_generic_type name/pal_type_name/Boards/board type name, for example
PAL/AVR/ATMEGA1281/Boards/REB_4_0_231. These pal_config.h files define all
platform specific hardware components.

4.3.4 TAL Resource Configuration — tal_config.h

36

AVR2025

The TAL layer uses its own configuration file tal config.h located in directory
TAL/trx_name/Inc, i.e. each transceiver (and thus each TAL implementing code for a
specific transceiver) has its own TAL configuration file:

e TAL/ ATMEGARF_TAL_1/Inc (for ATmega128RFAT)

e TAL/AT86RF212/Inc

e TAL/AT86RF230B/Inc

e TAL/AT86RF231/Inc

e FEtc.

These configuration files define the following items:

e Transceiver dependent values required by any upper layer (Radio wake-up time)
e Timers and their IDs used within this particular TAL implementation
¢ The capacity of the TAL-Incoming-Frame-Queue

2025H-MCU Wireless-08/10

If the build switch HIGHEST_STACK_LAYER is set to TAL, the proper tal_config.h file
(depending on build switch TAL_TYPE) is directly included into file stack_config.h since
there are no further stack layers defined.

These files must not be changed by the end user.

4.3.5 MAC Resource Configuration — mac_config.h

The MAC layer uses its own configuration file mac_config.h located in directory
MAC/Inc.

This configuration file defines the following items:

e Timers and their IDs used within the MAC layer based on the current build
configuration

¢ The capacity of certain MAC specific queues

If the build switch HIGHEST_STACK_LAYER is set to MAC, mac_config.h is directly

included into file stack_config.h since there is no upper stack layer defined.

This file must not be changed by the end user.

4.3.6 NWK Resource Configuration — nwk_config.h

Once a network layer (NWK) is provided as part of the stack on top to the MAC, the
network layer uses its own configuration file nwk_config.h located in directory NWK/Inc.

If the build switch HIGHEST_STACK_LAYER is set to NWK, nwk_config.h is directly
included into file stack_config.h since there is no upper stack layer defined.

This file must not be changed by the end user.

4.3.7 Build Configuration File — mac_build_config.h

File mac_build_config.h located in directory /Include defines the MAC features required
for specific build configurations. See section 6.2.1 for more information about
mac_build_config.h.

This file must not be changed by the end user.

4.3.8 User Build Configuration File — mac_user_build_config.h

4.4 MAC Components

2025H-MCU Wireless-08/10

Each application may provide its own user build configuration file
mac_user_build_config.h usually located in Inc directory of the application, although this
is not required. This configuration file defines the actual MAC components used for the
end user application and can actually reduce resource requirements drastically.

If the application wants to use its own user build configuration the build switch
MAC_USER_BUILD CONFIG needs to be set. See section 6.2.2 for more information
about mac_user_build_config.h.

This file can be adjusted by the end user according to its own needs.

For more information about user build configurations and its utilization please refer to
section 4.4 and section 6.2.2.

An example for an application using the configuration file mac_user_build_config.h to
create an application defined stack can be found in section 9.2.1.3.

The MAC is implemented to be fully compliant to the IEEE 802.15.4-2006 standard.

AIMEL 37

AIMEL

T

The MAC components are clustered in essential components and supplementary
components.

Essential components are required for a minimum reasonable application based on the
MAC and are thus always included in a build. These components are:

e MAC reset
¢ Direct data transmission and reception
e Writing MAC PIB attributes

Supplementary components are components that provide standard MAC functionality
that might not be required for some applications. This is example association, indirect
data transmission, scanning, etc. These components are also included in the standard
build and can be used by any applications, so the end application does not have to
worry about the inclusion of any functionality.

On the other hand all supplementary components can be removed from the build in
order to drastically reduce footprint. For more information about how to add or remove
components from the build please see section 6.2 (using build switch
MAC_USER_BUILD_CONFIG).

Figure 4-10. Essential and Supplementary MAC Components

MAC compliant to 802.15.4

Indirect

— Scanning
Rx / Tx of MAC PIB . (ED, . . Purging of
direct MAC Attr handling active Associa- Disasso- | _ . | indirect
Reset . (Tx, Rx, . tion ciation
frames setting ollin passive, data
P)g, orphan)

Supplementary components
(can be excluded by using
MAC_USER_BUILD_CONFIG)

Essential components
(always included)

The following sections describe some of these supplementary components (especially
the more complex ones) in more detail.

4.4.1 MAC_INDIRECT_DATA_BASIC

38

This feature is usually required for any node (both RFD and FFD) that wants to receive
indirect data. This is for instance helpful, if a node is usually in power save mode and
thus cannot receive direct frames from its parent. The node could then periodically
wake-up and poll its parent for pending data.

This feature includes the following functionality:

e Initiation of explicit polling for pending of indirect data (usage of
wpan_mlime_poll_req() / usr_mime_poll_conf())

e Transmission of data request frames to its parent

¢ Reception of indirect data frames

AVR2025

2025H-MCU Wireless-08/10

4.4.2 MAC_INDIRECT_DATA_FFD

2025H-MCU Wireless-08/10

Initiation of implicit polling for indirect data (i.e. transmission of data request frame
without an explicit call of function wpan_mime_poll_req()):
o Polling for an association response frame during the association
procedure
o Polling for more pending data once a received frame from its parent
has indicated more pending data at the parent
o Polling for pending data in case a received beacon frame from its
parent has indicated pending data at the parent

This feature is a further extension of the feature MAC_INDIRECT_DATA_BASIC (i.e. in
order to use MAC_INDIRECT_DATA_FFD also MAC_INDIRECT_DATA_BASIC is
required). It is designed for FFDs (PAN Coordinators or Coordinators) to allow the
handling of transmitting indirect data frames.

This feature includes the following functionality:

Initiation of indirect data transmission (usage of wpan_mcps_data_req() with
TxOption = Indirect Transmission)

Handling of the Indirect-Data-Queue
o Adding and removing of indirect frames

o Handling of a persistence timer in order to check for expired
transactions

Transmission of association response frame or indirect disassociation notification
frames

Handling of received data request frames and the proper responses (either with
pending frames or a data frame with zero length payload)

Setting of Frame Pending bit in the Frame Control field
Adding of address of nodes with pending frames in the beacon frame payload

AIMEL 39

AIMEL

T

Figure 4-11. Example of provided Functionality for MAC_INDIRECT_DATA_BASIC and
MAC_INDIRECT_DATA_FFD

Node using Node (FFD) using
MAC_INDIRECT_DATA_BASIC MAC_INDIRECT _DATA_FFD

App MAC MAC App

wpan_mcps_data_req__|
(Indirect)

Add indirect
frame to
indirect queue

——wpan_mime_poll_req()=

Data Request Frame

Check for
pending
indirect frames
for the polling
node

Stendard Poll Procadurs

Data Frame

<—usr_mime_poll_conf ()=

L . R
|~ |<—usr_mcps_data_ind()=—— indirzl:‘tof::me

from indirect
queue

4.4.3 MAC_PURGE_REQUEST_CONFIRM

This feature is a typical FFD feature allows a node to purge pending indirect frames
from its Indirect_Data_queue by means of using functions wpan_mcps_purge_req() /
usr_mcps_purge_conf().

Since purging of pending data requires handling of transmitting indirect frames, the
feature MAC_INDIRECT_DATA_FFD is also required.

4.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE

40

AVR2025

This feature is a typical FFD feature that allows a node to receive and process
association request frames and handle them properly. In case the network uses short
addresses, a short address may be selected and returned to the initiating device by
means of association response frame.

Since the association procedure is perform using indirect traffic and the node using
MAC_ASSOCIATION_INDICATION_RESPONSE has to transmit the association
response frame indirectly also the components MAC_INDIRECT_DATA_BASIC and
MAC_INDIRECT_DATA_FFD are required.

2025H-MCU Wireless-08/10

4.4.5 MAC_ASSOCIATION_ REQUEST_CONFIRM

This feature allows a node (both RFD and FFD) to associate to a parent (PAN
Coordinator or Coordinator) to initiate an association procedure (by transmitting an
association request frame) and handle the reception of an association response frame.

In case a short address is desired this will be requested by the parent if allowed. All
required timer for the association process are handled as well.

Since the association response frame is received indirectly, also the feature
MAC_INDIRECT_DATA_BASIC is required.

The node is able accept and process a request from its upper layer (e.g. the network
layer) to associate itself to another node (i.e. its parent).

Figure 4-12. Provided Functionality for MAC_ASSOCIATION_INDICATION_
RESPONSE and MAC_ASSOCIATION_REQEUST_CONFIRM

Node using Node (FFD) using
MAC_ASSOCIATION_ MAC_ASSOCIATION_
REQUEST_CONFIRM INDICATION_RESPONSE

App MAC MAC App

=wpan_mime_associate_req()»

Association
Request Frame

usr_mime_associate_ind ()=

Assign short
address if
desired and
allowed
\
Timer X -g=wpan_mime_associate_resp()=—
Add
association
response frame
to indirect

queue

Data Request
Frame

Slandard Assoclalon Pracedurs

Timer

Association

esponse Frame
i/7 -usr_mime_associate_conf ()= —usr_mlme_comm_status_ind()=p

4.4.6 MAC_ DISASSOCIATION_BASIC_SUPPORT

2025H-MCU Wireless-08/10

This components allows

e A node (both RFD and FFD) to initiate a disassociation procedure from its parent
(PAN Coordinator or Coordinator),

¢ A node (both RFD and FFD) to handle a received disassociation notification frame
from its parent,

AIMEL 4

AIMEL

T

¢ A node (both RFD and FFD) to poll for a pending indirect disassociation notification
frame,

¢ Anode (FFD only) to initiate a disassociation procedure to its child.

Since the disassociation notification frame may be received indirectly, also the feature
MAC_INDIRECT_DATA_BASIC is required.

4.4.7 MAC_DISASSOCIATION_FFD_SUPPORT

This feature is a typical FFD feature that allows a node to transmit an indirect
disassociation notification frame to one of its children.

The following components are required as well:

e MAC_DISASSOCIATION_BASIC_SUPPORT

e MAC_INDIRECT_DATA_BASIC

e MAC_INDIRECT_DATA_FFD

4.4.8 MAC Scan Components
These components allow a node to perform a specific type of scanning.

¢ MAC_SCAN_ACTIVE_REQUEST_CONFIRM: The node is able to perform an active
scan to search for existing networks.

¢ MAC_SCAN_ED REQUEST_CONFIRM: The node is able to perform an energy
detect scan.

¢ MAC_SCAN_ORPHAN_REQUEST_CONFIRM: The node is able to perform an
orphan scan in case it has lost its parent.

¢ MAC_SCAN_PASSIVE_REQUEST_CONFIRM: The node is able to perform a
passive scan to search for existing networks. This feature is only available if beacon-
enabled networks are supported.

4.4.9 MAC_ORPHAN_INDICATION_RESPONSE

This feature is a typical FFD feature that allows a node to process a received orphan
notification frame from any of its children (initiated via an orphan scan request at the
children) and process them properly. In response a realignment frame may be returned.

|
42 AV R2025 2025H-MCU Wireless-08/10

Figure 4-13. Provided Functionality for MAC_ORPHAN_INDICATION_ RESPONSE
and MAC_SCAN_ORPHAN_REQEUST_CONFIRM (Orphan Scan Procedure)

Node using

Node has lost
ist parent

wpan_mlme_scan_req
(Orphan scan) >

MAC_SCAN_ORPHAN_
REQUEST_CONFIRM

Orphan Noti

Frame

fication

< Slandard Orphan Scan Pracodurs

usr_mIme_scan_conf/()=

INDICATION_RESPONSE

Node (FFD) using
MAC_ORPHAN_

—=Usr_mime_orphan_ind()=

indication

Process orphan

wamn mime arghan wengl)

Coordinator
Realignment Frame

4.4.10 MAC_START_REQUEST_CONFIRM

This feature is a typical FFD feature that allows a node to start a new PAN (network) by
means of using functions wpan_mlme_start_req() / usr_mIme_start_conf(). Depending
on the setting of BEACON_SUPPORT this can be either only a nonbeacon-enabled
network or also a beacon-enabled network.

2025H-MCU Wireless-08/10

Consequently this also enables the ability of the node to

e Transmitting beacon frames (in case beacon-enabled networks are supported)
e Respond to beacon request frames (active scan by another node) with proper

beacon frames

e Perform network realignment and transmit coordinator realignment frames (initiated
by calling function wpan_mlime_start_req() with parameter CoordinatorRealignment

=true)

AIMEL

43

AIMEL

T

Figure 4-14. Start of Nonbeacon Network and Active Scan

Node using
MAC_SCAN_ACTIVE_
REQUEST_CONFIRM

Node (FFD) using
MAC_START_
REQUEST_CONFIRM

App MAC MAC App

1. “wpan_mime_start_req]
' (Nonbeacon network)

established

wpan_mime_scan_req >
(Active scan)

Beacon Request Fram

€

—Usr_mime_start_conf ()=

Beacon Frame

=
El
E
fr}
2
oL
=
"
i
1
o
T

usr_mime_scan_conf ()=

Hetwork Slart

4.4.11 MAC_RX_ENABLE_SUPPORT

44

AVR2025

This feature is usually required for any node (both RFD and FFD) that wants to enable
its receiver for a certain amount of time or disable its receiver. Most commonly it is
utilized at an RFD that goes to sleep mode during idle periods to save as much power
as possible. In order to periodically listen to the channel or frames to be received, the
application can initiate a wpan_mlme_rx_enable_req() with proper parameters (see
MAC Example Basic_Sensor_Network in section 9.2.1.3).

2025H-MCU Wireless-08/10

4.4.12 MAC_SYNC_REQUEST

Figure 4-15. Enabling of Receiver and proper Data Reception

Unspesaseiul Data Transmission

(

Enabding af
Reacaivear

(

ucceaaful Cala

Transm issian

¢

<ausr_mime_rx_enable_conf()=

<—usr_mcps_data_ind()=—

Node using

MAC_RX_ENABLE_SUPPORT

Other Node

(e.g. PAN Coordinator)

Wake up radio
an enable
receiver

Data Frame

Ack Frame

_usr_mcps_data_conf

DPp Mtc MAC App
Node is in
power safe
mode
wpan_mcps_data_req__|
< (Direct)
Data Frame
Data frame is
retried since no
Acknowledge-
ment is
received
Data Frame (last retry)
usr_mcps_data_conf
(NoAck) ™
=wpan_mime_rx_enable_req()»

wpan_mcps_data_req__|
(Direct)

(Success)

This feature is usually required for any node (both RFD and FFD) that wants to
synchronize with its beacon-enabled network tracking beacon frames from its parent by
means of using function wpan_mIme_sync_req().

4.4.13 MAC_SYNC_LOSS_INDICATION

This feature is usually required for any node (both RFD and FFD) that needs to be able
to report a sync loss condition to its upper layer. This can be either the reception of a
coordinator realignment frame from its parent, or caused by the fact that a synchronized
node has not received beacon frames from its parent for a certain amount of time.

2025H-MCU Wireless-08/10

AIMEL

45

AIMEL

T

Figure 4-16. Synchronization and Loss of Synchronization
PAN Coordinator

Node using using
MAC_SYNC_REQUEST and
= - MAC_START _REQUEST_
MAC_SYNC_LOSS_INDICATION CONFIRM
App MAC MAC App
wpanimlmeistartfreq_
m;':alf"e (Beacon Network)

mode Beacon-

enabled
network
running

—usr_mime_start_conf()=pm

w
(]
Y
[+
o
3
m
B
3
o
/
\
Start of Eeacon-anablaed Helwork ‘

—wpan_mime_sync_req ()=

Process
received
beacon frames

Node does not
receive beacon
frames
anymore

a Laze ol Syichanlzallo ‘ élmhmnualbn wilh Patanl ‘

\ \
N
w
@
Y
[+
<]
=
n
B
3
)

l-usr_mIme_sync_loss_ind()=—

4.4.14 MAC_BEACON_NOTIFY_INDICATION

This feature is usually required for any node (both RFD and FFD) that may need to
present received beacon frame to its upper layer. This could be caused by the fact that
the received beacon frame contains a beacon payload or the MAC PIB attribute
macAutoRequest within the node is set to false.

4.4.15 MAC_GET_SUPPORT

This feature allows reading the current values of MAC PIB attributes by means of using
function wpan_mlme_get_req().

|
46 AV R2025 2025H-MCU Wireless-08/10

4.4.16 MAC_PAN_ID_CONFLICT_AS_PC

This feature is a typical FFD feature that allows a PAN Coordinator node to detect a
PAN-Id conflict situation and report this to its higher layer, allowing the higher layer or
application to initiate the proper PAN-Id conflict resolution. The node is able to detect a
PAN-Id conflict situation while acting as a PAN Coordinator by checking received
beacon frames from other PAN Coordinators and being able to act upon the reception
of PAN-Id Conflict Notification Command frames from its children.

The following components are required as well:
¢ MAC_START_REQUEST_CONFIRM
¢ MAC_SYNC_LOSS_ INDICATION

4.4.17 MAC_PAN_ID_CONFLICT_NON_PC

This feature is usually required for any node (both RFD and FFD) that may need to
detect a PAN-Id conflict situation while acting not as a PAN Coordinator node. The
node is able to detect a PAN-Id conflict situation while NOT acting as a PAN
Coordinator by checking received beacon frames from other PAN Coordinators and
being able to initiate the transmission of PAN-Id Conflict Notification Command frames
from its parents if required.

The following components are required as well:
¢ MAC_SYNC_LOSS INDICATION
¢ Either MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

4.5 Support of AVR Platforms larger than 128 KByte Program Memory

4.5.1 General

4.5.2 Stack Implementation

2025H-MCU Wireless-08/10

In order to support applications larger than 128 KByte program memory that are using
function pointers (such as callbacks in the stack), special implementation support both
by the stack and the application is required.

Function pointers are usually 16 Bit pointers, which can address only 64 KByte of
program memory. Functions located in the memory between 64 KByte and 128 KByte
can still be addressed by 16 Bit function pointers, since all addresses start on an even
address in program memory, which increases the addressable space of a 16 Bit pointer
to 127 KByte. So no special care is required for code up to 128 KByte.

In case function pointers shall be used for builds which are larger than 128 KByte (when
using for instance the ATxmega256A3 MCU), the function pointers need to be declared
as large pointers, i.e. pointers which are 24 Bit. The following section describes the
current implementation used for IAR compilers.

Note: Currently AVR-GCC does not provide a clean method to support such constructs.
Therefore program code larger than 128 KByte is not supported by this software
package. Nevertheless there are a number of workarounds to overcome this issue by
forcing all functions which shall be accessed via function pointers into the lower 128
KByte of memory. Such a workaround implementation for AVR-GCC is not provided by
this software package.

The stack has been modified in order to support function pointers which can address
functions residing in the program memory larger than 128 KByte.

AIMEL a7

AIMEL

T

4.5.2.1 File avrtypes.h

The header file avrtypes.h residing in directory PAL/Inc contains the following construct
in the section dedicated to IAR based builds:
#if (FLASHEND > Ox1FFFF)
// Required for program code larger than 128K
#define FUNC_PTR void _ farflash *
#else
#define FUNC_PTR void *
#endif /* ENABLE_FAR_FLASH */

In case the utilized AVR MCU provides more than 128 KByte of flash memory, all
function pointers defined by FUNC_FAR are defined as 24 bit pointers.

4.5.2.2 Function Pointers as Function Parameters

Function parameters which are actually function pointers need to be defined as
FUNC_PTR in order to allow for 24 Bit support. This is implemented in the following two
PAL API functions:

e pal_trx_irg_init :
void pal_trx_irg init(trx_irg hdlr_idx_t trx_irg num,
FUNC_PTR trx_irqg_ cb)
e pal_timer_start
retval_t pal_timer_start (uint8_t timer_id,
uint32_t timer_count,
timeout_type_t timeout_type,
FUNC_PTR timer_cb,

void *param_cb)

4.5.2.3 Usage of Function Pointers as Function Parameters

These functions containing function pointers need to be called with the corresponding
FUNC_PTR type. Examples are:

¢ File mac_mcps_data.c in directory MAC/Src
/* Start the indirect data persistence timer now. */
status = pal_timer_start (T_Data_Persistence,
persistence_int_us,
TIMEOUT_RELATIVE,
(FUNC_PTR)mac_t_persistence_cb,
NULL) ;
¢ File tal_init.c in directory TAL/AT86RF231/Src
/ *
* Configure interrupt handling.
* Install a handler for the transceiver interrupt.
*/
pal_trx_irg init (TRX_MAIN_IRQ_HDLR_IDX,
(FUNC_PTR) trx_irqg_handler_cb);

|
48 AV R2025 2025H-MCU Wireless-08/10

4.5.3 Application Support

Applications that are built for AVR MCUs with more than 128 KByte flash (and thus
potentially need large function pointers) shall use the same way of calling these specific
PAL API functions containing functions pointers. Therefore all applications are updated
within this software package as described in section 4.5.2.3.

As as example see file main.c of the MAC example application Star_Nobeacon (in
directory Applications/MAC_Examples/Star_Nobeacon/Src):
pal_timer_start (TIMER_TX_DATA,
DATA_TX_PERIOD,
TIMEOUT_RELATIVE,
(FUNC_PTR) app_timer_cb,
NULL) ;
It is strongly recommended to follow this scheme in all components of the application.

4.6 Application Security Support

2025H-MCU Wireless-08/10

The MAC stack supports application security features (such as the CCM* algorithm or
plain AES encryption support) by means of two different layers:

e SAL: Security Abstraction Layer (see section 2.2.2)

e STB: Security Toolbox (see section 2.2.3)

The SAL as low level AES functionality APl is supported for various hardware AES
engines (in MCUs and transceivers) and software AES (see section 6.1.5.1).

The STB as high level security abstraction APl is

Supported for SAL based systems (the STB requires either one of the SAL
implementations, see section 6.1.5.2 and 6.1.5.1), or

Used stand-alone (without using any SAL implementation) for ARM systems with
incorporated hardware crypto engine (see section 6.1.5.3) such as the
AT91SAM7XC256.

Figure 4-17. Usage of the Secuity Layers by an Application

SAL TYPE= ||| SAL_TYPE= SAL_TYPE = SAL_TYPE =
SW_AES_SAL | AT86RF2xx ATMEGARF_SAL| ATXMEGA_SAL

|

I Transceiver Sin i

gle Chip Atxmega MCU SAM7XC MCU
SR | HW AES HW AES HW AES HW AES
|
SW based l HW based
Security I Security

|

AIMEL °

AIMEL

T

The figure above gives an overview which combinations of the two security layers are
meaningful. It can be seen that the following security combinations are supported:

1. Utilization of hardware AES in transceivers, such as AT86RF212 and AT86RF231,
by using the STB on top of the SAL (SAL_TYPE = AT86RF2xx);
This combinations can be used in conjunction with any MCU

2. Utilization of hardware AES in single chip transceivers, such as ATmega128RFA1,
by using the STB on top of the SAL (SAL_TYPE = ATMEGARF_SAL)

3. Utilization of hardware AES in ATxmega MCUs, such as ATxmega128A1, by using
the STB on top of the SAL (SAL_TYPE = ATXMEGA_SAL);
This combination can be used in conjunction with any transceiver, even with
AT86RF230

4. Utilization of software AES, by using the STB on top of the SAL (SAL_TYPE =
SW_AES_SAL);
This combination is recommended only for powerful MCUs, such SAM7X based
systems, although theoretically any MCU is supported, and can be used with any
transceiver, even with AT86RF230; In order to get the SW AES implementation
please contact avr@atmel.com

5. Ulitzation of the ARM hardware crypto engine by using STB_ARMCRYPTO without
any SAL;
This combination is supported for SAM7XC MCUs and can be used in conjunction
with any transceiver, even with AT86RF230

4.7 High-Density Network Configuration

The IEEE standard [4] provides knobs to adjust the MAC layer to the application needs.
These knobs are the PIB attributes that allow configuring the behavior of the MAC. In
particular, in high-density networks where many nodes access the network at the same
time it might be necessary to tweak the MAC to achieve better performance. This
applies to nonbeacon-enabled and beacon-enabled networks. The following PIB
attributes can be used to tweak the MAC in this regard:

e Backoff exponent: The PIB attributes macMinBE and macMaxBE determine the
potential length of the backoff exponent used for the CSMA algorithm. By default
macMinBE = 3 and macMaxBE = 5. In order to reduce the probability that different
nodes use the same backoff period, it is recommend changing the PIB attribute
values from the default values. Example: macMinBE = 6 and macMaxBE = 8. The
macMaxBE value needs to be increased before the macMinBE is increase.

e Frame retries: The PIB attribute macMaxFrameRetries defines the maximum
number of re-transmissions if a requested ACK is not received. The default value
(defined by the IEEE standard and used by the MAC implementation) is 3. The IEEE
standard allows increasing the number of retries up to 7.

¢ Maximum CSMA backoffs: The PIB attribute macMaxCSMABackoffs defines the
number of backoffs that are allowed before the channel is finally determined as busy
and no transmission happens. The MAC implementation uses the default value of 4.
Increasing the value to 5 also increases the probability of successful transmission of
a big number of nodes trying to access the channel at the same time.

4.8 High Data Rate Support

The Atmel transceivers (except for the AT86RF230) are capable of transmitting frames
at higher data rates than the standard data rates within the given band. The supported
data rates are currently up to 2Mbit/s. These higher data rates are rates not defined
within the IEEE standard (see [4]). For more information about high data rate support
please refer to the data sheet for the corresponding transceiver.

|
50 AV R2025 2025H-MCU Wireless-08/10

In order to enable higher data rates than the standard rates, the following two items
needs to be done:

1.

.Set the PIB attribute phyCurrentPage to

Enable the build switch HIGH_DATA_RATE_SUPPORT within the corresponding
Makefile or project file (see 6.1.4.4)

the corresponding value (e.g.
phyCurrentPage = 17 for 2Mbit/s support); after setting the correct channel page all
frames will be transmitted using the corresponding data rate belonging to this
channel page

The following table shows which data rate can be selected (by setting a specific
channel page) using a particular transceiver. The table entries with yellow background
refer to Atmel proprietary channel pages for non-standard high rates. Please note that
the standard channel page is always channel page 0.

Table 4-18. Channel Pages vs. Data Rates

Channel Page
0

Frequency Band / | MAC-2003 MAC-2006 High Data High Data
Transceiver Compliant Compliant Rate Rate
Mode 1 Mode 2

ATmega128RFA1,

1), 3),9)

1), 3),)

Sub-1 GHz 20 kb/s @ -110 | Channel Page Channel Page | Channel Page
Channel 0 dBm 2 16 17
Channel 1-10 40 kb/s @ -108
dBm 100 kb/s 200 kb/s 400 kb/s
AT86RF212 250 kb/s 500 kb/s 1000 kb/s
2)
1),3),4),5),6) | 1),3),4),5),6)
Chinese Band N/A Channel Page Channel Page | Channel Page
Channel 0-3 5 18 19
AT86RF212 250 kb/s 500 kb/s 1000 kb/s
1),3),4),5),6) | 1),3),4),5),6)
2.4 GHz 250 kb/s @ - Channel Page Channel Page | Channel Page
Channel 11-26 101 dBm 2 16 17
AT86RF231, 500 kb/s 1000 kb/s 2000 kb/s

1), 3),)

1) PSDU data rate

2) BPSK

3) Reserved Channel pages are used to address the appropriate mode (non-

compliant).

Marked w/ yellow background color. AT86RF212’s sensitivity values for the
proprietary modes are based on PSDU length of 127 bytes.

4) Scrambler enabled.

5) Reduced ACK timing. Proprietary channel pages can be enabled using build
configuration switch HIGH_DATA_RATE_SUPPORT.

6) Proprietary channel pages 18 and 19 used for Chinese frequency band. Pages
18 and 19 support channels 0-3.

2025H-MCU Wireless-08/10

AIMEL

51

AIMEL

For a MAC example using a high data rate of 2Mbit/s please refer t0 9.2.1.8.

|
52 AV R2025 2025H-MCU Wireless-08/10

5 MAC Power Management

The MAC stack provide built-in power management that allows to put the transceiver
into power save state as often as possible in order to save as much energy as possible.
This allows for example End Devices, which are usually battery powered, to use a
sleeping state of the transceiver as default state. The entire power management is
inherent in the MAC itself and works without any required interaction from the
application. On the other hand there exist means for the application to control the power
management scheme in general as desired.

5.1 Understanding MAC Power Management

2025H-MCU Wireless-08/10

The following section is only valid for MAC applications (or applications on higher
layers), but not for TAL applications. For TAL applications please refer to section 5.4.

Once a node (running an application on top of the MAC stack) has finished its
initialization procedure, the MAC layer decides whether the node stays awake or enters
SLEEP state. This is controlled by the MAC PIB attribute macRxOnWhenldle.

Whenever this PIB attribute is set to True, the MAC keeps the radio always in a state
where the default state of the receiver is on, i.e. the transceiver is able to receive
incoming frames whenever there is nothing else to do for the stack. Since this is a non-
sleeping state for the transceiver and requires much more energy than a power safe
state, this behavior is usually applied for all mains powered nodes, such as PAN
Coordinators or Coordinators/Routers (nodes built using build switch FFD, see section
6.2.1.1).

As mentioned MAC power management works automatically within the stack. Once a
node is started, it is automatically in power save mode. This is handled by the MAC PIB
attribute macRxOnWhenldle. The default value for macRxOnWhenldle is False, i.e. the
radio shall be off in case the node is idle, meaning that the radio will be in sleep mode.
This is valid for all nodes including End Devices, Coordinators and PAN Coordinators.

Any node that shall not be in sleep as the default mode of operation needs to be put in
listening mode by setting the PIB attribute macRxOnWhenldle to True. Usually this is
only done for mains powered nodes, such as Coordinator or PAN Coordinators. This
will be explained in more detail in the subsequent sections.

For battery powered nodes (usually End Devices) the default state shall be sleeping,
since otherwise the battery would be emptied too fast. Since the PIB attribute
macRxOnWhenldle is per default set to False, such nodes will automatically enter
SLEEP state when there is nothing to be done for the transceivers.

The transceiver of such nodes will be woken up automatically whenever a new request
from the upper layer (e.g. the application on top of the MAC or the Network layer),
which requires the cooperation of the transceiver, is received. This could be the request
to transmit a new frame (wpan_mcps_data_req()), the request to set a PIB attribute that
is mirrored in transceiver registers, the request to poll for pending data at the node’s
parent, etc.

Once such a request has been received at the MAC-API, the MAC performs a check
whether the radio is currently in SLEEP state and wakes up the transceiver if required.
Afterwards the MAC can us the transceiver to perform whichever action is required.
After the ongoing transaction is finished, the MAC will put the transceiver back to
SLEEP if allowed.

This complete MAC controlled power management implies, that a node being in idle
periods in SLEEP is not able to receive any frame during these time periods, i.e. a PAN

AIMEL 53

AIMEL

T

Coordinator would not be able to send a direct frame to its sleeping child being and End
Device. This can be reproduced using the provided MAC example applications
App_1_Nobeacon (see 9.2.1.1) and Star_Nobeacon (see 9.2.1.7). In both of these
applications all directed traffic goes from the End Device to the PAN Coordinator. If
these applications where changed so that the PAN Coordinator sent traffic to the End
Device, the End Device would not accept these frames, since it is in SLEEP most of the
time.

Of course there is variety of means defined within IEEE 802.15.4 to allow a reasonable
communication between mains powered nodes and battery powered nodes (applying
power management) in both directions. This is explained in more detail in the following
section. One way to allow communication from the PAN Coordinator to the End Device
is to use a timer which wakes up the End Device periodically, allowing this device to
receive frames during this time period from other nodes. This is implemented in MAC
example Basic_Sensor_Network (see 9.2.1.3).

5.2 Reception of Data at Nodes applying Power Management

When data shall be received by an End Device (i.e. a node applying MAC power
management as default), we have several options as described in the subsequent
sections.

5.2.1 Setting of macRxOnWhenidle to True

5.2.2 Enabling the Receiver

54

AVR2025

One option is to leave the receiver of the node always on, so the device is able to
always receive frames. This can be done be setting the MAC PIB Attribute
macRxOnWhenldle to True (1) (by using the API function wpan_mime_set_req()) at any
time. This will immediately wake up the radio and enable the receiver of the node.

If this scheme is applied, the node will not enter SLEEP state anymore and thus use is
battery power very extensively. So for battery powered End Devices this is not
recommended, although it might be an easy solution for mains powered End Devices.

If a PAN Coordinator wants to send data to an End Device periodically, the application
of the Device can be implemented as such, that the Device maintains a timer with the
same time interval that the Coordinator wants to transmit its data to the Device.

Upon expiration of this timer the application of the Device can then enable its receiver
for a certain amount of time or until it receives data from the Coordinator, and turn off
the receiver again. The receiver can be enabled or disabled by using the MAC-API
function “wpan_mime_rx_enable_req”.

The parameter RxOnDuration contains the value (number of symbols, e.g. one symbols
is 16us for 2.4 GHz networks) that the receiver shall be enabled. If this parameter is
zero (0), the receiver of the node will be disabled.

The parameters DeferPermit and RxOnTime shall be set to 0 for a nonbeacon-enabled
network, since these parameters are obsolete for nonbeacon-enabled networks.

If this scheme is used, handling of power management is done by the device itself.
When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC will
initiate its standard power management scheme and put the transceiver again into
SLEEP if allowed (i.e. in case macRxOnWhenldle is False).

2025H-MCU Wireless-08/10

5.2.3 Handshake between End Device and Coordinator

Another scheme is based on a combination of enabling the receiver in conjunction with
a handshake scheme between End Device and the Pan Coordinator.

The End Device enables its receiver periodically (as in section 5.2.2), and sends a data
frame to the Coordinator indicating it is alive for a certain amount of time. The
Coordinator in return either answers with direct data to the Device directly (in case it
has something to deliver) to the Device, or simply does nothing.

After the device has received a frame from the PAN Coordinator the End Device
disables its receiver again. This can be done by simply letting the RxEnable timer
expire (depending on the original value of RxOnDuration” at the first call of
wpan_mlime_rx_enable_req”) by directly calling by calling wpan_mIme_rx_enable_req”
with parameter RxOnDuration” set to zero.

If the End Device does not receive a frame from its Coordinator, the device
automatically goes to sleep depending on the original value of RxOnDuration” at the
first call of wpan_mIme_rx_enable_req”.

If this scheme is used, handling of power management is done by the device itself.
When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC will
initiate its standard power management scheme and put the transceiver again into
SLEEP if allowed (i.e. in case macRxOnWhenldle is False).

5.2.4 Indirect Transmission from Coordinator to End Device

2025H-MCU Wireless-08/10

Another option is to use indirect data transmission from the Coordinator to the End
Device and let the Device poll the Coordinator periodically for pending data. When this
scheme is applied the Coordinator sets the parameter TxOptions of the API function

bool wpan_mcps_data_req(uint8_t SrcAddrMode,
wpan_addr_spec_t *DstAddrSpec,
uint8_t msdulength,
uint8_t *msdu,
uint8_t msduHandle,

uint8_t TxOptions)

to WPAN_TXOPT_INIDIRECT_ACK (indirect, but acknowledged Transmission; value
5), instead of WPAN_TXOPT_ACK (direct, acknowledged Transmission value 1) as itis
currently (see file mac_api.h in directory MAC/Inc).

Note: This requires an additional check which device type the node is currently, since
data from the Device to the Coordinator is still only transmitted directly.

Additionally the Device needs to implement a polling scheme in its application, during
which it periodically calls function wpan_mime_poll_req(). This will initiate a data
request frame to the Coordinator. In case the Coordinator does have pending data for
the Device, it initiates the direct transmission of those frames. Otherwise Coordinator
sends a null data frame (data frame with empty payload). The Device both receives the
response from the Coordinator and, if there is no further action to be done, returns to
standard power management procedures. For more information see section 4.4.1 and
442

If this scheme is used, handling of power management is done by the device itself.

AIMEL 55

AIMEL

T

5.3 Application Control of MAC Power Management

As indicated throughout the previous sections there are several means for the
application to control the general power management scheme applied by the MAC.

These are setting the MAC PIB attribute macRxOnWhenldle and the MAC primitive
MLME_RX_ENABLE.request.

5.3.1 MAC PIB Attribute macRxOnWhenldle

Setting the MAC PIB attribute to a specific value controls the handling of MAC power
management. Whenever a transaction within the MAC has finished (e.g. transmitting a
frame, setting of PIB attributes residing within the transceiver, etc.) the MAC checks this
PIB attribute. If the corresponding value is False, the radio enters SLEEP mode again,
otherwise the transceiver stays awake.

Any node will always enter SLEEP mode after each finished transition, since the PIB
attribute macRxOnWhenldle is False as default.

If this behavior shall be altered (especially for Coordinators or PAN Coordinators), the
application needs to change the value of macRxOnWhenldle to True after whenever
this shall be applied.

The current value of the MAC PIB attribute macRxOnWhenldle can be altered by calling
function wpan_mime_set_req() with the appropriate value (see file main.c of example
9.2.1.3):
/* Switch receiver on to receive frame. */
wpan_mlme_set_reg(macRxOnWhenIdle, true);
or
/* Switch receiver off. */

wpan_mlme_set_reg(macRxOnWhenIdle, false);
Please note that the transceiver will be immediately enabled or disabled.

5.3.2 Handling the Receiver with wpan_rx_enable_req()

56

While setting of the PIB attribute macRxOnWhenldle is a more “globally” or “statically”
applied means to change the standard MAC power management scheme, the MAC
primitive MLME_RX_ENABLE.request can be used to change the behavior more
temporarily.

The receiver can be enabled by calling function wpan_mlme_rx_enable_req() with (the
3¢ parameter) RxOnDuration larger than zero:
/* Switch receiver on for 10000 symbols. */
wpan_mlme_rx_enable_req(false, 0, 10000);
This wakes up the transceiver (independent from the current value of the PIB attribute
macRxOnWhenldle) if required and switches the receiver on.

After the timer with the specified time (RxOnDuration symbols) expires, the receiver is
disabled automatically if the current value of macRxOnWhenldle is false, or remains in
receive mode if macRxOnWhenldle is true.

The receiver can be disabled explicitly by calling wpan_mime_rx_enable_req() with (the
3™ parameter) RxOnDuration equal to zero:

/* Disable receiver now. */

wpan_mlme_rx_enable_req(false, 0, 0);

AVR2025

2025H-MCU Wireless-08/10

This disables the receiver if the current value of the PIB attribute macRxOnWhenldle is
false and puts the transceiver to SLEEP mode.

For more information about function wpan_mime_rx_enable_req() see files mac_api.c
and mac_rx_enable.c in directory MAC/Src.

For more information about the interaction of MLME_RX ENABLE and
macRxOnWhenldle see file mac_misc.c in directory MAC/Src and check the following
function mac_sleep_trans().

For an example implementation of this features see MAC example application
Basic_Sensor_Network in section 9.2.1.3.

5.4 TAL Power Management API

2025H-MCU Wireless-08/10

The MAC power management mechanisms as described in the within this chapter are
only valid if the application is residing on top of the MAC layer (or a higher layer on top
of the MAC). In case the application is only residing on top the TAL layer, the
application needs to take care for transceiver power management itself.

Therefore the TAL provides a Power Management APl which is generally used by the
MAC layer but can also be used by an application residing on top of the TAL.
Nevertheless an application residing on top of any higher layer than the TAL must not
use this TAL API explicitly, otherwise this may lead to undefined behavior.

The TAL Power Management API consists of two functions

e tal_trx_sleep()
e tal_trx_wakeup()

For more information see file fal.h in directory TAL/Inc and the various implementations
for each transceiver in file tal_pwr_mgmt.c in directories TAL/TAL_TYPE_NAME/Src.

AIMEL 57

AIMEL

T

6 Application and Stack Configuration

The MAC and its modules are highly configurable to adapt to the application
requirements. The utilized resources can be configured and adjusted according to the
application needs. This allows a drastic footprint reduction.

6.1 Build Switches

58

During build process the required features are included depending on the used build
switches and basic configuration type.

Qualitative configuration includes:

Features or modules can be included to or excluded from the firmware using build
switches.

The build configuration is controlled by switches within Makefiles or IAR project files

Several Makefile or IAR project file templates are provided for getting started (see
directory Applications).

Primitives as defined within IEEE 802.15.4 (and thus features within the MAC) can
be included or excluded depending on the required degree of standard compliance
or application needs.

Two generic profiles are provided: RFD and FFD primitive configuration.

Quantitative configuration includes:

Resources can be adjusted to the application needs.

The file app_config.h (usually located in the Inc path of the applications) provides
hooks for the application configuration to configure its own resources.

Each demonstration application comes with its own configuration file (app_config.h)
that can be re-used for own application design.

The stack and application based on the stack can be highly configured according to the
end user application needs. This requires a variety of build switches to be set
appropriately. The following section describes that build switches may be used during
the build process.

The switches may be categorized as follows:

1.

Global stack switches
o HIGHEST STACK LAYER
o REDUCED_PARAM_CHECK
o PROMISCUOUS_MODE
o ENABLE_TSTAMP

2. Standard or user build configuration switches

o BEACON_SUPPORT
o FFD
o MAC_USER_BUILD_CONFIG

3. Platform switches

AVR2025

o PAL_TYPE
o PAL_GENERIC_TYPE

o BOARD_TYPE

o SIO_HUB;UARTO,UART1,USBO
o ENABLE_TRX_SRAM

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

O 0O 0O O o O O

o

ENABLE_HIGH_PRIO_TMR
EXTERN_EEPROM_AVAILABLE
NON_BLOCKING_SPI

F_CPU (formerly SYSTEM_CLOCK_MHZ)
BAUD_RATE

VENDOR_BOARDTYPES
VENDOR_STACK_CONFIG
ENABLE_ALL_TRX_IRQS (MEGA_RF only)

4. Transceiver specific switches

o

O O O o o O

o

TAL_TYPE
ANTENNA_DIVERSITY
ENABLE_TFA
HIGH_DATA_RATE_SUPPORT
CHINESE_BAND
RSSI_TO_LQl_MAPPING
ENABLE_FTN_PLL_CALIBRATION
DISABLE_IEEE_ADDR_CHECK

5. Security switches

o

o

o

SAL_TYPE
STB_ON_SAL (formerly ENABLE_STB)
STB_ARMCRYPTO

6. Test and Debug switches

o

o

DEBUG
TEST_HARNESS

The following picture shows an example how the various build switches lead to a
particular configuration. For simplicity reasons only the basic building blocks are
included. More advance blocks (e.g. TFA or STB have been omitted). The used build
switches are explained in the subsequent sections.

AIMEL

59

6.1.1 Global Stack Switches

AIMEL

T

Figure 6-1. Build Configuration Example

v

REB_5_0_212 REB_5_0_212

A

Application application.c
__]
! |
I v |
]

: HIGHEST_STACK_LAYER= |
: mac_api.c MAC I

|
| |
| MC L s 7 1 :
I
| mac_start.c e mac_scan.c e mac_data.c e mac_associate.c :
! |
! (FFD is not set) |
b,y 1
l ¥ l
| o TAL_TYPE= |
! TAL | ATMEGARF_TAL_1 AT86RF230B AT86RF231 AT86RF212 ATBORF231 !
| |
| |
5 1
| ¥ |
| |
: PAL MEGA_RF AVR ARM7 XMEGA ;l\An'éaGAENER'c—TYPE‘ :
| |
| |
| Yy 4 |
| |
PAL_TYPE=

: AT90USB1287 | - - - ATMEGA1281 e ATMEGA644P ATXMEGA128A1 ATXMEGA{28A1 :
| | | |
| |
| v 2 v |
! ‘ BOARD_TYPE= |
: USBSTICK_C RCB_3_2 30B REB_2_3 230B REB_4.1.231 | ¢ REB_4 1 231 :
. ﬂ . | |
| |
| |
| |
| |
| |
L

6.1.1.1 HIGHEST_STACK_LAYER

60

AVR2025

This build switch defines the layer that the end user application is actually based on.
The MAC software package comprises of three real layers (from bottom: PAL, TAL, and
MAC Core Layer). All these layer are forming the stack, although not necessarily all
layers are always part of the actual binary. Depending upon the required functionality
(full blown MAC versus simple data pump), the user application needs to define which
layer it shall be based on (i.e. which APl it is using). If an application for instance only
uses the PAL and TAL layers (i.e. MAC is not used), all resources required for MAC are
not part of the final application. This reduces code size and SRAM utilization drastically.

Also, if a Network Layer (NWK) will be part of the stack and residing on top of the MAC
layer, a number of resources are used differently compared to an application on top of
the MAC.

Example: Reading of PIB attributes residing in TAL layer

If the HIGHEST_STACK_LAYER is MAC (HIGHEST_STACK_LAYER = MAC), the
function tal_pib_get() in file tal_pib.c is not included in the binary, because the MAC
reads all PIB attributes residing in TAL directly by accessing the global variables. On
the other hand, if the HIGHEST_STACK_LAYER is TAL (HIGHEST_STACK_LAYER =
TAL) this function is available, because an application (being not part of the stack) shall
not access global variables of the stack directly.

2025H-MCU Wireless-08/10

Conclusion:

If the application sits on top of the MAC layer, this build switch shall be set to
,HIGHEST_STACK_LAYER = MAC*.

If the application sits on top of the TAL layer, this build switch shall be set to
L,HIGHEST_STACK_LAYER = TAL".

If the application sits on top of the Tiny-TAL layer, this build switch shall be set to
LHIGHEST_STACK_LAYER = TINY_TAL".

If the application sits on top of the PAL layer, this build switch shall be set to
L,HIGHEST_STACK_LAYER = PAL".

Usage in Makefiles:

CFLAGS += -DHIGHEST_STACK_LAYER=MAC
or

CFLAGS += -DHIGHEST_STACK_LAYER=TAL

Usage in IAR ewp files:

HIGHEST_STACK_LAYER=MAC
or

HIGHEST_STACK_LAYER=TAL

For more information check file Include/stack config.h. This shows how the timer
resources are used and included in the end application depending upon the highest
stack used.

6.1.1.2 REDUCED_PARAM_CHECK

2025H-MCU Wireless-08/10

Whenever an application or a higher layer accesses an API function of a lower layer
usually a variety of parameter checks are done in order to ensure proper usage of the
desired functionality. This leads to a more robust application. On the other hand, if the
higher layer is designed to always call an API function with reasonable parameter
values, this build switch might be omitted. This will reduce the code size.

As an example what this build switch causes, please check file
MAC\Src\MAC\mac_mcps_data.c. In function mcps_data_request() a number of
additional checks are performed if this switch is not set.

It is strongly recommended to disable this build switch at least during the development
cycle of the application.

Usage in Makefiles:

CFLAGS += —-DREDUCED_PARAM_CHECK
disables the additional parameter checking.

Usage in IAR ewp files:

REDUCED_PARAM_CHECK
reduces the additional parameter checking.

AIMEL 61

6.1.1.3 PROMISCUOUS_MODE

62

AVR2025

AIMEL

T

This build switch allows for the creation of a special node that can be put into
promiscuous mode thus allowing it acting as a very simple frame sniffer on a specific
sniffer. It can be used a very simple network diagnostic tool.

When this switch is enabled the node is not supposed to act as a standard node being
part of network, i.e. the node will never acknowledge any received frame, etc. Instead
the node will be able receive any proper IEEE 802.15.4 frame on its channel within
range and present it to the application. The application can reside on top of the MAC
layer (using MAC-API callback function usr_mcps_data_ind()) or on top of the TAL layer
(using TAL callbacks).

Switching promiscuous mode on or off is controlled by the standard MAC PIB
macPromiscuousMode (see IEEE 802.15.4-2006 section 7.5.6.5 Promiscuous Mode).
The payload contained in the usr_mcps_data_ind() callback function is the MAC
Header (MHR) of the received frame concatenated with the original payload of the
received frame.

An example application presenting all received frames on a serial terminal can be found
in the directory Applications/MAC_Examples/Promiscuous_Mode_Demo (see section
9.2.1.6).

Promiscuous mode can be switched on or off by setting or resetting the PIB attribute
macPromiscuousMode. If the radio is awake and in receive mode on the current
channel, the node will present all received frames to the upper layer. In order to work
properly, the receiver needs to be enabled. This can be done, for example, by setting
MAC PIB attribute macRxOnWhenldle to 1 before turning promiscuous mode on.
Generally the transceiver state can be controlled similar to normal operation (see
chapter 5).

Once the PIB attribute macPromiscuousMode is reset, the node switches back to
normal operation. It will be in the same state as before switching to promiscuous mode,
e.g. a node that was associated will still be connected to the same network.

The following picture indicates the proper handling of promiscuous mode.

2025H-MCU Wireless-08/10

6.1.1.4 ENABLE_TSTAMP

2025H-MCU Wireless-08/10

Figure 6-2. Handling of Promiscuous Mode

Node built with
PROMISCUOUS_MODE

Application
(main.c)

Stack

Standard Mode

D

Setting-up of Promisceuous Mode

wpan_mime_reset_req ()=

—usr_mime_reset_conf()

wpan_mime_set_req I
(phyCurrentChannel)

-g=usr_mime_set_conf(Success)=——

wpan_mime_set_req
(phyCurrentPage)

-=usr_mime_set_conf(Success)=—

wpan_mime_set_req
(macRxOnWhenldle, True)

-#=usr_mime_set_conf(Success)——

| wpan_mime_set_req
(macPromiscuouMode, True)

-#=usr_mime_set_conf(Success)=—

—>

Wake up receiver and
switch to RX_ON

Promiscuous Mode >

e

Process

frame

received

Framilscuaus Mode Used

usr_mcps_data_ind
(Frame 1 content)

wpan_mime_set_req
(macPromiscuouMode, False)

-#=usr_mime_set_conf(Success)——

Other Node on
same Channel

Frame 1

.

Standard Mode

D

Switchted back
to Normal Moda

Receiver still enabled in
RX_AACK_ON

Frame 2

This build switch allows creation of timestamping information throughout the entire MAC

stack. This includes two different angles:

AIMEL

63

AIMEL

T

¢ Generation of timestamping information within the TAL

¢ Inclusion of timestamp information in the MAC-API primitives (see function
usr_mcps_data_conf() and usr_mcps_data_ind() in file MAC/Inc/mac_api.h)

In case timestamping information shall be generated and included in the MAC-API for
further utilization within the application, the compile switch needs to be set.

Usage in Makefiles:

CFLAGS += -DENABLE_TSTAMP
enables the timestamping.

Usage in IAR ewp files:

ENABLE_TSTAMP
enables the timestamping.

6.1.2 Standard and User Build Configuration Switches

6.1.3 Platform Switches

6.1.3.1 PAL_GENERIC_TYPE

64

AVR2025

The standard and user build configuration switches are described in detail in sections
6.2.1 and 6.2.2.

The PAL (Platform Abstraction Layer) contains all platform (i.e. MCU and board) based
functionality and provides an API to the TAL which is independent from the underlying
platform.

Certain portions of the PAL are generic to a specific microcontroller family. Examples
for such generic code are transceiver access via SPI for AVR 8-bit controller (see file
AVR\Generic\Src\pal_trx_access.c), or using Event System of AVR XMEGA controller.
This code is separated from the non-generic code in special directories.

In order to make sure that the correct code belonging to the proper microcontroller
family is used for the application, the build switch PAL_GENERIC_TYPE needs to be
set accordingly.

The currently defined microcontroller families are:

e AVR

e XMEGA

e AVR32

e ARM7

For more information check file PAL\Inc\pal_types.h.
Usage in Makefiles:

CFLAGS += -DPAL_GENERIC_TYPE=XMEGA
selects the AVR XMEGA microcontroller family.

Usage in IAR ewp files:

PAL_GENERIC_TYPE=AVR
selects the AVR 8-bit ATmega microcontroller family.

2025H-MCU Wireless-08/10

6.1.3.2 PAL_TYPE

6.1.3.3 BOARD_TYPE

To build the proper code the compiler needs to know which microcontroller is used.
Also depending on the microcontroller specific code portions needs to be used within
the build (since for example some microcontrollers do not support USB while others
do). The type of microcontroller is specified by the build switch PAL_TYPE.

Examples of currently supported microcontrollers are:

e AT90USB1287

e ATmegai28i

e ATmega2561

e ATmega644p

e ATxmegal28A1

For more information check file PAL\Inc\ pal_types.h.

Usage in Makefiles:

CFLAGS += -DPAL_TYPE=ATXMEGA128Al
selects the ATxmega128A1 microcontroller.

Usage in IAR ewp files:

PAL_TYPE=ATMEGA644P
selects the ATmega644p microcontroller.

Since the platform may vary between different boards even for one specific
microcontroller, certain functionality within a specific PAL has to be implemented
depending on the type of board used.

The supported board types for one microcontroller can be found in file pal_boardtypes.h
for each MCU, e.g. for ATmega2561 this file is located in directory
PAL\AVR\ATMEGA2561\Boards.

If a new board is designed which requires specific software changes, a new board has
to be added to the PAL and the board type has to be added to file pal_boardtypes.h, or
,preferably, added to a customer specific file vendor_boardtypes.h (being enabled by
setting compile switch VENDOR_BOARDTYPES; see 6.1.3.11 or 11.3.1.111.3.1).

Usage in Makefiles:

CFLAGS += —-DBOARD_TYPE=USBSTICK_C
selects the Raven USB stick revision C.

Usage in IAR ewp files:

BOARD_TYPE=RCB_4_1_SENS_TERM_BOARD

selects the Radio Controller Board Revision 4.1 using antenna diversity for AT86RF231
microcontroller.

6.1.3.4 SIO_HUB, UARTO, UART1, USBO

2025H-MCU Wireless-08/10

Certain applications (e.g. TAL example Wireless_UART) require Serial 1/0O support
(S10) in order to print characters on a serial terminal or get input from the user. For
easy SIO configuration the concept of a SIO-Hub was introduced. This implements a
simple software multiplexer / demultiplexer which allows the application or stack to

AIMEL 65

6.1.3.5 ENABLE_TRX_SRAM

AIMEL

T

access SIO hardware resources without actually knowing which kind of SIO hardware
support is provided. The actually supported hardware is currently UART or USB.

In order to enable SIO functionality the build switch SIO_HUB has to be set. Also the
proper USB or UART channel needs to be set.

Usage in Makefiles:

CFLAGS += —-DSIO_HUB —-DUSBO
enables the SIO-Hub and uses USB channel 0.

Usage in IAR ewp files:

SIO_HUB
UART1
enables the SIO-Hub and uses UART channel 1.

In general there are two different ways of accessing the memory of the transceiver,
either by frame buffer access (1) or by direct SRAM access (2). Please check the data
sheet for more information. When a frame needs to be uploaded or downloaded into or
from the transceiver, this can be done by using the corresponding frame buffer
functions or transceiver SRAM access functions. It is always recommended to use the
frame buffer functions.

For more information please see file PAL\Inc\pal.h or file
PAL\AVR\Generic\Src\pal_trx_access.c.

Functions for frame buffer access (always enabled):

void pal_trx_frame_read(uint8_t* data, uint8_t length);

void pal_trx_frame_write (uint8_t* data, uint8_t length);

Functions for direct transceiver SRAM access (only enabled if ENABLE_TRX_SRAM is
set):

void pal_trx_sram_read(uint8_t addr, uint8_t *data, uint8_t length);

void pal_trx_sram_write(uint8_t addr, uint8_t *data, uint8_t length);

For transceivers providing AES security the SRAM functions are required if transceiver
security is used.

For AT86RF230 it is recommended not using this switch in order to save code space.

6.1.3.6 ENABLE_HIGH_PRIO_TMR

66

AT86RF230 transceivers need to have an ED sampling timer running in case Energy
Detect scanning is used. This timer is implemented by means of a unique and very
accurate hardware timer (High priority timer). In other transceivers (AT86RF231 or
AT86RF212) this hardware timer is not required for Energy Detect scanning, since
additional hardware support is provided.

On the other hand the provided standard software timers have limited accuracy, since
several software timers share one hardware resource. An application may want to use
this timer if desired for their own purpose. In this case this build switch has to be set.
But the application has to make sure that it is not using this hardware timer concurrently
with the stack.

AVR2025

2025H-MCU Wireless-08/10

All provided example applications within the MAC package do not use this feature, so in
order to save code space this timer is not enabled.

Usage in Makefiles:

CFLAGS += -DENABLE_HIGH_PRIO_TMR
enables the code for the high priority timer.

Usage in IAR ewp files:

ENABLE_HIGH_PRIO_TMR
enables the code for the high priority timer.

6.1.3.7 EXTERN_EEPROM_AVAILABLE

6.1.3.8 NON_BLOCKING_SPI

2025H-MCU Wireless-08/10

Each node needs to have a unique 64-bit IEEE address (Extended address) to identify
itself within the network. All example applications delivered within the MAC software
package are only working if the node has such an IEEE address.

This address is usually stored in an EEPROM, either in the internal EEPROM of the
MCU or in an external chip on the board. If the hardware board has such an external
EEPROM where the IEEE address is stored, this build switch has to be enabled. The
actual implementation of the code for reading the address from an external EEPROM is
board dependent and might be adapted by the end user depending on their hardware.

If the IEEE address is stored within the internal EEPROM of the MCU (located in the
first 8 octets of the internal EEPROM), this build switch should to be omitted.

Usage in Makefiles:

CFLAGS += -DEXTERN_EEPROM_AVAILABLE
enables reading the IEEE address from the external EEPROM.

Usage in IAR ewp files:

EXTERN_EEPROM_AVAILABLE
enables reading the IEEE address from the external EEPROM.

Currently, for all transceivers connected to the microcontroller via SPI, the SPI frame
download or upload is done blocking, i.e. while the controller is access the transceiver
no other action can be on the microcontroller.

Since more powerful microcontroller may require performing other application or stack
tasks while accessing the transceiver via SPI, an option to perform non-blocking SPI
access has been implemented. This access makes use of interrupt driven SPI access
for downloading frames. In between the microcontroller is able to do other tasks as
required.

The non-blocking SPI can be controlled via the build switch NON_BLOCKING_SPI.
Usage in Makefiles:

CFLAGS += —-DNON_BLOCKING_SPI
enables non-blocking SPI frame download.

Usage in IAR ewp files:

AIMEL 67

AIMEL

T

NON_BLOCKING_SPI
enables non-blocking SPI frame download.

6.1.3.9 F_CPU (formerly SYSTEM_CLOCK_MHZ)

6.1.3.10 BAUD_RATE

68

AVR2025

Currently each supported platform (i.e. each supported board) has a specific clock
speed set for the system clock. This clock speed might need to be changed for certain
applications.

For the platform ATxmega128A1 with AT86RF231 on REB_4 1_600 the clock speed
can be changed at compile time (4...32MHz).

The current system clock speed can be controlled via the build switch F_CPU. If the
build switch is omitted, the standard system clock speed is used.

Usage in Makefiles:

CFLAGS += —-DF_CPU=4/8/32
configures the system clock to 4/8/32MHz.

Usage in IAR ewp files:
F_CPU=4/8/321I
configures the system clock to 4/8/32MHz.

Example Makefiles and IAR project files are provided for the MAC example application
Star_Nobeacon.

For more information please see section 11.1.

This build switch allows for changing the used UART baud rate. The default UART baud
rate is 9600 bps. This may be changed by setting this build switch to a different
meaningful value.

Usage in Makefiles:

CFLAGS += -DBAUD_RATE=38400
configures the UART baud rate to 38400 bps.

Usage in IAR ewp files:

BAUD_RATE=38400
configures the UART baud rate to 38400 bps.

Omitting this build switch sets the default baud rate of 9600 bps. For USB this build
switch has no meaning.

Pease note that the proper working of the UART with certain baud rates is depending
on the current system clock speed (see build switch F_CPU) and the error in the used
oscillator frequency. As a rule of thumb the error of the oscillator frequency shall not be
more than 2%.

For example, in case the ATmega1281 is used with F_CPU=8MHz, the error for 38400
bps is 0.2%, which is perfectly fine, but for 115200 bps the error is -3.5% which may
lead to improper functioning of the UART. For more information about the UART
oscillator frequency error please check the data sheet of the utilized MCU type.

2025H-MCU Wireless-08/10

6.1.3.11 VENDOR_BOARDTYPES

2025H-MCU Wireless-08/10

This build switch allows for the support of customer specific hardware boards which are
directly supported within this software package without the need to change any single
file.

If this switch is set in the application, the known boards defined in the corresponding
files pal_boardtypes.h are ignored. Instead a file vendor_boardtypes.h searched in the
current include path. If such a file is found, the boards defined in vendor_boardtypes.h
are used during the build process. For example, see file
PAL/AVR/ATMEGA1281/Boards/pal_boardtypes.h, where the following code is
included:

#1f defined (VENDOR_BOARDTYPES) && (VENDOR_BOARDTYPES != 0)

#include "vendor_boardtypes.h"

#else /* Use standard board types as defined below. */
In order to enable the utilization for customer specific board types, the compile switch
must be set in the corresponding project files. If this
Usage in Makefiles:

CFLAGS += —-DVENDOR_BOARDTYPES
or

CFLAGS += —-DVENDOR_BOARDTYPES=1
enables the utilization of customer specific board types.

Usage in IAR ewp files:

VENDOR_BOARDTYPES
or

VENDOR_BOARDTYPES=1
enables the utilization of customer specific board types.

If this build switch is omitted or set to zero in the corresponding project files, the board
definitions from the current file pal_boardtypes.h are used as usual.

Figure 6-3. Inclusion of vendor_boardtypes.h

pal_boardtypes.h vendor_boardtypes.h
#if defined(VENDOR_BOARDTYPES) // board types vendor n
#include "vendor_boardtypes.h"

L // board types vendor 2

/I standard board types are used

/[board types vendor 1

#define ...

#define ...

#define ...
#define ...

#endif

AIMEL 69

AIMEL

T

For more information about how to use this switch and how to enable customer speficic
boards, please refer to section 11.3.1.1.

6.1.3.12 VENDOR_STACK_CONFIG

This advanced build switch can be used by customer that want to add another stack
layer on top of the MAC layer, which shall not access the MAC layer via the MAC-API,
but rather via the queuing mechanism (similar to other network layers such as RF4CE).
By this the stack layer can utilize the provided buffers and queues.

In order to enable a customer specific stack on top of the MAC, the build switch
VENDOR_STACK_CONFIG needs to be added to the project files. In this case a file
called vendor_stack_config.h is included while parsing the common stack configuration
file stack_config.h.

Usage in Makefiles:

CFLAGS += —-DVENDOR_STACKCONFIG
enables the utilization of customer defined stacks.

Usage in IAR ewp files:

VENDOR_STACKCONFIG
enables the utilization of customer defined stacks.

6.1.3.13 ENABLE _ALL_TRX_IRQS (MEGA_RF only)

70

AVR2025

Each transceiver has a variety of transceiver interrupts connected to the MCU
depending on the used transceiver and board type. Depending on the type of
application and the footprint reqruiements, not all transceiver interrupts may be used
within a specific application. Single chip transceivers (PAL_GENERIC_TYPE =
MEGA_RF) have a large number of available transceiver interrupts. For example, the
Atmega128RFAT1 provides up to usable 10 transceiver interrupts.

The provided software package only requires three transceiver interrupts being support
mandatorily

1. TX END IRQ (i.e. the main transceiver interrupt),

2. RX END IRQ, and

3. CCAED IRQ,

whereas the other transceiver interrupts may be utilized within specific applications if
desired. The timestampt interrupt can be enable by using the build switch
ENABLE_TSTAMP (see section 6.1.1.4).

The other enhanced transceiver interrupts of MEGA_RF platforms

1. AMIIRQ

2. Batmon IRQ

3. Awake IRQ

4. PLL Lock IRQ

5. PLL Unlock IRQ

6. AES Ready IRQ

are not used within the AVR2025 software package, but may nevertheless be required
by any application of customer specific enhancement. These transceiver interrupts can
be enable by setting the build switch ENABLE_ALL_TRX_IRQS.

2025H-MCU Wireless-08/10

Usage in Makefiles:

CFLAGS += -DENABLE_ALL_TRX_IRQ
enables the utilization of all enhanced transceiver interrupts.

Usage in IAR ewp files:

ENABLE_ALL_TRX_IRQ
enables the utilization of all enhanced transceiver interrupts.

6.1.4 Transceiver specific Switches

6.1.4.1 TAL_TYPE

6.1.4.2 ANTENNA_DIVERSITY

2025H-MCU Wireless-08/10

The TAL (Transceiver Abstraction Layer) contains all transceiver based functionality
and provides an API to the MAC which is independent from the underlying transceiver.
Certain functionality that for instance the MAC or an application may require is
dependent from the actual used transceiver chip. Examples are the utilization of
antenna diversity, time stamping mechanisms, or the automatic CRC calculation in
hardware.

Examples of currently supported transceivers are:

e ATmega128RFA1 (TAL directory ATMEGARF_TAL_1)
e AT86RF230B (AT86RF230 Revision B)

e AT86RF231

e AT86RF212

For more information please check file TAL\Inc\tal_types.h.
Usage in Makefiles:

CFLAGS += —-DTAL_TYPE=AT86RF212
selects the AT86RF212 transceiver.

Usage in IAR ewp files:

TAL_TYPE=AT86RF231
selects the AT86RF231 transceiver.

Some IEEE 802.15.4 Atmel transceivers allow for the utilization of antenna diversity as
hardware feature (e.g. AT86RF231) if the board also does support this feature. The
current MAC release supports antenna diversity where applicable. In order to use
antenna diversity this build switch has to be set.

For AT86RF230 transceivers this switch is not used.
Usage in Makefiles:

CFLAGS += —-DANTENNA_DIVERSITY
enables the usage of antenna diversity.

Usage in IAR ewp files:

ANTENNA_DIVERSITY
enables the usage of antenna diversity.

AIMEL 7

6.1.4.3 ENABLE_TFA

AIMEL

T

This build switch enables the usage of non-standard compliant features of the
transceiver based on the block Transceiver Feature Access (TFA).

Currently the following features are implemented in the TFA:

¢ Changing of Receiver Sensitivity

¢ Perform CCA

e Perform ED (Energy Detect) measurement

e Reading the current transceiver supply voltage (transceiver battery monitor)
¢ Reading of current temperature (only ATmega128RFA1 only)

CCA and ED measurement are an inherent part of the MAC/TAL, so there is no need
for a standard application to use this. On the other hand there could be special test
applications which might use such functionality.

If only standard defined behavior is required or code size is important this switch should
not be set.

Usage in Makefiles:

CFLAGS += -DENABLE_TFA
enables the usage of the TFA.

Usage in IAR ewp files:

ENABLE_TFA
enables the usage of the TFA.

6.1.4.4 HIGH_DATA_RATE_SUPPORT

6.1.4.5 CHINESE_BAND

72

AVR2025

All 802.15.4 Atmel transceivers supported with this software package beyond
AT86RF230 provide high data modes not defined within the IEEE 802.15.4 standard. In
order to enable these high speed transmission modes, the build switch
HIGH_DATA_RATE_SUPPORT needs to be set. An example application where this
switch is used to gain a significantly higher data throughput is the Performance Test
Application (see Applications\TAL_Examples\Performance_Test). If only standard rates
are used or code size is important this switch should not be set.

Usage in Makefiles:

CFLAGS += —-DHIGH_DATA_RATE_SUPPORT
enables support of high speed data rates.

Usage in IAR ewp files:

HIGH_DATA_RATE_SUPPORT
enables support of high speed data rates.

This build switch is used in conjunction with a Sub-GHz transceiver chip that is capable
of working properly within the Chinese 780MHz radio band (e.g. AT86RF212). Within
the stack this switch is solely used to set the proper default value for the channel page.
So any application that per default is required to operate within this particular band (and
uses the proper TAL type) may use this build switch to set the channel page to a proper
default value.

2025H-MCU Wireless-08/10

Usage in Makefiles:

CFLAGS += —-DCHINESE_BAND
enables the channel page for the Chinese band as default.

Usage in IAR ewp files:

CHINESE_BAND
enables the channel page for the Chinese band as default.

For more information please check file tal_constants.h in directory TAL/AT86RF212/Inc.

Example applications using this build switch in Makefiles or IAR project files can be
found in directory

Applications/TAL_Examples/Wireless_ UART/AT86RF212_780_MHZ_ATMEGA1281_R
CB_5 3 SENS_TERM_BOARD.

6.1.4.6 RSSI_TO_LQI MAPPING

This build switch is used to control the mechanism for calculation of the normalized LQI
value of received frames. The normalized LQI value (that is provided to the higher layer
of the MAC as parameter ppduLinkQuality) is

¢ based on the RSSI/ED value (switch RSSI_TO_LQI_MAPPING is used) where only
the ED value (signal strength) is mapped to a LQl value. Or is

¢ based on the ED (signal strength) and the measured LQI value (quality of received
packet) (switch RSSI_TO_LQI_MAPPING is not used).

For further information about the LQI value, see |IEEE 802.15.4-2006 section 6.9.8. The
build switch RSSI_TO_LQI_MAPPING reflects the “and/or” relation described in the first
paragraph of the mentioned section. If RSSI_TO_LQI_MAPPING is set, signal strength
is only used for LQI measurement.

Usage in Makefiles:

CFLAGS += —-DRSSI_TO_LQI_MAPPING
enables the calculation of the normalized LQI value based on RSSI/ED value.

Usage in IAR ewp files:

RSSI_TO_LQI_MAPPING
enables the calculation of the normalized LQI value based on RSSI/ED value.

For more information please check the implementation in the files
TAL/tal_type/Src/tal_rx.c.

6.1.4.7 ENABLE_FTN_PLL CALIBRATION

2025H-MCU Wireless-08/10

This build switch is used to enable the filter tuning and PLL calibration for the
transceiver. Once this feature is enabled in an application, a period timer is started,
which ensures that the proper filter tuning and PLL calibration is executed after a
certain amount of time.

This feature might be required in case the environment conditions (i.e. temperature)
vary over time.

The filter tuning and PLL calibration is done automatically when a node periodically
enters sleep state, or when other specific state changes are performed within the

AIMEL 73

AIMEL

LG}
transceiver periodically. For more information please check the corresponding
transceiver data sheets.

The current timer interval is 5 minutes, i.e. whenever the node does not enter sleep
state within this timer interval, the filter tuning and PLL calibration mechanism will be
invoked.

This switch is currently not enabled in any example application.

6.1.4.8 DISABLE_IEEE_ ADDR _CHECK

6.1.4.9 DISABLE_TSTAMP_IRQ

6.1.5 Security Switches

6.1.5.1 SAL_TYPE

74

This build switch is used to disable the check whether the node has a valid IEEE
address (i.e. the IEEE address is different from 0 or OxFFFFFFFFFFFFFFFF).

Currently all TAL and MAC based applications require a valid and unique IEEE address
being present on each node. Since some board may not necessarily have a valid IEEE
address stored in (either internal or external) EEPROM (for example AT91SAM7X-EK
boards), the applications cannot run properly. For the purpose of proper example
demonstration a check for this IEEE address is implemented. If the IEEE address is not
correct (i.e. it is 0 or OXFFFFFFFFFFFFFFFF), a random IEEE address is assigned to
this node.

Some applications do not require this specific IEEE check. In this case the code can be
significantly smaller by setting the build switch DISABLE_IEEE_ADDR_CHECK.

Also this build switch gives a very good indication which portions or the TAL need to be
changed or removed for smaller code size by simply searching for build switch
DISABLE_IEEE_ADDR_CHECK.

This switch is currently not enabled in any example application, since all example
applications require a valid IEEE address.

Boards providing a valid IEEE address always use their original unique IEEE address
during operation.

This build switch is used to disable the Timestamp interrupt (i.e. the second transceiver
interrupt for AT86RF231 and AT86RF212) on systems which do not utilize this
transceiver interrupt. This is for example valid for boards based on ARM
AT91SAM7X256 MCUs in conjunction with AT86RF231.

The TAL for AT86RF231 and AT86RF212 is designed to utilize the Timestamp interrupt
as default for generating timestamp information. If this build switch is explicitly set in the
project files or Makefiles for an application, the timestamp information is generated
similar as for AT8B6RF230 based systems.

In order to provide security support to the application a number of switches controlling
the incorporation of code for security is defined.

For examples on how to use security within an application based on MAC or based on
the TAL please check the applications in directory Applications\STB_Examples.

Security support is implemented in two different layers. The lower layer (SAL — Security
Abstraction Layer) implements all portions of security that are dependent of the used
platform (e.g. AES engine implemented in transceiver or microcontroller, etc.). The
upper layer (STB — Security Toolbox) implements functionality that is independent from

AVR2025

2025H-MCU Wireless-08/10

the used platform and provides a generic API to the application (for instance securing a
frame with CCM* security).

In order to provide the proper code or hardware support for basic security functions the
type of the used Security Abstraction Layer needs to be specified as build switch.

The currently supported SAL types are:
o AT86RF2xx — SAL with transceiver based AES via SPI
e ATMEGARF_SAL — SAL with single chip transceiver based AES
e ATXMEGA_SAL — SAL with ATxmega family based AES
e SW_AES SAL - AES software implementation
For more information please check file SAL/Inc/sal_types.h and see section 4.6.
Usage in Makefiles:
CFLAGS += —-DSAL_TYPE=AT86RF2xx
enables transceiver based AES security via SPI.

Usage in IAR ewp files:

SAL_TYPE=AT86RF2xx
enables transceiver based AES security via SPI.

6.1.5.2 STB_ON_SAL (formerly ENABLE_STB)

6.1.5.3 STB_ARMCRYPTO

2025H-MCU Wireless-08/10

While the SAL only provides a basic security API, most applications do require more
advance security features, e.g. securing a complete frame with a specific key. Such
functionality is implemented in the Security Toolbox.

To incorporate the Security Toolbox features for system requiring the STB layer on top
of an SAL implementation (see section 4.6) during the build process the switch
STB_ON_SAL needs to be set.

Usage in Makefiles:

CFLAGS += -DSTB_ON_SAL
enables the Security Toolbox features.

Usage in IAR ewp files:

STB_ON_SAL
enables the Security Toolbox features.

The ARM hardware crypto engine residing in the SAM7XC is very powerful and thus
does not require the implementation of an additional SAL layer for such systems.
Therefore the utilization of security for SAM7XC systems allows for the easy handling of
security features by only relying on a special STB implementation called
STB_ARMCRYPTO.

To incorporate the Security Toolbox features using the ARM crpto engine during the
build process the switch STB_ARMCRYPTO needs to be set (see section 4.6).

Usage in IAR ewp files:

STB_ARMCRYPTO
enables the Security Toolbox features for SAM7XC systems.

AIMEL 75

6.1.6 Test and Debug Switches

6.1.6.1 DEBUG

6.1.6.2 TEST_HARNESS

6.2 Build Configurations

AIMEL

T

This build switch enables further debug functionality and additional sanity checks within
the software package, but also increased code size or changes run time behavior since
the optimization level is changed.

If the GCC compiler is used, this switch also enables printout functionality for debug
purposes (ASSERT).

This build switch is solely present for Atmel internal regression testing and not to be
used by an application.

Note: Although the code in file mac_pib.c may lead to the conclusion, that this switch
needs to be set in order to be allowed to set the IEEE address of this node via software,
this is not supposed to be used this way.

Each device has its own |IEEE address that is fixed for this device and usually it is
located in any type of persistent storage. This is actually not a PIB attribute but rather a
MAC constant (see IEEE 802.15.4-2006 section 7.4.1 table 85 (aExtendedAddress). So
the value is only READ_ONLY and in normal mode not supposed to be written by the
application or stack. Therefore this attribute can be read using API functions
(wpan_mlime_get_req()) but not written (wpan_mlme_set_req()).

6.2.1 Standard Build Configurations

76 AVR2025

Based on the IEEE 802.15.4 standard there are four basic standard configurations
available which provide different functionality to the user application. This implies
different APls for each of these configurations and also different footprints (codes size,
SRAM utilization).

These standard configurations can be classified in two categories:

¢ Support of beacon enabled networks

¢ Reduced Functional Devices - RFD (e.g. End Devices) vs. Full Functional Devices —
FFD (PAN Coordinators, Coordinators)

The Atmel MAC provides 2 build switches that can be used in Makefiles or IAR
Embedded Workbench project files to enable or disable these configurations.
Depending on the usage of these switches in the project, the MAC provides certain
functionality to the user application.

I.FFD
e Omitting of this build switch only enables functionality required for a simple
RFD node
e Setting of this build switch additionally enables functionality required for a FFD
node

[.LBEACON_SUPPORT

¢ Omitting of this build switch only enables functionality required for a networks
without using a superframe structure, i.e. nonbeacon-enabled networks

e Setting of this build switch additionally enables functionality required for a
network using a superframe structure, i.e. beacon-enabled networks

2025H-MCU Wireless-08/10

6.2.1.1 FFD Feature Set

2025H-MCU Wireless-08/10

Example 1: A node that shall start its own network always has to be an FFD, because
starting of networks is only supported for an FFD configuration.

Example 2: A node that shall be able to join both nonbeacon- and beacon-enabled
networks has to use an application built with BEACON_SUPPORT.

Please refer to file “/Include/mac_build_config.h” for more information about the
supported functionality.

The following features are enabled if FFD is set during the build process:

MAC_ASSOCIATION_INDICATION_RESPONSE: The node is able to accept and
process association attempts from other nodes. Also this node can provide Short
Addresses to other nodes if desired.

MAC_ASSOCIATION_REQUEST_CONFIRM: The node is able accept and process
a request from its upper layer (e.g. the network layer) to associate itself to another
node (i.e. its parent).

MAC_BEACON_NOTIFY_INDICATION: The node is able to present received
beacon frame to its upper layer in case the beacon frame contains a beacon payload
or the MAC PIB attribute macAutoRequest is set to false.

MAC_DISASSOCIATION_BASIC_SUPPORT: The node is able to accept and
process a request from its upper layer to disassociate itself from its network or
disassociate one of its children, or to process a received disassociation frame from
another node.

MAC_DISASSOCIATION_FFD_SUPPORT: The node is able to transmit an indirect
disassociation notification frame. This requires that the switch
MAC_DISASSOCIATION_BASIC_SUPPORT is also set.

MAC_INDIRECT_DATA_BASIC: The node is able to poll its own parent for indirect
data.

MAC_INDIRECT_DATA_FFD: The node is able to handle requests to transmit data
frames to its children indirectly once being polled by those nodes. This requires that
the switch MAC_INDIRECT_DATA_BASIC is also set.

MAC_ORPHAN_INDICATION_RESPONSE: The node is able to accept and
process a received orphan indication frame by one of its children and respond
appropriately.

MAC_PAN_ID_CONFLICT_AS PC: The node is able to detect a PAN-Id conflict
situation while acting as a PAN Coordinator by checking received beacon frames
from other PAN Coordinators and being able to act upon the reception of PAN-Id
Conflict Notification Command frames from its children.

MAC_PAN_ID_CONFLICT_NON_PC: The node is able to detect a PAN-Id conflict
situation while NOT acting as a PAN Coordinator by checking received beacon
frames from other PAN Coordinators and being able to initiate the transmission of
PAN-Id Conflict Notification Command frames from its parents if required.
MAC_PURGE_REQUEST_CONFIRM: The node is able to purge indirect data
frames from its Indirect-Data-Queue upon request by its upper layer.
MAC_RX_ENABLE_SUPPORT: The node is able to switch on or off its receiver for
a certain amount of time upon request by its upper layer. This is required in order to
allow for the upper layer to receive frames in case the node is generally in a power
safe state.

MAC_SCAN_ACTIVE_REQUEST_CONFIRM: The node is able to perform an active
scan to search for existing networks.

AIMEL 7

6.2.1.2 RFD Feature Set

78

AIMEL

T

MAC_SCAN_ED_ REQUEST_CONFIRM: The node is able to perform an energy
detect scan.

MAC_SCAN_ORPHAN_REQUEST_CONFIRM: The node is able to perform an
orphan scan in case it has lost its parent.
MAC_SCAN_PASSIVE_REQUEST_CONFIRM: The node is able to perform a
passive scan to search for existing networks. This feature is only enabled if also
BEACON_SUPPORT is enabled.

MAC_START_REQUEST_CONFIRM: The node is able to start its own network.
Depending on the setting of BEACON_SUPPORT this can be either only a
nonbeacon-enabled network or also a beacon-enabled network.
MAC_SYNC_LOSS_INDICATION: The node is able to report a sync loss condition
to its upper layer. This can be either the reception of a coordinator realignment
frame from its parent, or (if BEACON_SUPPORT is enabled and the node is
synchronized with its parent) caused by the fact that the node has not received
beacon frames from its parent for a certain amount of time.

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and
the implementation of their corresponding features in the MAC.

The following features are enabled if FFD is NOT set during the build process:

AVR2025

MAC_ASSOCIATION_REQUEST_CONFIRM: The node is able accept and process
a request from its upper layer (e.g. the network layer) to associate itself to another
node (i.e. its parent).

MAC_BEACON_NOTIFY_INDICATION: The node is able to present received
beacon frame to its upper layer in case the beacon frame contains a beacon payload
or the MAC PIB attribute macAutoRequest is set to false.
MAC_DISASSOCIATION_BASIC_SUPPORT: The node is able to accept and
process a request from its upper layer to disassociate itself from its network, or to
process a received disassociation frame from its parent.
MAC_INDIRECT_DATA_BASIC: The node is able to poll its own parent for indirect
data.

MAC_PAN_ID_CONFLICT_NON_PC: The node is able to detect a PAN-Id conflict
situation while NOT acting as a PAN Coordinator by checking received beacon
frames from other PAN Coordinators and being able to initiate the transmission of
PAN-Id Conflict Notification Command frames from its parents if required.
MAC_RX_ENABLE_SUPPORT: The node is able to switch on or off its receiver for
a certain amount of time upon request by its upper layer. This is required in order to
allow for the upper layer to receive frames in case the node is generally in a power
safe state.

MAC_SCAN_ACTIVE_REQUEST_CONFIRM: The node is able to perform an active
scan to search for existing networks.
MAC_SCAN_ORPHAN_REQUEST_CONFIRM: The node is able to perform an
orphan scan in case it has lost its parent.

MAC_SYNC_LOSS_INDICATION: The node is able to report a sync loss condition
to its upper layer. This can be either the reception of a coordinator realignment
frame from its parent, or (if BEACON_SUPPORT is enabled and the node is
synchronized with its parent) caused by the fact that the node has not received
beacon frames from its parent for a certain amount of time.

2025H-MCU Wireless-08/10

The following features are disabled if FFD is NOT set during the build process:

e MAC_ASSOCIATION_INDICATION_RESPONSE: The node is not able to handle
association attempts from other nodes.

e MAC_DISASSOCIATION_FFD_SUPPORT: The node is not able to transmit an
indirect disassociation notification frame.

¢ MAC_INDIRECT_DATA_FFD: The node is not able to handle requests to transmit
data frames indirectly.

¢ MAC_ORPHAN_INDICATION_RESPONSE: The node is not able to handle orphan
indication frames by other nodes.

¢ MAC_PAN_ID_CONFLICT_AS_PC: The node is not able to act upon the reception
of PAN-Id Conflict Notification Command frames.

¢ MAC_PURGE_REQUEST_CONFIRM: The node is not able to purge indirect data.

¢ MAC_SCAN_ED REQUEST_CONFIRM: The node is not able to perform an energy
detect scan.

¢ MAC_SCAN_PASSIVE_REQUEST_CONFIRM: The node is not able to perform a
passive scan.

e MAC_START_REQUEST_CONFIRM: The node is not able to start its own network.

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and
the implementation of their corresponding features in the MAC.

6.2.1.3 BEACON_SUPPORT Feature Set

If BEACON_SUPPORT is set during the build process all functionality required to
support beacon-enabled networks are enabled. The actually enabled functionality
differs depending on the internal requirements for FFDs or RFDs.

Additionally the following feature is enabled:

¢ MAC_SYNC_REQUEST: The node is able to sync itself with its parent by tracking
the corresponding beacon frames.

Please check IEEE 802.15.4-2006 for further information about the MAC primitives and
the implementation of their corresponding features in the MAC.

6.2.2 User Build Configurations — MAC_USER_BUILD_CONFIG

6.2.2.1 Introduction

2025H-MCU Wireless-08/10

Since a number of applications do not necessarily need the functionality provided by
any of the standard build configurations, or may even have more rigid requirements
concerning FLASH or RAM utilization, the concept of user build configuration has been
introduced. The usage of the build MAC_USER_BUILD_CONFIG in the Makefiles or
IAR Embedded Workbench project files allows the end user to tailor its MAC completely
according to its own needs.

The following MAC features can be separately selected or removed from the build:
e Association

e Disassociation
¢ Support of scanning (energy detect, active, passive, or/and orphan scanning)

AIMEL 7

AIMEL

T

¢ Starting of networks

¢ Support of transmitting or receiving indirect data including polling of data
e Purging of indirect data

e Enabling of the receiver

¢ Synchronization in beacon-enabled networks

e Presentation of loss of synchronization

¢ Handling of orphan notifications

e Handling of beacon notifications

Each feature can be used independently from each other. It is also possible to deselect
all of the above features, which leads to a minimum application in terms of resource
utilization. In this case only the following basic MAC features are available:

e Direct data transmission and reception
¢ Initiation of a MAC reset
e Reading and writing of PIB attributes

An example application implementing the proper utilization of this feature can be bound
in Applications/MAC_Examples/Basic_Sensor_Network. In this example only RX-
ENBALE is used in addition to the standard features. For more information about this
example application please refer to section 9.2.1.3.

6.2.2.2 File mac_user_build_config.h

6.2.2.2.1 Examples

80

AVR2025

If the switch MAC_USER_BUILD_CONFIG is activated, the C-pre-processor looks for a
file mac_user_build_config.h in the current include path (usually in the Inc directory of
the application). See file /Include/mac_build_config.h:

#ifdef MAC_USER_BUILD_CONFIG

#include "mac_user_build_config.h"

#else

The standard feature definitions for an FFD or RFD configuration are by-passed, and
instead the user defined feature set from mac_user_build_config.h is used. This
features set needs to be defined entirely, i.e. each feature needs to be either enabled or
disabled.

An example for a basic MAC application that only needs minimum features, and thus
only requires minimum resources, can be found at
Applications/MAC_Examples/Basic_Sensor_Network.

Example 1: An end device that does neither use association nor disassociation
functionality, but still wants to poll indirect data from its parent, may set the following the
build switches in file mac_user_build_config.h:

#define MAC_ASSOCIATION_INDICATION_RESPONSE (0)

#define MAC_ASSOCIATION_REQUEST_CONFIRM (0)

#define MAC_DISASSOCIATION_BASIC_SUPPORT (0)

#define MAC_DISASSOCIATION_FFD_SUPPORT (0)

#define MAC_INDIRECT_DATA_BASIC (1)

2025H-MCU Wireless-08/10

#define MAC_INDIRECT_DATA_FFD (0)

Example 2: A network whose nodes read their fixed network parameters from a
persistent store, and thus never perform scanning or start a network, may set the
following build switches in file mac_user_build_config.h:
#define MAC_SCAN_ACTIVE_REQUEST_CONFIRM
#define MAC_SCAN_ED_REQUEST_CONFIRM
#define MAC_SCAN_ORPHAN_REQUEST_CONFIRM
#define MAC_SCAN_PASSIVE_REQUEST_CONFIRM
#define MAC_START_REQUEST_CONFIRM

o O O o o

The other features are omitted in the examples, but have to be set according to the
application need.

6.2.2.3 Implications and Internal Checks

There are a number of dependencies between several of the features mentioned
above. In order to keep the burden for the end user low, certain required internal checks
or further implicit settings are done while configuring the build. These checks and
implications can be seen in file /Include/mac_build_config.h.

6.2.2.3.1 MAC_COMM_STATUS_INDICATION

Communication systems usually follow the approach to implement primitives in pairs.
This is (1) Request / Confirm (e.g. MLME_ASSOCIATE-request and
MLME_ASSOCIATE.confirm, or (2) Indication / Response (e.0.
MLME_ASSOCIATE.indication and MLME_ASSOCIATE.response). Whenever such an
Indication / Response scheme is applied, the corresponding node needs a confirmation
that its last transaction has finished successfully (e.g. the last transmitted frame has
been acknowledged by its receiver). This confirmation is done within IEEE 802.15.4 by
creating an MLME_COMMUNICATION_STATUS.indication message to the upper
layer.

This implies that whenever MAC_ASSOCIATION_INDICATION_RESPONSE or
MAC_ORPHAN_INDICATION_RESPONSE is used (both is valid for an FFD only), the
feature MAC_COMM_STATUS_INDICATION is enabled automatically.

6.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION

Whenever the feature MAC_SYNC REQUEST is wused, also the feature
MAC_SYNC_LOSS_INDICATION is required to be included in the build. If the
requirement is not met, the C-pre-processor will indicate an error.

6.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC

Whenever one of the subsequently listed features is used, also the feature
MAC_INDIRECT_DATA_BASIC is required to be included in the build:

¢ MAC_ASSOCIATION_INDICATION_RESPONSE

¢ MAC_ASSOCIATION_REQUEST_CONFIRM

AIMEL 81

2025H-MCU Wireless-08/10 I ——

AIMEL

T

¢ MAC_DISASSOCIATION_BASIC_SUPPORT

¢ MAC_DISASSOCIATION_FFD_SUPPORT

e MAC_INDIRECT_DATA_FFD

¢ MAC_PURGE_REQUEST_CONFIRM

If this requirement is not met, the C-pre-processor will indicate an error.

6.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD

Whenever one of the subsequently listed features is used, also the switch
MAC_INDIRECT_DATA_FFD is required to be included in the build:

e MAC_ASSOCIATION_INDICATION_RESPONSE
e MAC_DISASSOCIATION_FFD_SUPPORT
e MAC_PURGE_REQUEST CONFIRM

6.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC

Whenever the feature MAC_PAN_ID_CONFLICT_AS_PC is used, also the following
features are required to be included in the build:

e MAC_START_REQUEST_CONFIRM
e MAC_SYNC_LOSS_INDICATION

6.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC

Whenever the feature MAC_PAN_ID_CONFLICT_ NON _PC is used, also the following
features are required to be included in the build:

e MAC _SYNC_LOSS INDICATION

e MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

6.2.2.3.7 Dependency from BEACON_SUPPORT

Whenever the feature MAC_SYNC REQUEST is wused, also the switch
BEACON_SUPPRT is required to be included in the build. If the requirement is not met,
the C-pre-processor will indicate an error.

|
82 AV R2025 2025H-MCU Wireless-08/10

7 Migration Guide from Version 2.4.x to 2.5.x

7.1 MAC-API Changes

With the release of AVR2026 version 2.5.x a number of significant improvement have
been achieved by introducing design changes throughout the PAL, TAL and MCL layer
and by introducing the Tiny_TAL layer.

Although these design changes do not significantly change the MAC-API, both the TAL-
APl and partially the PAL-API have been changed. This is based on the fact that large
portions of the code formerly residing inside the TAL layer have been shifted up to the
MCL layer. This leads to an overall code size reduction, as well as to the much simpler
TAL-API, which can be used more easily for simple applications.

The PAL-API was changed mostly for handling transceiver related interrupts with the
focus of reducing the overall code size and excluding functionality not used per default.

In order to better understand the impact of these design improvements on the end user
applications or stack layers the following sections will describe the most important
changes in detail.

The API changes within the MAC-API can be classified into the following groups:

¢ Handling of Timestamp parameter in MCPS-DATA primitives
¢ Type of AddrList parameter in MLME-BEACON-NOTIFY.indication primitive

7.1.1 Handling of Timestamp Parameter in MCPS-DATA Primitives

2025H-MCU Wireless-08/10

According to [4] both the MCPS-DATA.confirm and the MCPS-DATA.indication primitive
contain a Timestamp parameter. This is implemented in the MAC callback functions
usr_mcps_data_conf() and usr_mcps_data_ind().

In many cases the timestamping functionality is not used within the entire application. In
order to save code size, and simply the application (if the Timestamp parameter is not
required), the Timestamp parameter as well as the complete handling to timestamping
in the entire stack can be omitted. This can be controlled via the build switch
ENABLE_TSTAMP. For more information about this build switch see 6.1.1.4.

Starting with release 2.5.x timestamping is excluded as default, i.e. the Timestamp
parameter is not included into the mentioned callback functions. If an application utilizes
the build switch in its Makefile or project files, timestamping is performing within the
stack, and thus the Timestamp parameter is included in the callback functions. An
example of an application using timestamping can be found in 9.2.1.3.

The updated API for the corresponding callback functions is defined as:

#if defined (ENABLE_TSTAMP)

void usr_mcps_data_conf (uint8_t msduHandle,
uint8_t status,
uint32_t Timestamp);

#else

void usr_mcps_data_conf (uint8_t msduHandle,
uint8_t status);

#endif /* ENABLE_TSTAMP */

and

void usr_mcps_data_ind(wpan_addr_spec_t *SrcAddrSpec,

AIMEL 83

AIMEL

T

wpan_addr_spec_t *DstAddrSpec,
uint8_t msdulength,
uint8_t *msdu,
uint8_t mpdulinkQuality,
#ifdef ENABLE_TSTAMP
uint8_t DSN,
uint32_t Timestamp);
#else
uint8_t DSN);
#endif /* ENABLE_TSTAMP */
The function prototypes can be found at /MAC/Inc/mac_api.h.

If the build switch ENABLE_TSTAMP is not used within an application, the
corresponding implementation in the application needs to be adjusted accordingly. An
example of this can be found in file mainc in the directory
Applications\MAC_Examples\Star_Nobeacon\Src.

7.1.2 AddrList Parameter in MLME-BEACON-NOTIFY.indication Primitive

7.2 TAL-API Changes

84

The MLME-BEACON-NOTIFY.indication primitive implemented in the MAC callback
function usr_mime_beacon_notify_ind() function has an updated type of the included
parameter AddrList:

The callback function definition has been changed from

void usr_mlme_beacon_notify_ind(uint8_t BSN,
wpan_pandescriptor_t *PANDescriptor,
uint8_t PendAddrSpec,
void *AddrList,
uint8_t sdulength,
uint8_t *sdu) ;

to

void usr_mlme_beacon_notify_ind(uint8_t BSN,
wpan_pandescriptor_t *PANDescriptor,
uint8_t PendAddrSpec,
uint8_t *AddrList,
uint8_t sdulength,
uint8_t *sdu) ;

The function prototype can be found at /MAC/Inc/mac_api.h.

In order to reduce code size and complexity of the entire stack, and to allow the
development of TAL based applications, the design and the API of the TAL have been
simplified significantly. The API changes within the TAL-API can be classified into the
following groups:

¢ Simplification of structure frame_info_t used within the TAL frame handling functions
¢ Simplification of frame indication callback function tal_rx_frame_cb()

¢ Simplification of Beacon handling API

AVR2025

2025H-MCU Wireless-08/10

7.2.1 Simplification of Structure frame_info_t

Frames being exchanged between the MCL and the TAL layer (i.e. frames to be
transmitted and frames being received), are handled at the TAL-API by means of a
specific frame structure containing all relevant frame information. This structure has the
type frame_info_t and is defined in file tal.h in directory TAL\Inc. It is used in the
following functions:

e tal_rx_frame_cb()

e tal_tx_frame()

e tal_tx_beacon() (new since 2.5.x)

Figure 7-1. Content of frame_info_t Structure

Release 2.4.x (obsolete): Release 2.5.x:

typedef struct frame_info_tag

{

typedef struct frame_info_tag

frame_msgtype_t msg_type; {
* . frame_msgtype_t msg_type;
buffer_L bmerxhefw\er, buffer_t *buffer_header;
/urnﬁG_t frame_ctrl; N uint8_t msduHandle;
uint8_t seq_num; bool in_transit; ’
uint16_t dest_panid; \ - ’

uint64_t dest_address; ui_r£32__t?time_stamp;
\\ . o / < uint8_t ‘mpdu;
uint16_t src_panid; -k }fraﬁe o T o
uihté4. t src addrees; - =
uint8_t payload_length;
ils Cpavipus Contains

} frame_info_t; both MAC
Header and
MSDU
Contains Address info now removed from
only MSDU MAC frame header, since already
(M AC Header included in assembled/received

payload) Fields frame

The MAC header information previously included by means of several structure
elements mas migrated into the new element “mdpu”, which contains the complete
MPDU (both the MAC Header and the MSDU = Data Payload). This implies that starting
with release 2.5.x the MAC header information is only parsed and formatted inside the
MAC layer and is fully transparent for the TAL layer.

7.2.2 Simplification of Function tal_rx_frame_cb()

2025H-MCU Wireless-08/10

The TAL callback function for a frame indication (once a valid has been received and
needs to be forwared to the MCL) has been simplified. The function tal_rx_frame_cb()
has changed from

void tal_rx_frame_cb(frame_info_t *mac_frame_info, uint8_t 1gi)

to

void tal_rx_frame_cb(frame_info_t *rx_frame)

AIMEL 85

AIMEL

T

The parameter LQI has been removed, since the LQI value of the current frame is now
part of the element “mpdu” of the frame_info_t structure variable “rx_frame”. For more
information check function tal_rx_frame_cb() in file TAL/Src/tal_rx_frame_cb.c. For
more information how to extract and use the LQI value of the received frame see
section 4.2.1.2.

7.2.3 Simplification of Beacon Handling API

86

AVR2025

The API handling (periodic) Beacon frames (within a beacon-enabeld network) has
been simplified by removing function tal_prepare_beacon() and updating function
tal_tx_beacon().

Originally (release 2.4.x) the periodic Beacon transmission was performed by obeying
the following steps:

(a) Expiration of Pre-Beacon timer in MCL - Preparation of next Beacon frame within
MCL

(b) Calling of TAL-API function tal_prepare_beacon() including the frame information
structure to initiate formatting of frame in TAL; Beacon frame is stored inside TAL until
transmission time

(c) Expiration of Beacon time in MCL — Calling of TAL-API function tal_tx_beacon to
trigger immediate Beacon frame transmission

(d) TAL used stored frame and initiates Beacon frame transmission

Figure 7-2. Transmission of periodic Beacon Frames

Release 2.4.x (obsolete): Release 2.5.x:
Pre-Beacon Beacon Pre-Beacon Beacon
Timer M C L Timer Timer M C L Timer
@ T © ®» 7 G
I I
tal_prepare_beacon I tal_tx_beacon I tal_tx_beacon
(frame_info_t *) (void) (frame_info_t *)
y | Y | Y
® ., O O]
TAL TAL
I I
I I
Phase 1 ! Phase 2 Phase 1 ! Phase 2

Starting with release 2.5.x this has been simplified:

(A) Expiration of Pre-Beacon timer in MCL — Complete formatting of next Beacon frame
within MCL; not further interaction with TAL; function tal_prepare_beacon() does not
exist anymore

(B) Expiration of Beacon time in MCL — Calling of TAL-API function tal_tx_beacon() to
trigger immediate Beacon frame transmission; function tal_tx_beacon contains
complete Beacon frame already formatted

(C) TAL uses parameter of type frame_info_t in function tal_tx_frame() to initate Beacon
frame transmission

2025H-MCU Wireless-08/10

7.3 PAL-API Changes

7.3.1 TRX IRQ Initialization

7.3.1.1 Releaes 2.4.x

7.3.1.2 Releaes 2.5.x

In order to reduce code size and to taylor the actually included functionality of the PAL
according to the user application needs, the PAL-API has been updated. The API
changes within the PAL-AP| mainly affect the functions handling transceiver interrupts.

The initialization of transceiver interrupts has been changed from release 2.4 .x:

void pal_trx_irg init(trx_irg hdlr_idx_t trx_irg num,
FUNC_PTR trx_irqg_cb)

The implementation comprised of exactly one function for interrupt initialization, which
required an ID for the actual interrupt number.

Since most applications do not require all transceiver interrupts, this approach has been
changed starting from release 2.5.x. The focus here is clearly on reduced footprint.
Each single transceiver interrupt is initialized with a dedicated initializiation function.
The original parameter specifying the dedicated transceiver interrupt is not used
anymore. Furthermore only required transceiver interrupts are included into the code
based on additional build switches that can be used.

The following functions are provided starting from release 2.5.x:
Initialization of main transceiver interrupt:
void pal_trx_irg init (FUNC_PTR trx_irqg_cb)
Initialization of transceiver timestamp interrupt (only available if ENABLE_TSTAMP is
used):
void pal_trx_irg init_tstamp (FUNC_PTR trx_irqg_cb)
Initialization of additionally required transceiver interrupts for MEGA-RF single chips:

void pal_trx_irg init_rx_end(FUNC_PTR trx_irqg_cb)

void pal_trx_irg init_tx_end(FUNC_PTR trx_irqg_cb)

void pal_trx_irg init_cca_ed(FUNC_PTR trx_irqg_cb)
Initialization of further optional transceiver interrupts for MEGA-RF single chips (only
available if ENABLE_ALL_TRX_IRQS is used):

void pal_trx_irg init_ami (FUNC_PTR trx_irqg cb)

void pal_trx_irg init_batmon (FUNC_PTR trx_irqg_cb)

void pal_trx_irg init_awake (FUNC_PTR trx_irqg_cb)

void pal_trx_irg init_pll_lock (FUNC_PTR trx_irqg_cb)

void pal_trx_irg init_pll_unlock (FUNC_PTR trx_irqg cb)

void pal_trx_irg init_aes_ready (FUNC_PTR trx_irqg cb)
For more information see file PAL/Inc/pal.h and the corresponding pal_irg.c file for each
platform implementation.

7.3.2 TRX IRQ Enabling and Disabling

7.3.2.1 Releaes 2.4.x

2025H-MCU Wireless-08/10

Enabling and disabling of transceiver interrupts has been changed from release 2.4.x:
inline void pal_trx_irqg enable(trx_irg hdlr_idx_t trx_irg num)

AIMEL &7

7.3.2.2 Releaes 2.5.x

7.3.3 TRX IRQ Flag Clearing

7.3.3.1 Releaes 2.4.x

7.3.3.2 Releaes 2.5.x

88

AVR2025

AIMEL

T

inline void pal_trx_irqg disable(trx_irg hdlr_idx_t trx_irqg num)

The implementation comprised of exactly one inline function for enabling or disabling
transceiver interrupts, which required an ID for the actual interrupt number.

Since most applications do not require all transceiver interrupts, this approach has been
changed starting from release 2.5.x. Both the main transceiver interrupt and the
timestamp interrupt are now enabled or disable by using a macro. The original
parameter specifying the dedicated transceiver interrupt is not used anymore.

The following macros are provided starting from release 2.5.x:
Enabling and disabling of the main transceiver interrupt:

#define pal_trx_irqg en() (ENABLE_TRX_TRQ())

#define pal_trx_irqg dis() (DISABLE_TRX_IRQ())
Enabling and disabling of the transceiver timestamp interrupt (only available if
ENABLE_TSTAMP is used):

#define pal_trx_irqg_en_tstamp() (ENABLE_TRX_TRQ_TSTAMP ())

#define pal_trx_irqg dis_tstamp() (DISABLE_TRX_IRQ_TSTAMP ())
Please note that the macro above are only available for non-single chip transceivers,
since in single chip transceivers (MEGA_RF platforms) there is no separation between
enabling/disabling transceiver interrupts at the transceiver, and setting/clearing the IRQ
mask at the MCU. Therefore the transceiver interrupts in single chips are
enabled/disabled by setting the MCU IRQ mask.

For more information see file PAL/Inc/pal.h and the corresponding pal_config.h file for
each platform implementation.

Clearing the interrupt flag of transceiver interrupts has been changed from release
2.4.x:
inline void pal_trx_irqg flag_clr(trx_irg hdlr_idx_t trx_irg_num)

The implementation comprised of exactly one inline function for clearing the transceiver
interrupt flag, which required an ID for the actual interrupt number.

Since most applications do not require all transceiver interrupts, this approach has been
changed starting from release 2.5.x. Each single transceiver interrupt flag is cleared
using a macro. The original parameter specifying the dedicated transceiver interrupt is
not used anymore. Furthermore only required transceiver interrupts are included into
the code based on additional build switches that can be used.

The following macros are provided starting from release 2.5.x:
Clearing the main transceiver interrupt flag:

#define pal_trx_irqg flag_clr() (CLEAR_TRX_IRQ())

Clearing the transceiver timestamp interrupt flag (only available if ENABLE_TSTAMP is
used):

#define pal_trx_irqg flag_clr_tstamp() (CLEAR_TRX_IRQ TSTAMP ())
Clearing of additionally required transceiver interrupt flags for MEGA-RF single chips:

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

#define pal_trx_irqg flag_clr_rx_end() (CLEAR_TRX_TIRQ_RX_END())

#define pal_trx_irqg flag_clr_tx_end() (CLEAR_TRX_TIRQ_TX_END())

#define pal_trx_irqg flag_clr_cca_ed() (CLEAR_TRX_IRQ CCA_ED())
Clearing of further optional transceiver interrupt flags for MEGA-RF single chips (only

available if ENABLE_ALL_TRX_IRQS is used):

CLEAR_TRX_IRQ_AMI ())
CLEAR_TRX_IRQ_BATMON ())

#define pal_trx_irqg flag_clr_ami() (

#define pal_trx_irqg flag_clr_batmon() (

#define pal_trx_irqg flag_clr_awake() (CLEAR_TRX_TIRQ_AWAKE ()
(CLEAR_TRX_IRQ_PLL_LOCK())
) CLEAR_TRX_IRQ PLL_UNLOCK/())

#define pal_trx_irqg flag_clr_pll_lock()
#define pal_trx_irqg flag_clr_pll_unlock(

For more information see file PAL/Inc/ptal.h and the corresponding pal_config.h file for
each platform implementation.

AIMEL 89

AIMEL

T

8 Tool Chain

The following chapter describes the used tool chain for the development and build
process and how the provided example applications can be built.

8.1 General Prerequisites
The following tool chain is used for building the applications from this MAC package:
e AVR Studio 4.18

(see http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725)

e WinAVR 20100110 including AVR-GCC for Windows
(see http://sourceforge.net/projects/winavr)

¢ |AR Embedded Workbench for Atmel AVR V5.50.2
(see http://www.iar.com/)

¢ |AR Embedded Workbench for Atmel ARM V5.50.3
(see http://www.iar.com/)

8.2 Building the Applications

All example applications contain precompiled hex-files that can be downloaded and run
out-of-the-box.

In order to rebuild any of the applications for any desired hardware platform one of the
following three ways described in the subsequent sections can be chosen generally.

8.2.1 Using GCC Makefiles

Each application can be rebuilt using the provided Makefiles. Please follow the
procedure as described:

e Change to the directory where the Makefile for the desired platform of the
corresponding application is located, e.g.
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD
cd GCC
¢ Run the desired Makefile, e.g.
make —-f Makefile
or

make —-f Makefile_Debug

Note: Makefile builds a binary optimized for code size without Serial
I/0 support, whereas Makefile_Debug builds a version for better
debug support without optimization but with additional Serial I/O
support.

e After running one of the Makefiles the same directory contains both a hex-file and an
elf-file which can be downloaded onto the hardware (see section 8.3).

8.2.2 Using AVR Studio

Each application can be rebuilt using the AVR Studio directly. Please follow the
procedure as described:

|
90 AV R2025 2025H-MCU Wireless-08/10

Change to the directory where the AVR Studio project file (aps-file) for the desired
platform of the corresponding application is located, e.g.

cd Applications\MAC_Examples\Promiscuous_Mode_Demo

cd AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD

Double click on the corresponding AVR Studio Project file (aps-file), e.g.
Promiscuous_Mode_Demo.aps.

Select the desired configuration (Release or Debug). Depending on the selected
configuration the corresponding external Makefile is chosen during the build
process. These Makefiles are exactly those Makefiles (located in subdirectory GCC)
that are used to build the application from command line (see section 8.2.1).

Rebuild the entire application in AVR Studio.

After building the application the subdirectory GCC contains both a hex-file and an
elf-file which can be downloaded onto the hardware (see section 8.3).

8.2.3 Using IAR Embedded Workbench

Each application can be rebuilt using the IAR Embedded Workbench directly. Please
follow the procedure as described:

2025H-MCU Wireless-08/10

Change to the directory where the IAR Embedded Workbench workspace file (eww-

file) for the desired platform of the corresponding application is located, e.g.
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281_RCB_5_3_SENS_TERM_BOARD

Double click on the corresponding IAR Embedded Workbench file (eww-file), e.g.
Promiscuous_Mode Demo.eww.

Select the desired workspace (Release or Debug) and Rebuild the entire application
in IAR Embedded Workbench.

After building the application the subdirectory IAR/Exe contains either an a90-file (in
case the Release configuration was selected) or a d90-file (in case a Debug
configuration was selected). Both binaries can be downloaded onto the hardware
(see section 8.3).

The Release configuration binary (a90-file) can both be downloaded using IAR
Embedded Workbench directly or AVR Studio.

The Debug configuration binary (d90-file) can only be downloaded using IAR
Workbench and can be debugged using IAR C-Spy.

In case is it desired to create a binary with IAR Workbench, which contains AVR
Studio Debug information and can thus directly be downloaded and debugged using
AVR Studio, the following changes need to be done with IAR Workbench:

o Select the Debug configuration

Open the “Options” dialog

Select “Category” “Linker”

Select tab “Output”

Change “Format” from “Debug information for C-Spy” to “Other”
Select “ubrof 8 (forced)” as “Output format”

Select “None” as “Format variant”

Rebuild the application

The generated binary can now contains debug information that can be
used directly within AVR Studio

O 0O O O O O o ©o

AIMEL o1

8.2.4 Batch Build

AIMEL

T

If several applications shall be built or all applications need to be re-built, bat-files are
provided to initiate an automatic batch build. Please check directory Build and run the
corresponding bat-file as desired.

8.3 Downloading an Application

8.3.1 Using AVR Studio directly

92

AVR2025

This section describes how the binaries of the applications can be downloaded onto the
hardware.

Please note that in case the board stores its IEEE address in the internal EEPROM of
the microcontroller, it is important to ensure, that this IEEE address is not overwritten by
the tool, i.e. the content of the internal EEPROM needs to be preserved. If this rule is
not followed properly, the EEPROM content might be overwritten, and the example
applications will not run, since all example application are required to have a unique
IEEE available for each node being detected during run-time.

In the subsequent section this is indicated both for AVR Studio and IAR Embedded
Workbench.

When the application has been built using AVR Studio directly by double clicking the
corresponding aps-file, the EEPROM settings are handled properly without any user
interaction. The provided aps-files contain an entry that requires the system to preserve
the current EEPROM settings (<PRESERVER_EEPROM>1</PRESERVE_EEPROM>).

In order to re-build the application and download it onto the desired hardware platform,
follow the steps below:

e Select menu “Build” item “Build and Run”.

¢ Once the application has been built successfully, (and in case there has been
more than one JTAGICE mkll detected) a window pops-up asking to select the
proper JTAGICE mkll to be used.

¢ In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller perform as follows:

o After successful download of the application check whether a valid
IEEE address (different from OxFFFFFFFF) is stored in the internal
EEPROM. Select menu “View” item “Memory”.

o Ifthe IEEE address is not set properly, write the correct IEEE to the first
8 octets of the EEPROM (see picture below).

e Start the application by pressing “F5” or clicking the “Run” button.

2025H-MCU Wireless-08/10

AVR2025

Figure 8-1. AVR Studio - Verifying and Setting of IEEE Address
#NE Shada - oobeel A8 2025 HAC v 7w v\ Apoliceliney’ HAC Fusmples’iStar Sobescnm Serimmen =00 =l
DB Pruwer QM Rt Gew oS Qebua Widow Hae
(] G5 el 0y G o e T G R TR TR R Y WOk @Ry oa b

| Tsce: Cisnbied | B‘.'_:...al_'--a.-:mﬁ@ =
T | == 45 ~[0E]]] waLos comesraror = 3
ProgramCountsr DN0HG o ; v | Hame [W | —:I
Pkt eFD Eut main wokd) LIDH}_I:EIIN'EFIFER
2 ptn) [0 = Initdaliz| o DAL 05 EDRPARS d
" prantm FF [=e if (wpan_ini ([~ =
s A - ’l e ([Mame [Acbess [Voke [uns |
micapa i
TR R | Prose | B e man AvzOZE 4 B

Frogoom: A085%8 byoes (23.5% Full)
{1 eEE + Jdata & DooCloeaderhy

r OO0 13 25 36 T3 B 74 TS5 38 _KEN

1 CrTI T
FF FF FF FF FF W

Daca: 169 Dyeas (30.6% Puld) | o000A0 FF BF F

F
{idatm + Jhsa + .noinit| {GA0NE FF FF FF FF PF FF FF FT Sifrowr
|\ 00030 FF FF FF FF FT FF FF FF SYETSVTS
T| CODDZR FF FF FF FF FF FF FF FF SYP90YTT
1] | | | ™00 FF FF FF-FF FF FF FF FT YI9TYRY
' T on00=e FF FF FF FF FF FF FF FF }

Teuid | K Hesoe [P Pl | 3 brmabpoiris el Trcopeoiris FEEEF -
ATIONIZEL IAGIE k] Aute Shepped I el Celd AR M

8.3.2 Using AVR Studio after Command Line Build of Application

When the application has been built using external Makefiles from the command line,
the application can be started following the steps described below.

8.3.2.1 Starting the Release Build

The release build can simply be started as follows:
e Start AVR Studio.
¢ Display the “Connect” dialog.

Figure 8-2. AVR Studio “Connect” Dialog

ELITTEEEEEEEE———— almlz
| B Pued fud Yem Dok Debag el
__J_._'i.': 4 11K WA] L . O A J,_J

Loaded phugin 1300

i |
Tbad | B amsgs | T Frd i P | D8rvsbpents and Tracomarts

AIMEL .

2025H-MCU Wireless-08/10

94

AIMEL

T

e Select the proper AVR Programmer (e.g. JTAGICE mkll) and press “Connect”.

Figure 8-3. AVR Studio “Select AVR Programmer” Dialog

Select A¥YR Programmer] 5[

Platform: Pork:

COm1 c |
CaMz ance |
(£l 2 Blaud rate:

AR Dragon COr4

STKEOD ~| |coMs | |1152DD v|
Baud rate changes are

Tip: To auto-connect to the programmer wsed last time, press the ‘Programmer’ active immediately.

button o the toalbar.

Mote that a tool cannot be used for programming as long az it is connected in
a debugging session. |n that case, select 'Stop Debugging' first.

Disconnected Mode... |

¢ In case more than one JTAGICE mkll are detected by AVR Studio select the
proper Id.

Figure 8-4. AVR Studio “Select JTAGICE mkll” Dialog

Lelect which 11 MLILL mkll B |

ENRT o Ti]
JISULLLLELE
J220CCCCAred

e After the JTAGICE selection the “JTAGICE mkll” dialog opens. Select the
“Main” tab. Within this tab select the proper “Device and Signature Bytes” (e.g.
“ATmegal281”) and the proper “Programming Mode and Target Settings” (e.g.
“JTAG mode”).

AVR2025 —2025H-|\/|cuvwre|ess-08/1o

2025H-MCU Wireless-08/10

Figure 8-5. AVR Studio “JTAGICE mkll” Dialog with “Main” Tab

TTAGICE mikil] JTAG snede sl ATinegal26) = [nl P3|
Wan | Fiograne | Fuses | LockBirs | edvenced | Hw! Getirgs | Hw Infa | dun - |

Porviow and & pnakms Bphes

T - | e Dovce |

[Fuaretise rot read Fotsa 5ignibd e

—Hipar ey v ars ol g

11 voce =] oo
172 Fuiay -ax
| Y S i Al
Mo pein 1=k g

saon e o e noesva
14 A ars = ses o e

#1173 00 Gy,
(R H R LI ETREEEY B ||
_edngiraci. J

U TIPS B .

e Select the “Fuses” tab. Within this tab make sure that the EESAVE fuse is

selected. This preserves the EEPROM through the Chip Erase cycle.

Figure 8-6. AVR Studio “JTAGICE mkll” Dialog with “Fuses” Tab

VEAGRCE s iy ITAG ribe st ATmegal B0 i [4
M | Pugian Fuses ||_o.:u;ﬁ~g S | HuF G aitings | Ht i | fais |
Fuzs Ve [
BODLENEL il detmciion deatied -
BCDEN
JTarEn ~
EAEM -
umri
IR ey FL= s bt M R F R el i L) -
B0 r
rELe [
[ET]
BL_ e weH L Sl Bozbon -
LI B B B
Hiid -2l
LI iz
[ST
F fwate. - oper
B ma 3y mdowe am e rogan wall | |z I
=
- kI
PO TN, PR B
2 5|

e Select the “Program” tab. Within this tab select the “Flash” section selection the
proper Intel Hex File in either hex- or a90-format. Afterwards press button

“Program”.

AIMEL

95

96

AVR2025

AIMEL

Figure 8-7. AVR Studio “JTAGICE mkll” Dialog with “Program” Tab

| FTAGIAE rek i 1T mode wih ATmegalznl N
Wan Fromen | Fumms | LockBi | ddvenced | 1! Setings | Hw/inin | s |
Diesace
B E e desces betiore Ry pacsouneng Vsl cesace sl pTOgnaEnEs]
Flah
r 2 =
‘@ |H"—'='-“'4=iﬁ"-k'.k:h-t.“sﬂ““"‘*"@'
Py | T T —ard |
~=:zFHIH
I - Mo v 3 e i oF vl 1 FER3TR e
™y . BT [_|
Fizaan I ue L =czd |
BTl oL NI T
neafiff s | .
{ TG TT TN I | IS T
= = TR A a e e
1zasn I == rxx uFIF
Full k- e - e T
Evtrir o~ tnis g aem. 2Kl
Fi-al | .i-ca 1=cfll * 7277 A BFF T
L2813 Hzmsny i o, LY

The image will be downloaded onto the target and the status will be indicated.

Figure 8-8. AVR Studio “JTAGICE mkll” Dialog with “Program” Tab Download Status

FTAGCE pake 1 in TNAL e with & Tmeqa 1281 3 =] %
Wan P"EO‘EI'I"'lfl.l!m | LochBits | Sowancad] Hw Seltings| Hw' ko] & |
Ol
Efags Darred
b Eusme g bafions Bseh progranaming b Vil i slte pacgranaTes)
Flah
~

g Hzt b [e A e U AT,

Diepare Vi - |
~=:-H_H
I - Tatm 5wt Far 4 aFFFFAk nim,
™ 4H7HA- I ..

o | e war |

BTN S R) T

O] Rl " | ..
CET T T I T TR T
e e it L2 et LI -
2 | 5 | wcin WF F

=l
Ficmpil -aa 7F! -
Fiwat i F #5- [FI
Fiow-yFL=EH., O
Fo5%4 mwzx-r Wlii- 7K j
Lesy -3 oman g ode bk =

Close the “JTAGICE mkll” dialog. This starts the application. No further
feedback within AVR Studio can be seen. In order to verify the proper
functioning of the application check the corresponding outputs (LED status,
Sniffer output, Terminal Window output, etc.).

In case the application does not work as desired (and especially if the three
standard LEDs are blinking fast) check first the proper IEEE address setting

2025H-MCU Wireless-08/10

(see section 8.3.1 or section 8.3.2.2), or whether the proper binary has been
selected (selection of transceiver type, microcontroller type, and board type).

8.3.2.2 Starting the Debug Build
The debug build can simply be started as follows:
e Start AVR Studio.
¢ Display the “Open File” dialog.

Figure 8-9. AVR Studio “Open File” Dialog

e
Cpen Fie

Lirchd phusgan STES0N |

Hame Addezs Ve | B

1] 1 H

e Select the proper elf-file.

Figure 8-10. AVR Studio — Select elf-File
s L1
Euohen i [(5 6EC = =& m-

Engyra [gy

L
%
wbure] &l
DREDT 1540

H-l.r-q:r:-,.-;n.- it | R TR——— = Ofary
| Dot Fikers 7 ™ 300", 030" 450, b ok] Abbhachin
etz =

AIMEL 9’

2025H-MCU Wireless-08/10

98

AIMEL

T

e In case a windows pops-up asking whether to save changes to a specific
project press “Yes” and select the proper place to store the existing project file.

e The “Select device and debug platform” window opens. Select the proper
“Debug platform” (e.g. JTAGICE mkll) and “Device” (e.g. ATmega1281). Make
sure that “Open platform options next time debug mode is entered” is selected.

Figure 8-11. AVR Studio “Select debug platform and device” Window

Select devioe and dedeg platonm

(L .2

(6T HPMAE
6T P MR
6T IS BN 206
LT BB N 2T
T S ERE
60T o015 B
|67 501 BT
|67 5015 R
VAT el 20

5 E E b
E| 0]y A O e i it e v

|] i | | |

L el

Y b 1REE

e Press “Finish”.

¢ In case there has been more than one JTAGICE mkll detected a window pops
up asking to select the proper JTAGICE mkll to be used.

e The JTAGICE mkll Dialog opens. Select the “Debug” tab. Within the “Debug”
tab make sure that “Preserve EEPROM contents when reprogramming device”
is selected.

Figure 8-12. AVR Studio “JTAGICE mkll” Dialog with “Debug” Tab

IAGKEmKIL =

Conrecton Dt | Stah | Pl |

™ Hum e n)

Pr=amres EEIPRO M conterls seher epscgesmereng devce
] T YT | [T

T Pai brsak poid bndormnation in cudpeat ardow
r v i Por B
| F Fu-d uli Lelay B e (RS0 b

Fis pan Sl

Ert s or I

e B ol o A e AL B e B T T ok s e e B B

N E T EXE |

[T P PR TPR TR | bk i 1k
Cg Fattporo o ueean Do 5 “olhen ﬂ..EUE}

Hzdooc l1|

LE I CLb ec-p U eaien

AVR2025

2025H-MCU Wireless-08/10

¢ Press “Ok”. The image will be downloaded and the download status is indicated
within AVR Studio.

e Now AVR Studio looks like below.

Figure 8-13. AVR Studio after successful Debug Build Download

AE, St - [c N D ATRZIEEMAL_v_T_o_ v’ Raplecatinns' MAL_Faaenples' Stor Mobeamn' Sec e =101 xj
[l B Eropd pad Bt Yew Took Drbug Wrdos Mep - B X
NG DR DR AR AEE B Lol a0 esliE

! | Traoe Dissblied o " "] L

Enl wainivoid) _.l
Pr
g"“";n':"" M""”Fé“ e Tnitiali | FOATEIRD: Weich i PRSI A
St o L == if Iup-arn_:l.n

 pering ¥ i fjpvess =]

o T— SO T | [7
= e | T ™ | T | o I
o, | Prosesser B aimerawizezdg ¢ | = DA0_COHVERTER —

o | £ DAHALDG_TOHPARS

T | -y e00T 0D

Loaded phgn STEEDD | 2 M P

Lowded plugn W4 GLE | i EEEPHOM =

Losachee] prar ;£ d s, oo, VRSt e o i) A Tramgall 261 e -

Leadad sbiactfle: e:AMRaAWROOTIMAN s 2 _viMeibesbensl el _Ecmrchl || Hlame Addess |'-'-=*E | B I

Ry pear e 21 jaut el T ookl VRS, ar e it) gal 2l

Loaded abrpertfils O el WRNTEHAT « 2yl AppbcatinredMAC_Framplash

B3 i

Dot | @rawssvgr | SlFnd nFies | Deveaoms snd Traceconts
Aloegalzl JTAGKEnkD]l Jute Sogped = Ln 110, Gl

e In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller perform as follows:

o Check whether a valid IEEE address (different from
OxFFFFFFFFFFFFFFFFand 0x0000000000000000) is stored in the
internal EEPROM. Select menu “View” item “Memory”.

o If the IEEE address is not set properly, add the correct IEEE to the first
8 octets of the EEPROM (see section 8.3.1).

e Start the application by pressing “F5” or clicking the “Run” button.

8.3.3 Using IAR Embedded Workbench

When using IAR Embedded Workbench directly by double clicking the corresponding
eww-file, the application can be downloaded onto the desired hardware platform as
described below.

8.3.3.1 Starting the Release Build
The release build can simply be started as follows:
¢ Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE.
¢ Open IAR Workbench by double clicking the desired eww-file.
¢ Select the “Release” Workspace.

¢ Open the “Options” window for the “Release” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab.

AIMEL o

2025H-MCU Wireless-08/10

AIMEL

Figure 8-14. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”

Options for node “Star" x|

Categany: Factary Settings |

General Options
C/C++ Compiler

Assembler
Custam Euild Iugins I

Build Actions

) Diriver R
@3 eFIT AGICE mkl T [nan

ICEZ00 [~ Use UBROF reset vector

JTAGICE — Setup macro:

ITAGLCE mklIl r :

Dragon Uge macro file

Sirmulatar | _I

Third-Party Driver

— Device description file
[Overmide default
|$TDDLKIT_DIH$\Eonfig'\iom‘| 281 ddf |

oK I Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and deselect “Run to
(main)”.
¢ Change to the “Plugins” tab and deselect all entries.

Figure 8-15. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”
x|

Categorny: Factory Settings |

General Options
CC++ Compiler
Assembler
Custom Build Setup Plugins
Build Actions
Linker

CCR

ICE200

ITAGICE

ITAGICE mkIl

Drragon

Simulator

Third-Party Driver Description: WCAOSHI Femel &wareness

M

de Coverage

Lacation; |C: “Programmet AR Systems \Embeddedw orkbenchS3hawr'

Originator; |M ICTipm

Wersion: |

Ok Cancel

|
100 AV R 2 025 2025H-MCU Wireless-08/10

8.3.3.2 Starting the Debug Build

2025H-MCU Wireless-08/10

e Within the “Options” window for the “Release” Workspace select now the “JTAGICE

mkll” window and within this window select the “JTAGICE mkll 2” tab.

Figure 8-16. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE

mkll 2”

Category:

General Options

C/C++ Compiler
Assembler
Custom Build
Build Actions
Linker
Debugger

CCR

ICEZ00

ITAGICE

ITAGICE mkIl
Dragon

Simulator
Third-Party Driver

Options for node “Star" u

Factary Settings |

JTAGICE mkll 1 JTABICE mkil 2 | Serial Port | Extra Options |

Bun timers in stopped mode

v Preserve EEPROM contents even if device is reprogrammed

' Hardware reset on CEFY reset

[~ JRestore fuses when ending debug session

Enable software breakpoints

System breakpaints on
= et

¥ putchar
¥ getchar

o]

x|

¢ Within the “JTAGICE mkll 2” tab check the items as shown above. Especially make

sure that the EEPROM will be preserved if the device is reprogrammed.

e Press “Ok”.
e Press the button “Download and Debug”.

The debug build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE.

¢ Open IAR Workbench by double clicking the desired eww-file.
¢ Select the “Debug” Workspace.

¢ Open the “Options” window for the “Debug” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab.

AIMEL

101

AIMEL

Figure 8-17. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”
options for nodestar” x|

Categon: Factory Setiings I

General Options
C/C++ Compiler

Assembler
Custom Build @' Plugins I

Build Actions

) L Driver————————————

ICEZ00 rezel vector
JTAGICE — Setup macro

ITAGICE mkIl = :

Dragon Uge macra file

Simulator I _I

Third-Party Driver

— Device description file
[Ovenide default
|$TDDLKI T_DIR$4Canfighiom 281.4df _I

Ok I Cancel I

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and select “Run to (main)”
(this is different to “Release” build).

¢ Change to the “Plugins” tab and select the entries as below.

Figure 8-18. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”
g

Cateqgary: Factomy Settings |

General Options
CIC++ Compiler
Assembler
Custorn Build Setup Plugins l
Build Actions

Linker

Debugger
CCR
ICEZ00
ITAGICE
ITAGLZE mhkII
Dragon
Simulator
Third-Party Driver Dezcrphior, WC/0SH| Kemel Awareness

Location: |E:\F'rogramme\IAH Spstemz\EmbeddedwiarkbenchB3hawrh,

Originatar: |Micri|.lm

‘Yersion: |

0K | Cancel |

e Within the “Options” window for the “Release” Workspace select now the “JTAGICE
mkll” window and within this window select the “JTAGICE mkll 2” tab.

|
102 AV R 2 025 2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

Figure 8-19. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE

mkll 2”

Cateqgory:

General Options
C/C++ Compiler
Assembler
Custaorn Build
Build Actions
Linker
Debugger

CCR
ICEZ200
ITAGICE

ITAGICE mkII
Dragon

Simulakaor
Third-Party Driver

Options for node "Star™

Factory Settings |

JTAGICE kil 1 JTAGICE mkil 2 | Serial Port | Extra Optiors |

Bun timers in stopped mode

v Erezerse EEPROM contents even if device iz reprogrammed

v Hardware reset on C-5PY reset

[~ JRestore fuses when ending debug session

Enable zoftware breakpaints

Spstem breakpoints an
= et

¥ putchar
¥ aetchar

[o]

Cancel |

x|

AIMEL

Within the “JTAGICE mkll 2" tab check the items as shown above. Especially make
sure that the EEPROM will be preserved if the device is reprogrammed.

Press “Ok”.
Press the button “Download and Debug”.

103

104

AIMEL

2]

Figure 8-20. IAR Embedded Workbench - Start “Download and Debug”

LAE Banbedded Workbench BOF

: =T

DS HE & mmo
T

EE A BT - 1 1)

14 R
I e e |
—=l e
R
= I
—A_ =i
ATATA
—1 T =i -
e i Y LAY

Hagzmg=n

1| |

(R TR B TR TR | R Y T

e A Window will pop-up indicating the status of the download of the binary.

e After successful download the IAR Workbench will looks as shown below. After the

download of the debug build the main function is displayed since all debug and
source code information is included in the build.

AVR2025

2025H-MCU Wireless-08/10

Figure 8-21. IAR Embedded Workbench - Successful Download of Debug Build

il =
Br B Yo Prewst febvg TARKEnHL Teck ik Hele
!DEH’:}S‘lFﬁlﬂiﬂ_-"ll A¥ v enEresdiha TEEN oD
sezr e
fota e |
[v =
Fil=+ e
= A EREERTT RN
| ATiHAG
| ATarAL A1
l:=|'_‘n-';| 3 :
= | W R i sz
=3 - HER
FaRm=r.- i
[B TH diEC JUEL
HT-1
YT (T
HEEsIrE
i TeTR
TR
0 FalE 3
. CFFT
ﬁ:—._=c'=":"|ﬁut

_d
Tz d=r 17 B 2004 AR TASIZZ LI varz oo bl 00, 20 wo wizne COIZ D0 00EC Do ceie: 34721227

T.2+al7 AT IO Lo 2e dzb, gee chAtuelbe e e F 5 Aapeloo o cods D Saoers e Soe P abeoooehs $37FS3 _aTWI0A

1:1

T.a<a 17 51 200 J725 G oo S8 - He, Taag=t—olose 230022 250 AT gl 26
R
11

] ! il
B Cetug Lo |ud *
Feat: |

e In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller perform as follows:

o Check whether a valid IEEE address (different from
OxFFFFFFFFFFFFFFFF and 0x0000000000000000) is stored in the
internal EEPROM. Select menu “View” item “Memory”. In this window
select “EEPROM”.

o If the IEEE address is not set properly, add the correct IEEE to the first
8 octets of the EEPROM.

A mElL 105

2025H-MCU Wireless-08/10

106

AIMEL

Figure 8-22. IAR Embedded Workbench — Verifying and Setting of IEEE Address
il =
B G Yer Pt bwng MAGKERHD Dok e e
[DFC@ & 8o ol B i T R
2|8 B LB 2 XK _

m_ - e E
e B S
Fil=+ I 3"
T imr-Kr |
JTIHAD
I 97 HALL Al =l
Y. .

=

tdzzeage:
LIIRG el ao BIer - Fsl=ans
Spcwdng b L e

B | R B
n=nT
=L_Eis
R e EE Tl E
= b= =
PO | A
«
=k Ll
5T T4 Rd Eo owe [T | REARTT -
::"r-.--rf'ar-'-'rr-'ffur-' ﬂ
| I T T R O I I A |
b obz ozt fF bz Zb bz Cb b BEOCEOES
b bz Zt fb b= St b St b BT SE ES
T R T
FOES GE FF FS SFOFS SF FS P OSF S
Lotz ozt tk bz Zb bz Zb b BE OB OES
Lolo -l IL Lo —L Lo oL Lo Ll L L.
[T T B I B I B A T S
[S ¥ S et S S B A & e O i
u
Feat: ImeslodErE e O e

AVR2025

o Start the application by pressing the “F5” or the “Go” button.

2025H-MCU Wireless-08/10

9 Example Applications

The MAC package includes a variety of example applications which can be flashed on
the supported hardware platforms and be executed immediately. On the other hand the
complete source code is provided to help the application developer to more easily
understand the proper utilization of the stack and to be able to build its own applications
as fast as possible.

The provided example applications can categorized in three main groups (being located
in the corresponding subdirectories of directory Applications):

¢ MAC Examples

e TAL Examples

e STB Examples

These applications will be explained in more detail in the subsequent sections (see
section 9.2). If the example application makes use of the UART interface, the UART is
set to 9600 (8,N,1).

9.1 Walking through a Basic Application

This section describes one basic example application provided with this MAC release
(see section 9.2.1.1) more thoroughly to allow better understanding of all other
examples. The example serves as a first introduction on how to control the MAC-API
and how to start an 802.15.4 compliant network. It can be used by a developer as a
starting point for further designs. The example implements a network with star topology.

There are two types of nodes in the network: PAN Coordinator and device. A PAN
Coordinator can be understood as the central hub of a network. It handles association
requests from devices and assigns a short address if appropriate.

In this example, the PAN Coordinator does not initiate any data transmissions; it
receives data from the associated devices. The usr_mcps_data_ind() callback function
is provided only as stub and can be extended by user.

The Devices scan all channels for the PAN Coordinator. If the Coordinator with the
default PAN ID is located on the default channel (i.e. channel 20), the Device will initiate
the association procedure. If the association is also successful, the Device periodically
(i.e. every 2 seconds) sends out a data packet to the Coordinator. The data packets
contain a random payload. As already mentioned earlier, this example can be extended
by the user.

The following sections describe the application code in more detail.

9.1.1 Implementation of the Coordinator

2025H-MCU Wireless-08/10

The source code of the coordinator is located in
Applications/MAC_Examples/App_1_Nobeacon/Coordinator/Src/main.c

and the header file in
Applications/MAC_Examples/App_1_Nobeacon/Coordinator/Inc/app_config.h

Platform related project / Makefiles files for AVR GCC, AVR Studio, and IAR
Workbench are located in the corresponding subdirectories

Applications/MAC_Examples/App_1_Nobeacon/Coordinator/<platform>

The example application can be opened using the AVR Studio, the IAR EWW or any
other editor. To open the example application project from the AVR Studio select the file

AIMEL 107

AIMEL

T

"Coordinator.aps" or from the IAR EWW select the file "Coordinator.eww". If the AVR
Studio is used, the source code can be compiled from the menu "Build" -> "Rebuild All".
If the IAR EWW is used, the source code can be compiled from the menu "Project" ->
"Rebuild All".

The main function of the coordinator performs the following steps:
Initialize the MAC layer and its underlying layers, like PAL, TAL, BMM:
if (wpan_init () != SUCCESS)
{
/*
* Stay here; we need a valid IEEE address.
* Check kit documentation how to create an IEEE address
* and store it to the EEPROM
*/
pal_alert();
}
Calibrate MCU's RC oscillator:

pal_calibrate_rc_osc();

Initialize LEDs:
pal_led_init();
pal_led(LED_0O, LED_ON); // indicating application is started
pal_led(LED_1, LED_OFF); // indicating network is started
pal_led(LED_2, LED_OFF); // indicating data reception

Enable the global interrupts:

pal_global_irqg _enable();
Initiate a reset of the MAC layer:

wpan_mlme_reset_reg(true);

Run the main loop:

while (1)
{

wpan_task () ;
}

Once the main loop is running the MAC layer will execute the previously requested
reset and call the implementation of usr_mlme_reset_conf() callback function.
Depending on the returned status information the program continues either with the
request to set the short address of the coordinator or with a new reset request.

void usr_mlme_reset_conf (uint8_t status)

{

if (status == MAC_SUCCESS)

{
/*
* Set the short address of this node.
*/

uint8_t short_addr[2];

short_addr [0] = (uint8_t)COORD_SHORT_ADDR;

|
108 AV R 2 025 2025H-MCU Wireless-08/10

short_addr[1l] = (uint8_t) (COORD_SHORT_ADDR >> 8);

wpan_mlme_set_reqg(macShortAddress, short_addr);

else

// something went wrong; restart

wpan_mlme_reset_req(true);

}
The request to set the short address of the coordinator will be processed once the
control flow of the application enters the main loop again. The MAC layer will call the
implementation of usr_mime_set_conf():

void usr_mlme_set_conf (uint8_t status, uint8_t PIBAttribute)

{

if ((status == MAC_SUCCESS) && (PIBAttribute == macShortAddress))
{
//*
//* Allow other devices to associate to this coordinator.
avs
uint8_t association_permit = true;

wpan_mlme_set_reqg(macAssociationPermit,
&association_permit) ;
}
else if ((status == MAC_SUCCESS) &&

(PIBAttribute == macAssociationPermit))

//*
//* Initialize an active scan over all channels to determine
//* which channel to use.
avs
wpan_mlme_scan_req(MLME_SCAN_TYPE_ACTIVE,
SCAN_ALL_CHANNELS,
SCAN_DURATION_COORDINATOR) ;

else

// something went wrong; restart

wpan_mlme_reset_req(true);

}
Depending on the status information, the application will proceed either with the request
to set the association permit PIB attribute (see macAssociationPermit for further

details).

The MAC layer will process the request and executes the function
usr_mime_set_conf().

AIMEL 109

2025H-MCU Wireless-08/10

AIMEL

T

Now the PIBAttribute parameter is equal to macAssociationPermit and the scan
procedure will be initiated with wpan_mlme_scan_req(). Next time the main loop is
running this request is processed by the MAC layer and the usr_mime_scan_conf()
callback function will be called with the result of the scan.

After the scan procedure has finished, a new network is started by invoking the function
wpan_mlime_start_req().
void usr_mlme_scan_conf (uint8_t status,
uint8_t ScanType,
uint8_t ChannelPage,
uint32_t UnscannedChannels,
uint8_t ResultListSize,
void *ResultList)

* We are not interested in the actual scan result,

* because we start our network on the pre-defined channel

* anyway.

* Start a nonbeacon-enabled network

*/

wpan_mlme_start_reg(DEFAULT_PAN_ID,
DEFAULT_CHANNEL,
DEFAULT_CHANNEL_PAGE,
15, 15,
true, false, false);

}
The wpan_mlme_start_req() will be confirmed with usr_mIme_start_conf().

void usr_mlme_start_conf (uint8_t status)
{
if (status == MAC_SUCCESS)
{
/*
* Network is established.
* Waiting for association indication from a device.
*/
pal_led(LED_1, LED_ON);

else

// something went wrong; restart

wpan_mlme_reset_req(true);

}
The PAN Coordinator is waiting for devices to associate. If a device initiates the
association procedure, the Coordinator's MAC layer indicates this with the callback
function usr_mime_associate_ind(). The coordinator either responds with a short
address for this device passed to wpan_mlme_associate_resp() or denies the request
with the error code PAN_AT_CAPACITY. The function get_next_short_addr() is an

110 AVR2025

2025H-MCU Wireless-08/10

application specific implementation and checks if an association request is accepted or
not.
void usr_mlme_associate_ind(uint64_t DeviceAddress,

uint8_t CapabilityInformation)

/*

* Any device is allowed to join the network.

*

* Get the next available short address for this device.
*/

uintl6_t associate_short_addr = macShortAddress_def;

if (get_next_short_addr (DeviceAddress,

&associate_short_addr) == true)

wpan_mlme_associate_resp(DeviceAddress,
associate_short_addr,

ASSOCIATION_SUCCESSFUL) ;
else

wpan_mlme_associate_resp(DeviceAddress,
associate_short_addr,

PAN_AT_CAPACITY);

}
As soon as the usr_mime_comm_status_ind() callback function is called by the
coordinator's MAC layer with status MAC_SUCCESS, the device is associated
successfully with the coordinator and will periodically (i.e. about every 2 seconds) send
data to the coordinator. Received data packets are indicated by the MAC layer to the
application by calling the usr_mcps_data_ind() callback function. Further handling of the
received (dummy) data can be implemented by the user as desired.

9.1.2 Implementation of the Device

The source code of the device is located in
Applications/MAC_Examples/App_1_Nobeacon/Device/Src/main.c

and the header file in
Applications/MAC_Examples/App_1_Nobeacon/Device/Inc/app_config.h

Platform related project/Makefiles files for AVR GCC, AVR Studio, and IAR Workbench
are located in the corresponding subdirectories

Applications/MAC_Examples/App_1_Nobeacon/Device/<platform>

The example application can be opened using the AVR Studio, the IAR EWW or any
other editor. To open the example application project from the AVR Studio select the file
"Device.aps" or from the IAR EWW select the file "Device.eww". If the AVR Studio is
used, the source code can be compiled from the menu "Build" -> "Rebuild All". If the
IAR EWW is used, the source code can be compiled from the menu "Project" ->
"Rebuild All".

AIMEL "

2025H-MCU Wireless-08/10 I ——

AIMEL

T

The main function of the device performs the following steps:
Initialize the MAC layer and its underlying layers, like PAL, TAL, BMM:
if (wpan_init () != SUCCESS)
{
/*
* Stay here; we need a valid IEEE address.
* Check kit documentation how to create an IEEE address
* and store it to the EEPROM
*/
pal_alert();
}
Calibrate MCU's RC oscillator:

pal_calibrate_rc_osc();

Initialize LEDs:
pal_led_init();
pal_led(LED_0O, LED_ON); // indicating application is started
pal_led(LED_1, LED_OFF); // indicating network is started
pal_led(LED_2, LED_OFF); // indicating data reception

Enable the global interrupts:

pal_global_irqg _enable();
Initiate a reset of the MAC layer:

wpan_mlme_reset_reqg(true);

Run the main loop:

while (1)
{
wpan_task () ;
}
Once the main loop is running the MAC layer will execute the previously requested
reset and call the implementation of usr_mlme_reset_conf() callback function.
Depending on the returned status information the program continues either with the
request to scan all channels for the coordinator or with a new reset request.
void usr_mlme_reset_conf (uint8_t status)
{
if (status == MAC_SUCCESS)
{
/*
* Initiate an active scan over all channels to determine
* which channel is used by the coordinator.
*/
wpan_mlme_scan_req(MLME_SCAN_TYPE_ACTIVE,
SCAN_ALL_CHANNELS,
SCAN_DURATION_SHORT,
DEFAULT_CHANNEL_PAGE) ;

// Indicate network scanning by a LED flashing

|
112 AV R2025 2025H-MCU Wireless-08/10

pal_timer_start (TIMER_LED_OFF,
500000,
TIMEOUT_RELATIVE,
(void *)network_search_indication_cb,

NULL) ;
else

// something went wrong; restart

wpan_mlme_reset_req(true);

}
Once the main loop is running this request is processed by the MAC layer and the
usr_mime_scan_conf() callback function is called with the result of the scan. The
usr_mime_scan_conf() function handles three cases:

e A coordinator was found.
e No coordinator was found.

coordinator = (wpan_pandescriptor_t *)ResultList;
for (i = 0; 1 < ResultListSize; i++)
{

/*

* Check if the PAN descriptor belongs to our coordinator.

* Check i1f coordinator allows association.

*/
if ((coordinator->LogicalChannel == DEFAULT_CHANNEL) &&
(coordinator->ChannelPage == DEFAULT_CHANNEL_PAGE) &&
(coordinator->CoordAddrSpec.PANId == DEFAULT_PAN_ID) &&
((coordinator->SuperframeSpec & 0x8000) == 0x8000))

// association permit

// Store the coordinator's address
if (coordinator->CoordAddrSpec.AddrMode ==
WPAN_ADDRMODE_ SHORT)

coord_addr.short_addr =
(uintl6_t) (coordinator—->CoordAddrSpec.Addr) ;
}
else if (coordinator->CoordAddrSpec.AddrMode ==
WPAN_ADDRMODE_ LONG)

coord_addr.ieee_addr = coordinator->CoordAddrSpec.Addr;
else

// Something went wrong; restart
wpan_mlme_reset_reqg(true);

return;

AIMEL 113

2025H-MCU Wireless-08/10 I ——

114

AIMEL

T

/*
* Associate to our coordinator
*/
wpan_mlme_associate_req(coordinator->LogicalChannel,
coordinator->ChannelPage,
& (coordinator->CoordAddrSpec),

WPAN_CAP_ALLOCADDRESS) ;

return;

// Get the next PAN descriptor
coordinator++;
}
If the pre-configured coordinator is part of the scan result list, the device's application
issues an association request to the coordinator. The association procedure is finished
once the callback usr_mlme_associate_conf() is invoked and the corresponding status
information is checked.
void usr_mlme_associate_conf (uintl6_t AssocShortAddress,

uint8_t status)

if (status == MAC_SUCCESS)
{
// Store own short address

own_short_addr = AssocShortAddress;

// Stop timer used for search indication
// (same as used for data transmission)
pal_timer_stop (TIMER_LED_OFF) ;
pal_led(LED_1, LED_ON);

// Start a timer that sends some data to the coordinator
// every 2 seconds.
pal_timer_start (TIMER_TX_DATA,

DATA_TX_PERIOD,

TIMEOUT_RELATIVE,

(void *)app_timer_cb,

NULL) ;

else

// Something went wrong; restart

wpan_mlme_reset_req(true);

AVR2025 —2025H-|\/|cuvwre|ess-os/1o

If MAC_SUCCESS is returned, the coordinator has assigned a short address to this
device and the application is ready for data transmissions. An application timer is
started with 2 seconds timeout. If the timer triggers, the following callback function is
executed. It initiates the data transmission and restarts the timer again.

static void app_timer_cb(void *parameter)
{
/*
* Send some data and restart timer.
*/
uint8_t src_addr_mode;
wpan_addr_spec_t dst_addr;
uint8_t payload;

static uint8_t msduHandle = 0;
src_addr_mode = WPAN_ADDRMODE_SHORT;

dst_addr.AddrMode = WPAN_ADDRMODE_SHORT;
dst_addr.PANId = DEFAULT_PAN_ID;
dst_addr.Addr = coord_addr.short_addr;

payload = (uint8_t)rand(); // any dummy data
msduHandle++; // increment handle
wpan_mcps_data_reqg(src_addr_mode,

&dst_addr,

1,

&payload,

msduHandle,

WPAN_TXOPT_ACK) ;

pal_timer_start (TIMER_TX_DATA,
DATA_TX_PERIOD,
TIMEOUT_RELATIVE,
(void *)app_timer_cb,
NULL) ;
}

The usr_mcps_data_conf() callback function is a stub indicating the status of the data
transmission. It can be adapted to the user's needs.

void usr_mcps_data_conf (uint8_t msduHandle,
uint8_t status,

uint32_t Timestamp)

if (status == MAC_SUCCESS)
{
/*
* Dummy data has been transmitted successfully.
* Application code could be added here
*/

AIMEL 115

2025H-MCU Wireless-08/10

AIMEL

T

pal_led(LED_2, LED_ON);
// Start a timer switching off the LED
pal_timer_start (TIMER_LED_OFF,

500000,

TIMEOUT_RELATIVE,

(void *)data_exchange_led_off_cb,

NULL) ;

}

9.2 Provided Examples Applications

9.2.1 MAC Examples

9.2.1.1 App_1_Nobeacon

9.2.1.1.1 Introduction

9.2.1.1.2 Requirements

9.2.1.1.3 Implementation

9.2.1.1.4 Limitations

116 AVR2025

The basic MAC Example 1 deploys a nonbeacon-enabled network consisting of PAN
Coordinator and Device. The application shows how basic MAC features can be utilized
within an application (Scanning for network, starting a network, association procedure,
data transmission from Device to PAN Coordinator).

This application works very similar to the MAC Example Star_Nobeacon (see section
9.2.1.7) but different source code implementations are provided for both types of
devices. A node is either a PAN Coordinator or a Device.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/App_1_Nobeacon. The source code of the application can
be found in the subdirectories Coordinator/Src or Device/Src.

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. A sniffer is suggested in order to check frame transmission between the
nodes.

The PAN Coordinator starts a PAN at channel DEFAULT_CHANNEL with the PAN ID
DEFAULT_PAN_ID. The Device scans for this network and associates to the PAN
Coordinator. Once the Device is associated it uses a timer that fires every 2 seconds to
transmit a random payload to the PAN Coordinator. While the device is idle (when the
timer is running) the transceiver enters sleep in order to safe as much power as
possible.

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

2025H-MCU Wireless-08/10

¢ Currently only 2 devices are allowed to associate to the PAN Coordinator. This can
be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

e The current implementation only provides direct data transmission from device to
coordinator. In order to save as much power as possible, the device periodically
enters sleep mode between its data transmissions. During these sleeping periods
the receiver of the device is not enabled. It is therefore not possible to simply extend
the application so that direct data transmission is performed in the other direction
(from coordinator to device). In case the data transmission from coordinator to
device is required more changes within the application are required. For more
information please see section 4.5. An example using indirect data transmission to
the Device can be found in 9.2.1.2. Another example implementing the feature
MAC_RX_ENABLE_SUPPORT can be found in 9.2.1.3 (MAC Example
Basic_Sensor_Network).

9.2.1.2 App_2 Nobeacon_Indirect_Traffic

9.2.1.2.1 Introduction

9.2.1.2.2 Requirements

9.2.1.2.3 Implementation

2025H-MCU Wireless-08/10

The basic MAC Example 2 (Indirect Traffic) deploys a nonbeacon-enabled network
consisting of PAN Coordinator and Device utilizing the mechanism of indirect data
transfer between Coordinator and Device. In terms of setting up the basic network
(network start, scanning, association) the application operates similar to the basic MAC
Example 1 (see 9.2.1.1).

While in MAC Example 1 always the Device is transmitting data frames to the
Coordinator directly, in this example the Coordinator wants to send data to the Device.
Since a Device in a nonbeacon-enabled network is in sleep mode as default, direct
transmission to the Device is not possible.

In order to enable communication with the Device, indirect data transmission using
polling by the device is applied. For further explanation of indirect transmission see
section 4.4.1/4.4.2. For power management and indirect transmission see section 5.2.4.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/App_2_Nobeacon_Indirect_Traffic. The source code of
the application can be found in the subdirectories Coordinator/Src or Device/Src. The
common source code for handling Serial I/0O can be found in the subdirectory Src.

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. A sniffer is suggested in order to check frame transmission between the
nodes.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB. In
order to see the output of the application please start a terminal application on your host
system.

The PAN Coordinator starts a PAN at channel DEFAULT_CHANNEL with the PAN ID
DEFAULT_PAN_ID. The Device scans for this network and associates to the PAN
Coordinator.

AIMEL "7

9.2.1.2.4 Limitations

AIMEL

T

Once the device is associated, it uses a timer that fires every 5 seconds to poll for
pending data at the coordinator by means of transmitting a data request frame to the
coordinator. On the other hand the coordinator every 5 seconds queues a dummy data
frame for each associated device into its Indirect-Data-Queue. If the coordinator
receives a data request frame from a particular device, it transmits the pending data
frame to the device. While the device is idle (when the timer is running) the transceiver
enters sleep in order to safe as much power as possible.

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

¢ Currently only 2 devices are allowed to associate to the PAN Coordinator. This can
be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

9.2.1.3 App_3 App_3 Beacon_Payload

9.2.1.3.1 Introduction

9.2.1.3.2 Requirements

9.2.1.3.3 Implementation

118

The basic MAC Example 3 Beacon Payload deploys a beacon-enabled network
consisting of PAN Coordinator and (up to 100 associated) Devices. The application
shows how basic MAC features can be utilized within an application using beacon-
enabled devices, such as synchronization with the coordinator and utilization of beacon
payload by the coordinator.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/App_3_App_3_Beacon_Payload. The source code of the
application can be found in the subdirectories Coordinator/Src or Device/Src.

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. Also A sniffer is suggested in order to check frame transmission
between the nodes.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB. In
order to see the output of the application please start a terminal application on your host
system.

The coordinator in this application creates a beacon-enabled network and periodically
transmits beacon frames with a specific beacon payload. The beacon payload changes
after a certain time period.

Each device of this application joins the beacon-enabled network by first attempting to
synchronize with the coordinator to be able to receive each beacon frame. Once it has
successfully synchronized with the coordinator, the device associates with the
coordinator.

AVR2025

2025H-MCU Wireless-08/10

9.2.1.3.4 Limitations

The connected devices wake-up whenever a new beacon frame is expected, extract the
received payload of each beacon frame from its coordinator. This received payload is
printed on the terminal and sent back to the coordinator by mean of a direct data frame
transmission to the coordinator. After successful beacon reception and data
transmission, the devices enter sleep mode until the next beacon is expected.

The coordinator indicates each received data frame from each device on its terminal.

Whenever a device looses synchronization with its parent, it initiates a new
synchronization attempt.

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

¢ Currently 100 devices are allowed to associate to the PAN Coordinator. This can be
easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

9.2.1.4 App_4_Beacon_Broadcast Data

9.2.1.4.1 Introduction

9.2.1.4.2 Requirements

9.2.1.4.3 Implementation

2025H-MCU Wireless-08/10

The basic MAC Example 3 Beacon Broadcast deploys a beacon-enabled network
consisting of PAN Coordinator and (up to 100 associated) Devices. The application
shows how basic MAC features can be utilized within an application using beacon-
enabled devices, such as announcement of pending broadcast data at the coordinator
within beacon frames (i.e. whenever the coordinator has pending broadcast data to be
delivered in a beacon-enabled network it sets the Frame Pending Bit in the transmitted
beacon frame).

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/App_4_Beacon_Broadcast_Data. The source code of the
application can be found in the subdirectories Coordinator/Src or Device/Src.

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. Also A sniffer is suggested in order to check frame transmission
between the nodes.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB. In
order to see the output of the application please start a terminal application on your host
system.

The coordinator in this application creates a beacon-enabled network. Periodically the
application of the coordinator try to transmit broadcast data frames to all children nodes
in its network. When ever broadcast frames are pending at the coordinator, it sets the
Frame Pending Bit of the next beacon frame.

AIMEL 119

AIMEL

T

Each device of this application joins the beacon-enabled network by first attempting to
synchronize with the coordinator to be able to receive each beacon frame. Once it has
successfully synchronized with the coordinator, the device associates with the
coordinator.

The connected devices wake-up whenever a new beacon frame is expected. Once it
receives a beacon frame that has the Frame Pending Bit set, it remains awake until a
broadcast data frame is received. After successful reception of the expected broadcast
data frame the devices enter sleep mode until the next beacon is expected.

9.2.1.4.4 Limitations

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

¢ Currently 100 devices are allowed to associate to the PAN Coordinator. This can be
easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

9.2.1.5 Basic_Sensor_Network

9.2.1.5.1 Introduction

The application Basic_Sensor_Network implements a basic sensor network. The
network consists of devices being sensor nodes (called LEAF), nodes (called ROUTER)
that provide router functionality and a central node collecting all data (called ROOT).

The network route is a static route. The network and its routing path is configured
during network setup. A tree topology is created from ROOT to LEAF nodes during the
network setup. The network uses a pre-defined PAN Id (OxBEEF) and channel (1 or
20).

The sensor nodes gather their battery status and another sensor value, like
temperature value. Every 10s the node transmits the gather data to its parent. All data
is routed/forwarded to the ROOT node where it is printed via UART/USB to a terminal
program.

An example network topology is shown by Figure 9-1.

Figure 9-1. Tree Network Example

ROOT

ROUTER LEAF

9.2.1.5.2 Implementation

This example application uses MAC-API as interface to the stack.

|
120 AV R 2 025 2025H-MCU Wireless-08/10

9.2.1.5.3 Network Setup

9.2.1.5.4 Configuration

2025H-MCU Wireless-08/10

This application uses the user build configuration feature described in section 6.2.2. In
order to achieve the proper functionality in conjunction with minimal footprint, the
actually supported MAC features (i.e. MAC primitives) are defined in a corresponding
header file mac_user_build_config.h in subdirectory Inc of this application.

In order to use this header file, the build switch "MAC_USER_BUILD_CONFIG" needs
to be set in the corresponding Makefiles or IAR project files.

The application and all required build files are located in directory
Applications/MAC_Examples/Basic_Sensor_Network. The source code of the
application can be found in the subdirectory Src.

The static tree network topology is established by first starting the ROOT node and after
that connecting one or more other nodes (ROUTER or LEAF).

The node type (ROOT, ROUTER, or LEAF) is defined during power-up using the push
button. If the push button is pressed during power-up, the node is operated as a ROOT
node or as a ROUTER node.

To determine that a node acts as a ROOT or ROUTER node, hold the push button
pressed during power-up. If the node does not receive any broadcast messages from
another node. It configures itself to a ROOT node after 10s and switches LED_0 on. If
the node receives a broadcast message within the first 10s after power-up, the node
stores its parent address and operates as ROUTER node.

Once the ROOT node has started the network, ROUTER nodes or LEAF nodes can be
connected to the ROOT node.

Connecting a node to a parent, e.g. a ROUTER node to the ROOT node, during
application start broadcast messages need to be received by the child node containing
the parent’s address. Broadcast messages can be sent by a ROOT or ROUTER node
by pressing the button.

The next node that might be added to the network could be a LEAF node that gets
connected to the ROUTER.

A node becomes a LEAF node, if the push button is not pressed during power-up. To
connect a LEAF node to a parent, the parent node needs to send broadcast messages
(by pressing the push button at the parent node) within the first 10s after start-up of the
LEAF node.

Once a LEAF node is connected to a parent, every TX_INTERVAL_S seconds (by
default every 10s) the node transmits the sensor data to its parent. An LED is switched
on shortly indicating the active period.

Also ROUTER nodes can be connected to already started ROUTER nodes.

A ROUTER node forwards all received data to its parent. The ROOT node prints the
received data to the UART/USB output. The ROOT and ROUTER nodes should be
mains-powered devices.

The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the application.

AIMEL 121

AIMEL

T

9.2.1.6 Promiscuous_Mode Demo

9.2.1.6.1 Introduction

9.2.1.6.2 Requirements

9.2.1.6.3 Implementation

122

AVR2025

The application Promiscuous_Mode_Demo provides a simple network diagnostic tool
based on the promiscuous mode as described in IEEE 802.15.4-2006 (section 7.5.6.5
Promiscuous Mode). During the build process the switch PROMISCUOUS_MODE is
enabled.

This tool uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Promiscuous_Mode_Demo. The source code of the
application can be found in the subdirectory Src.

This application requires a serial connection for proper demonstration of the
promiscuous mode. Depending on the available Serial I/O interface for each board this
can be either UART or USB. In order to see the output of the application please start a
terminal application on your host system.

The application works as described subsequently.

e The node performs a reset of the stack (wpan_mIme_reset_req()).

e After successful processing of the reset the channel for operation can be entered by
the user.

e In case the build switch "HIGH_DATA_RATE_SUPPORT" is set within in the
Makefiles or IAR project files, the channel page can also be entered by the user.
This allows for using the application also for high rates.

e Afterwards the promiscuous mode is switched on immediately.

¢ In the serial terminal on the host system printouts indicate the detected hardware
(radio and microcontroller), set channel and channel page, and the status of
promiscuous mode.
¢ Now the application will print each received frame (that has a valid CRC) on the
terminal. In order to limit the load on the serial connections, currently only the
following items are displayed:
o Number of received frame
o Type of frame
o Content of frame (received octets in hexadecimal format), this includes
the MAC Header (MHR) of the original frame and the payload within
this frame.
¢ In the application itself the received frame is already parsed so that the variable
app_parse_data contains all information for the MAC header (i.e. addressing
information) of the received frame already in a structure of type
prom_mode_payload_t.

2025H-MCU Wireless-08/10

9.2.1.6.4 Limitations

9.2.1.7 Star_Nobeacon

9.2.1.7.1 Introduction

2025H-MCU Wireless-08/10

Figure 9-2. Promiscuous_Mode_Demo Terminal Program Snapshot

- TE
Doesl fearhaken gnsst igraden (bgepag |

ATTATTATTATAATARATA RN AmnnTn

'ronizcusus node demo application CHISEN 2306 /¢ Alemcoal Z8A11

fwurrent channel: 24
Lburrenl channel pooe: @
I'romiscuor= node 1s on

Ho. 1 Cmd: B A% 27 FF FF FF FF @7

Hoo 2 Crd: B3 B35 Lo (1 0L 0101 @F

Moo 33 Beacon: B3 B ST 53 D6 B0 G0 FE CF GH GH

Hoo & GCrd: 23 08 Lo S acwewwll 11 12 19 14 1o 16 14 18 12 UL &2

Ho. % HAck: B2 88 1.

Ho. & Cod: 67 CE O1G TE G 0@ 8@ 1210 146 15 16 17 10 19 @

Heoo 7 Ack: 12 A0 16

Hﬁﬁ Eﬂ Crd: B3 CC 23 /8 %6 12 13 16 10 16 1) 18 1) AL A2 AHI AL Ho HE HY HE HZ L

Hoo & Ack: B2 B8 23

Ho. 180 Ced: &3 28 17 78 56 @9 @@ FE C0 A4

Heo 11 Mck: 17 80 17

Ho.o 12 Wata: 6L 8§ 20 {4 06 |E LA D 0@ AR BB CC LW

Moo 13 Heke: B9 G0 24 :I
arborcsn 2 C2CT [T WK FF [Toss [k [ad=d e Crudooadis &

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

e The processing of each received frame within the application and the corresponding
serial output is the limiting factor of this application in terms of throughput.

e The actual processing and output implemented within the application for each
received frame should be adapted to the end user’s requirements.

The application Star_Nobeacon provides a simple start network application based on
IEEE 802.15.4-2006. The application uses two nodes: a PAN Coordinator (1) and an
End Device (2). The firmware is implemented as such that a node can either act as a
PAN Coordinator or an End Device.

This application works very similar to the MAC Example App_1_Nobeacon (see section
9.2.1.1) but the same source code is used for both types of devices. The type of device
is detected by the firmware during run-time.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Star_Nobeacon. The source code of the application can
be found in the subdirectory Src.

AIMEL 123

9.2.1.7.2 Requirements

9.2.1.7.3 Implementation

9.2.1.7.4 Limitations

124

AVR2025

AIMEL

T

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. A sniffer is suggested in order to check frame transmission between the
nodes.

The application works as described subsequently.

Node one:

Switch on node one.

LED 0 indicates that the node has started properly.

Flashing of LED 1 indicates that the node is scanning its environment. Scanning is
done three times on each available channel depending on the radio type.

If no other network with the pre-defined channel and PAN Id is found, the node
establishes a new network at the pre-defined channel (channel 20 for 2.4GHz radio).
This node now becomes the PAN Coordinator of this network. The successful start
of a new network is indicated by switching LED 1 on.

Node two:

e Switch on the other node.

e LED 0 indicates that the node has started properly. Flashing of LED 1 indicates
that the node is scanning its environment. Scanning is again done three times
on each available channel depending on the radio type.

e |If a proper network is discovered, the node joins the existing network and
indicates a successful association by switching on LED 1.

e Every two seconds this node sends out a dummy data packet. If the packet is
acknowledged by the other node the LED 2 is flashing.

The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

Currently only 2 devices are allowed to associate to the PAN Coordinator. This can
be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

The current implementation only provides direct data transmission from device to
coordinator. In order to save as much power as possible, the device periodically
enters sleep mode between its data transmissions. During these sleeping periods
the receiver of the device is not enabled. It is therefore not possible to simply extend
the application so that direct data transmission is performed in the other direction
(from coordinator to device). In case the data transmission from coordinator to
device is required more changes within the application are required. For more
information please see section 4.5. An example where this scenario has been
implemented by means of using the feature MAC_RX_ENABLE_SUPPORT can be
found in 9.2.1.3 (MAC Example Basic_Sensor_Network).

2025H-MCU Wireless-08/10

9.2.1.8 Star_High_Rate

9.2.1.8.1 Introduction

9.2.1.8.2 Requirements

9.2.1.8.3 Implementation

2025H-MCU Wireless-08/10

The application Star_High_Rate provides a simple start network application based on
IEEE 802.15.4-2006 transmitting data frame using a High Data Rate (i.e. 2Mbit/s). The
application uses two nodes: a PAN Coordinator (1) and an End Device (2). The
firmware is implemented as such that a node can either act as a PAN Coordinator or an
End Device.

This application works very identical to the MAC Example Star_Nobeacon (see section
9.2.1.7), but the nodes switch to 2MBit/s data rate once the end device has been
associated. In order to see the check functioning of the application the terminal output
can be used.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Star_High_Rate. The source code of the application can
be found in the subdirectory Src.

The application requires (up to three) LEDs on the board in order to indicate the proper
working status. A sniffer is suggested in order to check the proper association between
the two nodes, but in order to see the further data frame exchange a special sniffer is
required being capable to except frames at 2Mbit/s.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB. In
order to see the output of the application please start a terminal application on your host
system.

Also the TAL Example Performance_Test can be used in promiscuous mode to check
the proper frame exchange between the two nodes using the same channel and the
correct channel page 17 for 2Mbit/s.

The application works as described subsequently.
Node one:

¢ Switch on node one.
e LED O indicates that the node has started properly.

¢ Flashing of LED 1 indicates that the node is scanning its environment. Scanning is
done three times on each available channel depending on the radio type.

e If no other network with the pre-defined channel and PAN Id is found, the node
establishes a new network at the pre-defined channel (channel 20 for 2.4GHz radio).
This node now becomes the PAN Coordinator of this network. The successful start
of a new network is indicated by switching LED 1 on.

Node two:

e Switch on the other node.

AIMEL 126

9.2.1.8.4 Limitations

9.2.2 TAL Examples

9.2.2.1 Performance_Test

9.2.2.1.1 Introduction

126 AVR2025

AIMEL

T

e LED 0 indicates that the node has started properly. Flashing of LED 1 indicates
that the node is scanning its environment. Scanning is again done three times
on each available channel depending on the radio type.

e |If a proper network is discovered, the node joins the existing network and
indicates a successful association by switching on LED 1.

e Every two seconds this node sends out a dummy data packet. If the packet is
acknowledged by the other node the LED 2 is flashing.

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

e In order to see the further data frame exchange using High Data Rate a special
sniffer is required being capable to except frames at 2Mbit/s.

The TAL example Performance_Test is a terminal-based application. It demonstrates
transceiver performance including high data rate modes. Configuration parameters are
set using a terminal program, like

e Channel

¢ Channel page

e Transmit power

e Number of frames sent during a test

¢ Frame length (PSDU)

¢ ACK request enable/disable

e CSMA enable/disable

e Frame retry enable/disable

This allows to measure throughput performance and PER testing with different radios,
data rates and transmits powers. In addition to that the following features are
supported:

e ED scan over all channels

¢ Continuous wave (CW) transmission

e Promiscuous mode

This example application uses TAL API as interface to the stack.

The application and all required build files are located in directory
Applications/TAL_Examples/ Performance_Test. The source code of the application
can be found in the subdirectory Src.

2025H-MCU Wireless-08/10

9.2.2.1.2 Requirements

9.2.2.1.3 Implementation

9.2.3 STB Examples

9.2.3.1 Secure_Remote_Control

9.2.3.1.1 Introduction

2025H-MCU Wireless-08/10

This application requires a serial connection for controlling the application and
displaying the results. Depending on the available Serial 1/O interface for each board
this can be either UART or USB. In order to see the output of the application please
start a terminal application on your host system.

Once the application is started hit any key to display the initial screen. A menu indicates
which options are currently available (such as channel, Tx power, CSMA usage, etc.).

After the desired parameters have been set, chose the proper operating mode. The
performance application requires a node acting as receiver (“R”) and another node
acting as transmitter (“T”). An additional node can operate in promiscuous mode (“I") as
diagnostic tool.

Figure 9-3. Terminal Program Snapshot of Performance_Test Application

i Tt S - b s Tyl = |00 2|
Qe Prosheten drecht Agfen (Rertegng 7
D] =1E] wim] 2]
=
TTHTTH AT T TR AT T TTRN AT TR AT AT TR ATty TRy T TR T TR T
Serloomancs Lezgl gpaloca oo (nlG0RaZ22] 0 nom=galZill
golo_ocs:
W Chatral - R
: chatrzl pacs - u
T8 Tooaaer - Y LD
o8 Furoasr of teot rreamse: - 10u
v T¥ams l=nAtFk PO — an
B T T L] P TR TS S I |
CHY s F oot e oy nvekTei o= 0 e
MR - ST PR A
WEARAOSTY s O L e reazn MaSTFa s 1T T s - M

4o oETars tect)

o

cLansmioLiryg, oo wsol unlil L=zl s complelzd, Loz,

TR e

TesT curatoo - TL2FLozl o=

TrancmiTteD Zrares - ul

IramEt weo NIE - O

Taenne | Aamans tat o iran —

Mozl chcley eesooe = S 1L 150 52

ISR I TR PO B sl P T :I
mules Loz s Gl =L e B [& AR [k eeoen L A &

The STB example Secure_Remote_Control is an application demonstrating application
security for a remote control acting as a light switch. It deploys a nonbeacon-enabled
network using ZigBee/CCM* security.

AIMEL 127

9.2.3.1.2 Requirements

9.2.3.1.3 Implementation

128

AVR2025

AIMEL

T

This example application uses both STB and TAL API as interface to the stack. The
STB is used to secure and unsecure application data, and the TAL is used to transmit
or receive (secured or unsecured) frames.

The application and all required build files are located in directory
Applications/STB_Examples/ Secure_Remote_Control. The source code of the
application can be found in the subdirectory Src.

This application requires

e (Up to three) LEDs on the board in order to indicate the proper working status. A
sniffer is suggested in order to check frame transmission between the nodes.

e One button on the board in order to determine whether the node starts in secure or
unsecure mode, and in order to initiate an action by the remote control.

e A serial connection for typing messages and displaying the received data from the
other device. Depending on the available Serial I/O interface for each board this can
be either UART or USB. In order to see the output of the application, please start a
terminal application on your host system.

The application involves exactly two nodes. Both nodes operate at channel
DEFAULT_CHANNEL with the PAN ID DEFAULT_PAN_ID and use the same short
address settings. More than two nodes should not be operated with the same settings.

The application uses a button to determine the mode of operation (secure or unsecure
mode) or to initiate frame transmissions, and (up to three) LEDs to indicate the current
status of the node.

Once the node is powered up the LED_0 switched on permanently. If the node is
powered while the button is pressed (until the LED_O is switched on), the application
runs in unsecured mode (LED_1 is off). Otherwise (i.e. button is not pressed during
system start-up) the application runs in secured mode (LED_1 is on).

If the button is pressed during operation, the node sends a frame which contains the
message "Toggle light!“. This message is either to be seen in plaintext or it is
encrypted.

A node in secured mode only transmits frames being encrypted using ZigBee/CCM*
security, and also expects frames being encrypted. A node in unsecured mode only
transmits frames with plaintext, and also expects frames with plaintext.

If the transmitter has received an Acknowledgment frame as response to its frame
transmission, it indicates the successful transmission by toggling the LED_2. If the
transmission is not successfully, the LED_2 is flashing for a short time.

Receiver is in secured mode: If the node has received a secured frame, that could be
decrypted properly, the LED_2 is toggled. If the received frame is either unsecured or
has a security error (e.g. incorrect key), the LED_2 is flashing for a short time.

Receiver is in unsecured mode: If the node has received a plaintext frame, the LED_2
is toggled. If the received frame is secured, the LED_2 is flashing for a short time.

If a serial terminal is used, the used mode (security on or off) and the status of the last
frame transmission or reception are printed.

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

The following pictures show the printouts on the serial terminal depending whether the
nodes are started in secure or unsecure mode.

Figure 9-4. Secure Remote Control Application — Both Nodes in Secure Mode

FACUrity oof T sa2uu

Culsi Bearbeilen druicht drrfan Obmiragqug 7
cle] == w =] Al

sdi Lwgye ZivhL!
. it Tinhil!
cAr e e ixhr!

H I :
st T omeecrad, dr oot

Figure 9-5. Secure Remote Control Application — Both Nodes in Unsecure Mode
=[-lx

Tmm Mwwtacss GeebE Crodwe Becoepmg *

2] =lg] nf o7

A startad wefb oceccne- T oo -t
Securizy ttcor T alaincext ok

B

s sl e Ll
e HE) B R

ool oo Mekft Amifen (batroay 3
L= =% o)z &

atav=f- wi=" oRoNCi—TE oat-

St ottt D plz-otact: Tojels
Lty otf: Da plazntsict: Tagols
Tority ootr: Dor plaiatact: Tojcls

Figure 9-6. Secure Remote Control Application — Transmitter in Secure Mode,
Receiver in Unsecure Mode

T T R =1=1=
= Twartecss ScdkbE onbw Bec et
2] =lg] a1l
=]
=ao ostartad v kb oseccnet oy oo
Securizy ni TH cerured ok
scourios tn oo meouned ol
senuriog cn: oo seoored ol
allix]
=l

Ded Emwheben, Erekit Angfen Ubstragng 7

= =% ol &

taves wi=s maonciTmn oat-

star oottt T neen Cvams i cao i
Yool T e tane o vioo= :
r orfl 23 uUdeIndwn ZZams wiza o= :'L‘:i:‘.-"

A mEl,L 129

9.2.3.1.4 Limitations

9.2.3.2 Secure_Sensor

9.2.3.2.1 Introduction

9.2.3.2.2 Requirements

130

AIMEL

T

Figure 9-7. Secure Remote Control Application — Transmitter in Unsecure Mode,
Receiver in Secure Mode
= |

e Bale.. & oalh aedy Ao 0

% T -

Ao tlolbed Lk vecarole 10
ETRHTT S) IR) Y T H
AFri-y ct-r T oalaicceus ok
Seryrity o Txolaintext ok

4 Cumsd BEEE - Hyger Tarminad = =10 =]
Datni Eeabster Sracht Amsan Ubatrsmng 7
O] | oo[=]
=
WLl oFevuLLlly un

oaw ahieiimn Leooee =illwas zuicas Ly

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

e |t is not recommended operating more than two nodes with the application
simultaneously.

The STB example Secure_Sensor deploys a nonbeacon-enabled network with
encrypted and authenticated frames. It is using ZigBee/CCM* security. The application
consists of Sensor (i.e. End Devices) and a Data Sink (i.e. a PAN Coordinator)
collecting data from the sensors.

This example application uses both STB and MAC-API as interface to the stack. The
STB is used to secure and unsecure application data, and the MAC is used to set-up a
nonbeacon-enabled network, perform scanning and network association, and to
transmit or receive (secured or unsecured) frames.

The application and all required build files are located in directory
Applications/STB_Examples/ Secure_Sensor. The source code of the application can
be found in the subdirectory Data_Sink/Src and Sensor/Src.

This application requires

e (Up to three) LEDs on the board in order to indicate the proper working status. A
sniffer is suggested in order to check frame transmission between the nodes.

e A serial connection for typing messages and displaying the received data from the
other device. Depending on the available Serial I/O interface for each board this can
be either UART or USB. In order to see the output of the application, please start a
terminal application on your host system.

AVR2025

2025H-MCU Wireless-08/10

9.2.3.2.3 Implementation

2025H-MCU Wireless-08/10

The node acting as data sink (PAN Coordinator) starts a nonbeacon-enabled PAN at
channel DEFAULT_CHANNEL with the PAN ID DEFAULT_PAN_ID. The sensor
(Device) scans for this network and associates to the data sink (PAN Coordinator).
Once the sensor (Device) is associated, it uses a timer that fires every 2 seconds to
transmit a random payload (sensor measurement data) to the data sink.

The frames are secured according to ZigBee/CCM* network layer security:
e The network header is omitted, only the auxiliary security header is constructed (14
byte long).

e The applied security level is 0x06, i.e. encrypted payload, authentication applied,
MIC 8 byte long.

e The random payload has 13 byte length.

The LEDs signal the following status:
Sensor (Device):

e LED 0 on: Application is running.
e LED 1 on: Sensor (Device) is associated to Data Sink (Coordinator).
e LED 2 blinking slowly: Data frames are sent (one every 2 seconds).

Data Sink (Coordinator):

e LED 0 on: Application is running.
e LED 1 on: Network is started.
e LED 2 blinking slowly: Data frames are received (one every 2 seconds).

e LED 0 blinking fast: Format error on received frame - wrong payload length, or
security control byte has a wrong value.

e LED 1 blinking fast: Frame with too small frame counter received.
e LED 2 blinking fast: MIC of received frame is wrong.

AIMEL 131

9.2.3.2.4 Limitations

9.2.4 Tiny-TAL Examples

9.2.4.1 Wireless UART

9.2.4.1.1 Introduction

132

AIMEL

Figure 9-8. Snapshot of Secure Sensor Application

=181x]

Dl =13] ol

Stzrted za2ncar ratwores

Tr=ee e T -
TLsme L D0 s
e Ao
I R, R sl

‘
«
s
@

& Camd B804 - HyperTersinsl
Cabi [dashaces Aacht Awulan: Dbatregag

Diw| /3] Ol =

Fensor

Fratching network

Found network

comntectad to senact network
Jendir] Irims T
Jendiry crems 1
Seanclicg T oo ¢

jrr—

Senelirg G
Senelirg R
Seaelir:g T
Jendiry -rems
sendiry Irzms
sendiny Zrims
Seaclicrg T oo
Seaelirsg vz 1
Jendiry -rems 10

leed @ CF B

e The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the
application.

e |t is not recommended operating more than two nodes with the application
simultaneously.

The Tiny-TAL example Wireless_UART is a terminal-based application. It acts as a
simple communication program between nodes (i.e. a wireless UART connection).

This example application uses Tiny-TAL API as interface to the stack.

The application and all required build files are located in directory
Applications/TINY_TAL_Examples/ Wireless_UART. The source code of the application
can be found in the subdirectory Src.

AVR2025

2025H-MCU Wireless-08/10

9.2.4.1.2 Requirements

9.2.4.1.3 Implementation

9.2.4.1.4 Limitations

9.3 Common SIO Handler

2025H-MCU Wireless-08/10

This application requires a serial connection for typing messages and displaying the
received data from the other device. Depending on the available Serial I/O interface for
each board this can be either UART or USB. In order to type input or the see the output
of the application, please start a terminal application on your host system.

The basic Tiny-TAL Example Wireless_UART deploys a nonbeacon-enabled network.
The example application is based on the TAL.

Both nodes operate at channel DEFAULT_CHANNEL with the PAN ID
DEFAULT_PAN_ID and use the same short address settings. More than two nodes
should not be operated with the same settings.

A terminal program (Terminal program settings: No flow control and local echo should
be disabled) can be used to enter text on both nodes.

If a byte is received via the serial connection from one node, the node transmits the
byte to the other node. If the transmission was successful, the entered bytes are
forwarded to the terminal indicating successful transmission.

Figure 9-9. Terminal Program Snapshots of Performance_Test Application

e T Sl
s Kies dmn ¢ oald e Cw - oap .
Cl| = e -2f= &
]
Toic 23 tha Wirs_er: URRT Agalication dsing RTo23elésl 21 RIS6ITENL.
=l
Comcsd Duwbadun Ankchl Sraufan Lbadegursy ¢
o] wl 3| ol |
=
i s Ll vienT s NERE Zpzlieclice n=icng £ ool FET a2 e RN

The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the application.

Applications that require SIO input or output (via UART or USB) in order to print data on
a terminal or to get input from the end user can utilize a common SIO handler that
provides helper functions for platform independent processing of serial information.
These helper functions are

e sio_putchar(): print one character
¢ sio_getchar(): read one character via SIO (blocking function)

AIMEL 133

134

AVR2025

AIMEL

T

¢ sio_getchar_nowait(): read one character via SIO without blocking

The helper functions in return make use of the PAL related SIO functions such as
pal_sio_tx() and pal_sio_rx(). This allows for easy implementation of SIO functionality in
the application.

The SIO handler is located in directory

Applications/Helper_Files/SIO_Support

The implementation is located in file sio_handler.c in the Src directory, whereas the
corresponding function declaration are located in file sio_handler.h in the Inc directory.

For the IAR compiler the file write.c located in the IAR_Support needs to be added as
well.

In order to use these helper functions, the application needs to do the following things:

¢ Include the header file in its source files
#include "sio_handler.h"

¢ Extend the include search path for GCC Makefiles, e.qg.
PATH_SIO_SUPPORT = $(MAIN_DIR)/Applications/Helper_Files/SIO_Support

Include directories for SIO support
INCLUDES += -I $(PATH_SIO_SUPPORT)/Inc

e Extend the include search path for IAR project files, e.qg.
<name>newCClIncludePaths</name>

<state>$PROJ_DIRS\..\..\..\..\Helper_Files\SIO_Support\Inc</state>

¢ Add file sio_handler.c to the list of source and object files in GCC Makefiles, e.g.
$(TARGET_DIR)/sio_handler.o\

$(TARGET _DIR)/sio_handler.o: $(PATH_SIO_SUPPORT)/Src/sio_handler.c
$(CC) -c $(CFLAGS) $(INCLUDES) -0 $@ $<

Add file sio_handler.c to the list of source and object files in GCC
Makefiles, e.g.

<file>

<name>

SPROJ_DIRS\..\..\..\..\Helper_Files\SIO_Support\Src\sio_handler.c
</name>

</file>

<file>

<name>
SPROJ_DIRS\..\..\..\..\Helper_Files\SIO_Support\IAR_Support\write.c
</name>

</file>

2025H-MCU Wireless-08/10

9.4 Handling of Callback Stubs

9.4.1 MAC Callbacks

9.4.2 TAL Callbacks

2025H-MCU Wireless-08/10

The MAC stack must support asynchronous operation by all layers, for instance to allow
for callbacks from lower layers back to higher layers without blocking the control flow.
This is required to implement the request/confirm or indication/response primitive
handling. A common way of implementing asynchrony operation by lower layers is the
installation of callback functions, which are called a lower layer, but actually
implemented in the higher layer. Callbacks are required by both the TAL and the MAC
layer.

The MAC Core layer (MCL) requires the following callback functions:

e usr_mcps_data_conf

e usr_mcps_data_ind

e usr_mcps_purge_conf

e usr_mlme_associate_conf

e usr_mlme_associate_ind

e usr_mime_beacon_notify_ind
e usr_mlme_comm_status_ind
e usr_mlme_disassociate_conf
e usr_mlme_disassociate_ind
e usr_mime_get_conf

e usr_mime_orphan_ind

e usr_mime_poll_conf

e usr_mime_reset_conf

e usr_mime_rx_enable_conf

e usr_mlme_scan_conf

e usr_mime_set _conf

e usr_mlme_start_conf

e usr_mime_sync_loss_ind

These callback functions are declared in file MAC/Inc/mac_api.h. Each MAC based
application (HIGHEST_STACK_LAYER = MAC) needs to implement these usr_...()
callback functions.

For example an application that uses data transmission mechanisms, will call a function
wpan_mcps_data_request, which in return requires the implementation of the
corresponding asynchronous callback function usr_mcps_data_conf() to indicate the
status of the requested data transmission.

But the same application might, for example, not want to use the MAC primitive MLME-
SYNC-LOSS.indication. Nevertheless the callback function usr_mime_sync_loss_ind()
needs to be available or the linker generates a build error. This can be solved by either
implementing an empty stub function in the application, or, more conveniently, use an
already existing stub function. All required MAC stub functions are already implemented
in the files usr_mcps_*.c or usr_mime_*.c in directory MAC/Src.

So whenever such a callback is not used by the application, simply add the required
usr_*.c stub files to your Makefiles or IAR project files.

The TAL requires the following callback functions:

AIMEL 135

AIMEL

T

e tal ed end cb

e tal rx_frame_cb

e tal tx_frame_done cb

These callback functions are declared in file TAL/Inc/tal.h. Each TAL based application
(HIGHEST_STACK_LAYER = TAL) needs to implement these tal_..._cb() callback

functions. The MAC layer (residing on top of the TAL) has also implemented these
callback functions.

In case these callbacks are not used within the TAL based application, the existing stub
functions can easily be used. All required TAL stub functions are already implemented
in the files tal_* cb.c in directory TAL/Src.

So whenever such a callback is not used by the TAL based application, simply add the
required tal_*.c stub files to your Makefiles or IAR project files.

9.4.3 Example for MAC Callbacks

136

AVR2025

The handling of callback stub functions shall be more illustrated by the example of the
MAC based application Star_Nobeacon. When opening the main source file of this
application Applications/MAC_Examples/Star_Nobeacon/Src/main.c, the source code
indicates that the following used MAC callback functions are actually used and filled
with dedicated application code:

e usr_mime_reset_conf — Node can perform a MAC reset

e usr_mime_scan_conf — Node can perform scanning

e usr_mime_set_conf — Node can change PIB attributes

e usr_mime_start_conf — Node can set up a new network

e usr_mime_associate_ind — Node can accept associations from other nodes

e usr_mime_comm_status_ind — Required to accept associations from other nodes

e usr_mcps_data_ind — Node can receive data frames

e usr_mime_associate_conf — Node can perform association to other nodes

e usr_mcps_data_conf — Node can transmit data frames

The remaining callbacks

e usr_mcps_purge_conf

e usr_mime_beacon_notify_ind
e usr_mlme_disassociate_conf
e usr_mlme_disassociate_ind

e usr_mime_get_conf

e usr_mime_orphan_ind

e usr_mime_poll_conf

e usr_mime_rx_enable_conf

e usr_mime_sync_loss_ind

are not used by the application, since this example does not deal with this functionality.
In order to avoid implementing empty stubs in the application, the way of using the
delivered stub functions in the files usr_*.c shall be used. This is done by adding these
stub files to the GCC Makefiles or IAR project files.

In the corresponding GCC Makefile (Applications/MAC_Examples/Star_Nobeacon/
any_platform/GCC/Makefile) the following lines can be found in order to add the
required object files to the link process:

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

Objects that must be built in order to link
OBJECTS = $(TARGET_DIR)/main.o\
$ (TARGET_DIR) /pal_uart.o\
$ (TARGET_DIR) /mac_api.o \
S (TARGET_DIR) /usr_mcps_purge_conf.o \
S (TARGET_DIR) /usr_mlme_beacon_notify_ind.o \
S (TARGET_DIR) /usr_mlme_disassociate_conf.o \
S (TARGET_DIR) /usr_mlme_disassociate_ind.o \
$(TARGET_DIR) /usr_mlme_get_conf.o \
$(TARGET_DIR) /usr_mlme_orphan_ind.o \
$(TARGET_DIR) /usr_mlme_poll_conf.o \
$ (TARGET_DIR) /usr_mlme_rx_enable_conf.o \
S (TARGET_DIR) /usr_mlme_sync_loss_ind.o

In the corresponding IAR project file (Applications/MAC_Examples/Star_Nobeacon/
any_platform/Star.ewp) the following lines can be found in order to add the required

source files to the build process:
<group>
<name>MAC_API</name>
<file>
<name>S$PROJ_DIRS\..\..\..\..\MAC\Src\mac_api.c</name>
</file>

<file>

<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mcps_purge_conf.c</name>

</file>
<file>

<name>

SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_beacon_notify_ind.c

</name>
</file>
<file>

<name>

SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_disassociate_conf.c

</name>
</file>
<file>

<name>

SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_disassociate_ind.c

</name>
</file>

<file>

<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_get_conf.c</name>

</file>

<file>

<name>
SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_orphan_ind.c

</name>

AIMEL

137

AIMEL

T

</file>

<file>

<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_poll_conf.c</name>

</file>

<file>

<name>
SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_rx_enable_conf.c

</name>

</file>

<file>

<name>
SPROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_sync_loss_ind.c

</name>

</file>

</group>

|
138 AV R 2 025 2025H-MCU Wireless-08/10

10 Supported Platforms

This chapter describes which hardware platforms are currently supported with the

AVR2025 software package. A platform usually comprises of three major components:

e An MCU,

¢ Atransceiver chip (this may be integrated into the MCU for Single Chips), and

¢ A specific Board or even several boards that contain the MCU or the transceiver
chip.

The supported software for each platform can be found in the directory PAL.

10.1 Supported MCU Families

10.2 Supported MCUs

Currently the following generic MCU families are supported:

e ARM?7: Atmel ARM7 platforms

e AVR: Atmel AVR 8-bit ATmega platforms

¢ MEGA_RF: Atmel AVR 8-bit ATmegaRF Single Chip platforms
¢ XMEGA: Atmel AVR 8-bit ATxmega platforms

The dedicated code for each platform family can be found in the corresponding
subdirectories.

Within each platform family a number of MCUs are supported. These are for example
the ATmega1281, ATxmegai128A1, ATmega128RFA1, AT90SAM7X256, etc.

For a complete list of the actually supported MCUs please refer to the AVR2025 release
notes (MAC_Release_Notes.txt in directory MAC v_x_y_z\Doc) or directly look into the
various subdirectories as mentioned in section 10.1.

10.3 Supported Transceivers

10.4 Supported Boards

For a complete list of all supported transceivers please refer to the AVR2025 release
notes (Release_Notes.ixt in directory MAC_v_x_y_z\Doc).

The actually supported boards can be found in the corresponding PAL Boards
directories MAC v_x_y z/PAL/pal_family_name/mcu_name/Boards. For example all
supported boards for the ATmega128RFA1 Single Chip are located in directory
PAL/MEGA _RF/ATMEGA128RFA1/Boards. Each board directory contains a file
pal_boardtypes.h (or vendor_boardtypes.h), which contains a list of all supported
boards based on this specific MCU together with a short description.

The following sections describe the currently supported hardware platforms in more
detail. All described hardware boards are available from Atmel (see [1]) or third party
vendors (e.g. see [2]).

For a short list of the supported peripherals of each board see section 10.4.6.

10.4.1 Radio Controller Boards (RCB) based Platforms

2025H-MCU Wireless-08/10

The Radio Controller Board (RCB) is a radio module containing either a MCU (e.g.
ATmega1281) and an Atmel transceiver, or an Atmel Single Chip. RCBs can be used

AIMEL 139

AIMEL

T

stand alone as plain RCB or in conjunction with a base board providing additional
peripheral capabilities.

10.4.1.1 Plain Radio Controller Board RCB230 V3.1

For more information about earlier versions of the Plain Radio Controller Boards prior to
V3.2 please contact Atmel support ([3]).

10.4.1.2 Plain Radio Controller Board RCB230 V3.2

e AT86RF230B and ATmegai1281
¢ See PAL\AAVR\ATMEGA1281\BOARDS\RCB_3 2_PLAIN

Figure 10-1. RCB V3.2 with AT86RF230B and ATmegai1281

10.4.1.3 Plain Radio Controller Board RCB231 V4.0

e AT86RF231 with and ATmegai1281
¢ See PAL\AAVR\ATMEGA1281\BOARDS\RCB_4 0_PLAIN

Figure 10-2. RCB V4.0 with AT86RF231 and ATmegai1281

10.4.1.4 Plain Radio Controller Board RCB231ED V4.1.1

e AT86RF231 with Antenna Diversity and ATmegai1281
¢ See PAL\AAVR\ATMEGA1281\BOARDS\RCB_4_1_PLAIN

|
140 AV R2025 2025H-MCU Wireless-08/10

Figure 10-3. RCB V4.1 with AT86RF231 and ATmega1281

10.4.1.5 Plain Radio Controller Board RCB212SMA V5.3.2

e AT86RF212 with and ATmegai1281
e See PAL\AVR\ATMEGA1281\BOARDS\RCB_5_3 PLAIN

Figure 10-4. RCB V5.3 with AT86RF212 and ATmega1281

10.4.1.6 Plain Radio Controller Board RCB V6.3 with ATmega128RFA1

¢ ATmegai128RFA1 Single Chip only
¢ See PAL\AVR\ATMEGA1281\BOARDS\RCB_5_3_PLAIN

ATMEL

2025H-MCU Wireless-08/10

AVR2025

141

AIMEL

Figure 10-5. RCB V6.3 with ATmega128RFA1

10.4.1.7 Sensor Terminal Board

The Sensor Terminal Board can be used as baseboard for a Plain RCB to enable SIO
capabilities via USB. It provides one button and two LEDs for user interaction. It can be
used for existing RCBs mentioned in section 10.4.1.

The following pictures depict a Sensor Terminal Board with and without an RCB, and
also indicate how the Sensor Terminal Board is connected to the JTAG-ICE.

Figure 10-6. Sensor Terminal Board without RCB

142 AVR2025

2025H-MCU Wireless-08/10

AVR2025

Figure 10-7. Sensor Terminal Board with RCB V6.3 with ATmega128RFA1

| e W e o B

W, B NI Ve

The Sensor Terminal Board can be powered with USB, although it is recommended to
use a powered hub in case the board is not directly connected to a PC.

10.4.1.8 Breakout Board (Light)

The Breakout Board (Light) can be used as baseboard for a Plain RCB to enable SIO
capabilities via UART. It can be used for existing RCBs mentioned in section
10.4.1Error! Reference source not found.. Its main purpose is to be a simple
baseboard for the RCB for image flashing and debugging purpose.

The following pictures depict a Breakout Board Light with and without an RCB, and also
indicate how the Breakout Board Light is connected to the JTAG-ICE.

AIMEL 143

2025H-MCU Wireless-08/10 -

144

AIMEL

T

Figure 10-9. Breakout Board Light without RCB

Figure 10-11. Breakout Board Light connected to JTAG-ICE and UART

f

AVR2025

2025H-MCU Wireless-08/10

Figure 10-12. Close-up View of Breakout Board Light connected to JTAG-ICE and
UART

10.4.2 Radio Extender Boards (REB)

The Radio Extender Board (REB) is a radio module containing an Atmel transceiver.
REBs cannot be used stand alone but require an additional baseboard for the MCU,
such as STK600, STK500, AT91SAM7X-EK, AT91SAM7XC-EK, etc.

10.4.2.1 Radio Extender Board REB230 V2.1

For more information about earlier versions of the Radio Extender Boards prior to V2.3
please contact Atmel support ([3]).

10.4.2.2 Radio Extender Board REB230 V2.3

e Atmel transceiver: AT86RF230B

e The REB230B V2.3 is supported on several platforms:

See PAL\AVR\ATMEGA1281\Boards\REB_2_3_STK500_STK501
See PAL\AVR\ATMEGA2561\Boards\REB_2_3_STK500_STK501
See PAL\AVR\ATMEGA644P\Boards\REB_2_3_STK500

See PAL\XXMEGA\ATXMEGA128A1\Boards\REB_2_3_STK600

See ARM7\AT91SAM7X256\Boards\REB_2_3_REX_ARM_REV_2
See ARM7\AT91SAM7XC256\Boards\REB_2_3_REX_ARM_REV_2

O 0O O o O O

AIMEL 145

2025H-MCU Wireless-08/10 |

AIMEL

T

Figure 10-13. REB V2.3 with AT86RF230B

10.4.2.3 Radio Extender Board REB231 V4.0.1

e Atmel transceiver: AT86RF231

e The REB231 V4.0 is supported on several platforms:
o See PAL\AVR\ATMEGA1281\Boards\REB_4_0_STK500_STK501
o See PALNXMEGA\ATXMEGA128A1\Boards\REB_4_0_STK600

Figure 10-14. REB V4.0.1 with AT86RF231

FPLLLLIL L LY
CLE L L L L L R N N R

10.4.2.4 Radio Extender Board REB231ED V4.1.1

e Atmel transceiver: AT86RF231 using Antenna Diversity
e The REB231ED V4.1 is supported on several platforms:
o See PAL\AVR\ATMEGA1281\Boards\REB_4_1_STK500_STK501

|
146 AV R2025 2025H-MCU Wireless-08/10

AVR2025

o See PALNXMEGA\ATXMEGA128A1\Boards\REB_4_1_STK600
o See PALNXMEGA\ATXMEGA256A3\Boards\REB_4_1_STK600
o See PALNXMEGA\ATXMEGA256D3\Boards\REB_4_1_STK600

Figure 10-15. REB231ED V4.1.1 with AT86RF231

10.4.2.5 Radio Extender Board REB212 V5.0.2

e Atmel transceiver: AT86RF212

The REB212 V5.0 is supported on several platforms:

o See PAL\AVR\ATMEGA1281\Boards\REB_5_0_STK500_STK501
o See PALNXMEGA\ATXMEGA128A1\Boards\REB_5_0_STK600

Figure 10-16. REB212 V5.0.2 with AT86RF212

AIMEL 147
2025H-MCU Wireless-08/10 e e

AIMEL

T
10.4.3 Radio Extender Boards (REB) based Platforms

10.4.3.1 STK600 and REB to STK600 Adapter

The STKB00 in conjunction with an REB to STK600 Adapter can be used as a
baseboard for an REB to create platforms using AVR 8-bit MCUs (such as ATxmega or
ATmega MCUs). It provides eight buttons and LEDs for user interaction. It can be used
for existing REBs mentioned in section 10.4.2.

The following pictures depict an REB to STK600 Adapter and an STK600 with an REB
with REB to STK600 Adapter.

Figure 10-17. REB to STK600 Adapter

BEEER IBREE IRRR R

The next pictures indicates how the STK600 is connected to the JTAG-ICE and UART,
and how the LEDs and buttons are enabled.

|
148 AV R 2 025 2025H-MCU Wireless-08/10

AVR2025

Figure 10-19. STK600 (with ATxmega128A1) with REB to STK600 Adapter and
REB connected to JTAG-ICE and UART, and LED and Button Cable

10.4.3.2 STK500

The STK500 can be used as a baseboard for an REB to create platforms using AVR 8-
bit MCUs with a 40-pin PDIP package (such as ATmega644p MCUs). It provides two
buttons (there are actually eight buttons but only the first two are used for this platform)
and eight LEDs for user interaction. It can be used for existing REBs mentioned in
section 10.4.2.

The following picture depicts an STK500 with an ATmega644p.

Figure 10-20. STK500

—— ANNEL 149
2025H-MCU Wireless-08/10 -

AIMEL

T

The next pictures indicates how the STK500 is connected to the JTAG-ICE and UART,
and how the LEDs and buttons are enabled.

Figure 10-21. STK500 (with ATmega644p) with REB connected to JTAG-ICE and
UART, and LED and Button Cable

10.4.3.3 STK500 + STK501

The STK500 in conjunction with an STK501 can be used as a baseboard for an REB to
create platforms using AVR 8-bit MCUs with a 64-pin TQFP package (such as

|
150 AV R2025 2025H-MCU Wireless-08/10

ATmega1281 MCUs). It provides eight buttons and LEDs for user interaction. It can be
used for existing REBs mentioned in section 10.4.2.

The following picture depicts an STK500 with an STK501.

Figure 10-23. STK500 with STK501

Figure 10-24. STK500 with STK501 (with ATmega1281) and REB connected to
JTAG-ICE and UART, and LED and Button Cable

—— ANNEL 151
2025H-MCU Wireless-08/10 !

AIMEL

T

The following picture indicates how the TOSC switch on the STK501 needs to set
correctly to “XTAL” in order to allow proper operation for this platform using the
provided software package.

|
152 AV R 2 025 2025H-MCU Wireless-08/10

Figure 10-26. Close-up View of STK501 TOSC Switch

g AU =

1= LAl

=

TR]

EEAaEE

AT

10.4.3.4 AT91SAM7X-EK

The AT91SAM7X-EK in conjunction with an REB to ARM Adapter can be used as a
baseboard for an REB to create platforms using Atmel ARM7 MCUs (such as
AT91SAM7X256 MCUs). It provides currently 4 LEDs and a Joystick for user
interaction.

Currently supported are:
e REB230B V2.3 (with AT86RF230) in conjunction with REB to ARM Adapter Rev. 2
(REV_ARM REV 2).

e REB231 V4.0.1/V4.0.2 (with AT86RF231) in conjunction with REB to ARM Adapter
Rev. 3 (REV_ARM REV 3)

e REB212 V5.0.2 (with AT86RF212) in conjunction with REB to ARM Adapter Rev. 3
(REV_ARM REV 3)

AIMEL 153

2025H-MCU Wireless-08/10 |

AIMEL

The following pictures depict an AT91SAM7X-EK board with AT91SAM7X256 and an
AT91SAM7X-E with an REV_ARM REV 2 with REB230B V2.3.

Figure 10-27. AT91SAM7X-EK Board with AT91SAM7X256

|
154 AV R2025 2025H-MCU Wireless-08/10

10.4.4 AT91SAM7XC-EK

10.4.5 RZ USBstick

2025H-MCU Wireless-08/10

AVR2025

Figure 10-29. AT91SAM7X-EK Board with AT91SAM7X256 connected to SAM-ICE
and UART

The AT91SAM7XC-EK is handled similar to the AT91SAM7X-EK.

The RZ USBstick (as part of the ATAVRRZRAVEN 2.4 GHz Evaluation and Starter Kit)
is based on AT90USB1287:

See PAL\AVR\AT90USB1287\Boards\USBSTICK_C
The USB Bootloader is currently not supported
Images need to be flashed using JTAG-ICE and the JTAG connector

In case the 10 pin header for the JTAG connector (included in the ATAVRRZRAVEN
kit) is not on the board, this needs to be added

A USB driver providing a virtual COM port for the USBstick is provided in the
software package (see rzusbstick_cdc.inf in directory
PAL\Board_Utils\RZ_USB_ Stick)

The following picture depicts an RZ USBstick with the 10 pin header for the JTAG
connector and the JTAG-ICE.

A mEl'L 155

AIMEL

T

Figure 10-30. RZ USBstick with 10 Pin Header for JTAG Connector

Figure 10-31. RZ USBstick with JTAG-ICE and USB Connection

10.4.6 ATmega128RFA1-EK1 Evaluation Kit

156

AVR2025

The ATmega128RFA1-EK1 Evaluation Kit provides an STK600-ATmega128RFA1 Top
Card that can be used in conjunction with the STK600 board. No further Routing Cards
are required.

e See PAL\MEGA_RR\ATMEGA128RFA1\Boards\EK1

¢ |t provides currently 3 LEDs and 1 button for user interaction (similar to RCBs)

e The buttons and LEDs from the STK600 base board are not supported

e Both UARTO and UART1 are supported (UART1 is default in provided example
applications)

2025H-MCU Wireless-08/10

AVR2025

The following picture depicts an ATmega128RFA-EK1 Top Card placed on an STK600

base board and the board setup connected to a JTAG-ICE and set-up for utilization of
UART1.

Figure 10-32. ATmega1 28RFA1-EK1 on STK600

yoooalo
oo oo

Please note that jumper J11 (see red circle) needs to be placed as shown above (if no
current measurements are done) in order to provide the proper voltage to the board.

Figure 10-33. ATmegai128RFA1-EK1 on STK600 with JTAG-ICE using UART1

A mEl,L 157

2025H-MCU Wireless-08/10

AIMEL

T

Please note that the ATmega128RFA1-EK1 is not optimized for RF performance.

10.4.7 RZ600 on Top of Xplain Board

The RZ600 Evaluation boards (as part of the RZ600 evaluation kit) is supported on top
of an ATAVRXPLAIN evaluation and demonstration kit (based on ATxmega128A1):

See PAL\XXMEGA\ATXMEGA128A1\Boards\RZ600_230B_XPLAIN

Images need to be flashed using JTAG-ICE and the JTAG connector

A USB driver providing a virtual COM port for the Xplain board (based on the
AT90USB1287) is provided in the software package (see Xplain_CDC _install.inf in
directory
PAL\Board_Utils\XPLAIN\AT90USB1287\revision_2_and_above\USB_driver\)

For more information about the RF600 evaluation kit refer to [6] and the
corresponding Application Notes

For more information about the ATAVRXPLAIN desing and evaluation kit refer to [7]
and the corresponding Application Notes

The following picture depicts an RZ600 on top of the Xplain board conntected to a
JTAG_ICE.

158 AVR2025

2025H-MCU Wireless-08/10

Figure 10-35. RZ600 on Top of Xplain Board with JTAG-ICE and USB

10.4.8 ZigBit Modules on Top of Meshbean2 Board

2025H-MCU Wireless-08/10

The ZigBit Modules are supported on top of a MeshBean2 board (based on
ATmega1281):

See PAL\AVR\ATMEGA1281\Boards\ATZB_24_MN2 for the ZigBit 2.4 GHz support
based on AT86RF230B

See PAL\AVR\ATMEGA1281\Boards\ATZB_900_MN2 for the ZigBit 900 MHz
support based on AT86RF212

Images need to be flashed using JTAG-ICE and the JTAG connector

An installation programm for the USB driver providing a virtual COM port for the
MeshBean2 board is provided in the software package (see
CP210x_VCP_Win2K_XP_S2K3.exe in directory PAL\Board_Utils\MeshBean2)

For more information about the ATZB ZigBit Modules refer to [8]

The following picture depicts an ATZB ZIgBit Module on top of the MeshBean2 board
conntected to a JTAG_ICE.

AIMEL 159

10.4.9 Peripherals

160

AIMEL

Figure 10-36. ATZB ZIgBit Module on Top of MeshBean2 Board with JTAG-ICE
and USB

Each board or combination of boards provides a variety of peripherals that determine
which application can be executed to which extent of this board. This section provides
an overview about the differences for the various platforms for the following peripherals:
e Buttons

e LEDs

¢ SIO support (UART, USB)

AVR2025

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

Table 10-37. Peripherals supported by Platform Type

Buttons LEDs SIO Support
Plain RCB 1 3 No
Sensor Terminal 1 2 usB
Board + RCB
Breakout Board + 0 0 UART
RCB
Breakout Board 0 0 UART
(Light) + RCB
STK600 + REB to 8 8 UART
STK600 Adapter +
REB
STK500 + REB UART
STK500 + STK501 + UART
REB
AT91SAM7X(C)-EK | Joystick 4 UART
+ REX_ARM + REB
RZ USBstick 0 usB
ATmega128RFA1- 1 UART
EK1
RZ600 + Xplain usB
ZigBit + Meshbean uSB

AIMEL

161

AIMEL

T

11 Platform Porting

11.1 Porting to a new Platform

In case a new platform that is not supported yet, needs to be utilized, the task to bring-

up the new platform can be performed as described in the following section. Generally

this task can be split into different subtasks:

1. Bring-up of a new PAL or of a board within an already existing PAL

2. Bring-up of an existing application on the new platform

3. Bring-up of new applications on the new platform (if required)

Each of these subtasks will be explained subsequently and described on an example.

Before the actual porting is described a number of terms need to be defined:

e Target MCU: MCU that is not yet supported and shall be utilized within a new
platform

¢ Base MCU: MCU that is already supported within the MAC package and it's PAL
implementation is used as base code for the target MCU

¢ Target board: Board based on the target MCU that is not yet supported and shall be
utilized within a new platform

¢ Base board: Board that is already supported within the base MCU PAL directory and
is used as base code for the target board

¢ Target platform: Platform consisting of target MCU and target board

¢ Base platform: Platform consisting of base MCU and base board

11.2 Bring-up of a new PAL

If the target platform is not provided by the MAC software package this platform needs
to be brought-up. A new target platform can be one of the following cases:

a) Bring-up of a new customized board for an already supported MCU: This is usually
the case of the customer has designed its own hardware board using a standard
Atmel MCU (e.g. ATmega1281). This is the simplest case and is described in
section 11.3.

b) Bring-up of a new platform based on a not yet supported MCU but within a
supported MCU family: This is usually the case if the customer wants to use a
dedicated MCU (e.g. with different memory resources such as using the
ATxmega256A3), that is based on an existing MCU family (ATxmega family). This
case is described in more detail in section 11.4.

¢) Bring-up of a new platform based on a not yet supported MCU within a not yet
supported MCU family, such as an ARM device not based on the ARM7 family.

11.3 Bring-up of a new Hardware Board

11.3.1 Implementation of PAL for Target Platform

The task of bringing-up a new Platform (“target platform”) for an already supported
MCU is explained in general within this section and furthermore by the example of a

|
162 AV R 2 025 2025H-MCU Wireless-08/10

platform based on the AT91SAM7X256 in section 11.3.2. The same steps are to be
performed for all other platforms or boards respectively that shall be used.

11.3.1.1 Phase1: General Preparation for Target Platform

The first phase is a simple preparation phase. It provides the required directory and file
structure for the target platform/board and defines proper build switches required for
this target platform.

¢ Step 1: Identify the MCU for the target board

o Each supported MCU is identified by a specific value of the build switch
PAL_TYPE (and is part of a specific MCU family specified by the build
switch PAL_GENERIC_TYPE).

o For a list of all currently supported MCUs with a given MCU family
check file PAL/Inc/pal_types.h for defined values of PAL_TYPE for
each MCU family.

o For more information see also section 10.2.

e Step 2: Add the target board to the selected MCU (i.e. PAL_TYPE) in the
corresponding file containing the supported hardware platforms for the target MCU.
This can be done using one of the following approaches:

a. Add the boardtype to the existing file
PAL/MCU_FAMILY_NAME/MCU_NAME/Boards/pal_boardtypes.h. As an
example for a new board for the AT81SAM7X256, add the target board
to file PAL/ARM7/AT91SAM7X256/Boards/pal_boardtypes.h (see
11.3.2). Make sure that the new board type gets a unique reasonable
number in its definition. The actually selected number for the board
definition itself can be deliberately selected, as long as it is unique in
this particular board definition header file.

b. Or create a new file vendor_boardtypes.h and add the new hardware
platform with its own ID in this file. An example of such a vendor
specific file can be found at
PAL/AVR/ATMEGA1281/Boards/vendor_boardtype _example.h. Copy
this file into your board directory and rename it to vendor_boardtype.h.
Added the boardtype into this file. Also make sure that the build switch
“VENDOR_BOARDTYPES” is used within your application project files.

¢ Step 3: Identify an already supported board that best fits the target board to start the
porting (“base platform”).

o Each supported board based on a given MCU is identified by a specific
value of the build switch BOARD_TYPE.

o For a list of all currently supported boards check file
PAL/MCU_FAMILY_NAME/MCU_NAME/Boards/pal_boardtypes.h for defined
values of BOARD_TYPE.

o For more information see also section 10.4.

e Step 4: Copy the PAL board directory of the base platform in a separate directory
within the same board directory (of the target MCU) and name it according to the
target platform.

e Step 5: Rename all occurrences of base platform to target platform.

11.3.1.2 PhaseZ2: Actual Porting to Target Platform

This section describes the actual porting phase once the directory and file structure of
the target platform has been established.

AIMEL 163

2025H-MCU Wireless-08/10 I ——

AIMEL

T

The board directory of the target platform contains currently three files (same as for the
base platform):

e pal_board.c

e pal_irg.c

e pal_config.h

Within the next phase all hardware resources need to be adjusted from the base
platform to fit the resources of the target platform, such as timers, IRQs, ports, LEDs,

buttons, ports and registers for SIO support, etc. This is explained in the subsequent
steps.

All of these files are now adapted to the target platform needs step by step.

¢ Step 6: File pal_irqg.c

This source file contains functions to initialize, enable, disable and install handler for the
transceiver interrupts. It needs to be updated to match the requirements of the target

board when handling the transceiver interrupts (see examples in section 11.3.2.6 and in
section 11.4.2.8).

e Step 7: File pal_board.c

This source file contains board specific functions to initialize and handle peripherals
(such as LEDs, buttons, GPIO to the transceiver). It needs to be updated to match the
requirements of the target board when handling these peripherals (see 11.3.2.7).

e Step 8: File pal_config.h

This header file contains configuration parameters for the target platform such as CPU
frequency for this particular board, IRQ pins, pins between transceiver and MCU, LED
pins, button pins, timer clock source definitions, debug macros, etc. It needs to be

updated to match the requirements of the target board (see example in section
11.3.2.8).

11.3.2 Example Implementation of PAL for AT91SAM7X256 based Platform

This section describes the porting activities explained in the previous sections in
general more specifically for the example of porting an existing software package based
on the AT91SAM7X256 ARM 7 MCU to the new target board AT91SAM7X-EK with
Radio Extender board REB231 V4.0 on REX_ARM adapter Revision 3
(REB_4_0_2 REX_ARM_REV_3) in order to support the AT86RF231 transceiver on
this MCU.

11.3.2.1 Step 1 - Identify the MCU of the new Board

The target board is based on the MCU AT91SAM7X256. It is a member of the ARM7
family. Therefore new code of the target board is based on the
PAL_GENERIC_TYPE=ARM7 and PAL_TYPE= AT91SAM7X256.

11.3.2.2 Step 2 - Add the new Board to File pal_boardtypes.h

164

AVR2025

To add support for the target board “AT91SAM7X-EK with Radio Extender board
REB231 V4.0 on REX_ARM adapter Revision 37, open file
PAL/ARM7/AT91SAM7X256/Boards/pal_boardtypes.h and add the target board
definition to the proper section of this file. Since the REB_4_0_2 REX_ARM_REV_3 is
based on the transceiver AT86RF231, the new target board shall be added to the
section “Boards for AT86RF231” where all AT86RF231 based boards for this MCU are
listed. Use a not existing unique value for the target board. Make sure that the new

target board type gets a unique reasonable number in its definition. The actually

2025H-MCU Wireless-08/10

selected number for the board definition itself can be deliberately selected, as long as it
is unique in this particular board definition header file.

Example:
/* Boards for AT86RF230B */
#define REB_2_3_REB_TO_SAM7EK (0x01)
#define REB_2_3_REX_ARM_REV_2 (0x02)

/* Boards for AT86RF231 */
#define REB_4_0_2 REB_TO_SAM7EK3 (0x11)

/* AT91SAMT7X-EK and AT91SAM7XC-EK boards with Radio Extender board
REB231 V4.0 on REX_ARM adapter Revision 3 */

#define REB_4_0_2_REX_ARM REV_3 (0x12)

The actual numerical value of each define is not important, as long as each board within
a specific PAL_ TYPE has a unique value.

Alternativly create a new boardtype in a customer specific boardtype file called
vendor_boardtypes.h (see 11.3.1.1).

11.3.2.3 Step 3 - Identify an already supported Board that best fits the new Board as base Platform

From all currently supported boards based on the AT91SAM7X256 MCU the board
“REB_2_3_REX_ARM_REV_2” (AT91SAM7X-EK boards with Radio Extender board
REB230B V2.3 on REX_ARM adapter Revision 2) is selected as base platform to start
the porting to the target platform “REB_4_0_2_REX_ARM_REV_3".

11.3.2.4 Step 4 - Copy the Board directory of the base Platform

Example:

Copy the entire board directory
PAL/ARM7/AT91SAM7X256/Boards/REB_2_3_REX_ARM_REV_2

and rename it to directory
PAL/ARM7/AT91SAM7X256/Boards/REB_4_0_2_REX_ARM_REV_3.

Your directory PAL/ARM7/AT91SAM7X256/Boards now contains the following entries:

REB_2_3_REX_ARM REV_2
REB_4_0_2_ REX_ARM_REV_3

The directory REB_4 0_2_REX_ARM_REV_3 currently contains the identical code
from the directory REB_2 3 REX_ARM_REV_2 (from the base platform). It comprises
of the following files:

pal_board.c

pal_irqg.c

pal_config.h

11.3.2.5 Step 5 - Rename all occurrences of base Platform to target Platform

2025H-MCU Wireless-08/10

Within the entire directory
PAL/ARM7/AT91SAM7X256/Boards/REB_4 0 2 REX ARM_REV 3

all occurrences of the string “REB_2_3_REX_ARM_REV_2" are searched and replaced
by the target Platform “REB_4_0_2 REX_ARM_REV_3". In this example this needs to
be done in the following files:

AIMEL 165

11.3.2.6 : Step 6 - File pal_irg.c

11.3.2.7 Step 7 - File pal_board.c

166

AVR2025

AIMEL

T

e pal_board.c
e pal_irg.c
e pal_config.h

This file contains functions to initialize, enable, disable and install handler for the
transceiver interrupts. In this porting example it is a file dedicated to a board utilizing the
transceiver AT86RF231, but is derived from a board utilizing the transceiver
AT86RF230B.

While the AT86RF230B provides only one transceiver interrupt, the AT86RF231
provides usually two transceiver interrupts. This approach is followed fore most boards
for the AVR and Xmega MCU family.

Since the AT91SAM7X256 provides on a limited number of external interrupts, this
approach is not followed in this example. The AT86RF231 is only used with one
transceiver interrupt enabled. The Timestamp interrupt (based on DIG2 pin from the
transceiver) is not used. Timestamping is done similar for AT86RF230B systems.

Because of this limitation for this particular board, no changes within file pal_irg.c during
the porting from the base platform to the target platform are to be done (except the
board name change explained in section 11.3.2.5).

This source file contains board specific functions to initialize and handle peripherals
(such as LEDs, buttons, GPIO to the transceiver).

The following items within this file need to be updated according to the target board’s
needs or at least checked for correctness.

e Function pal_generate_rand_seed()
o Each board needs a random seed value for
* The random seed for the CSMA-CA algorithm

» The generation of a random I|EEE address for demo
applications in case no valid IEEE address is provided for this
board (e.g. by means of an external EEPROM)

o While the AT86RF230B does not provide a random number generator
(and thus this random seed needs to be generated for the
corresponding board by different means), the AT86RF231 provides
such a feature that is automatically enabled within the TAL for
AT86RF231.

o This implies the mechanism used for the base platform to generate a
random seed by utilizing the ADC of the MCU, is not required for the
target platform.

o Therefore function pal_generate_rand_seed() can be removed entirely
for this platform.

e Functions
o adc_irg_handler()
o adc_get data()
o adc_is_channel_irg_status_set()
o adc_linitialize()
o These functions are helper functions for the obsolete function

pal_generate_rand_seed() and can be removed completely as well.

2025H-MCU Wireless-08/10

e Function timer_init_non_generic()
e Function trx_interface_init()
o While the board of the base platform connects the transceiver to the
MCU via SPIO, the target platform uses SPI1. The pins of the
AT91SAM7X256 used for SPI1 are still controlled via PIO-A, but used
as “Peripheral A”. For more information about the used pins for the SPI
see 11.3.2.8. In order to use SPI1, change
/**
* @brief Initializes the transceiver interface
* This function initializes the transceiver interface.
* This board uses SPIO.
*/
void trx_interface_init (void)
{
/*

* Peripheral A.

*/
AT91C_BASE_PIOA->PIO_ASR = (MISO | MOSI | SCK);
AT91C_BASE_PIOA->PIO_PDR = (MISO | MOSI | SCK);

AT91C_BASE_PIOA->PIO_ASR = TRX_INTERRUPT_PIN;
AT91C_BASE_PIOA->PIO_PDR = TRX_INTERRUPT_PIN;

/* Set SEL as output pin. */
AT91C_BASE_PIOA->PIO_OER = SEL;
AT91C_BASE_PIOA->PIO_PER = SEL;

/*
* Used peripheral interface is SPIO.
* The clock to the utilized SPI 0 peripheral is enabled.
*/
AT91C_BASE_PMC->PMC_PCER = _BV(AT91C_ID_SPIO);
to
/**
* Q@brief Initializes the transceiver interface
*
* This function initializes the transceiver interface.
* This board uses SPIL.
*/
void trx_interface_init (void)
{
/*

* Peripheral B.
*/

AIMEL 167

2025H-MCU Wireless-08/10 I ——

AIMEL

T

AT91C_BASE_PIOA->PIO_BSR
AT91C_BASE_PIOA->PIO_PDR

AT91C_BASE_PIOA->PIO_ASR
AT91C_BASE_PIOA->PIO_PDR

/* Set SEL as output pin.

AT91C_BASE_PIOA->PIO_OER
AT91C_BASE_PIOA->PIO_PER

/*

= (MISO | MOSI | SCK);
= (MISO | MOSI | SCK);

= TRX_INTERRUPT_PIN;
= TRX_INTERRUPT_PIN;

*/
= SEL;
= SEL;

* Used peripheral interface is SPIL.

* The clock to the utilized SPI 1 peripheral is enabled.

*/
AT91C_BASE_PMC->PMC_PCER

11.3.2.8 Step 8 - File pal_config.h

= _BV(AT91C_ID_SPI1);

This header file contains configuration parameters for the target platform such as CPU
frequency for this particular board, IRQ pins, pins between transceiver and MCU, LED
pins, button pins, timer clock source definitions, debug macros, etc.

The following items within this file need to be updated according to the target board’s

needs or at least checked for correctness.

¢ Enum definition for PIOs, LEDs, and buttons: Remain unchanged
¢ Clock frequency selection (F_CPU) and corresponding defines: Remain unchanged
¢ Mapping of TRX IRQs to MCU pins (TRX_INTERRUPT_PIN)

o This defines the interrupt pin used for the transceiver interrupt and is
derived from the actual pin on the MCU where the transceiver interrupt

line is connected to

o In case the transceiver interrupt is routed to a different MCU pin
(providing interrupt handling) this interrupt vector needs to be updated

too
o Remain unchanged

e Configuration of Advanced Interrupt Controller (AIC_CPONFIGURE()): Remain

unchanged
¢ |IRQ Macros: Change the comments
/%
* AT86RF230B:

*

* TRX_MAIN_IRQ HDLR_IDX

* TRX interrupt mapped to MCU IRQO pin and TIOA line of

* timer channel O
* TRX_TSTAMP_IRQ HDLR_IDX
* Not used
*/
to
/*
* AT86RF231:

168 AVR2025

2025H-MCU Wireless-08/10

* TRX_MAIN_TIRQ_HDLR_IDX

* TRX interrupt mapped to MCU IRQO pin and TIOA line of

* timer channel 0

* TRX_TSTAMP_TIRQ_HDLR_IDX

Time stamping interrupt, not used for this board,

* since the DIG2 pin of the 231 transceiver is not routed

* as an additional interrupt to the MCU.

Timestamping is done similar to the 230 implementation.
* Make sure that the build switch "DISABLE_TSTAMP_IRQ"
*
*/

¢ Number of transceiver interrupts (NO_OF_TRX_IRQS):

This is set to 1 for all AT86RF230B platforms and remains unchanged. Add the
following comment:

is set in the corresponding project files.

/* Number of used TRX IRQs in this implementation */
/*
* Even 1f the 231 transceiver generally provides
* an additional interrupt for convenient timestamping,
* it is not used for this board.
*/
#define NO_OF_TRX_IRQS (1)
e Macros for handling transceiver interrupts (enabling, disabling, clearing of transceiver
interrupts): Remain unchanged
e Macro for critical region with respect to transceiver interrupts: Remain unchanged

e PAL_USE_SPI_TRX: Remains unchanged, since AT91SAM7X256 uses SPI as
interface to the transceiver

¢ SPI registers and pins: In case the transceiver is connected differently than on the
base platform, these SPI registers and pins used on the MCU need to be updated.
Change:

/*
* SPI Base Register:
* SPI0 is used with REX ARM Rev. 2.
*/
#define AT91C_BASE_SPI_USED (AT91C_BASE_SPIO)
/* RESET pin is pin 9 of PIOA. */
#define RST (AT91C_PIO_PA9)

/* Sleep Transceiver pin is pin 8 of PIOA. */

#define SLP_TR (AT91C_PIO_PAS8)
/*
* Slave select pin is PAl4
*/
#define SEL (AT91C_PAl4_SPIO_NPCS2)
/*
* SPI Bus Master Output/Slave Input pin is PAl7
*/
#define MOSI (AT91C_PA17_SPIO_MOSTI)

AIMEL 169

2025H-MCU Wireless-08/10 I ——

170

to

AVR2025

AIMEL

T

/*
* SPI Bus Master Input/Slave Output pin is PAl6
*/
#define MISO (AT91C_PAl6_SPIO_MISO)
/*
* SPI serial clock pin is PALS
*/
#define SCK (AT91C_PA18_SPIO_SPCK)

/*

* SPI Base Register:

* SPI1 is used with REX ARM Rev. 3.

*/

#define AT91C_BASE_SPI_USED (AT91C_BASE_SPI1)
/* RESET pin is pin 9 of PIOA. */

#define RST (AT91C_PIO_PA9)

/* Sleep Transceiver pin is pin 8 of PIOA. */

#define SLP_TR (AT91C_PIO_PAS)

/*

* Slave select pin is PA21

*/

#define SEL (AT91C_PA21_SPI1_NPCSO)
/*

* SPI Bus Master Output/Slave Input pin is PA23

*/

#define MOSI (AT91C_PA23_SPI1_MOSTI)
/*

* SPI Bus Master Input/Slave Output pin is PA24

*/

#define MISO (AT91C_PA24_SPI1_MISO)
/*

* SPI serial clock pin is PA22

*/

#define SCK (AT91C_PA22_SPI1_SPCK)

in order to reflect the utilization of SPI as transceiver interface.
TRX GPIO pins: Remain unchanged

Short PAL waiting delays (PAL_WAIT_65_NS(),PAL_WAIT_500_NS,
PAL_WAIT_1_US): Remains unchanged

Timeout macros (MIN_TIMEOUT, MAX_TIMEOUT, MIN_DELAY_VAL): Remains
unchanged since this platform uses the same timer implementation as the base
platform

Timer source macros:
o TIMER_SRC_DURING_TRX_AWAKE
o TIMER_SRC_DURING_TRX_SLEEP

o These macros specify which timer source is used on this system when
the transceiver is awake or sleeping

2025H-MCU Wireless-08/10

o Remains unchanged for this platform since the same timer sources are
used as for the base platform

TIME_STAMP_REGISTER: Remains unchanged, since the target platform uses the
same register for time stamping as the base platform

TRX Access macros for SPI: Remain unchanged

e LED pins and joystick: Remains unchanged

e Alert initialization and indication macros: Remain unchanged since the same ports
for the LEDs are used as for the base platform

e ADC Initialization values: Remove completely since ADC is not used for random
number generation

11.3.3 Bring-up of an existing (MAC) Application on the Target Platform

The task of bringing-up an already existing application on the new target platform is
explained in this section by the example of a target platform
“REB_4_0_2 REX_ARM_REV_3” based on the ARM7 MCU AT91SAM7X256. A
similar example based on the MCU ATxmega256A3 during the course of bringing-up a
new MCU is explained in detail in section 11.5.

The same steps are to be performed for all other target platforms/boards that shall be
used. Each step is first described generally and then specifically described in detail for
porting the existing code from the base platform “REB_2_3_REX_ARM_REV_2" (using
AT86RF230B with AT91SAM7X256) to the target platform
“REB_4_0_2 REX_ARM_REV_3" using AT86RF231 with AT91SAM7X256.

¢ Step 1: Identify the application that shall be ported. This requires that all peripherals
required by the application need to be supported (such as SIO support, LEDs,
buttons). For more information about the requirements of existing applications see
section 9.2.

e Step 2: Identify the best matching base platform already supported within this
application. Duplicate the directory of the base platform within this application and
rename it according to your target platform.

e Step 3: Update the GCC Makefile. Independent from whether the target application
is built from command line using make or AVRStudio project file (APS-files), which
also use external Makefiles themselves, the Makefile needs to be updated to cope
with the target platform. This includes

o Build specific properties such as
* TAL_TYPE
» PAL_TYPE
* PAL_GENERIC_TYPE
* BOARD_TYPE
o The MCU type
o The selected SIO channel in case stream /O is used within the
particular application
» [|f the build switch SIO HUB is set in the Makefile
(-DSIO_HUB), also one of the following (currently supported)
SIO channels needs to be enabled as well
-DUARTO

-DUARTH1
-DUSBO

* [f the build switch SIO_HUB is not set, no further SIO channel
needs to be defined

AIMEL 7

2025H-MCU Wireless-08/10 I ——

AIMEL

T

o Other specific build and link options if required

e Step 4: Update the IAR project files. Usually all required changes for the IAR
Workbench are to done in the ewp file. This includes changing of the paths for
includes and source files referring to the proper MCU. Also the proper MCU needs to
be selected within the options for this project. Other changes may include updating
the proper SIO channel, etc.

11.3.3.1 Step 1 - Identify the Application to be ported to the Target Platform

The MAC application Star_Nobeacon shall be enabled on the target board
AT91SAM7X-EK with Radio Extender board REB231 V4.0 on REX_ARM adapter
Revision 3 (REB_4_0_2 REX_ARM_REV_3). For more information about the platform
bring-up for this target platform see the previous sections. This MAC application is
located in directory

Application/MAC_Examples/Star_Nobeacon.

11.3.3.2 Step 2 - Identify the best matching Base Platform

172

AVR2025

The best matching base platform for the target board

AT91SAM7X-EK with Radio Extender board REB231 V4.0 on REX_ARM adapter

Revision 3 (REB_4_0_2_REX_ARM_REV_3)

is the AT91SAM7X-EK with Radio Extender board REB230B V2.3 on REX_ARM

adapter Revision 2 (REB_2_3 REX_ARM_REV_2).

This entire build files for this particular base platform are located in directory
AT86RF230B_AT91SAM7X256_REB_2_3_REX_ARM_REV_2

within the application directory

Applications/MAC_Examples/Star_Nobeacon/.

The entire directory
Applications/MAC_Examples/Star_Nobeacon/
AT86RF230B_AT91SAM7X256_REB_2_3_REX_ARM _REV_2

is copied and renamed
Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_AT91SAM7X256_REB_4_0_2_REX_ARM_REV_3

Usually the directory name for applications consists of the following items to uniquely

identify the target platform:

e TAL _TYPE (= AT86RF231)

e PAL_TYPE (= AT91SAMX256)

¢ PAL_GENERIC_TYPE (= ARM7)

e BOARD_TYPE (=REB_4_0_2 REX_ARM_REV_3)

Attention: Make sure that the build switch “HIGHEST_STACK_LAYER” is not changed.
This build switch always needs to reflect the proper highest stack layer that the
application is residing on. In case of a MAC application (such as the Star_Nobeacon)
the application is residing on top of the MAC, so “HIGHEST_STACK_LAYER” needs to
be MAC. If this is not properly set, this leads to undefined behavior during the build
process or during application usage.

2025H-MCU Wireless-08/10

11.3.3.3 Step 3 — Update the GCC Makefile

Currently the GCC build is not supported for ARM7 based boards. For an example how
to port applications for MCU families with GCC support within this software package
(such as AVR or Xmega MCUs) see section 11.4.3.3.

11.3.3.4 Step 4 — Update the IAR project files

The IAR project files for an ARM7 based project (Star.ewd, Star.ewp, Star.eww, and
flash.icf) of the target board which were duplicated from the base platform/board are
now located in the application build directory of the target platform, i.e.

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_AT91SAM7X256 _REB 4 0 2 REX ARM_REV_3.

In order to support the target platform the file Star.ewp needs to be updated as follows:

¢ Change the TAL_TYPE from
<state>TAL_TYPE=AT86RF230B</state>
to

<state>TAL_TYPE=AT86RF231</state>

¢ Change the BOARD_TYPE from
<state>BOARD_TYPE=REB_2_3_REX_ARM_REV_2</state>
to

<state>BOARD_TYPE=REB_4_0_2_REX_ARM REV_3</state>

¢ Since the target board does not use the Timestamp interrupt from the AT86RF231
add the following build option

<state>DISABLE_TSTAMP_IRQ</state>
¢ Change all occurrences of

REB_2_3_REX_ARM_REV_2

to

REB_4_0_2_REX_ARM_REV_3
¢ Change all occurrences of

AT86RF230B

to

AT86RF231

Since the MCU type is note changed, the build switches PAL_GENERIC_TYPE and
PAL_TYPE remain unchanged.

11.4 Bring-up of a new MCU based on a supported MCU Family

11.4.1 Implementation of PAL for Target Platform

The task of bringing-up a new MCU (“target MCU”) within an already supported MCU
family is explained in general within this section and furthermore by the example of a
platform based on the ATxmega256A3 in section 11.4.2. The same steps are to be
performed for all other MCUs that shall be used.

AIMEL 173

2025H-MCU Wireless-08/10 I ——

AIMEL

T

11.4.1.1 Phase1: General Preparation for Target Platform

The first phase is a simple preparation phase. It provides the required directory and file
structure for the target MCU and defines proper build switches required for the target

platform.

e Step 1: Identify the MCU family for the target MCU

o

o

Each supported MCU family is identified by a specific value of the build
switch PAL_GENERIC_TYPE.

For a list of all currently supported MCU families check file
PAL/Inc/pal_types.h for defined values of PAL_GENERIC_TYPE.

For more information see also section 10.1.

e Step 2: Add the target MCU to the selected PAL_GENERIC_TYPE in file
PAL/Inc/pal_types.h.

¢ Step 3: Identify an already supported MCU that best fits the target MCU to start the
porting (“base MCU”).

o

o

Each supported MCU is identified by a specific value of the build switch
PAL_TYPE.

For a list of all currently supported MCU check file PAL/Inc/pal_types.h
for defined values of PAL TYPE within the selected
PAL_GENERIC_TYPE.

For more information see also section 10.2.

e Step 4: Copy the PAL directory of the base MCU in a separate directory within the
same MCU family and name it according to the target MCU.

¢ Step 5: Identify an already existing board type (“base board”) within the directory of
the target MCU that best fits the new board to be supported (“target board”).

o

Each supported board with the newly created directory contains a
“board” directory including file pal_boardtypes.h and least one specific
board directory.

Select the base board for the target board.

Other boards within target board directory that are obsolete may be
removed.

¢ Step 6: Rename the target board (optional).

o

In case the selected target board shall to be renamed, file
pal_boardtypes.h with in target MCU directory needs to be updated
with the new board type. Also the target directory needs to be renamed
matching the new board type. For more information see section 11.3.

e Step 7: Rename all occurrences of base MCU to target MCU.

11.4.1.2 Phase2: Actual Porting to Target Platform

174

AVR2025

This section describes the actual porting phase once the directory and file structure of
the target platform has been established.

The directory of the target platform contains currently three directories (same as for the

base platform):

e Boards
e Inc
e Src

2025H-MCU Wireless-08/10

Within the next phase all hardware resources need to be adjusted from the base
platform to fit the resources of the target platform, such as timers, IRQs, ports, LEDs,
buttons, ports and registers for SIO support, etc. This is explained in the subsequent
steps.

The main changes for a new platform need to be done in directory Boards in the
subdirectory for the target board. In the current example change to directory

PAL/XMEGA/ATXMEGA256A3/Boards/REB_4_1_STK600.
In this directory the following three files are located:

e pal_board.c

e pal_irg.c

e pal_config.h

All of these files are now adapted to the target platform needs step by step.

e Step 8: File pal_irqg.c
This source file contains functions to initialize, enable, disable and install handler for the

transceiver interrupts. It needs to be updated to match the requirements of the target
board when handling the transceiver interrupts (see example in section 11.4.2.8).

e Step 9: File pal_board.c

This source file contains board specific functions to initialize and handle peripherals
(such as LEDs, buttons, GPIO to the transceiver). It needs to be updated to match the
requirements of the target board when handling these peripherals.

¢ Step 10: File pal_config.h

This header file contains configuration parameters for the target platform such as CPU
frequency for this particular board, IRQ pins, pins between transceiver and MCU, LED
pins, button pins, timer clock source definitions, debug macros, etc. It needs to be

updated to match the requirements of the target board (see example in section
11.4.2.10).

¢ Step 11: File pal_sio_hub.c in directory Src

o The file pal_sio_hub.c within the Src directory of the target MCU is a
source containing the hub functionality for all serial I/O related
functionality. This included currently UART and/or USB.

o Depending on the available and utilized serial 1/0 peripherals on the

target MCU (please check the corresponding data sheet of the target
MCU) and board this file needs to be updated.

11.4.2 Example Implementation of PAL for ATxmega256A3

This section describes the porting activities explained in the previous sections in
general more specifically for the example of porting an existing software package to the
new target MCU ATxmega256A3 (on the STK600 board with REB to STK600 Adapter
and Radio Extender board REB231ED V4.1.1).

11.4.2.1 Step 1 - Identify the MCU Family of the new MCU

2025H-MCU Wireless-08/10

The target MCU is the ATxmega256A3. It is a member of the ATxmega AVR family.
Therefore new code of this MCU is based on the PAL_GENERIC_TYPE=XMEGA.

AIMEL 175

AIMEL

T

11.4.2.2 Step 2 - Add the new MCU to File pal_types.h

To add support for ATxmega256A3, open file PAL/Inc/pal_types.h and add the
ATxmega256A3 to the section where all ATxmega MCUs are listed. Use a non-existing
unique value for the target MCU.

Example:

#elif (PAL_GENERIC_TYPE == XMEGA)
/* PAL_TYPE for XMEGA MCUs */

#define ATXMEGA128A1 (0x01)
#define ATXMEGA256A3 (0x02)
#elif (PAL_GENERIC_TYPE == AVR32)

For better readability the target MCU has been added to reflect the alphabetical order of
the MCU directory name. Also the existing values of the defines have been updated.
The actual numerical value of each define is not important, as long as each MCU within
a specific PAL_GENERIC_TYPE has a unique value.

11.4.2.3 Step 3 - Identify an already supported MCU that best fits the new MCU as base MCU

From all currently supported MCUs within the ATxmega family the ATXMEGA128A1 is
selected as base MCU to start the porting to the target MCU ATXMEGA256A3.

11.4.2.4 Step 4 - Copy the PAL directory of the base MCU

Example:

Copy the entire directory PAL/XMEGA/ATXMEGA128A1 and rename it to directory
PAL/XMEGA/ATXMEGA256A3. Your directory PAL/XMEGA now contains the following
entries:

ATXMEGA128A1

ATxmega256A3

Generic

The directory ATxmega256A3 currently contains the identical code from the directory
ATXMEGA128A1 (from the base MCU). It comprises of the following directories:
Boards
Inc

Src

11.4.2.5 Step 5 - Identify the Base Board best fitting the Target Board

176

AVR2025

Within the board directory of the target MCU (PAL/XMEGA/ATXMEGA256A3/Boards) a
variety of subdirectories are existing. Please remove all directories except
REB_4_1_STK600. Now the following entries are existing:

¢ Directory REB_4_1_STK600

e File pal_boardtypes.h

The directory REB_4_1_STK600 contains the board implementation for the transceiver
AT86RF231 based on the board REB231ED V4.1.1 on top of an STK600 board with
REB to STK600 Adapter. For more information about this platform see sections
10.4.2.4 and 10.4.3.1.

2025H-MCU Wireless-08/10

For simplicity reason it is assumed that the same platform is used, and only the MCU
shall be replaced. For more information about how to bring-up a new board, see also
section 11.3.

11.4.2.6 Step 6 - Rename the target board

The file pal_boardtypes.h contains entries inherited form the base platform. All obsolete
entries (except of REB_4 1_STK600) may be removed if desired. In this example all
entries are kept since this allows for the easy extension of the boards later.

11.4.2.7 Step 7 - Rename all occurrences of base MCU to target MCU

Within the entire directory PAL/XMEGA/ATXMEGA256A3 all occurrences of the string
“ATXMEGA128A1” are searched and replaced by the target MCU “ATXMEGA256A3”.
In this example this needs to be done in the following files:

¢ PAL/XMEGA /ATXMEGA256A3/Boards/pal_boardtypes.h

e PAL/XMEGA /ATXMEGA256A3/Boards/REB_4_1_STK600/pal_config.h

11.4.2.8 Step 8 - File pal_irg.c

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.9 Step 9 - File pal_board.c

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.10 Step 10 - File pal_config.h

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.11 Step 11 - File pal_sio_hub.c in directory Src

No changes need to be done in this file.

11.4.3 Bring-up of an existing Application on the Target Platform

The task of bringing-up an already existing application on a new target platform is
explained by the example of a platform based on the ATxmega256A3. The same steps
are to be performed for all other MCUs that shall be used. Each step is first described
generally and then specifically described in detail for porting the existing code to the
ATxmega256A3.

Please note that the opposite task of bringing up a new application for an existing
platform is explained in section 11.5.

¢ Step 1: Identify the application that shall be ported. This requires that all peripherals
required by the application need to be supported (such as SIO support, LEDs,
buttons). For more information about the requirements of existing applications see
section 9.2.

e Step 2: Identify the best matching base platform already supported within this
application. Duplicate the directory of the base platform within this application and
rename it according to your target platform.

e Step 3: Update the GCC Makefile. Independent from whether the target application
is built from command line using make or AVRStudio project file (APS-files), which

AIMEL 177

2025H-MCU Wireless-08/10 I ——

AIMEL

T

also use external Makefiles themselves, the Makefile needs to be updated to cope
with the target platform. This includes
o Build specific properties such as
* TAL_TYPE
» PAL_TYPE
* PAL_GENERIC_TYPE
* BOARD_TYPE
o The MCU type
o The selected SIO channel in case stream /O is used within the
particular application
= |f the build switch SIO HUB is set in the Makefile
(-DSIO_HUB), also one of the following (currently supported)
SIO channels needs to be enabled as well
-DUARTO

-DUARTH1
-DUSBO

* |f the build switch SIO_HUB is not set, no further SIO channel
needs to be defined

o Other specific build and link options if required

e Step 4: Update the IAR project files. Usually all required changes for the IAR
Workbench are to done in the ewp file. This includes changing of the paths for
includes and source files referring to the proper MCU. Also the proper MCU needs to
be selected within the options for this project. Other changes may include updating
the proper SIO channel, etc.

¢ Step 5: Update the AVR Studio Project files (aps files). This includes changing of the
paths for includes and source files referring to the proper MCU. All other items are
already within the external Makefiles that are called during the build process.

11.4.3.1 Step 1 - Identify the Application to be ported to the Target Platform

The MAC application Star_Nobeacon shall be enabled on the target platform
ATxmega256A3 MCU based on REB231ED V4.1.1 on top of an STK600 board. For
more information about the platform bring-up for this target platform see the previous
sections. The MAC or TAL must not be changed, since these layers residing on top of
the PAL are completely independent from the selected platform. This MAC application
is located in directory

Application/MAC_Examples/Star_Nobeacon.

11.4.3.2 Step 2 - Identify the best matching Base Platform

178

The best matching base platform for an ATxmega256A3 placed on the STK600 board
with REB to STK600 Adapter and Radio Extender board REB231ED V4.1.1 (with
AT86RF231) is the ATxmegal128A1 on the same hardware setup (STK600 board with
REB to STK600 Adapter and Radio Extender board REB231ED V4.1.1, see section
10.4.2.4 and 10.4.3.1). This entire build files for GCC and IAR for this particular base
platform are located in directory

AT86RF231_ATXMEGA128A1_REB_4_1_STK600
within the application directory

Applications/MAC_Examples/Star_Nobeacon/.
The entire directory

AVR2025

2025H-MCU Wireless-08/10

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA128A1_REB_4_1_STK600

is copied and renamed to
Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600

Usually the directory name for applications consists of the following items to uniquely
identify the target platform:

e TAL_TYPE (= AT86RF231)

e PAL_TYPE (= ATXMEGA128A1)

e PAL_GENERIC_TYPE (= XMEGA)

e BOARD_TYPE (= REB_4_1_STK600)

Attention: Make sure that the build switch “HIGHEST_STACK_LAYER” is not changed.
This build switch always needs to reflect the proper highest stack layer that the
application is residing on. In case of a MAC application (such as the Star_Nobeacon
example) the application is residing on top of the MAC, so “HIGHEST_STACK_LAYER”
needs to be MAC. If this is not properly set, this leads to undefined behavior during the
build process or during application usage.

11.4.3.3 Step 3 — Update the GCC Makefile

2025H-MCU Wireless-08/10

The Makefile of the target platform which was duplicated from the base platform is now
located in the GCC directory of the target platform, i.e.

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target platform this Makefile needs to be updated as follows:

e Update the build specific properties from
_TAL_TYPE = AT86RF231
_PAL_TYPE = ATXMEGA128Al1
_PAL_GENERIC_TYPE = XMEGA
_BOARD_TYPE = REB_4_1_STK600
to

_TAL_TYPE = AT86RF231
_PAL_TYPE = ATXMEGA256A3
_PAL_GENERIC_TYPE = XMEGA
_BOARD_TYPE = REB_4_1_STK600

In the described example only the PAL_TYPE needs to be changed. Make sure that the
PAL_TYPE (i.e. the variable in the Makefile) is set identical to the target directory in the
PAL that was created for the new platform (see sections 11.4.2.2 and 11.4.2.4), since
the PAL_TYPE is used within directory names.

¢ Update the MCU type from
MCU = atxmegal28al
to

MCU = atxmegazb6a3

¢ Updating the SIO channel (e.g. UART1, etc.) is not required here, since this
application does not use SIO functionality.

AIMEL 179

AIMEL

T

11.4.3.4 Step 4 — Update the IAR project files

The IAR project files (Star.eww and Star.ewp) of the target platform which were
duplicated from the base platform are now located in the application build directory of
the target platform, i.e.

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target platform the file Star.ewp needs to be updated as follows:

¢ Select the proper MCU (ATxmega256A3) for this project within IAR Workbench.
¢ Correct the proper used SIO channel is not required for here, since this application

does not use SIO functionality. This can be done using an XML editor or within IAR
Workbench.

e Change all occurrences of “ATXMEGA128A1”, which are used as path names for
directories and files to “ATXMEGA256A3”. This can be done using an XML editor, a
regular text editor, or within IAR Workbench.

11.4.3.5 Step 5 - Update the AVR Studio Project files

The AVR Studio project file (i.e. aps file) of the target platform which were duplicated
from the base platform are now located in the application build directory of the target
platform, i.e.

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target platform the file Star.aps needs to be updated as follows:

e Change all occurrences of “ATXMEGA128A1”, which are used as path names for
directories and files to “ATXMEGA256A3”. This can be done using an XML editor or
a regular text editor.

11.5 Bring-up of an new Application on an existing Platform

180

The task of bringing-up a new application on an existing platform is explained by the
MAC example application Promiscuous_Mode_Demo for a supported platform based
on the ATxmega256A3. The same steps are to be performed for all other MCUs that
shall be used, or all other applications respectively. Each step is first described
generally and then specifically explained in detail for bringing-up the
Promiscuous_Mode Demo.

Please note that the opposite task of bringing up a new platform on an existing
application is explained in section 11.4.3.

e Step 1: Identify a matching base application already supported for this platform.
Duplicate the directory of the base application for this platform to the corresponding
target platform.

e Step 2: Update the GCC Makefiles. Independent from whether the target application
is built from command line using make or AVRStudio project file (APS-files), which
also use external Makefiles themselves, the Makefile needs to be updated to cope
with the target application. This includes the following steps:

o Replace occurrences of the name of base application with the target
application (e.g. replace “Star” with “Promiscuous_Mode_Demo”).
Update the required path variables (“# Path variables”)

Update the required compiler options (“CFLAGS”); this includes
updating the required SIO handling switches

AVR2025

2025H-MCU Wireless-08/10

o Update the required include directories (“INCLUDES”)
o Update the required list of object files for the linker (“OBJECTS”)
o Update the compile section for the source files (“## Compile”)

e Step 3: Update the IAR project files. Usually all required changes for the IAR
Workbench are to done in the ewp file. This includes updating of the paths for
includes and updating of the required source files. Other changes may include
updating the proper SIO channel, etc.

e Step 4: Update the AVR Studio Project files (aps files). This includes replacing
occurrences of the name of base application with the target application (e.g. replace
“Star” with “Promiscuous_Mode_Demo”). All other items are already within the
external Makefiles that are called during the build process.

11.5.1 Step 1 - Identify a matching Base Application

The MAC application Promiscuous_Mode_Demo (target application) shall be enabled
on the existing platform ATxmega256A3 MCU based on REB231ED V4.1.1 on top of an
STK600 board. For more information about the platform bring-up for this target platform
see section 11.4. This target application is located in directory

Application/MAC_Examples/Promiscuous_Mode_Demo.

A matching base application for this MAC application is the Star_Nobeacon application.
The platform ATxmega256A3 MCU based on REB231ED V4.1.1 is already supported
for this base application.

All required build files for GCC and IAR for this particular base application are located in
directory

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ ATXMEGA256A3_REB_4_1_STK600.

This entire directory is copied to the target application directory. Now the following
directory exists:

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600.

This directory now contains the following entries:

¢ GCC/Makefile

¢ GCC/Makefile_Debug

e Star.aps

e Star.ewp

e Star.eww

Now rename the project files as required for the target application, i.e. rename all files

Star.* to Promiscuous_Mode_Demo.*.
11.5.2 Step 2 — Update the GCC Makefile

The Makefiles of the target application which was duplicated from the base application
is now located in the GCC directory of the target application, i.e.

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target application these Makefiles need to be updated as follows:

e Replace occurrences of the name of base application “Star” with the name of the
target application Promiscuous_Mode_Demo “Promiscuous_Mode Demo”. This is

AIMEL 181

2025H-MCU Wireless-08/10 I ——

AIMEL

T

required in comments and for specifying the generated output files (“PROJECT =
..
¢ Add the path for the generic SIO support functions (see section 9.3):
PATH_SIO_SUPPORT = $(MAIN_DIR)/Applications/Helper_Files/SIO_Support
e Enable SIO support for this application via the supported SIO channel. In this
example UART1 is used. Change
CFLAGS += -Wall -Werror -g -Wundef -std=c99 -Os
to

CFLAGS += -Wall -Werror -g -Wundef -std=c99 -DSIO_HUB -DUART1 -Os

e Update the used and/or unused compiler flags. The base example application
(Star_Nobeacon) used the compiler switches FFD and REDUCED_PARAM_CHECK
that are not required anymore for the target application. On the other hand the target
application requires the build switch PROMISCUOUS_MODE. Therefore change

CFLAGS += —-DDEBUG=0

CFLAGS += -DFFD

CFLAGS += -DREDUCED_PARAM_CHECK

CFLAGS += —-DTAL_TYPE=$ (_TAL_TYPE)

CFLAGS += —-DPAL_GENERIC_TYPE=$ (_PAL_GENERIC_TYPE)

CFLAGS += —-DPAL_TYPE=$ (_PAL_TYPE)

CFLAGS += —-DBOARD_TYPE=$ (_BOARD_TYPE)

CFLAGS += —-DHIGHEST_STACK_LAYER=$ (_HIGHEST_STACK_LAYER)
to

CFLAGS += —-DDEBRUG=0
CFLAGS += —-DPROMISCUOUS_MODE
CFLAGS += -DTAL_TYPE=$ (_TAL_TYPE)
CFLAGS += -DPAL_GENERIC_TYPE=$ (_PAL_GENERIC_TYPE)
CFLAGS += -DPAL_TYPE=$ (_PAL_TYPE)
CFLAGS += -DBOARD_TYPE=$ (_BOARD_TYPE)
CFLAGS += —-DHIGHEST_STACK_LAYER=S$ (_HIGHEST_STACK_LAYER)
e Update the used and/or unused include directories in the Makefile. The base
example application (Star_Nobeacon) did not use SIO support, so this needs to be

added to the target application in order to allow for the inclusion of sio_handler.h.
Add the following include path by changing

Include directories for application
INCLUDES = -I $(APP_DIR)/Inc
Include directories for general includes
INCLUDES += -I $(MAIN_DIR)/Include

to

Include directories for application
INCLUDES = -I $(APP_DIR)/Inc
Include directories for SIO support
INCLUDES += -I $(PATH_SIO_SUPPORT)/Inc
Include directories for general includes
INCLUDES += -I $(MAIN_DIR)/Include
¢ Update the used and/or unused object files to the list of OBJECTS in the Makefile.

Since the Promiscuous Mode Demo application only uses three MAC
callback functions itself (usr_mcps_data_ind(),

|
182 AV R 2 025 2025H-MCU Wireless-08/10

usr_mlme_reset_conf (), and usr_mlme_set_conf()), all other callbacks
need to be added as stubs by adding the following lines. For more
information about MAC stub functions see 9.4. Change

Objects that must be built in order to link
OBJECTS = $(TARGET_DIR)/main.o\
$ (TARGET_DIR) /pal_uart.o\

$ (TARGET_DIR) /mac_api.o \

$ (TARGET_DIR) /usr_mcps_purge_conf.o \

S (TARGET_DIR) /usr_mlme_beacon_notify_ind.o \
S (TARGET_DIR) /usr_mlme_disassociate_conf.o \
S (TARGET_DIR) /usr_mlme_disassociate_ind.o \
$(TARGET_DIR) /usr_mlme_get_conf.o \

$ (TARGET_DIR) /usr_mlme_orphan_ind.o \

S (TARGET_DIR) /usr_mlme_poll_conf.o \

S (TARGET_DIR) /usr_mlme_rx_enable_conf.o \

S (TARGET_DIR) /usr_mlme_sync_loss_ind.o

to

Objects that must be built in order to link
OBJECTS = $(TARGET_DIR)/main.o\

S (TARGET_DIR) /sio_handler.o\

$ (TARGET_DIR) /pal_uart.o\

$ (TARGET_DIR) /mac_api.o \
$(TARGET_DIR) /usr_mcps_data_conf.o \
$ (TARGET_DIR) /usr_mcps_purge_conf.o \
S (TARGET_DIR) /usr_mlme_associate_conf.o \
S (TARGET_DIR) /usr_mlme_associate_ind.o \
S (TARGET_DIR) /usr_mlme_beacon_notify_ind.o \
S (TARGET_DIR) /usr_mlme_comm_status_ind.o \
S (TARGET_DIR) /usr_mlme_disassociate_conf.o \
S (TARGET_DIR) /usr_mlme_disassociate_ind.o \
S (TARGET_DIR) /usr_mlme_get_conf.o \
$ (TARGET_DIR) /usr_mlme_orphan_ind.o \
S (TARGET_DIR) /usr_mlme_poll_conf.o \
S (TARGET_DIR) /usr_mlme_rx_enable_conf.o \

S (TARGET_DIR) /usr_mlme_scan_conf.o \

$(TARGET_DIR) /usr_mlme_start_conf.o \

$ (TARGET_DIR) /usr_mlme_sync_loss_ind.o
¢ Update the used and/or unused list of files to be compiled. Change

Compile
S (TARGET_DIR) /main.o: $(APP_DIR)/Src/main.c
$(CC) $(INCLUDES) $(CFLAGS) -c -0 $@ $<

$ (TARGET_DIR) /pal_uart.o:
$ (PATH_PAL) /$ (_PAL_GENERIC_TYPE) /Generic/Src/pal_uart.c

$(CC) —-c $(CFLAGS) $(INCLUDES) -o $@ s$<
to

AIMEL 183

2025H-MCU Wireless-08/10 I ——

AIMEL

T

Compile
S (TARGET_DIR)/main.o: $(APP_DIR)/Src/main.c
$(CC) $(INCLUDES) $(CFLAGS) -c -o $@ $<

S (TARGET_DIR) /sio_handler.o:
S (PATH_SIO_SUPPORT) /Src/sio_handler.c

$(CC) $(INCLUDES) $(CFLAGS) -c -o $@ $<

$ (TARGET_DIR) /pal_uart.o:
$ (PATH_PAL) /$ (_PAL_GENERIC_TYPE) /Generic/Src/pal_uart.c

$(CC) —-c $(CFLAGS) $(INCLUDES) -o $@ s$<

11.5.3 Step 3 — Update the I1AR project files

184

The IAR project files (Promiscuous_Mode_Demo.eww and
Promiscuous_Mode_Demo.ewp) of the target application are now located in the
directory

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target application these project files need to be updated as
follows:

e Replace occurrences of the name of base application “Star” with the name of the
target application Promiscuous_Mode_Demo “Promiscuous_Mode_Demo”. This is
required in both project files.

e Enable SIO support for this application via the supported SIO channel. In this
example UART1 is used. Also update the used and/or unused compiler flags. The
base example application (Star_Nobeacon) used the compiler switches FFD and
REDUCED_PARAM_CHECK that are not required anymore for the target
application. On the other hand the target application requires the build switch
PROMISCUOUS_MODE. In file Promiscuous_Mode_Demo.ewp change

<name>CCDefines</name>
<state>DEBUG=0</state>
<state>FFD</state>
<state>REDUCED_PARAM_CHECK</state>
<state>TAL_TYPE=AT86RF231</state>
<state>PAL_TYPE=ATXMEGA256A3</state>
<state>PAL_GENERIC_TYPE=XMEGA</state>
<state>BOARD_TYPE=REB_4_1_STK600</state>
<state>HIGHEST_STACK_LAYER=MAC</state>
to
<name>CCDefines</name>
<state>DEBUG=0</state>
<state>PROMISCUOUS_MODE</state>
<state>SIO_HUB</state>
<state>UART1</state>
<state>TAL_TYPE=AT86RF231</state>

<state>PAL_TYPE=ATXMEGA256A3</state>

AVR2025

2025H-MCU Wireless-08/10

2025H-MCU Wireless-08/10

<state>PAL_GENERIC_TYPE=XMEGA</state>
<state>BOARD_TYPE=REB_4_1_STK600</state>

<state>HIGHEST_STACK_LAYER=MAC</state>

e Update the used and/or unused include directories in file
Promiscuous_Mode_Demo.ewp. The base example application (Star_Nobeacon) did
not use SIO support, so this needs to be added to the target application in order to
allow for the inclusion of sio_handler.h. Add the following include path by changing

to

<name>newCCIncludePaths</name>
<state>$PROJ_DIRS\..\Inc</state>
<state>$PROJ_DIRS\..\..\..\..\Include</state>

<name>newCCIncludePaths</name>

<state>$PROJ_DIRS\..\Inc</state>
<state>$PROJ_DIRS\..\..\..\Helper_Files\SIO_Support\Inc</state>
<state>$PROJ_DIRS\..\..\..\..\Include</state>

e Update the used and/or unused list of source files. Add the following callback stub
files in file Promiscuous_Mode_Demo.ewp (For more information about MAC stub
functions see 9.4.)

<name>MAC_API</name>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\mac_api.c</name>
</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mcps_purge_conf.c</name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_beacon_notify_ind.c
</name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_disassociate_conf.c
</name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_disassociate_ind.c<
/name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_get_conf.c</name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_orphan_ind.c</name>

</file>

<file>
<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_poll_conf.c</name>

</file>
<file>

<name>$PROJ_DIRS\..\..\..\..\MAC\Src\usr_mlme_rx_enable_conf.c</n
ame>

AIMEL 185

186

AVR2025

to

AIMEL

I

</file>

<file>

<name>SPROJ_DIRS\..\..\.

me>

</file>

<name>MAC_API</name>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

<file>

<name>$PROJ_DIRS\..\..\..

ame>
</file>

<file>

<name>$PROJ_DIRS\..\..\..

me>
</file>

<file>

<name>$PROJ_DIRS\..\..\..

</name>
</file>

<file>

<name>$PROJ_DIRS\..\..\..

name >
</file>

<file>

<name>$PROJ_DIRS\..\..\..

</name>
</file>

<file>

<name>$PROJ_DIRS\..\..\..

/name>
</file>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

<file>

<name>$PROJ_DIRS\..\..\..

</file>

\..\MAC\Src\usr_mlme_sync_loss_ind.c</na

.\MAC\Src\mac_api.c</name>

.\MAC\Src\usr_mcps_data_conf.c</name>

.\MAC\Src\usr_mcps_purge_conf.c</name>

.\MAC\Src\usr_mlme_associate_conf.c</n

.\MAC\Src\usr_mlme_associate_ind.c</na

.\MAC\Src\usr_mlme_beacon_notify_ind.c

.\MAC\Src\usr_mlme_comm_status_ind.c</

.\MAC\Src\usr_mlme_disassociate_conf.c

.\MAC\Src\usr_mlme_disassociate_ind.c<

.\MAC\Src\usr_mlme_get_conf.c</name>

.\MAC\Src\usr_mlme_orphan_ind.c</name>

.\MAC\Src\usr_mlme_poll_conf.c</name>

2025H-MCU Wireless-08/10

<file>

<name>$PROJ_DIRS\. .

ame>
</file>

<file>

<name>$PROJ_DIRS\..

</file>

<file>

<name>$PROJ_DIRS\..

</file>

<file>

<name>$PROJ_DIRS\..

me>

</file>

..\MAC\Src\usr_mlme_rx_enable_conf.c</n

..\MAC\Src\usr_mlme_scan_conf.c</name>

..\MAC\Src\usr_mlme_start_conf.c</name>

. .\MAC\Src\usr_mlme_sync_loss_ind.c</na

e Add the sio_handler source files in file Promiscuous_Mode_Demo.ewp

to

<file>
<name>$PROJ_DIRS\

</file>

<file>
<name>$PROJ_DIRS\
</file>

<file>

<name>$PROJ_DIRS\.

r.c</name>
</file>

<file>

<name>$PROJ_DIRS\.

ite.c</name>

</file>

11.5.4 Step 4 - Update the AVR Studio Project files

..\Src\main.c</name>

..\Src\main.c</name>

\..\..\Helper_Files\SIO_Support\Src\sio_handle

\..\..\Helper_Files\SIO_Support\IAR_Support\wr

The AVR Studio project file (i.e. aps file) of the target application is located in the
directory of the target platform, i.e.

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4_1_STK600/GCC.

In order to support the target application the file Promiscuous_Mode_Demo.aps needs

to be updated as follows:

¢ Replace all occurrences of the name of base application with the target application
(e.g. replace “Star” with “Promiscuous_Mode_Demo”). All other items are already
within the external Makefiles that are called during the build process.

11.6 Customizing the Platform Clock Speed

11.6.1 Customizing ATxmega128A1 Platforms

2025H-MCU Wireless-08/10

The following section describes how a specific ATxmega128A1 based platform can be
customized to run at various clock speeds. The default clock speed for these platforms

is currently 16MHz, but user may want to adapt this to their specific needs. Due to the

AIMEL

187

AIMEL

T

platform abstraction implemented within the MAC Software package, this is very simple
and straightforward.

11.6.1.1 Introduction to the ATxmega128A1 Platform Software Design

The system clock (i.e. the MCU clock frequency) controls a variety of blocks within the
MCU.

The MCU for the ATxmega128A1 platform is always clocked by the 32MHz Internal RC
Oscillator in conjunction with the corresponding System Clock Prescaler to derive the selected
system clock.

The event system is always selected as source for the hardware timer used by software. Since
the hardware timer requires a tick of 1ls (i.e. timer runs at speed of 1MHZ), the event system
channel used as timer source, is divided to the proper speed by means of the event system
Prescaler.

The SPI speed is derived from the system clock with the constraint that the SPI speed in
asynchronous mode (i.e. the MCU is not clocked by the CLKM from the transceiver, see the data
sheet for the corresponding transceiver) must be smaller than 8MHz. This implies that the largest
usable SPI speed is 4MHz.

So based on this design and depending on the selected clock speed the following
hardware blocks need to be initialized accordingly:

¢ MCU clock setting

¢ Event System initialization and thus setting proper timer source

¢ SPI speed between MCU and transceiver

e UART baud rate

In order to change the implementation of the ATxmega128A1 platform and to select a
specific system clock, the Platform Abstraction Layer (PAL) for this platform needs to be
customized.

11.6.1.2 Customizing the ATxmega128A1 Platform Abstraction

188

AVR2025

The PAL for all ATxmegai28A1 based platforms can be found in directory
MAC v _x_y Z\PAL\XXMEGA\ATXMEGA128A1.

The directory PAL\XMEGA contains the code that is common to all ATxmega family
based systems.

The directory PALIXMEGA\ATXMEGA128A1 contains the code that is common to all
ATxmega128A1 MCU platforms.

The entire code that is dedicated to a specific hardware platform (based on a specific
MCU and on a specific board with specific settings) is located in the board directory for
this particular hardware configuration. All supported platforms (i.e. boards with specific
settings) can be found in directory PALIXMEGA\ATXMEGA128A1/Boards.

The selectable clock speed will be explained for the board REB_4_1_STK600, which
implements the platform abstraction for a Radio Extender Board version 4.1 with
AT86RF231 (with Antenna Diversity) placed on a STK600 (with ATxmega128A1). The
explanations given for this board apply for each board configuration and can easily be

adapted to other boards as well.

The directory for the specific board implementation for REB_4_1_STK600 contains
three files:

e pal_board.c
e pal_irg.c

2025H-MCU Wireless-08/10

11.6.1.2.1 MCU Clock Setting

e pal_config.h

Whenever a configuration parameter (such as system clock speed) is changed, only
these files shall be adapted. All other files generally remain unchanged.

In the case of the selectable system clock speed, only pal_board.c and pal_config.h are
customized.

Depending on the selected system clock, the MCU clock needs to be set. As described
for ATxmega128A1 based platforms currently always the 32MHz Internal RC Oscillator is
utilized. In order to gain the proper system clock, the corresponding Prescaler needs to be set.

The corresponding implementation can be found in file pal_board.c in function clock_init() which
is called during PAL initialization.

11.6.1.3 Event System Initialization

11.6.1.3.1 SPI Speed Selection

11.6.1.3.2 Small Blocking Delays

11.6.1.3.3 UART Baud Rate

The hardware timer used for this board is always driven by the event system. This is
implemented in file pal_board.c in function timer_init_non_generic() by using the macro
TIMER_SRC_DURING_TRX_SLEEP(). This macro is implemented in file pal_config.h.
Currently always the Event Channel 0 is used as timer source.

Since the timer runs at 1MHz speed, the Event Channel 0 is configured to provide
events at 1us rate. The is implemented in file pal board.c in function
event_system_init() where the proper Prescaler for this particular Event Channel is set.

As already mentioned the SPI between the MCU and the transceiver needs to be initialized
properly with the border condition that the SPI rate must not reach 8MHz. Thus the largest
(trivially) selectable SPI speed is 4MHz.

The SPI is initialized in file pal_config.h in function macro TRX_INIT(). This macro is called by
function trx_interface_init() (see file pal_trx_access.c for the ATxmega family).

In order to comply whit he data sheet for the transceivers and the corresponding Software
Programming Model, certain very small delays are required (such as 1us or even 500ns).
Since it is not reasonable for such small delays to call the function pal_timer_delay(),
these delays are implemented as macros in file pal_config.h: PAL_WAIT_1_US and
PAL_WAIT_500_NS., These macros are based on nop operations, which depend on
the MCU clock. This is implemented in file pal_config.h as well.

The UART baud rate is selected by properly setting the USART baud rate register,
which in return is depending on the MCU clock speed. This is implemented in file
pal_uart.h in macro UART_BAUD(). This macro does not have to be updated if the
clock speed changes.

11.6.1.4 Selecting the proper System Clock Speed

2025H-MCU Wireless-08/10

The desired clock speed can be selected at compile time by using the build switch
F_CPU. It is not intended to change the clock during operation, since this would add
additional code size.

AIMEL 189

190

AVR2025

AIMEL

T

The currently supported clock speed is 32MHz, 16MHZ, 8MHz, or 4MHz.

The standard frequency of the system clock is 16MHz. If the build switch F_CPU is not
set during the build process, the clock speed of 16MHz will be applied. In case other
clock speed shall be selected, the build switch needs to be set accordingly.

For the GCC tool chain example Makefiles for changing the system clock are provided
for the MAC application Star_Nobeacon for the above described hardware platform.
Please check directory

MAC_v_x_y z\Applications\MAC_Examples\Star_Nobeacon\
AT86RF231_ATXMEGA128A1_REB 4 1_STK600

for the following Makefiles:

¢ Makefile: Standard clock speed of 16MHz

e Makefile_32/8/4_MHZ: Makefiles for customized clock speed with proper build
switch F_CPU

For the IAR tool chain Example project files for changing the system clock are provided
for the MAC application Star_Nobeacon for the above described hardware platform.
Please check directory

MAC_v_x_y z\Applications\MAC_Examples\Star_Nobeacon\
AT86RF231_ATXMEGA128A1_REB 4 1_STK600

for the following IAR project files:

e Star.eww: Standard clock speed of 16MHz

e Star_32/8/4_MHZ.eww/ewp: IAR project files for customized clock speed with proper
build switch F_CPU

In order to review the changes for the selectable clock speed feature, search for
occurrences of this build switch in the corresponding files pal_board.c and pal_config.h.

Other clock speeds than the currently supported speed (such as 1MHz or 2MHz) could
be implemented easily by updated the dedicated code snippets pointed out by F_CPU.

2025H-MCU Wireless-08/10

12 Protocol implementation conformance statement (PICS)

12.1 Major roles for devices compliant with IEEE Std 802.15.4-2006

This chapter lists the conformance of the AVR2025 MAC implementation with the
requirements and optional features as defined by the standard specified in 196] in

section D.7.

Table 12-1. Functional Device Types

12.2 Major capabilities for the PHY

2025H-MCU Wireless-08/10

Item number Item description Status Support
N/A Yes No

FD1 Is this a full function 0.1 X
device (FFD)

FD2 Is this a reduced 0.1 X
function device (RFD)

FD3 Support of 64 bit M X
|IEEE address

FD4 Assignment of short FD1:M X
network address (16 (FFD
bit) only)

FD5 Support of short M X
network address (16
bit)

O1: At least one of these features shall be supported.

Table 12-2. PHY Functions
Item number Item description Status Support
N/A Yes No

PLF1 Transmission of M X
packets

PLF2 Reception of M X
packets

PLF3 Activation of M X
radio transceiver

PLF4 Deactivation of M X
radio transceiver

PLF5 Energy FD1: M X
detection (ED) 0 (FFD

only)

PLF6 Link quality M X
indication (LQlI)

PLF7 Channel M X
selection

AIMEL

191

AIMEL

T

12.3 Major capabilities for the MAC Sublayer

12.3.1 MAC Sublayer Functions

192

AVR2025

Support
PLF8 Clear channel M X
assessment
(CCA)
PLF8.1 Mode 1 0.2
PLF8.2 Mode 2 0.2
PLF8.3 Mode 3 0.2
02: At least one of these features shall be supported.
Table 12-3. MAC Sublayer Functions
Item number Item description Status Support
N/A Yes No
MLF1 Transmission of data M X
MLF1.1 Purge data FD1: M X
FD2: O (FFD
only)
MLF2 Reception of data M X
MLF2.1 Promiscuous mode FD1: M X
FD2: O (FFD
only)
MLF2.2 Control of PHY (0] X
receiver
MLF2.3 Timestamp of (0] X
incoming
data
MLF3 Beacon management [M X
MLF3.1 Transmit beacons FD1: M X
FD2: O (FFD
only)
MLF3.2 Receive beacons M X
MLF4 Channel access M X
mechanism
MLF5 Guaranteed time slot | O X
(GTS) management
MLF5.1 GTS management (0] X
(allocation)
MLF5.2 GTS management (0] X
(request)
MLF6 Frame validation M
MLF7 Acknowledged frame | M
delivery

2025H-MCU Wireless-08/10

12.3.2 MAC Frames

2025H-MCU Wireless-08/10

AVR2025

Support
MLF8 Association and M X
disassociation
MLF9 Security M X
(No MAC
security,
only
application
security)
MLF9.1 Unsecured mode M X
MLF9.2 Secured mode (0]
MLF9.2.1 Data encryption 04
MLF9.2.2 Frame integrity 04
MLF10.1 ED FDI1: M X
FD2: O (FFD
only)
MLF10.2 Active scanning FDI1: M X
FD2: O
MLF10.3 Passive scanning M X
MLF10.4 Orphan scanning M X
MLF11 Control/define/ FD1:0 X
determine/declare (FFD
superframe structure only)
MLF12 Follow/use (0] X
superframe
structure
MLF13 Store one transaction | FD1: M X
(FFD
only)
O4: At least one of these features shall be supported.
Table 12-4. MAC Frames
Item number Item description Transmitter Receiver
Status Support Status Support
N/A Yes N/A Yes
No No
MF1 Beacon FD1: M Yes M Yes
(FFD only)
MF2 Data M Yes M Yes
MF3 Acknowledgment M Yes M Yes
MF4 Command M Yes M Yes
MF4.1 Association M Yes FD1: M Yes
request (FFD only)

AIMEL

193

AIMEL

T

Transmitter Receiver
MF4.2 Association FD1: M Yes M Yes
response (FFD only)
MF4.3 Disassociation M Yes M Yes
notification
MF4.4 Data request M Yes FD1: M Yes
MF4.5 PAN identifier M Yes FD1: M Yes
conflict
notification
MF4.6 Orphaned device M Yes FD1: M Yes
notification (FFD only)
MF4.7 Beacon request FD1: M Yes FD1: M Yes
MF4.8 Coordinator FD1: M Yes M Yes
realignment (FFD only)
MF4.9 GTS request MLF5: O No MLF5: O No

|
194 AV R2025 2025H-MCU Wireless-08/10

13 Abbreviations
e API Application Programming Interface
e BMM Buffer Management Module
e GPIO General Purpose Input/Output
e IRQ Interrupt Request
¢ ISR Interrupt Service Routine
¢ MAC Medium Access Control
e MCL MAC Core Layer
¢ MCPS MAC Common Part Sublayer
e MCU Microcontroller Unit
¢ MHR MAC Header
e MIC Message Integrity Code
e MLME MAC Sublayer Management Entity
e MPDU MAC Protocol Data Unit
¢ MSDU MAC Service Data Unit
e NHLE Next Higher Layer Entity
e NWK Network Layer
e PAL Platform Abstraction Layer
e PAN Personal Area Network
e PIB PAN Information Base
e QMM Queue Management
¢ RCB Radio Controller Board
e REB Radio Extender board
e SAL Security Abstraction Layer
¢ SIO Serial 1/0
e SPI Serial Peripheral Interface
e STB Security Toolbox
e TAL Transceiver Abstraction Layer
e TFA Transceiver Feature Access
e TPS Transceiver Programming Suite
e TRX Transceiver
e WPAN Wireless Personal Area Network

AIMEL 195

2025H-MCU Wireless-08/10 I ——

14 References

196

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

AVR2025

AIMEL

T

Atmel Wireless MCU Software Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4373

Dresden Elektronik Wireless data transmission 802.15.4 Website
http://www.dresden-elektronik.de/shop/cat4.html?language=en

Atmel Wireless Support avr@atmel.com

IEEE Std 802.15.4™-2006 Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANSs)

AVR2025 IEEE 802.15.4 MAC Reference Manual
MAC_readme.htm located in the AVR2025 top directory

RZ600 Evaluation Kit Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4702

ATAVRXPLAIN Evaluation and Demonstration Kit Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_p
age

ATZB ZigBit Module Website
http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676

2025H-MCU Wireless-08/10

15 User Guide Revision History

Please note that the referring page numbers in this section are referring to this
document. The referring revisions in this section are referring to the document revision.

15.1 Rev. 2025H-MCU Wireless-08/10
Released with AVR2025 MAC Version 2.5.2

1. MAC Example Star_High_Rate added

2. High Data Rate support added

3. Platform description for RZ600 on top of Xplain board added

4. Platform description for ATZB ZigBit Modules on top of MeshBean2 board added

15.2 Rev. 2025G-MCU Wireless-08/10
Released with AVR2025 MAC Version 2.5.1

1. Description of new design of TAL and MCL added

2. Description of Tiny-TAL added

3. Support for ZigBit 212 added

4. New compiler switches added

5. Support for ATxmega256A3 added

6. Migration Guide from 2.4.x to 2.5.x added

7. High-density Network Configuration added

8. Frame transmission and reception procedure added
9. Buffer handling description added

15.3 Rev. 2025F-MCU Wireless-02/10
Released with AVR2025 MAC Version 2.4.2
1. Support of program code larger than 128 KByte added
PAN-Id conflict detection handling added
Support for AT91SAM7XC added
Description of application security added
Description of security build switches updated

ISl A

15.4 Rev. 2025E-MCU Wireless-01/10
Released with AVR2025 MAC Version 2.4.0

1. Support for AT86RF231 and AT86RF212 with AT91SAM7X256 added

2. Support for ATmega128RFA1-EK1 added

3. Build switch DISABLE_TSTAMP_IRQ added

4. Support for ATmega1284P removed

5. Support for ATxmega256A3

6. MAC Porting Guide using ATxmega256A3 as example added

7. MAC Examples App 3 (Beacon Payload) and App 4 (Beacon Broadcast Data) added
8. Build switch SYSTEM_CLOCK_MHZ renamed to F_CPU

AIMEL 107

2025H-MCU Wireless-08/10 I ——

AIMEL

T

9. Updated handling of MAC PIB attribute macRxOnWhenldle and MAC power

management

10.New build switch BAUD_RATE added

11.Support for AT86RF230A and related hardware platforms discontinued

12.Handling of callback stub functions added Handling of callback stub functions added
13.PICS Table added

15.5 Rev. 2025B-MCU Wireless-09/09
Released with AVR2025 MAC Version 2.3.1

15.6 Rev. 2025-AVR-04/09

198

AVR2025

1.

© N ok DD

9.

Name of Radio Controller Board (RCB) changed: transceiver number suffix is
replaced by board suffix

Support for ATmega128RFA1 added

Handling of Promiscuous Mode updated.

Migration Guide for previous MAC versions removed
Filter tuning section added

Description of Performance test application extended
Support for ATxmega MCU based AES within SAL
Handling of MAC components updated

Initial Support for AT91SAM7X256 added

10.DISABLE_IEEE_ADDR_CHECK added
11.Chapter Supported Platforms added
12.Chapter Topics on Platforms Porting added

Released with AVR2025 MAC Version 2.2.0

1. Initial Version

2025H-MCU Wireless-08/10

16 Table of Contents

2025H-MCU Wireless-08/10

AVR2025: IEEE 802.15.4 MAC Software Package - User Guide -...... 1
FRATUIES .ottt eat e s et e e e e nare e 1

{11 oo [o7 1 Lo o 1N 1
2 General ArCRIECIUIEooeeeeeeeeeccee s s smn s s n s 2
2.1 MaIN SEACK LAYEISeueiiieieieeeiieie ettt st nr e 2
2.1.1 Platform Abstraction Layer (PAL)ooeeieieiiiiieee e 3
2.1.2 Transceiver Abstraction Layer (TAL)coovoiiiieii e 3
2.1.3 MAC C0ore Layer (MCL)ooiiiiiiiieie ettt sttt ene 4
2.1.4 Usage Of the SEACKoiiiiiiiei e 5

2.2 Other Stack COMPONENEScoiuiiiiiiieete ettt sre e e s 6
2.2.1 Resource Managementcccoicuiiriiiiiiie ettt 6
2.2.2 Security ADSTraCHON LAYET........couiiiiiiiieiiee ettt et 7

P R S 1= 1o U 142 Kool o o) G ST 7
2.2.4 Transceiver FRatUre ACCESS........oovui i e 7
2.2.5 Tiny Transceiver Abstraction Layer (TiNY-TAL) «..ccuueeiiiiiiie e 8

PR B LY o]][%=1 { o] o T SPP 9
3 Understanding the Software Package.............ccccuresmmsvsrersssssenenssses 10
3.1 MAC Package DireCtory SIrUCIUIEcccceiuiriieiie ettt 10
3.2 Header File Naming ConveNtioNcc.eoioiiieiieieeriese et 16
4 Understanding the SEACK.........cccueeceeeeremrmmsiriiissnnssnsssssssmnnssnssssssns 18
4.1 Frame Handling ProCEAUIESccueiiiiiiiiiieiieeee e 18
4.1.1 Frame TransmiSSion ProCEAUIEceeiiiiiiiieee ettt 18
4.1.2 Frame Reception ProCEAUNEcooiiiiiiiiiiiiieee e 22

4.2 Frame Buffer HandliNgccoooiiiiiiiee e e e 24
4.2.1 Application on top Of MAC-AP.........oi et saeeas 24
4.2.2 Application 0N 0P OF TAL ...ueiiiiieee ettt e e e e e e 29

4.3 Configuration Filescceiieiee e e 34
4.3.1 Application Resource Configuration — app_config.h........coccevriiiiiiiiiin e 35
4.3.2 Stack Resource Configuration — stack_config.n........ccoeiiiiiiiiii e 36
4.3.3 PAL Resource Configuration — pal_config.h..........ccccociiiiniiiiiiiice e 36
4.3.4 TAL Resource Configuration —tal_config.h........cociriiiiiiiiii e 36
4.3.5 MAC Resource Configuration — mac_config.h.........ccoceiviriiniiiiniieeeceee 37
4.3.6 NWK Resource Configuration — nwk_config.n.........cccccviiiriiiiiie e, 37
4.3.7 Build Configuration File — mac_build_config.n.........cccccoviiiiiiini e, 37
4.3.8 User Build Configuration File — mac_user_build_config.hcccoiiviiiiiiiinie. 37

4.4 MAC COMPONENESouetieieieiiee ittt ettt ettt e e s s s 37
4.4.1 MAC_INDIRECT_DATA _BASIC ..ottt eneene s 38
4.4.2 MAC_INDIRECT_DATA_FFD ...tiitiiieteeie et siee ettt sttt nneen 39
4.4.3 MAC_PURGE_REQUEST_CONFIRM......ccestiitiiiiteentnie et 40
4.4.4 MAC_ASSOCIATION_INDICATION_RESPONSEcccottiiitienieerieese e 40
4.4.5 MAC_ASSOCIATION_ REQUEST_CONFIRMccetiiiiirieiieirieenieee e s eneeneas 41
4.4.6 MAC_ DISASSOCIATION_BASIC_SUPPORTcoiuieirereerie et 41
4.4.7 MAC_DISASSOCIATION_FFD_SUPPORTc.eotiteieerieesieee ettt smesree e e e 42
4.4.8 MAC SCan COMPONENTSccueiruiiiriieieitet ettt sttt et se e er et enne e sr e naeeeree s 42
4.4.9 MAC_ORPHAN_INDICATION_RESPONSEcccccteiiirieitree et 42
AIMEL

AIMEL

T

4.410 MAC_START_REQUEST_CONFIRM.......uoiiiiiiiiie e 43
4.4.11 MAC_RX_ENABLE_SUPPORTotiiiieiite ettt eiee et sree e e 44
4.412 MAC_SYNGC_REQUESTooiiitieiiieetiee ettt et e e sre e snee e e see e e 45
4.413 MAC_SYNGC_LOSS_INDICATION ...utiiieiie ettt e s 45
4.4.14 MAC_BEACON_NOTIFY_INDICATION.ceitiiiiiieesee ettt 46
4.4.15 MAC_GET_SUPPORT ...ceiiii ettt ettt et entee e s e e s snae s e e sneeeeneeeeennas 46
4.4.16 MAC_PAN_ID_CONFLICT _AS PC .oteteeeeeeeeeeeeeeeeeeeeeseeseeeeeeseeeeeeeeeseeeeeeseeeeseee e 47
4.4.17 MAC_PAN_ID_CONFLICT_NON_PC ...veeeueeeeeeeeeeeeeeee e eeeeeeeeeeseeseseesse s seseseseeens 47
4.5 Support of AVR Platforms larger than 128 KByte Program Memory 47
T 1= T 01T SO RR 47
4.5.2 Stack IMplementation..........ocooiiuieiiiee e e 47
4.5.3 APPIICALION SUPPOI ...ttt ettt ettt r et ene s 49
4.6 Application Security SUPPOIcc.eiiiiiiiee et 49
4.7 High-Density Network Configurationcccceeeceeeiieeinceee e 50
4.8 High Data Rate SUPPOTTcoiiiiiiiiieiee et 50
5 MAC Power Managementccceceeememmsssessssmsmsnssssssssnsmssssssssssns 53
5.1 Understanding MAC Power Management...........ccovceviereeeieeneeseesese e 53
5.2 Reception of Data at Nodes applying Power Managementccccoccveevieeeen. 54
5.2.1 Setting of MacRXONWhENIAIE 10 TrUEccceeeie e 54
5.2.2 Enabling the RECEIVETuuiiiiee e 54
5.2.3 Handshake between End Device and Coordinator............cevueeevierieiieeniinec e 55
5.2.4 Indirect Transmission from Coordinator to End DevViCeccevverieiiiinieineinecieeeen 55
5.3 Application Control of MAC Power Management............coceeneereeneeineesse s 56
5.3.1 MAC PIB Attribute macRXONWHENIAIEcceeveiiieiieeeieee e e 56
5.3.2 Handling the Receiver with wpan_rx_enable_req()........ccoereeeemieiiniieinciiniee e 56
5.4 TAL Power Management APl ..o 57
6 Application and Stack Configurationccceeeceecescemmssssscssannnns 58
6.1 BUIld SWILCNESeeeiieece e e e e e 58
6.1.1 Global Stack SWItCHES.........cciiiiiiiii e 60
6.1.2 Standard and User Build Configuration SWitChes...........ccociiiiniiiiiiicicne e 64
6.1.3 Platform SWItChES.cooiiiiiiie e 64
6.1.4 Transceiver SPECific SWItCNEScooiiiiiiiiii e 71
6.1.5 SECUIMLY SWILCHES ...t 74
6.1.6 Test and Debug SWITCHES.c.cueiiiiiiiii e 76
6.2 BUild CoNfIQUIatioNScoiiieieee et e e e ee e e sreeeeaneee 76
6.2.1 Standard Build ConfigurationS..........ccceieiiieiieeii it 76
6.2.2 User Build Configurations — MAC_USER_BUILD_CONFIG.........cccccoeriiirriieneneneee 79

7 Migration Guide from Version 2.4.X t0 2.5.Xcccceeeuercrvesssemnnssnssans 83
7.1 MAC-API ChANnGESceiiueiiiiiieiee ettt sttt nee s 83
7.1.1 Handling of Timestamp Parameter in MCPS-DATA Primitives........cccccevvieeenieeeennenne 83
7.1.2 AddrList Parameter in MLME-BEACON-NOTIFY.indication Primitivec.cccceeueen. 84
7.2 TAL-API ChanGES ...ccueeiiuiiiieiieiiie sttt sttt sttt 84
7.2.1 Simplification of Structure frame_iNfo_t.......ccceiiiiiiiie e 85
7.2.2 Simplification of Function tal_rx_frame_cb().......ccceviririieiiiieiee e 85
7.2.3 Simplification of Beacon Handling AP ..o e 86
7.3 PAL-API ChANQES ... veiiiiitiiieetee sttt sttt ettt 87

|
200 AV R2025 2025H-MCU Wireless-08/10

7.3.1 TRX IRQ INIt@lIZALON ...eeeee ettt sre e e e 87
7.3.2 TRX IRQ Enabling and DiSablingccccecueiiiiiiiiiieiceeeceee et 87
7.3.3 TRX IRQ FIag ClEarNG......ccrteiueirieeiutiteertt ettt sttt sttt et ne e ene 88
L e T I 3 1 - T o 90
8.1 GeNeral Prer@QUISILES.......ciiiiiiieieiieeeee ettt 90
8.2 Building the ApPlICAtIONScoiiviieiiiecieiee e e 90
8.2.1 USING GCC MaKEFIlESveieietii ettt 90
8.2.2 USING AVR STUGIO.......c.eiuiieiiieeeie ettt 90
8.2.3 Using IAR Embedded WOrkbench...........coccoiiiiiiicii e 91
8.2.4 BatCh BUIld ... 92
8.3 Downloading an ApPlICatIONcueeiiiieie e 92
8.3.1 Using AVR Studio directly
8.3.2 Using AVR Studio after Command Line Build of Application............ccccovcveveiiicneeennen. 93
8.3.3 Using IAR Embedded WOrkbench...........coccoiiiiiiici e 99
9 Example APPlICATIONS..........ceueeeeeeeeeeneieennisenenssssnssssssssssssssssssssssssas 107
9.1 Walking through a Basic APplICatioNcocieiiiei i 107
9.1.1 Implementation of the COOrAINALONcocuiiiieiiiie e 107
9.1.2 Implementation of the DEVICEc.eiiciiiiiii e 111
9.2 Provided Examples AppliCatioNScoeiviiiiiiiiiiic e e 116
9.2.1 MAC EXAMPIES ... ittt ettt ettt et e e s st eent e e e se e e see e e neeeneeeenee 116
9.2.2 TAL EXAMPIES .. eeeiieiieeeie ettt ettt ettt s e e e eat e e e e e e 126
9.2.3 STB EXAMPIES.....uiiiiiiieiiieeseie e ettt ettt e e st e et sttt e eree e e sae e sstesnteeeseeeeseeeesnneeennseenes 127
9.2.4 TiNY-TAL EXAMPIES ...eeeiiiiiiieeeeie ettt ettt s e e eeeeee e 132
9.3 CommON SIO HANAIETeeiiiiiieii e e e 133
9.4 Handling of Callback StUDSooiiiiiiiiieiec e 135
9.4.1 MAQC CallDACKS.......c.cviiieiitesiieete ettt et e e 135
9.4.2 TAL CallDACKSeveeeiieeeiieeesee e ettt e e ste e e ste e st eentee e s st e e snseesneeeeneeeeneeeesneeeneennnes 135
9.4.3 Example for MAC CallDaCKScceiiiriuiieieiii et 136
10 Supported PlatfOrmseeueeeiceessenncsssssmnmnnssssssssmnmnsssssssssnsans 139
10.1 Supported MCU FamiliESccovuiiiiriie it 139
10.2 SUPPOMEA MCUS ...ttt ettt ene e eae e 139
10.3 SUPPOMEA TIANSCEIVELS ..c..eeiiieiiiieeite ettt 139
10.4 SUPPOMEd BOAIASociiiiiiiiie e 139
10.4.1 Radio Controller Boards (RCB) based Platformsc.cccovvereiniiieineiiec e 139
10.4.2 Radio Extender Boards (REB)........coouiiiiiiiiiiiieceeee e 145
10.4.3 Radio Extender Boards (REB) based Platforms..........cccocoerieiiiiiniicinec e 148
10.4.4 ATITSAMTZXC-EK ...ttt sttt e e e e ense e e s e e eas 155
10.4.5 RZ USBSHCKvtveeueeieeeeieeertente sttt et 155
10.4.6 ATmega128RFA1-EK1 Evaluation Kit............coviiiiiiiiiiee e 156
10.4.7 RZ600 on Top of Xplain BOArdcc.ueiiiiiiiiiiiiaiiiee et 158
10.4.8 ZigBit Modules on Top of Meshbean2 Boardcccoeeiiiiiniiiniiii e 159
10.4.9 PEIPNEIAIS ...ttt e e et e e e e sae e e e e e 160
11 Platform POFtiNg........ccocovevumeuummenemennnnnnnmnnnssnnnssssssssssssssssssssssssssssnss 162
11.1 Porting to @ New PlatfOrmoieiii e e 162
11.2 Bring-up Of @ NEW PAL ..o e 162

AIMEL 201

2025H-MCU Wireless-08/10 I ——

AIMEL

LG}

11.3 Bring-up of a new Hardware Board............ccocoeiiieiiiieiiiieieee e 162
11.3.1 Implementation of PAL for Target Platformcccccviiiiiiiiiiieeeceece 162
11.3.2 Example Implementation of PAL for AT91SAM7X256 based Platform.................... 164
11.3.3 Bring-up of an existing (MAC) Application on the Target Platformccccccee.. 171

11.4 Bring-up of a new MCU based on a supported MCU Familyccccoevreenen. 173
11.4.1 Implementation of PAL for Target Platformccccccvviiiiiiiiii e 173
11.4.2 Example Implementation of PAL for ATXmega256A3oocceveiivieeeeeiiieeeenen. 175
11.4.3 Bring-up of an existing Application on the Target Platform............cccccviiiiiiirinnnnen. 177

11.5 Bring-up of an new Application on an existing Platform...........c.ccccovviiiiiiinnns 180
11.5.1 Step 1 - Identify a matching Base Applicationcc.ccociiiiiiiiiiiii e 181
11.5.2 Step 2 — Update the GCC MaKefilecooiriiriiiiiii e 181
11.5.3 Step 3 — Update the IAR Project files........coovueiiirieiiiieiiiiecre e 184
11.5.4 Step 4 - Update the AVR Studio Project filesccocveiuiiiiiiiiieiiinec e 187

11.6 Customizing the Platform Clock Speed..........cccouiriiiiiiiiiiniieceee e 187
11.6.1 Customizing ATxmegal28A1 Platformscc.eviiiiiiiee e 187

12 Protocol implementation conformance statement (PICS)......... 191

12.1 Major roles for devices compliant with IEEE Std 802.15.4-2006 191

12.2 Major capabilities for the PHY ... 191

12.3 Major capabilities for the MAC Sublayer ..o 192
12.3.1 MAC Sublayer FUNCHONSccooiiiiiiiii et 192
T2.3.2 MAC FramMES .oooeeeiiieiiiee ettt ettt ettt e ettt e e ste e e s see s st enae e e seeeseeesnneennseeanee 193

13 ADDIEVIALIONS ... eeeeeeeeenenss s sssssnsssssssssssss s s ssssmssnnnnnns 195
L 5 1= =T =T Lo =L N 196
15 User Guide ReViSioN HiSTOIY.........ccuuveseeriissmmsssisnnsssssenssssssnnnnnas 197

15.1 Rev. 2025H-MCU Wireless-08/10........cerrueiriieeeee e e eeeeseeeeseeeeseeeesneeeeseeeea 197

15.2 Rev. 2025G-MCU WireleSS-08/10....cc.uuiiiieirieeeiee e e eeeeseeesreeeeseeeesneeaeseeeens 197

15.3 Rev. 2025F-MCU WirelesS-02/10c.eeeiueiriieeeee e e eeesseeesseeeeseeeesneeaeseeeens 197

15.4 Rev. 2025E-MCU WireleSS-01/10 ...cviuiiiiieiee e e e eeeee e e e seee e e 197

15.5 Rev. 2025B-MCU WirelesS-09/09uviruiirieeeeeeseeeseeeseeeeseeeeseeeeeseeaeseeeens 198

15.6 ReV. 2025-AVR-04/09coooiiiei ettt s 198

16 Table Of CONTENLS.....cecceeeeeeiicseersisssenenccsssensssessn s ensssmn s ssssmn s s sssnnns 199
17 Table Of FIQUIESeeeeeeeeeeeeeeeeneeeneennesennssssnssssssnsssssnsssssssssnan 203

|
202 AV R2025 2025H-MCU Wireless-08/10

17 Table of Figures

2025H-MCU Wireless-08/10

Figure 2-1. MAC ArChiteCIUIEcoveiieiiiee et 2
Figure 2-2. StACK USAQEeoiviiiieiiiiieeee ettt s 6
Figure 4-1. Configuration File #include-Hierarchyccccooiiiiiiiiiniiec e 35
Figure 4-2. Essential and Supplementary MAC Componentscccocuevvereeeeeeseeniens 38
Figure 4-3. Example of provided Functionality for MAC_INDIRECT_DATA_BASIC and
MAC_INDIRECT_DATA_FFD ..ttt st 40
Figure 4-4. Provided Functionality for MAC_ASSOCIATION_INDICATION_
RESPONSE and MAC_ASSOCIATION_REQEUST_CONFIRM.........cccccevvvrnennne 41
Figure 4-5. Provided Functionality for MAC_ORPHAN_INDICATION_ RESPONSE and
MAC_SCAN_ORPHAN_REQEUST_CONFIRM (Orphan Scan Procedure) 43
Figure 4-6. Start of Nonbeacon Network and Active Scancccocevveeiieieenieesieniene 44
Figure 4-7. Enabling of Receiver and proper Data Reception..........cccceeveiniiiiiieinenens 45
Figure 4-8. Synchronization and Loss of Synchronizationcccoccecveinonincnneenen. 46
Figure 6-1. Build Configuration EXamplecccceeieiieeiieiiiiieciee e 60
Figure 6-2. Handling of Promiscuous MOdEc..coouiiriieiniiinne e e 63
Figure 7-1. AVR Studio - Verifying and Setting of IEEE Address..........c.ccovvviiiieiinenne 93
Figure 7-2. AVR Studio “Connect” DIialog........c.ceereerieerierieeiee et 93
Figure 7-3. AVR Studio “Select AVR Programmer” Dialog........cccccocverernieineineeineeninee 94
Figure 7-4. AVR Studio “Select JTAGICE mKIl” Dialogcccocveerrrreneineerreese e 94
Figure 7-5. AVR Studio “JTAGICE mkll” Dialog with “Main” Tabcccccvvrverrvrnnenn. 95
Figure 7-6. AVR Studio “JTAGICE mkll” Dialog with “Fuses” Tabcccccvevveninnenne 95
Figure 7-7. AVR Studio “JTAGICE mkll” Dialog with “Program” Tabcccccvevvnnene 96
Figure 7-8. AVR Studio “JTAGICE mkll” Dialog with “Program” Tab Download Status 96
Figure 7-9. AVR Studio “Open File” Dialog........cceuieernierierieeiee et 97
Figure 7-10. AVR Studio — Select elf-Filec.coviieiiiiieieece e 97
Figure 7-11. AVR Studio “Select debug platform and device” Window............cccccceue.. 98
Figure 7-12. AVR Studio “JTAGICE mkll” Dialog with “Debug” Tabcccceeeuverenn. 98
Figure 7-13. AVR Studio after successful Debug Build Download............c.ccceovveriennene 99
Figure 7-14. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”......... 100

Figure 7-15. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”....... 100
Figure 7-16. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE
IMKIT 27 et bbbt 101
Figure 7-17. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”.......... 102
Figure 7-18. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”....... 102
Figure 7-19. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE
IMKIT 27 ettt 103
Figure 7-20. IAR Embedded Workbench - Start “Download and Debug’.................... 104
Figure 7-21. IAR Embedded Workbench - Successful Download of Debug Build 105
Figure 7-22. IAR Embedded Workbench — Verifying and Setting of IEEE Address.... 106

Figure 8-1. Tree Network EXampleccooviviiiiiiiiiieceee e e 120
Figure 8-2. Promiscuous_Mode_Demo Terminal Program Snapshot.............cccceenee. 123
Figure 8-3. Terminal Program Snapshot of Performance_Test Application................. 127
Figure 8-4. Terminal Program Snapshots of Performance_Test Application 133
Figure 8-5. Secure Remote Control Application — Both Nodes in Secure Mode.......... 129

Figure 8-6. Secure Remote Control Application — Both Nodes in Unsecure Mode..... 129
Figure 8-7. Secure Remote Control Application — Transmitter in Secure Mode, Receiver

INUNSECUIE MOGE.....cc ittt rre e e 129
Figure 8-8. Secure Remote Control Application — Transmitter in Unsecure Mode,

Receiver in SECUre MOMEcoooieiiiie e e 130
Figure 8-9. Snapshot of Secure Sensor AppliCation..........cccevvevrieiiie i 132
Figure 9-1. RCB V3.2 with AT86RF230B and ATmegal281cccccoveveeieeieneceeen 140
Figure 9-2. RCB V4.0 with AT86RF231 and ATmegal281ccocvevrerinee i 140
Figure 9-3. RCB V4.1 with AT86RF231 and ATmegal1281c.ccoecerverieeieenee e 141
Figure 9-4. RCB V5.3 with AT86RF212 and ATmegal281ccceveerverieciee e 141

AIMEL 203

204

AIMEL

LG}
Figure 9-5. RCB V6.3 with ATMegal128RFAT ..ot 142
Figure 9-6. Sensor Terminal Board without RCBcccoceviiiiiiie e 142
Figure 9-7. Sensor Terminal Board with RCB V6.3 with ATmega128RFAT1................ 143
Figure 9-8. Sensor Terminal Board connected to JTAG-ICE and USB............ccc...... 143
Figure 9-9. Breakout Board Light without RCB............cocoiiiiiieniceeeeeeee e 144
Figure 9-10. Breakout Board Light with RCB............ccceeiiiiiiieiiiciee e 144
Figure 9-11. Breakout Board Light connected to JTAG-ICE and UART...........cccen.... 144
Figure 9-12. Close-up View of Breakout Board Light connected to JTAG-ICE and UART
.. 145
Figure 9-13. REB V2.3 with AT8BRF230Bcoviiiiiiieree e 146
Figure 9-14. REB V4.0.1 with AT86RF231ooiiiiiiiei e 146
Figure 9-15. REB231ED V4.1.1 with AT86RF231ccoiiiiiiiiiieeeeee e 147
Figure 9-16. REB212 V5.0.2 with AT8BRF212........coiiiiiii e 147
Figure 9-17. REB 10 STKB00 AdaPLer.......ccceiirieeieiieree et 148
Figure 9-18. STK600 with REB to STK600 Adapter and REB231ED V4.1.1.............. 148
Figure 9-19. STK600 (with ATxmega128A1) with REB to STK600 Adapter and REB
connected to JTAG-ICE and UART, and LED and Button Cabile......................... 149
Figure 9-20. STKB00.....cceeieee e eeee et ste ettt e st e et e e et e e eee e eeeseeeenseeennaeesneeeennens 149
Figure 9-21. STK500 (with ATmega644p) with REB connected to JTAG-ICE and UART,
and LED and Button Cablec.eiiiiiiiiiiicie e 150
Figure 9-22. Close-up View of Cable Connection for LEDs and Buttons.................... 150
Figure 9-23. STK500 With STKS0T ...t e 151
Figure 9-24. STK500 with STK501 (with ATmega1281) and REB connected to JTAG-
ICE and UART, and LED and Button Cable..........ccccueeeeeeeeeeceeeeee e 151
Figure 9-25. Close-up View of Cable Connection for LEDs and Buttons.................... 152
Figure 9-26. AT91SAM7X-EK Board with AT91SAM7X256.........ccoevevvrieiiiriecieeneeen 154
Figure 9-27. AT91SAM7X-EK Board with AT91SAM7X256........cccoeererreeierierieeieeinne 154
Figure 9-28. AT91SAM7X-EK Board with AT91SAM7X256 connected to SAM-ICE and
UL PO RTRPRRRPR 155
Figure 9-29. RZ USBstick with 10 Pin Header for JTAG Connectorccccoevveeennee. 156
Figure 9-30. RZ USBstick with JTAG-ICE and USB Connectionccocvvvervennen. 156
Figure 9-31. ATmega128RFAT-EK1 on STKBO0O0.........ccoevierereeieseneeee e 157
Figure 9-32. ATmega128RFA1-EK1 on STK600 with JTAG-ICE using UARTT 157
Figure 9-33. ATmega128RFA1-EK1 wiring for UARTT ..., 158
Table 9-34. Peripherals supported by Platform Typeccccoiiiiieiicienees 161

AVR2025

2025H-MCU Wireless-08/10

AIMEL

I

Headquarters International

Atmel Corporation Atmel Asia Atmel Europe Atmel Japan

2325 Orchard Parkway Room 1219 Le Krebs 9F, Tonetsu Shinkawa Bldg.

San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Product Contact

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’'S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

