

FCC Measurement/Technical Report on

AudioStream

FCC ID: VNP-AS

IC: 11986A-AS

Test Report Reference: MDE_MEDEL_1901_FCC_01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11

40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	11
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	12
4.6 4.7	Operating Modes / Test Channels	12
4.7 _	Product labelling	13
5	Test Results	15
5.1	Occupied Bandwidth (6 dB)	15
5.2	Occupied Bandwidth (99%)	18
5.3	Peak Power Output	21
5.4 5.5	Spurious RF Conducted Emissions Transmitter Spurious Radiated Emissions	25 28
5.6	Band Edge Compliance Conducted	26 37
5.7	Band Edge Compliance Radiated	42
5.8	Power Density	45
6	Test Equipment	49
7	Antenna Factors, Cable Loss and Sample Calculations	54
7 .1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	54
7. <u>1</u> 7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	55
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	56
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	57
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	58
7.6	Antenna EMCO 3160-10 (26.5 GHz - 40 GHz)	59
8	Setup Drawings	60
9	Measurement Uncertainties	61
10	Photo Report	62

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-18 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15	§ 15.247 (a) (2)
Subpart C §15.247	

Occupied Bandwidth (6 dB)				
The measurement was performed according to ANSI C63.10			Final Re	esult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_BA01	2020-07-08	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Bluetooth LE 2 Mbps, mid

IC RSS-Gen & IC TRC-43; Ch. 6.7 & Ch. 8

S01_BA01 2020-07-08 N/A

Occupied Bandwidth (99%)
The measurement was performed according to ANSI C63.10

The measurement was performed according to ANSI C63.10				Final Result	
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC	
Bluetooth LE 1 Mbps, high	S01_BA01	2020-07-08	N/A	Performed	
Bluetooth LE 1 Mbps, low	S01_BA01	2020-07-08	N/A	Performed	
Bluetooth LE 1 Mbps, mid	S01_BA01	2020-07-08	N/A	Performed	
Bluetooth LE 2 Mbps, high	S01_BA01	2020-07-08	N/A	Performed	
Bluetooth LE 2 Mbps, low	S01_BA01	2020-07-08	N/A	Performed	

47 CFR CHAPTER I FCC PART 15 § 15.247 (b) (3) Subpart C §15.247

Peak Power Output				
The measurement was performed according	Final Re	sult		
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, conducted	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 1 Mbps, low, conducted	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 1 Mbps, mid, conducted	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, high, conducted	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, low, conducted	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, mid, conducted	S01_BA01	2020-07-08	Passed	Passed

Performed

Page 6 of 62

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Spurious RF Conducted Emissions	ANGI 662 10		Elmal Da	14
The measurement was performed according	ng to ANSI C63.10		Final Re	Suit
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S01_BA01	2020-07-15	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_BA01	2020-07-15	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_BA01	2020-07-15	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_BA01	2020-07-15	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_BA01	2020-07-15	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_BA01	2020-07-15	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Transmitter Spurious Radiated Emissions				_
The measurement was performed according	ng to ANSI C63.10		Final Re	sult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement range	•			
Bluetooth LE 1 Mbps, high, 1 GHz - 26 GHz	S01_AF01	2020-07-23	Passed	Passed
Bluetooth LE 1 Mbps, high, 30 MHz - 1 GHz	S01_AF01	2020-07-28	Passed	Passed
Bluetooth LE 1 Mbps, low, 1 GHz - 26 GHz	S01_AF01	2020-07-23	Passed	Passed
Bluetooth LE 1 Mbps, low, 30 MHz - 1 GHz	S01_AF01	2020-07-28	Passed	Passed
Bluetooth LE 1 Mbps, mid, 1 GHz - 26 GHz	S01_AF01	2020-07-23	Passed	Passed
Bluetooth LE 1 Mbps, mid, 30 MHz - 1 GHz	S01_AF01	2020-07-28	Passed	Passed
Bluetooth LE 1 Mbps, mid, 9 kHz - 30 MHz	S01_AF01	2020-07-28	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Conducted The measurement was performed according	ng to ANSI C63.10		Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, high	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 1 Mbps, low, low	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, high, high	S01_BA01	2020-07-08	Passed	Passed
Bluetooth LE 2 Mbps, low, low	S01_BA01	2020-07-08	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Radiated The measurement was performed according	ng to ANSI C63.10		Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, high	S01_AF01	2020-07-23	Passed	Passed

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

47 CFR CHAPTER I FCC PART 15 § 15.247 (e) Subpart C §15.247

Power Density The measurement was performed according to ANSI C63.10 **Final Result OP-Mode FCC** IC **Setup Date** Radio Technology, Operating Frequency S01_BA01 2020-07-08 Bluetooth LE 1 Mbps, high Passed Passed Bluetooth LE 1 Mbps, low S01_BA01 2020-07-08 Passed Passed S01_BA01 2020-07-08 Passed Bluetooth LE 1 Mbps, mid Passed S01_BA01 2020-07-08 Bluetooth LE 2 Mbps, high Passed Passed 2020-07-08 S01_BA01 Bluetooth LE 2 Mbps, low Passed Passed S01_BA01 2020-07-08 Bluetooth LE 2 Mbps, mid Passed Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2020-09-28		valid	
	'			

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)

Mohamed Fraitat

fluth

#layers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2020-06-15

3.2 PROJECT DATA

Responsible for testing and report: Mohamed Fraitat

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2020-09-28

Testing Period: 2020-07-08 to 2020-07-28

3.3 APPLICANT DATA

Company Name: MED-EL Eletromedizinische Geräte G.m.b.H

Address: Fürstenweg 77a

6020 Innsbruck

Austria

Contact Person: Christoph Egerer

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The Ma070401 is an optional accessory to the SONNET Audio Processor Series. It is used like already existing battery pack cover options for the SONNET Audio Processor Series (like the FM Cover) and provides the additional possibility to connect to compatible mobile devices via a 2.4 GHz Bluetooth LE link in order to receive audio content.	
Product name	AudioStream	
Туре	Ma070401	
Declared EUT data by the supplier		
Voltage Type	DC (internal battery)	
Voltage Level	1.35 VDC	
Tested Modulation Type	GFSK	
Specific product description for the EUT	BLE 5.0 transceiver in the 2.4 GHz band.	
The EUT provides the following ports:	-	
Antenna Gain / Type	+1.8 dBi	
Tested datarates	1 Mbps & 2 Mbps	
Special software used for testing	Automation explorer (provided by 7layers)	

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1330001af01	radiated sample
Sample Parameter		Value
Serial No.	AHTEST 47	
HW Version	PCB Rev. 4.0	
SW Version	HciDtm.hex	
Integral antenna	Yes	

Sample Name	Sample Code	Description	
EUT B	DE1330001ba01	Conducted sample	
Sample Parameter		Value	
Serial No.	AHTEST 48		
HW Version	PCB Rev. 4.0		
SW Version	HciDtm.hex		
Comment			
Integral Antenna	Replaced by a temporary co	onnector	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01 Page 11 of 62

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	-	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

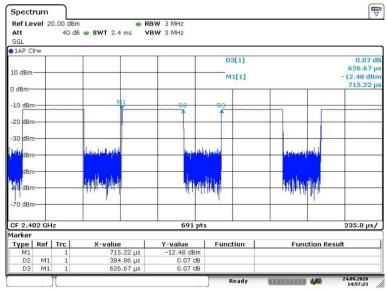
Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A,	Setup for radiated measurement
S01_BA01	EUT B,	Setup for conducted measurement

4.6 OPERATING MODES / TEST CHANNELS

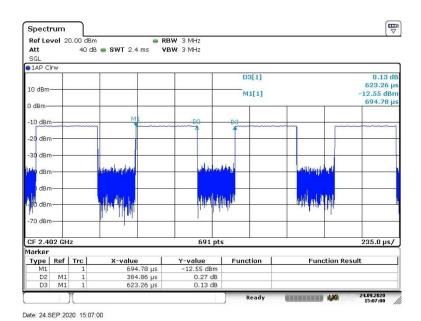
This chapter describes the operating modes of the EUTs used for testing.

4.6.1 TEST CHANNELS

BT LE Test Channels: Channel: Frequency [MHz]


2.4 GHz ISM					
2400 - 2483.5 MHz					
low mid high					
0	19	39			
2402	2440	2480			

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01 Page 12 of 62


4.6.2 DUTY CYCLE

Mode	Ton	T _{on+off}	Duty Cycle	
Bluetooth low energy	us	us	%	
1 Mbit/s	384.8	626.6	61.37%	
2 Mbit/s	384.8	623.2	61.74%	

Date: 24.SEP.2020 14:57:23

1 Mbit/s

2 Mbit/s

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.1.1 TEST DESCRIPTION

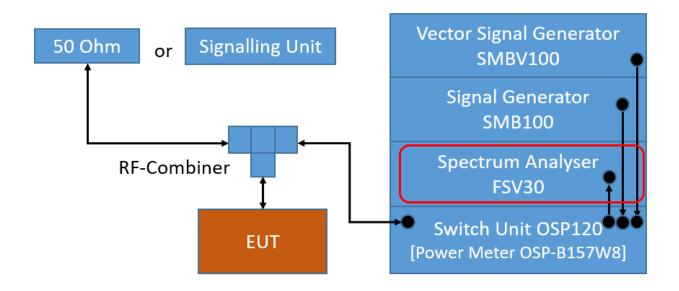
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


Resolution Bandwidth (RBW): 100 kHz

Video Bandwidth (VBW): 300 kHzSpan: Two times nominal bandwidth

Trace: Maxhold

Sweeps: Till stable (min. 500, max. 15000)

Sweep Time: AutoDetector: Peak

TS8997; Channel Bandwidth

Page 15 of 62

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.3 TEST PROTOCOL

Ambient

25 °C

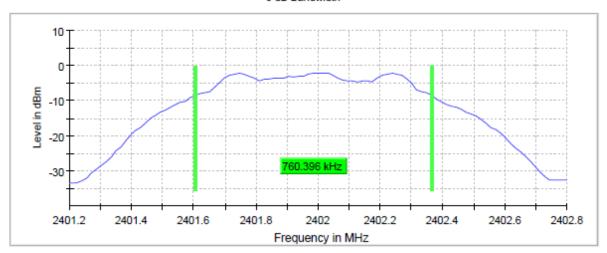
temperature:

Air Pressure: 1004hPa Humidity: 35 %

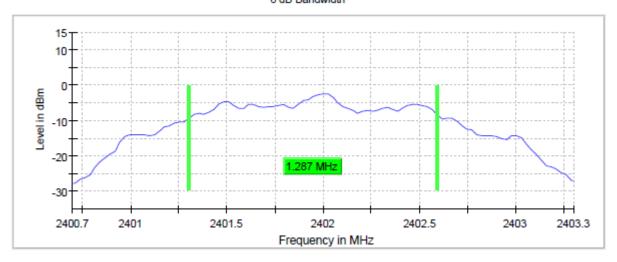
BT LE 1 Mbit/s

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.760	0.5	0.260
	19	2440	0.760	0.5	0.260
	39	2480	0.760	0.5	0.260

BT LE 2 Mbit/s


Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.287	0.5	0.787
	19	2440	1.287	0.5	0.787
	39	2480	1.313	0.5	0.813

Remark: Please see next sub-clause for the measurement plot.



5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BT LE 1 Mbit/s Ch 00 6 dB Bandwidth

BT LE 2 Mbit/s Ch 00 6 dB Bandwidth

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.2.1 TEST DESCRIPTION

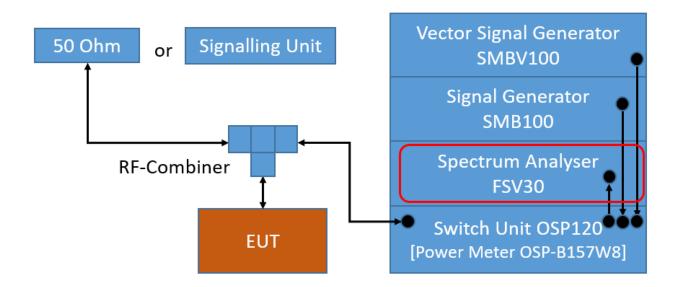
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW


Video Bandwidth (VBW): ≥ 3 times the RBW

• Span: 1.5 to 5 times the OBW

Trace: Maxhold

• Sweeps: Till stable (min. 500, max. 75000)

Sweep Time: AutoDetector: Peak

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

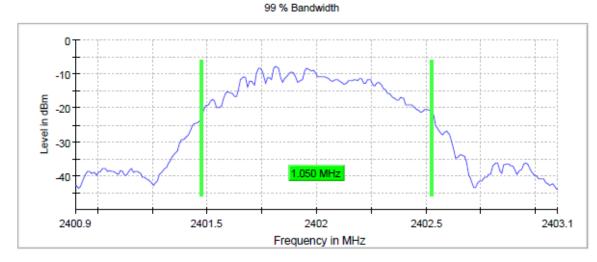
No applicable limit:

5.2.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1004 hPa Humidity: 35 %

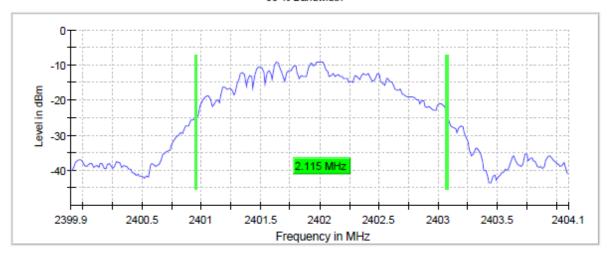
BT LE 1 Mbit/s

Band Channel No.		Frequency [MHz]	99 % Bandwidth [MHz]	
2.4 GHz ISM	0	2402	1.050	
	19	2440	1.050	
	39	2480	1.050	


BT LE 2 Mbit/s

Band Channel No.		Frequency [MHz]	99 % Bandwidth [MHz]	
2.4 GHz ISM	0	2402	2.115	
	19	2440	2.115	
	39	2480	2.115	

Remark: Please see next sub-clause for the measurement plot.


5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BT LE 1 Mbit/s Ch 00

BT LE 2 Mbit/s Ch 00 99 % Bandwidth

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

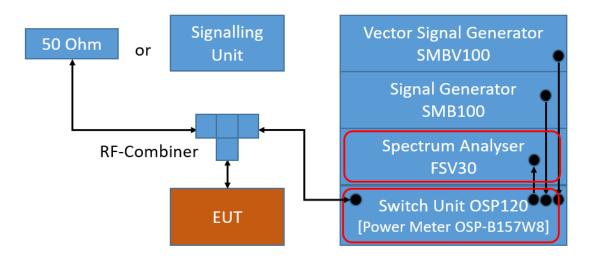
The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

• Resolution Bandwidth (RBW): ≥ DTS bandwidth

• Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer

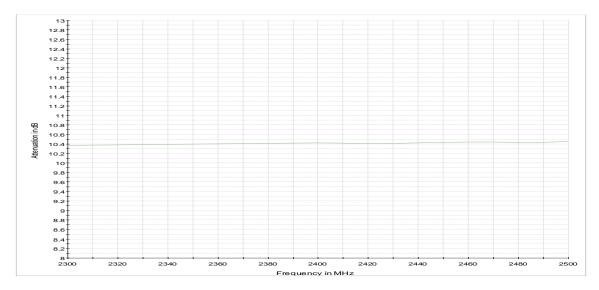
• Span: ≥ 3 times RBW


• Trace: Maxhold

• Sweeps: Till stable (min. 300, max. 15000)

Sweep time: AutoDetector: Peak

Maximum conducted average output power (e.g. WLAN):


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.

TS8997; Output Power

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01 Page 21 of 62

Attenuation of the measurement path

5.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

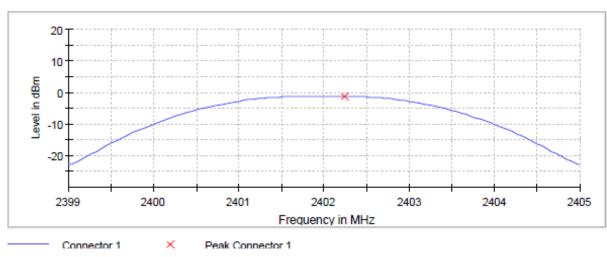
Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.3.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1004 hPa
Humidity: 35 %
BT LE 1 Mbit/s

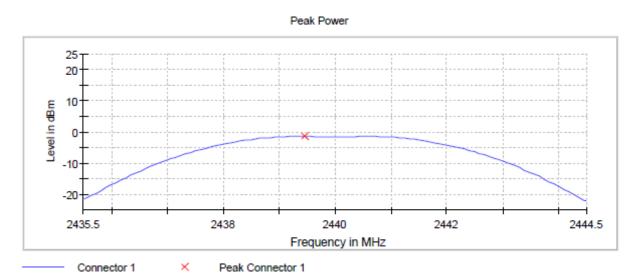
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-1.3	30.0	31.3	0.5
	19	2440	-1.3	30.0	31.3	0.5
	39	2480	-1.6	30.0	31.6	0.2

BT LE 2 Mbit/s


Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-1.2	30.0	31.2	0.6
	19	2440	-1.3	30.0	31.3	0.5
	39	2480	-1.6	30.0	31.6	0.2

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


BT LE 1 Mbit/s Ch 00

Peak Power

BT LE 2 Mbit/s Ch 19

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 2

Sweep Time: 330 sDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

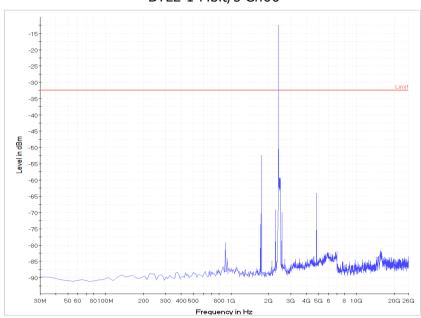
TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

5.4.3 TEST PROTOCOL

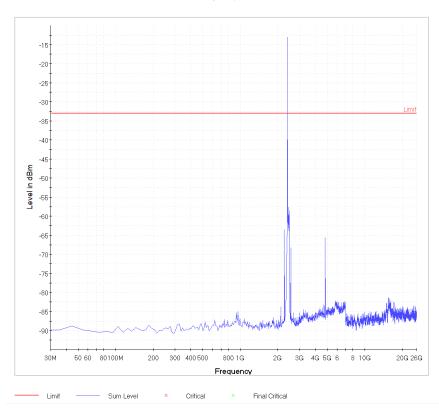
 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 51 \ \mbox{\%} \end{array}$

BT LE GFSK

Mode	Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1Mbps	0	2402	1747.7	-52.5	PEAK	100	-12.5	-32.5	20.0
1Mbps	19	2440	4877.1	-67.3	PEAK	100	-12.2	-32.2	35.1
1Mbps	39	2480	4957.0	-70.6	PEAK	100	-13.1	-33.1	37.5


Mode	Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
2Mbps	0	2402	2385.0	-63.6	PEAK	100	-13.0	-33.0	30.6
2Mbps	19	2440	2295.4	-66.7	PEAK	100	-12.5	-32.5	34.2
2Mbps	39	2480	2498.4	-53.9	PEAK	100	-12.2	-32.2	21.7

Remark: Please see next sub-clause for the measurement plot.



5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE 1 Mbit/s Ch00

BTLE 2Mbit/s Ch00

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

Page 28 of 62

5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

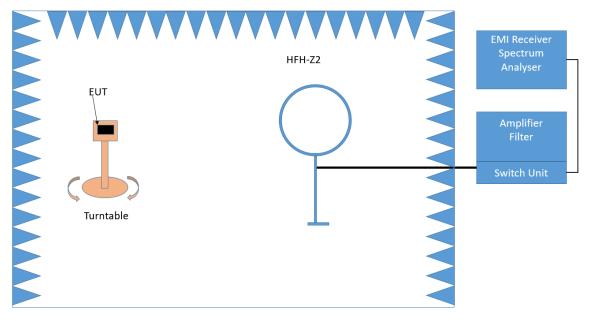
ANSI C63.10

5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHz: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

Step 1: pre-measurement

Anechoic chamberAntenna distance: 3 m

Antenna height: 1 mDetector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

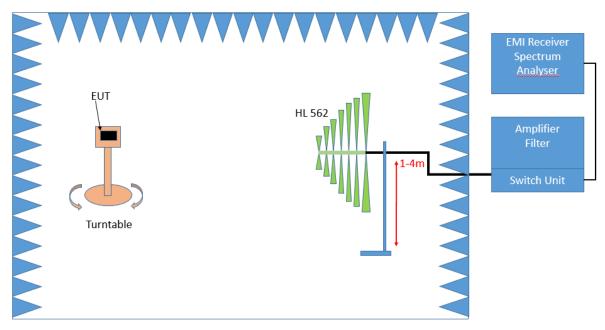
• Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
 Measuring time: 100 ms
 Turntable angle range: 360 °
 Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

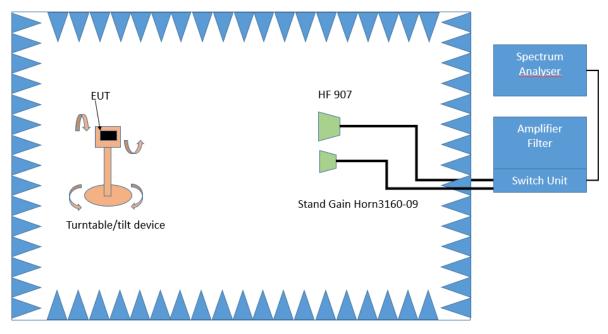
EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

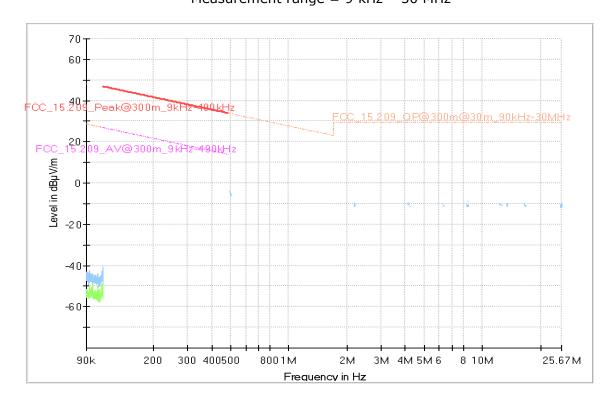
The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

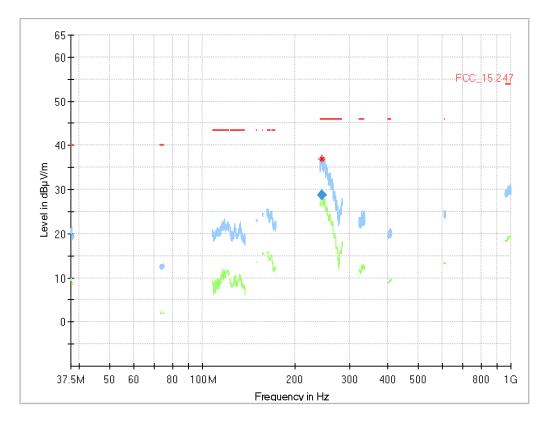
5.5.3 TEST PROTOCOL

Ambient temperature: 26 °C Air Pressure: 1013 hPa Humidity: 40 %


BT low Energy

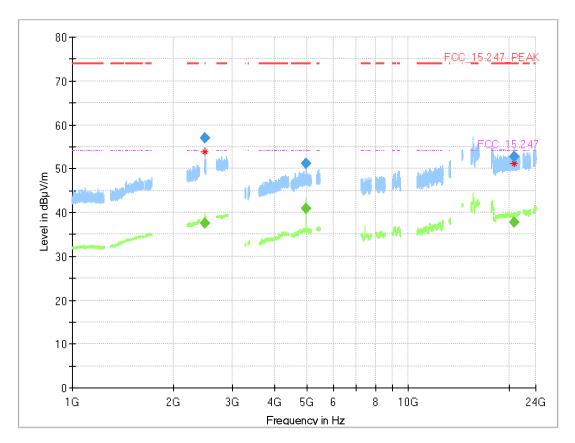
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	-	-	-	-	-	> 6 dB	RB
19	2440	243.3	37.0	PEAK	120	46.0	9.0	RB
39	2480	2483.5	56.9	PEAK	1000	74.0	17.1	RB
39	2480	2483.6	37.5	AV	1000	54.0	16.4	RB
39	2480	4960.2	40.8	AV	1000	54.0	13.1	RB
39	2480	4960.5	51.3	PEAK	1000	74.0	22.7	RB
39	2480	20692.9	37.7	AV	1000	54.0	16.2	RB
39	2480	20692.9	52.7	PEAK	1000	74.0	21.3	RB

Remark: Please see next sub-clause for the measurement plot.



5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio technology = Bluetooth LE 1 Mbit/s, Operating frequency = mid, Measurement range = 30 MHz - 1 GHz



Critical_Freqs

Frequency	MaxPeak	QuasiPeak	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	(dB/m)
243.360000	36.93		46.00	9.07			131.0	Н	-180.0	11.1

Radio technology = Bluetooth LE 1 Mbit/s, Operating frequency = high, Measurement range = 1 GHz - 26 GHz

Final Result

Frequency	MaxPeak	CAverage	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Elevatio
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	n
2483.583	56.9		74.00	17.12	1000.0	1000.000	150.0	Н	-91.0	85.0
2483.665		37.5	54.00	16.47	1000.0	1000.000	150.0	V	-169.0	13.0
4960.200		40.8	54.00	13.15	1000.0	1000.000	150.0	Н	-186.0	95.0
4960.525	51.3		74.00	22.74	1000.0	1000.000	150.0	Н	-146.0	-15.0
20692.970		37.7	54.00	16.26	1000.0	1000.000	150.0	Н	-101.0	-3.0
20692.970	52.7		74.00	21.33	1000.0	1000.000	150.0	Н	-115.0	6.0

5.5.5 TEST EQUIPMENT USED

- Radiated Emissions

5.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

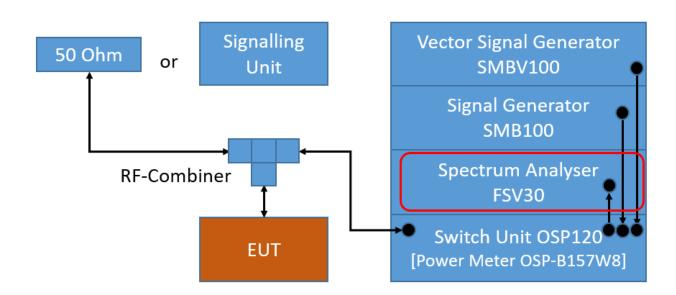
Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz

Upper Band Edge

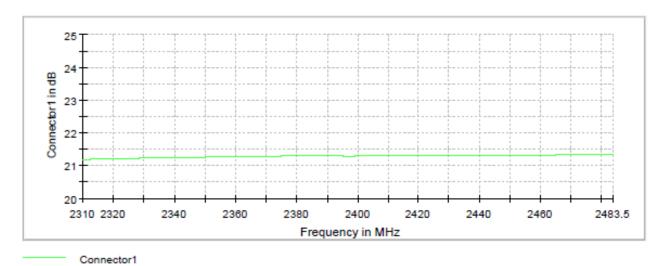
Measured range: 2400.0 MHz to 2500 MHz

Detector: Peak


• Resolution Bandwidth (RBW): 100 kHz

• Video Bandwidth (VBW): 300 kHz

• Sweep time: Auto


Sweeps: Till stable (min. 300, max. 15000)

Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.6.3 TEST PROTOCOL

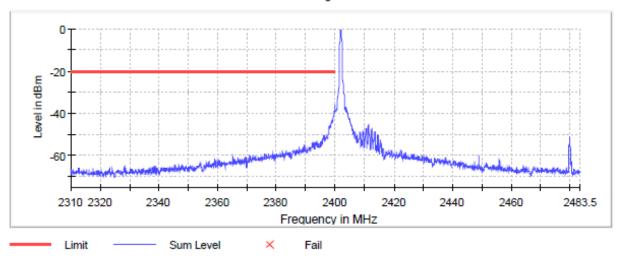
Ambient 25 °C

temperature:

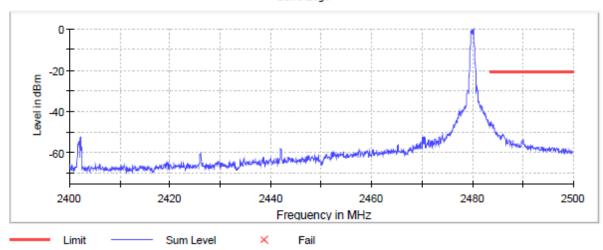
Air Pressure: 1010 hPa Humidity: 51 %

BT LE

Mode	Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1Mbps	0	2402	2400.0	-35.7	PEAK	100	-0.4	-20.4	15.3
1Mbps	39	2480	2483.5	-45.2	PEAK	100	-0.6	-20.6	24.6

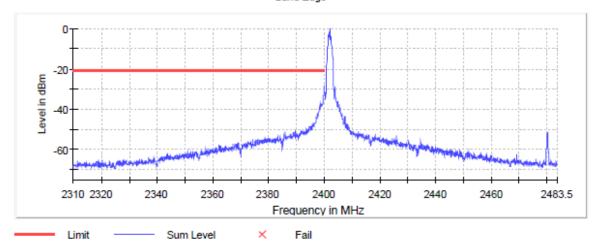

Mode	Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
2Mbps	0	2402	2400.0	-28.2	PEAK	100	-0.6	-20.6	7.6
2Mbps	39	2480	2483.5	-40.6	PEAK	100	-0.8	-20.8	19.8

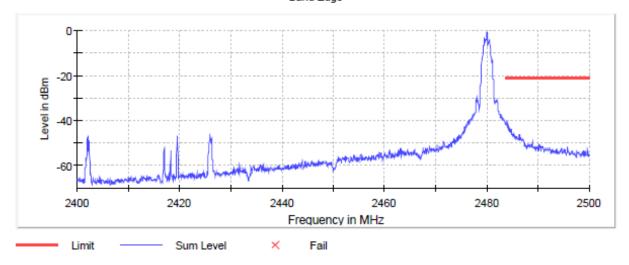
Remark: Please see next sub-clause for the measurement plot.



5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE 1 Mbit/s Ch 00 Band Edge


BTLE 1 Mbit/s Ch 39
Band Edge



BTLE 2 Mbit/s Ch 00

BTLE 2 Mbit/s Ch 39
Band Edge

5.6.5 TEST EQUIPMENT USED

- R&S TS8997

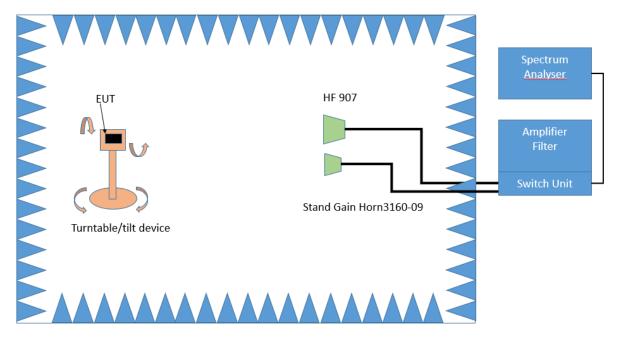
5.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.7.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- -VBW = 3MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45°

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

5.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

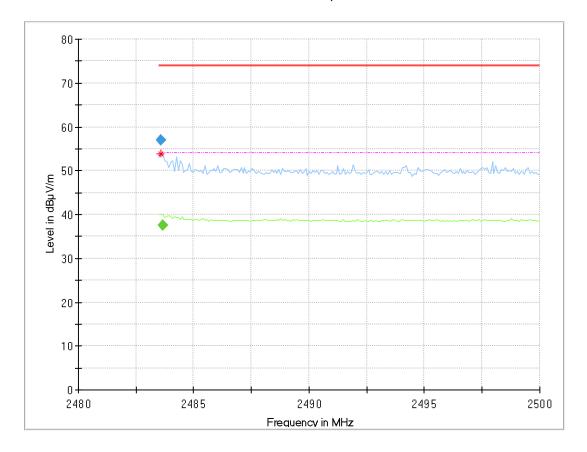
The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.7.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1013 hPa
Humidity: 40 %
BT LE GFSK


Applied duty cycle correction (AV): 0 dB

Mode	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1Mbps	39	2480	2483.5	56.9	PEAK	1000	74.0	17.1	BE
1Mbps	39	2480	2483.5	37.5	AV	1000	54.0	16.5	BE

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE 1 Mbit/s Ch 39

Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n
2483.583	56.9		74.00	17.12	1000.0	1000.000	150.0	Н	-91.0	85.0
2483.665		37.5	54.00	16.47	1000.0	1000.000	150.0	V	-169.0	13.0

5.7.5 TEST EQUIPMENT USED

- Radiated Emissions

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01 Page 44 of 62

5.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

Trace: Maxhold

Sweeps: Till stable (min. 200, max. 15000)

Sweep time: AutoDetector: Peak

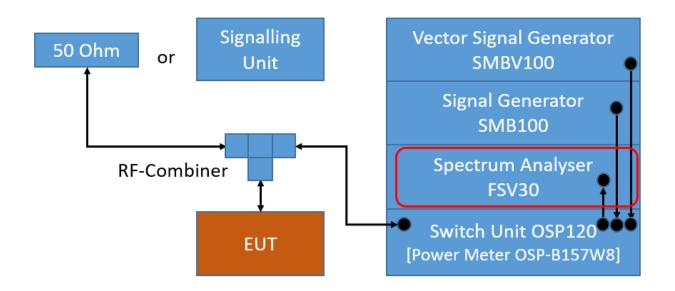
Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

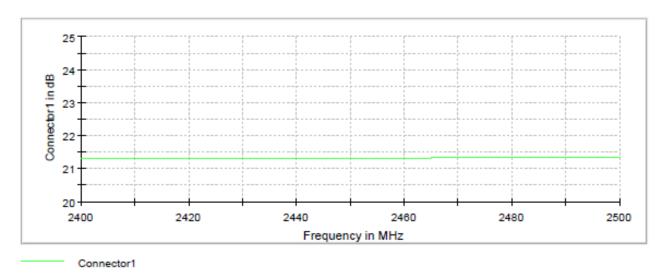
• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

• Sweep Points: ≥ 2 times span / RBW


Trace: Maxhold

• Sweeps: Till stable (max. 150)


• Sweep time: ≤ Number of Sweep Points x minimum transmission duration

Detector: RMS

TS8997; Power Spectral Density

Attenuation of the measurement path

5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

TEST REPORT REFERENCE: MDE_MEDEL_1901_FCC_01

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

•••

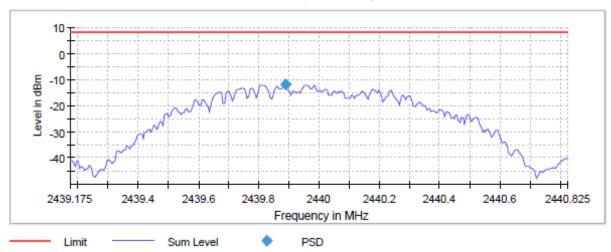
The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.8.3 TEST PROTOCOL

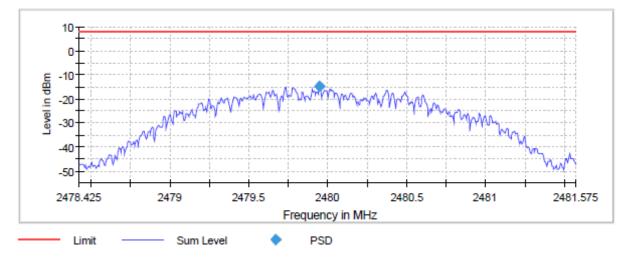
Ambient temperature: 25 °C
Air Pressure: 1004 hPa
Humidity: 35 %

BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/10kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-11.6	8.0	19.6
	19	2440	-11.6	8.0	19.6
	39	2480	-11.9	8.0	19.9


BT LE 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm/10kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-14.6	8.0	22.6
	19	2440	-14.6	8.0	22.6
	39	2480	-14.9	8.0	22.9



5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

BTLE 1 Mbit/s Ch 00 Peak Power Spectral Density

BTLE 2 Mbit/s Ch 00 Peak Power Spectral Density

5.8.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
1.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
1.4	CMW500	Callbox OIL- RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
1.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
1.6	СВТ	Bluetooth Tester "CBT- 02" incl. BLE- Option	Rohde & Schwarz	100302	2018-03	2021-03
1.7	CMW500		Rohde & Schwarz GmbH & Co. KG	163529-bw	2017-07	2020-07
1.8	CMW500	Callbox OIL- RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
1.9	A8455-4	4 Way Power Divider (SMA)		-		
1.10	Opus10 THI (8152.00)	T/H Logger 03	Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
1.11	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
1.12	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
1.13	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2019-11	2022-11
1.14	CMW500	Callbox OIL-	Rohde & Schwarz GmbH & Co. KG	167766-By		
1.15	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05
1.16		Temperature Chamber Vötsch 05	Vötsch	58566080550010	2020-05	2022-05

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
2.2	N5000/NP		ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
2.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
2.6	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2020-03	2023-03
2.7	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2020-03	2023-03
2.8	SGH-05	Standard Gain	RPG-Radiometer Physics GmbH	075		
2.9	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
2.10	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
2.11		High Pass Filter	Trilithic	9942012		
2.12	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.13	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB		
2.14	SMBV100A	. /	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
2.15	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.16	WRD1920/1980- 5/22-5EESD	Tunable Band Reject Filter	Wainwright Instruments GmbH	11		
2.17	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.18	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
2.19		Fibre optic link RS232	PONTIS Messtechnik GmbH	4031516037		
2.20	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.21	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
2.22			Scheiba	018		
2.23		horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.24	32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.25	FSW 43		Rohde & Schwarz	103779	2019-02	2021-02
2.26	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.27		Fibre optic link RS232	PONTIS Messtechnik GmbH	4021516036		
2.28			Rohde & Schwarz GmbH & Co. KG	836722/011		
2.29	SGH-19		RPG-Radiometer Physics GmbH	093		
2.30	WHKX 7.0/18G- 8SS	High Pass	Wainwright Instruments GmbH	09		
2.31	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
	4HC1600/12750 -1.5-KK	Filter	Trilithic	9942011		
2.33		Fibre optic link USB 2.0	Messtechnik GmbH	4471520061		
2.34	· ·	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		
2.35	SMB100A		Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
2.36	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.37	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.38		per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
2.39		horn	Rohde & Schwarz	357357/001	2018-03	2021-03
2.40	foCAN (v 4.0)	Fibre optic link CAN	(PONTIS EMC)	492 1607 014		
2.41		Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2020-03	2023-03

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.42	CMW500	Callbox OIL- RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
2.43	CMU 200	"CMU1" Universal Radio Communicatio n Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
2.44	3160-10		EMCO Elektronic GmbH	00086675		
2.45	MA4985-XP-ET	Bore Sight	innco systems GmbH	none		
2.46	SGH-08		RPG-Radiometer Physics GmbH	064		
2.47	СВТ	Bluetooth Tester "CBT- 02" incl. BLE- Option	Rohde & Schwarz	100302	2018-03	2021-03
2.48	CMW500	Callbox OIL- RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
2.49	A8455-4	4 Way Power Divider (SMA)		-		
2.50	SGH-12		RPG-Radiometer Physics GmbH	326		
2.51	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
2.52		Fibre optic link		4841516023		
2.53	5HC3500/18000 -1.2-KK		Trilithic	200035008		
2.54	FS-Z140	Harmonic	Rohde & Schwarz Messgerätebau GmbH	101007	2020-03	2023-03
2.55	OLS-1 M	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
2.56 2.57	HFH2-Z2 Voltcraft M- 3860M	Loop Antenna Digital Multimeter 01 (Multimeter)	Rohde & Schwarz Conrad	829324/006 IJ096055	2018-01	2021-01
2.58	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
2.59	ESR 7		Rohde & Schwarz	101424	2019-01	2021-01
2.60	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor	airWin Kompressoren UG	901/00503		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.61	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
2.62	foEthernet_M	Fibre optic link Ethernet / Gb- LAN	PONTIS Messtechnik GmbH	4841516022		
2.63	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.64	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
2.65	CMW500	Callbox OIL-	Rohde & Schwarz GmbH & Co. KG	167766-By		
2.66	6005D (30 V / 5 A)	Laboratory Power Supply 120 V 60 Hz	PeakTech	81062045		
2.67	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.68	SGH-03		RPG-Radiometer Physics GmbH	060		
2.69	FS-Z90	Harmonic	Rohde & Schwarz Messgerätebau GmbH	101686	2020-03	2023-03
2.70	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L		
2.71	NRV-Z1	Sensor Head B	Rohde & Schwarz GmbH & Co. KG	827753/006	2019-08	2020-08
2.72	HF 907-2	horn	Rohde & Schwarz	102817	2019-04	2022-04
2.73	foCAN (v 4.0)		Audivo GmbH (PONTIS EMC)	492 1607 013		
2.74	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.75	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
2.76	WRCA800/960- 0.2/40-6EEK	Tunable Notch Filter	Wainwright Instruments GmbH	20		
2.77	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
2.78	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07
2.79	E4408B	Spectrum Analyser (9 kHz to 26.5 GHz)	Agilent Technologies Deutschland GmbH	MY45103714		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	 11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

		<u> </u>				
cable	cable	cable	cable	distance	d_{Limit}	$d_{\sf used}$
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m$						
Frequency	AF R&S HL562	Corr.				
MHz	dB (1/m)	dB				
30	18.6	0.6				
50	6.0	0.9				
100	9.7	1.2				
150	7.9	1.6				
200	7.6	1.9				
250	9.5	2.1				
300	11.0	2.3				
350	12.4	2.6				
400	13.6	2.9				
450	14.7	3.1				
500	15.6	3.2				
550	16.3	3.5				
600	17.2	3.5				
650	18.1	3.6				
700	18.5	3.6				
750	19.1	4.1				
800	19.6	4.1				
850	20.1	4.4				
900	20.8	4.7				
950	21.1	4.8				
1000	21.6	4.9				

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF	
	R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	•			
cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

•		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36
•		•		

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Fraguancy	AF EMCO 3160-10	Corr.
Frequency		
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

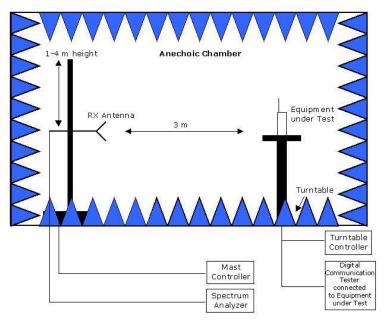
Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

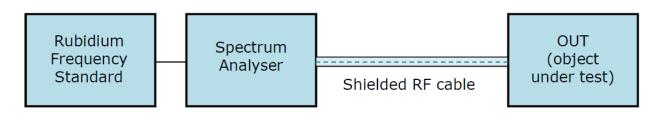
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)


Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

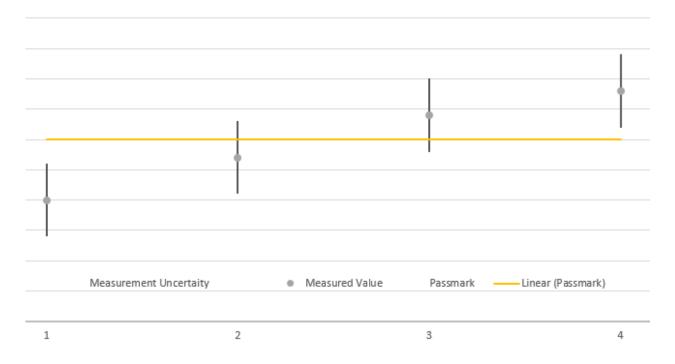
Table shows an extract of values.



8 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.


Drawing 2: Setup for conducted radio tests.

9 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

10 PHOTO REPORT

Please see separate photo report.