

FCC TEST REPORT FCC PART 15 SUBPART C 15.231

Test report On Behalf of Gobiz Electronics Limited For TPMS Sensor

Model No.: ST, SP, SL, SR, SU, SO, SQ, PSI-Tcsensor, E01, E03, E05, E06, E07, E08, E09, E10, E11, E12

FCC ID: VMK-ST

Prepared for : Gobiz Electronics Limited Rm 201, 2/F, Hi-Tech Centre, 9 Choi Yuen Road, Sheung Shui, N.T., Hong Kong, China

Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, FuhaiStreet, Bao'an District, Shenzhen City, China

 Date of Test:
 Aug. 21, 2018 ~ Aug. 28, 2018

 Date of Report:
 Aug. 28, 2018

 Report Number:
 HUAK180827902E

TEST RESULT CERTIFICATION

Applicant's name:	Gobiz Electronics Limited
Address	Rm 201, 2/F, Hi-Tech Centre, 9 Choi Yuen Road, Sheung Shui, N.T., Hong Kong, China
Manufacture's Name:	Gobiz Electronics Limited
Address:	Rm 201, 2/F, Hi-Tech Centre, 9 Choi Yuen Road, Sheung Shui, N.T., Hong Kong, China
Product description	
Trade Mark:	N/A
Product name:	TPMS Sensor
Model and/or type reference:	ST, SP, SL, SR, SU, SO, SQ, PSI-Tcsensor, E01, E03, E05, E06, E07, E08, E09, E10, E11, E12
Difference Description:	Different models are different only in shape and color.
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.231 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests:	Aug. 21, 2018 ~ Aug. 28, 2018
Date of Issue:	Aug. 28, 2018
Test Result:	Pass

2

Testing Engineer

Gong Dianl

(Gary Qian)

Technical Manager

Edon Hu

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 OPERATION OF EUT DURING TESTING	6
2.3 DESCRIPTION OF TEST SETUP	6
2.4 MEASUREMENT INSTRUMENTS LIST	7
3. PROVISION FOR MOMENTARY OPERATION	8
3.1 MEASUREMENT PROCEDURE	8
3.2 TEST SETUP	8
3.3 TEST RESULT	8
4. DUTY CYCLE CORRECTION FACTOR	9
4.1 MEASUREMENT PROCEDURE	9
4.2 TEST SETUP	9
4.3 TEST RESULT	9
5. RADIATED EMISSION	10
5.1. MEASUREMENT PROCEDURE	10
5.2. TEST SETUP	12
5.3. TEST RESULT	13
6. BANDWIDTH	15
6.1. MEASUREMENT PROCEDURE	15
6.2. TEST SETUP	15
6.3. TEST RESULT	16
7. PHOTOGRAPH OF TEST	17

1.1 TEST PROCEDURES AND RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§15.231(e)	Operate at a periodic rate exceeding that specified in paragraph (a)	Compliant
§15.231(b)	Average Factor	N/A
§15.231(e) & §15.209	Field Strength of Fundamental and Spurious Emission	Compliant
§15.231(c)	Bandwidth	Compliant

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address : 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China Designation Number: : CN1229

Test Firm Registration Number : 616276

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	433.92MHz
Field Strength(3m)	60.50dBuV/m(Peak)@3m
Modulation	FSK
Number of channels	1
Hardware Version	V1
Software Version	V1.0
Antenna Designation	Fixed antenna
Antenna Gain	-10dBi
Power Supply	DC 3.0V by Battery

2.2 OPERATION OF EUT DURING TESTING

NO.	D. TEST MODE DESCRIPTION						
1	Transmitting mode						
Note: 1. Different button of the report.	1. Different button of the EUT have been tested, and only the data of the worst case recorded in the test						
2. For Radiated Emissio	n, 3axis were chosen for testing for each applicable mode.						

2.3 DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation and Above1GHz Radiation testing:

EUT

2.4 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	R&S ENV216 HKE-002		Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2017	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3. PROVISION FOR MOMENTARY OPERATION

3.1 MEASUREMENT PROCEDURE

- Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=1MHz, VBW=3MHz Span: 0Hz Sweep time: 1000S
- 2. Set the EUT to transmit by manually operated. Use the "View" function of SPA to find the transmission time of being released.
- 3. Record the data and Reported.

3.2 TEST SETUP

3.3 TEST RESULT

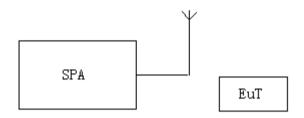
Test Mode: EUT @ 433.92MHz for RF Transmitter

periodic rate=300s

4. DUTY CYCLE CORRECTION FACTOR

4.1 MEASUREMENT PROCEDURE

1. Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=1MHz; VBW=3MHz Span: 0Hz


Sweep time: more than two pulse trains or more than each type of pulse occupancy time

2. Set the EUT to transmit by manually operated. Use the "Delta mark" function of SPA to find the period time between two pulse trains and each type of pulse occupancy time.

Page 9 of 17

3. Record the plots and Reported.

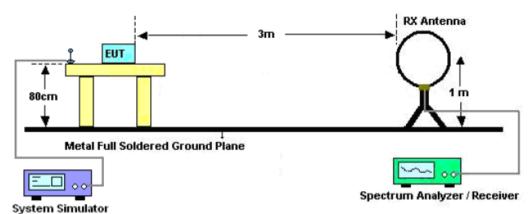
4.2 TEST SETUP

4.3 TEST RESULT

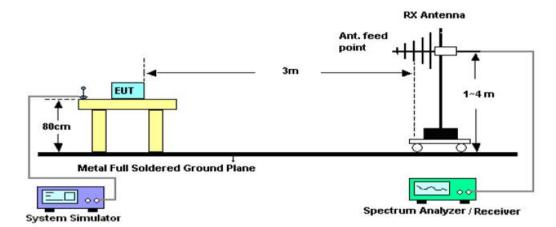
Note: The level of the peak emission are less than the average limit, so the average factor need not to be tested.

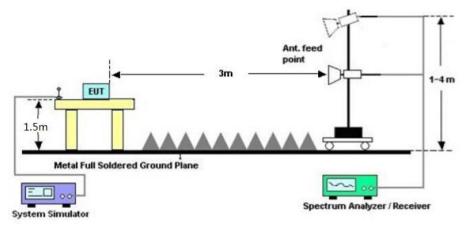
5.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

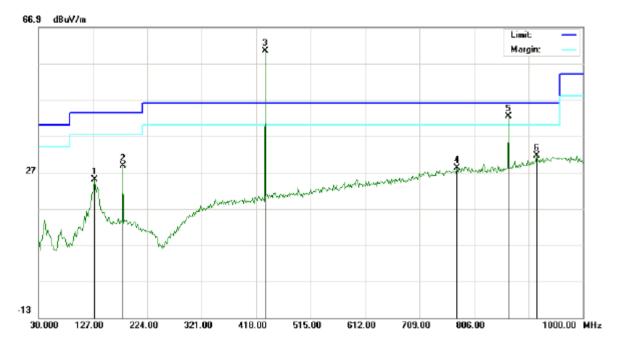

The following table is the setting of spectrum analyzer and receiver.

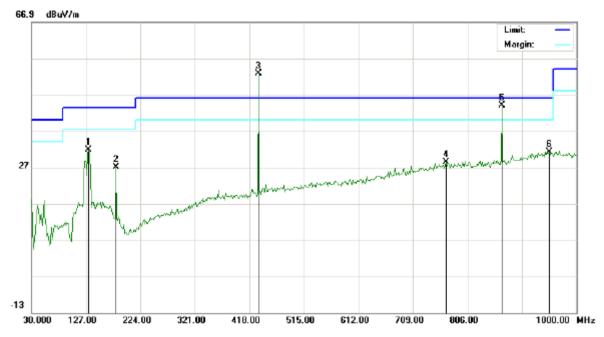
Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
	1MHz/1MHz for Peak, 1MHz/10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz


RADIATED EMISSION TEST SETUP ABOVE 1000MHz


No emission found between lowest internal used/generated frequencies to 30MHz. **RADIATED EMISSION BELOW 1GHZ-Horizontal**

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		130.2333	14.32	10.64	24.96	43.50	-18.54	peak			
2		180.3500	17.71	11.09	28.80	43.50	-14.70	peak			
3	*	433.9200	40.39	20.11	60.50	72.86	-12.36	peak			
4		775.2833	1.21	26.98	28.19	46.00	-17.81	peak			
5	İ	867.8433	14.58	27.76	42.34	52.86	-10.52	peak			
6		917.5500	2.51	29.10	31.61	46.00	-14.39	peak			

RADIATED EMISSION BELOW 1GHZ-Vertical

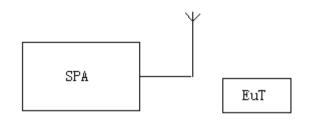
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		131.8500	20.05	11.80	31.85	43.50	-11.65	peak			
2		180.3500	12.98	13.98	26.96	43.50	-16.54	peak			
3	*	433.9200	32.75	20.11	52.86	72.86	-20.00	peak			
4		767.2000	1.45	26.87	28.32	46.00	-17.68	peak			
5	İ	867.8433	16.32	27.76	44.08	52.86	-8.78	peak			
6		951.5000	1.21	29.99	31.20	46.00	-14.80	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. Emissions of frequency range from 1GHz to 5GHz have 20dB margin. No recording in the test report.



6.1. MEASUREMENT PROCEDURE

- 1. Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=3KHz VBW=10KHz Span: 300kHz Sweep time: Auto
- 2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.

6.2. TEST SETUP

Test Mode: EUT @ 433.92MHz for RF Transmitter

-20dB bandwidth	LIMIT	RESULT				
5.096kHz	1084.8KHz	Pass				
Note: Limit= Operation Frequency ×0.25%						

🎉 Agilent Spectru	m Analyzer - Occupied BW					
W Center Fre	RF 50 Ω AC q 433.920000 M		SENSE:INT Freg: 433.920000 MHz	ALIGN AUTO Radio Sto	l: None	Frequency
		Trig: Fr	ree Run Avg Hol		vice: BTS	
	Ŧ	IFGain:Low #Atten:	. 10 08	Radio De	VICE. B13	
10 dB/div	Ref -30.00 dBm					
Log	Rei -Ju.uu ubiii					
-40.0						Center Freq
-50.0						433.920000 MHz
-60.0						
-70.0						
-80.0						
-90.0					m	
-100						
-110						
-120						
Center 433	.9 MHz			Sp	an 50 kHz	CF Step
#Res BW 1	kHz	#\	/BW/3kHz		61.73 ms	5.000 kHz
Occupi	ed Bandwidth		Total Power	-52.3 dBm	<u> </u>	<u>Auto</u> Man
Occupi				02.0 4811		
12.854 kHz Freq Offset						
Transmi	it Freq Error	-809 Hz	OBW Power	99.00 %		0 Hz
x dB Ba	ndwidth	5.096 kHz	x dB	-20.00 dB		
MSG				STATUS		

7. PHOTOGRAPH OF TEST

Radiated Emission

