

EMC Test Report

EUT	:	MaxRanger4K™ Solar Wireless Security Camera
MODEL	:	NVW-MR4KCAM
BRAND NAME	:	Swann
APPLICANT	:	Swann Communications U.S.A. Inc
Classification of Test	:	N/A

CVC Testing Technology Co., Ltd.

Test Report No.: FCC2023-0054-EMC

Applicant		Name : Sw Address :	vann Comi 12636 Cla States 900	munication rk Street Sa 670	s U.S.A. Inc anta Fe Springs Califo	rnia United	
		Name : Sh	enzhen In	finova Limi	ted		
Manufacturer		Address :	Infinova B Guan Roa Guangdor	Building,Gu ad South. Lo ng	an Lan High Tech Park onghua New District ,	k,Huan Shenzhen	
		Name :Ma	xRanger4I	K™ Solar V	Vireless Security Cam	era	
		Model/Typ	e: NVW-M	R4KCAM			
	a da v Ta a f	Additional	I Model: N/	/Α			
Equipment Or	ider lest	Trade mar	k : Swann				
		Serial NO.	:N/A				
		Sample N	0.4-1				
Date of Receipt.	2023.08.25		Date of 1	Testing	2023.08.25~2023.10.1	2	
	Test Specificati	on			Test Result		
FCC Pa	rt 15, Subpart I	B, Class B		PASS			
		The e	quipment ı	under test v	vas found to comply w	vith the	
		requiremen	its of the s	tandards ap	plied.		
Evaluation of les	t Result				Seal of	CVC	
					Issue Date:	2023.10.16	
Tested by:		Tested by	/:		Approved by:		
LuW	ili	Xu.	Zhanfe	2i	Charthum	h	
Lu Wei	Ji		Xu ZhenFe	i	Chen HuaWe	en	
Name	Signature	Name	Sig	Inature	Name Sig	Inature	
Other Aspects: N	ONE.						
Abbreviations:OK, Pas	s= passed I	Fail = failed	N/A= not ap	plicable	EUT= equipment, sample(s) un	nder tested	

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

Test Report No.: FCC2023-0054-EMC

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1. SUMMARY OF TEST RESULTS	5
1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS 1.2 MEASUREMENT UNCERTAINTY 1.3 TEST LOCATION	6 7 7
2. GENERAL INFORMATION	8
 2.1 GENERAL PRODUCT INFORMATION	8 9 10 10
3. EMISSION	11
3.1 CONDUCTED EMISSION	11 14
4. PHOTOGRAPHS OF TEST SETUP	. 20
5. PHOTOGRAPHS OF THE EUT	21

Page 4 of 22

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
FCC2023-0054-EMC	Original release	2023.10.16

Page 5 of 22

1. SUMMARY OF TEST RESULTS

	EMIS	SION	
Standard	Test Item	Result	Remarks
	Conducted test	PASS	Minimum passing margin is 7.0 dB at 0.636MHz
FCC Part 15, Subpart B, Class B	Radiated Test (30MHz~ 1GHz)	PASS	Minimum passing margin is 10.03dB at 559.964MHz
	Radiated Test (Above 1GHz)	PASS	Minimum passing margin is 3.68dB at 2459.945995MHz

Test Report No.: FCC2023-0054-EMC

Page 6 of 22

1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Test Equipment	T	/pe/Mode	SEI	RIAL NO.	E	Equipment No.	Manufacturer	Cal. Due
Radiation emission								/
EMI Test Receiver	N903	38A-508	MY53	2290079	EM-0	000397	Agilent	2024-02-22
EMI Test Receiver	ESR	7	10223	35	VGD	Y-0956	R&S	2024-02-22
EMI Test Receiver	N903	38A-508	MY53	290078	EM-0	000396	Agilent	2023-12-06
Spectrum Analyzer	N90 ⁻	10B	MY57	470323	DZ-C	00174	KEYSIGHT	2024-02-22
Radio Communication Test	CMV	V500	15668	36	EM-0	000623	R&S	2023-12-06
Broadband Antenna(3m)	VUL	B 9163	9163-	530	EM-0	000342	SCHWARZBECK	2024-06-10
Loop Antenna	FMZ	B1513	1513-	170	EM-0	000384	SCHWARZBECK	2024-02-24
Monopole antenna	HFH	2-Z6E	10131	17	EM-0	000613	R&S	2024-03-02
Waveguide Horn Antenna	BBH	A9120B	602		EM-0	000383	SCHWARZBECK	2024-01-11
Waveguide Horn Antenna	HF9	06	36030	06/008	WKN	IA-0024-8	R&S	2024-02-24
Semi-Anechoic	FAC	T-4	ST080	035	WKN	IA-0024	ETS	2024-12-11
Conducted emission			I		1			1
EMI Test Receiver		ESW44		103123		EM-000698	R&S	2024-06-10
EMI Test Receiver		ESR3		102394		VGDY-0705	R&S	2024-02-22
LISN		NSLK 8127		8127644		VGDY-0150	SCHWARZBECK	2024-07-27
LISN		NSLK 8128		8128-316		VGDY-0149	SCHWARZBECK	2024-07-27
DC LISN		PVDC8301-	017	PVDC8301	#17	VGDY-0692	SCHWARZBECK	2024-09-27
LISN		NSLK 8129		8129-268		EM-000388	SCHWARZBECK	2024-02-22
Plus Limiter (#1)		VTSD 9561	F-N	00515		VGDY-0808	SCHWARZBECK	2024-03-03
Plus Limiter (#2)		VTSD 9561		9561-F017		VGDY-0152	SCHWARZBECK	2024-09-03
Impedance Stabilization Net	work	ISN T800		27095		WKNE-0195	TESEQ	2024-07-27
Impedance Stabilization Net	work	NTFM8158		8158-0092		VGDY-0356	SCHWARZBECK	2024-05-29
ImpedanceStabilizationNetw	ork	NTFM8131		#184		EM-000498	SCHWARZBECK	2024-05-29
Voltage Probe		TK9420		9420-499		VGDY-0128	SCHWARZBECK	2024-02-22
Power Divider		4901.17.B		22643830		DB-0016	HUBER+SUHNER	2024-07-17
AudioSignalGenerator		GAG-810		EK871591		EM-000309	GW	2023-12-06
Shielding Room(#1)		GP1A		001		WKNF-0001	LEINING	2024-08-07

1. The calibration interval of the above Shielding room, Anechoic chamber and Control room is 36 months

2. The calibration interval of the above test instruments is 12 months

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	ITEM	FREQUENCY	UNCERTAINTY
1	Conducted Emissions	9kHz~30MHz	±2.66dB
		9KHz ~ 30MHz	±0.769dB
0	Radiated Spurious	30MHz ~ 1GMHz	±0.877dB
2	Emissions	1GHz ~ 18GHz	±0.777dB
		18GHz ~ 40GHz	±1.315dB

1.3 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab. of CVC Testing Technology Co., Ltd.

Address: No.3, TiantaiyiRoad, KaitaiAvenue, ScienceCity, Guangzhou, China Post Code: 510663 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn http://www.cvc.org.cn

2. GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	MaxRanger4K [™] Solar Wireless Security Camera
BRAND	Swann
MODEL	NVW-MR4KCAM
ADDITIONAL MODEL	N/A
POWER SUPPLY	DC 3.6V from Li-ion battery or DC 5V from USB host unit
OPERATING FREQUENCY	903.5MHzMHz~926.5MHz for WiFi HaLow
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	USB line, 1Meter, Shielded without ferrite

Remark:

1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

3. EUT photo refer to the report (Report NO.: FCC2023-0054-E).

2.2 INDEPENDENT OPERATION MODES

The EUT were tested under the following modes, the final worst mode was marked in boldface and recorded in this report.

	EMISSION Test Modes						
For Co	For Conducted Emission Tests						
	Test Mode	Test Voltage					
1	Charging + Adapter + Light + Alarm + Camera	DC 5V from USB Host unit					
For Ra	diated Emission Tests						
	Test Mode	Test Voltage					
1	Charging + Adapter + Light + Alarm + Camera	DC 5V from USB Host unit					
2	Light + Alarm + Camera	DC 3.6V from battery					

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturers, the EUT must comply with the requirements of the following standards:

FCC PART 15, SUBPART B, CLASS B ANSI C63.4:2014

All test items have been performed and recorded as per the above standards.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

			Sup	oort Equipmen	t			
NO	Descriptior	n Bi	rand	Model No.	Serial N	umber	ę	Supplied by
1	Network bride	ge l	N/A	N/A	1949	90		Client
			S	upport Cable				
NO	Description	Quantity (Number)	Length (m)	Detachable (Yes/ No)	Shielded (Yes/ No)	Cores (Numbe	s er)	Supplied by
1	N/A	N/A	N/A	N/A	N/A	N/A		N/A

3. EMISSION

3.1 CONDUCTED EMISSION

3.1.1 Limits Of Conducted Emission

TEST STANDARD: FCC Part 15, Subpart B (Section: 15.107) and ICES-003 (Class A: section 6.1)

	Class A	(dBuV)	Class B	(dBuV)
	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. NOTE: 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 Test Procedures

The basic test procedure was in accordance with ANSI C63.4:2014 (section 7).

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

3.1.3 Test setup

3.1.4 Test Results

CONDUCTED WORST-CASE DATA:

Test Report No.: FCC2023-0054-EMC

Test Mo	ode	See section 2.	2	Frequency Ran	ge	150KHz ~ 3	30MHz
Test Vo	ltage	See section 2.	2	PHASE		Line (N)	
Enviror Conditi	nmental ons	26deg. C,51%	RH	Tested By		Li Jialing	
	80 T 70 60 60 500 700 100 100 100 100 100 100 100 100 1	un de la compañía de					
	30+VVVVV 20- 10- 150k 30	0 400 500 800	0 1M 2 Frequ	M 3M 4M 5M ency in Hz	6 8 10M	20M	30M
NO	30 / WWW 20 10 10 150k 30 Frequency (MHz)	QuasiPeak (dBuV)	1M 2 Frequ Average (dBuV)	M 3M 4M 5M ency in Hz	Margin (dB)	20M	30M Corr.Factor (dB)
NO 1	30 + WWW 20 10 150k 30 Frequency (MHz) 0.186	QuasiPeak (dBuV) 52.6	Average (dBuV)	M 3M 4M 5M ency in Hz	Margin (dB) 11.6	20M	Corr.Factor (dB) 20.5
NO 1 2	Frequency (MHz) 0.186 0.233	QuasiPeak (dBuV) 52.6 48.1	Average (dBuV)	Limit (dBuV) 64.2 62.3	Margin (dB) 11.6 14.3	20M	30M Corr.Factor (dB) 20.5 20.5
NO 1 2 3	Frequency (MHz) 0.186 0.233 0.632	QuasiPeak (dBuV) 52.6 48.1 43.2	Average (dBuV) 	Limit (dBuV) 64.2 62.3 56.0	Margin (dB) 11.6 14.3 12.8	20M	Corr.Factor (dB) 20.5 20.5 20.6
NO 1 2 3 4	Frequency (MHz) 0.186 0.233 0.632 0.634	QuasiPeak (dBuV) 52.6 48.1 43.2 	Average (dBuV) 35.2	Limit (dBuV) 64.2 62.3 56.0 46.0	Margin (dB) 11.6 14.3 12.8 10.8	20M Line N N N N	30M Corr.Factor (dB) 20.5 20.5 20.6 20.6
NO 1 2 3 4 5	Frequency (MHz) 0.186 0.233 0.632 0.634 0.708	QuasiPeak (dBuV) 52.6 48.1 43.2 	Average (dBuV) 35.2 30.7	Limit (dBuV) 64.2 62.3 56.0 46.0 46.0	Margin (dB) 11.6 14.3 12.8 10.8 15.3	20M	30M Corr.Factor (dB) 20.5 20.5 20.6 20.6 20.6

Page 14 of 22

3.2 RADIATED EMISSION

3.2.1 Limits Of Radiated

TEST STANDARD:

FCC Part 15, Subpart B (Section: 15.109), for above 1GHz(section 3.2.2 Table 4)

Frequency (MHz)	Distance (m)	Class A (dBuV)	Class B (dBuV)
30 - 88	3	QP: 49.5	QP: 40
88 - 216	3	QP: 54	QP: 43.5
216 - 960	3	QP: 56.9	QP: 46
960-1000	3	QP: 60	QP: 54
Above 1000	3	Avg: 60 Peak: 80	Avg: 54 Peak: 74

NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

NOTE: 3. All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.2.2 Test Procedures

The basic test procedure was in accordance with ANSI C63.4:2014 (section 12).

1. From 30 MHz to 1GHz test procedure as below:

- 1) The radiated emissions were tested in a semi-anechoic chamber.
- 2) The Product was placed on the non-conductive turntable 0.1 m above the ground at a chamber.
- 3) Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- 4) For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

2. Above 1GHz test procedure as below:

- 1) The radiated emissions were tested in a fully Anechoic Chamber.
- Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- 3) For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Page 15 of 22

3.2.3 Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

3.2.4 Test Results (Below 1GHz)

Test Mode:		See se	See section 2.2		uency Range	30-	30-1000MHz			
Test Voltage See		See se	See section 2.2		ector Function	Qua	Quasi-Peak(QP)			
Environ	mental Condition	ns 24.2de	g. C,57% RH	I Test	ed By	Li J	Li Jialing			
Horizontal										
	120									
	110									
	100-									
	80									
[m]>	70									
el[dBµ.	60									
Lev	50									
	40									
	20		2		and the second sec	-				
	10-	ann ann ha i reis an ann an	a, hallorichen vorablikhing hingere							
	0 30M		100M			_		1G		
	0.00		10011	Frequency[Hz]						
	QP Limit	Honzontal PK								
	 QP Detector 									
NO.	Freq.	Reading	Factor		Limit	Margin	Height	Angle		
1		2.25	10 70	21.02				252		
2	9/ 802	2.20	1/ 72	17.06	40.00	26.44	100	100		
2	140 203	1 03	17.96	10.80	43.50	23.61	100	103		
4	296 971	13 22	19.09	32.31	46.00	13.69	100	52		
5	377,295	2.47	21.22	23.69	46.00	22.31	100	209		
6	579,754	3.46	25.85	29.31	46.00	16.69	100	288		
#7	907,356	74,80	31.23	106.03			100	242		
Remark	: 1. The emissio	n levels of o	ther frequen	cies were ar	eater than 20dB	margin.				
2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m).										
3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).										
4. Margin(dB) = Limit[dBμV/m] - Level [dBμV/m]										
5. # mean fundamental frequency.										

Test Report No.: FCC2023-0054-EMC

Test Mode: See s		See se	See section 2.2		Frequency Range			30-1000MHz		
Test Voltage		See se	See section 2.2		Detector Function			Quasi-Peak(QP)		
Environmental Conditions		ns 24.2de	24.2deg. C,57% RH		Tested By			Li Jialing		
Vertical										
[texel[dBhVin]	120 110 100 90 80 70 60 50 40 30 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 40 50 40 40 40 40 40 40 40 40 40 4	- Horizontal PK	a	Freq	uency[Hz]		5			
NO.	Freq. [MHz]	Reading [dBuV1	Factor [dB/m]	Le [dBL	vel vV/m1	Limit [dBuV/m]	Mai [d	rgin B1	Height [cm]	Angle [°]
1	36.209	9.02	18.44	27	.46	40.00	12	.54	100	314
2	80.930	8.37	14.37	22	.74	40.00	17	.26	100	314
3	148.255	0.86	19.15	20	.01	43.50	23	.49	100	154
4	296.971	5.60	19.09	24	.69	46.00	21	.31	100	259
5	429.389	2.26	22.96	25	.22	46.00	20	.78	100	158
6	559.964	10.37	25.60	35	.97	46.00		.03	100	85
#7	907.259	79.59	31.23	110).82				100	111
 Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV) + Factor (dB/m). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m] 5. # mean fundamental frequency. 										

3.2.5 Test Results (Above 1GHz)

Test Report No.: FCC2023-0054-EMC

4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]

4. PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Setup Photo).

Page 21 of 22

5. PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos and Internal Photos).

----- End of the Report -----

Important

(1) The test report is valid without the official stamp of CVC;

(2) Any part photocopies of the test report are forbidden without the written permission from CVC;

(3) The test report is invalid without the signatures of Approval and Reviewer;

- (4) The test report is invalid if altered;
- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.

(7) As for the test result "-" or "N" means "not applicable", "/" means "not test", "P" means "pass" and "F" means "fail"

The test data and test results given in this test report should only be used for purposes of scientific research, teaching and internal quality control when the CMA symbol is not presented.

Address of the laboratory: CVC Testing Technology Co., Ltd.Address: No.3,TiantaiyiRoad,KaitaiAvenue,ScienceCity,Guangzhou,ChinaPost Code: 510663Tel: 020-32293888FAX: 020-32293889E-mail: office@cvc.org.cn