

E506, 5th Floor, No.39 Keji Middle 2nd Rd, Science & Technology Park, Nanshan District, Shenzhen, P. R. China Tel: + 86 755 83642690 Fax: + 86 755 83297077 www.kmolab.com

FCC & IC TEST REPORT

Under FCC Part 15D for Isochronous UPCS Devices and RSS-213, Issue 3 & RSS-Gen Issue 4

Prepared For :

Binatone Electronics International Limited

Floor 23A, 9Des, Voeux Road West, Sheung Wan, Hong Kong

FCC ID: VLJC101-LX-BS		
IC: 4522A-C101LX		
EUT: Digital Cordless Telephone		
Model: C1011LX, C1012LX, C1013LX, C1014LX (Base Unit)		
June 12, 2016		
Issue Date:		
Extension Report		
Report Type:		
Erie Guo		
Test Engineer: Eric Guo		
Review By: Apollo Liu / Manager		

The test report consists 21 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Ke Mei Ou Laboratory Corporation. The test result in the report only applied to the tested sample.

TABLE OF CONTENTS

TABLE OF CONTENTS	
1. General Information	
1. 1 Notes	
1. 2 Testing Laboratory	
1. 3 Details of Applicant	3
1. 4 Application Details	
1. 5 Test Item	
1. 6 Test Standards	3
2. Technical Test	4
2. 1 Summary of Test Results	4
2. 2 Measurement Uncertainty	4
2. 3 Antenna Requirement	4
2. 4 Description of Tested Device	5
2. 5 EUT Modification	5
3. Technical Characteristics Test	6
3. 1 Conducted Emission Test	
3.1.1 Test Equipment	6
3.1.2 Test Procedure	6
3.1.3 Test Setup	6
3.1.4 Configuration of the EUT	7
3.1.5 EUT Operating Condition	
3.1.6 Conducted Power Line Emission Limits	
3.1.7 Conducted Power Line Test Result	9
3. 6 Radiated Spurious Emission	
3.6.1 Test Equipment	
3.6.2 Test Procedure	
3.6.3 Test Setup	
3.6.4 Configuration of The EUT	
3.6.5 EUT Operating Condition	
3.6.6 Limit	
3.6.7 Radiated Spurious Emission Test Result	
4. Photos of Testing	14
4. 1 EUT Test Photographs	
4. 2 EUT Detailed Photographs	15
5. FCC ID Label	20
6. Test Equipment	
• •	

1. General Information

1.1 Notes

The test results of this report relate exclusively to the test item specified in 1.5. The KMO Lab does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the KMO Lab.

1.2 Testing Laboratory

Ke Mei Ou Laboratory Co., Ltd.

ANSI-ASQ National Accreditation Board/ACLASS ISO/IEC 17025 Accredited Lab for telecommunication standards. The Registration Number is AT-1532. The testing quality system meets with ISO/IEC-17025 requirements, This approval results is accepted by MRA of ILAC. FCC Test Site Registration Number: 962205

: C1012LX, C1013LX, C1014LX

: Digital Cordless Telephone

IC Test Site Registration Number: 4986A-2 Internet: www.kmolab.com

1.3 Details of Applicant

Name : Binatone Electronics International Limited Address : Floor 23A, 9Des, Voeux Road West, Sheung Wan, Hong Kong

1.4 Application Details

Date of Receipt of Application	: February 29, 2016
Date of Receipt of Test Item	: February 29, 2016
Date of Test : March 29~March 30, 2	
1. 5 Test Item	
Manufacturer	: Same as applicant
Address	: Same as applicant
Trade Name	: Motorola
Model No.(Base)	: C1011LX

Additional Information

Model No.(Extension)

Frequency	: 1921.536~1928.448MHz
RF Power	: 102.802mW (Conducted Peak)
Number of Channels	: 5
Type of Modulation	: GFSK
Power Supply	: DC 7.5V/0.3A(Adapter model: MN-A703-L145)
	DC 7.5V/300mA(Adapter model: S003AIU0750030)
Antenna	: Internal (0dBi)

Antenna

Description

UPCS Channel	Frequency (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC15.303(d),(g) Within 1920~1930 MHz band for isochronous devices.

1. 6 Test Standards

FCC Part 15D for Isochronous UPCS Devices and RSS-213, Issue 3 & RSS-Gen Issue 4

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

2. Technical Test 2.1 Summary of Test Results

The EUT has been tested according to the following specifications:

FCC Rule FCC Part15, Subpart D	IC Rule IC RSS-213, Issue3	Test Type	Result	Notes
15.107(a) 15.207(a)	5.4 RSS-GEN 8.8	Power Line Conducted Emission	PASS	Complies
15.319(b)	5.1	Digital Modulation Techniques	PASS	Complies
15.19(a)3	RSP-100 3.1	Labeling requirements	PASS	Complies
15.317, 15.203	RSS-GEN 8.3	Antenna Requirement	PASS	Complies
15.319(g) 15.109(a) 15.209(a)	RSS-GEN 8.9	Spurious Emissions (Radiated)	PASS	Complies

1. Only applies for equipment that transmits unacknowledged control and signaling information

2. The client declares that the tested equipment does not implement this provision

3.Not required if the Conducted Out-of-Band Emissions test is Passed

2. 2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement Frequency		Uncertainty
Conducted emissions	0.15MHz~30MHz	1.72
Radiated emissions	$30MHz \sim 300MHz$	3.88
Radiated emissions	300MHz~1000MHz	3.86
Radiated emissions	1000MHz~18000MHz	5.28

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2006, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. KMO values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

2. 3 Antenna Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT no antenna connector for internal antenna. This is permanently attached antenna and meets the requirements of this section.

7.1.4(RSS-GEN) - A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and

out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

2. 4 Description of Tested Device

The EUT is a DECT Base Station and is a responding device as described in ANSI C63.17 and is designed to operate together with a DECT Handset, which is the initiating device.

2.5 EUT Modification

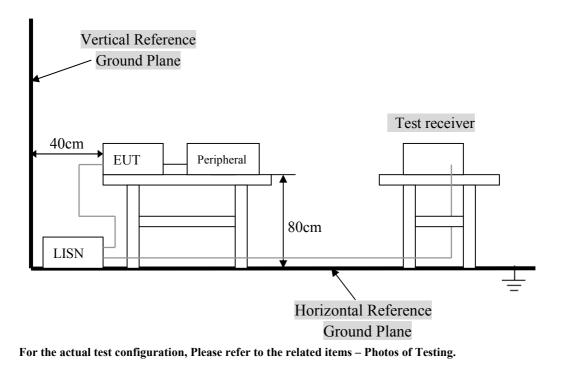
This product is an extension of original report under VLJC101-LX-BS

The applicant declare that the reasons for this Class II permissive change as below:

Add two power adapter (Model: MN-A703-L145 / S003AIU0750030) and has the same electrical specification with original power adapter

Anything else are the same as before.

Technical Characteristics Test 1 Conducted Emission Test


3.1.1 Test Equipment

Please refer to Section 6 this report.

3.1.2 Test Procedure

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m (W) x 1.5m (L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 500hm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission. **3.1.3 Test Setup**

3.1.4 Configuration of the EUT

For emissions testing, the equipment under test (EUT) was set up to transmit continuously in burst mode with pseudo-random data to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst-case emissions.

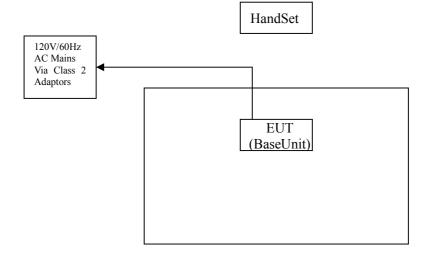
* Associated Antenna Descriptions: The antenna used in this product is embedded antenna.

A. EUT

Device Manufacturer		Model #	FCC ID
Digital Cordless Telephone	Same as applicant	C1011LX	VLJC101-LX-BS

B. Internal Devices

Device	Manufacturer	Model #	FCC ID
N/A			


C. Peripherals

Device	Manufacturer	Model # Serial #	FCC ID/ DoC	Cable
N/A				
N/A				

3.1.5 EUT Operating Condition

Operating condition is according to ANSI C63.10:2013.

- A. Setup the EUT and simulators as shown on follow.B. Enable RF signal and confirm EUT active.
- C. Modulate output capacity of EUT up to specification.

3.1.6 Conducted Power Line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)				
Frequency RangeClass AClass B(MHz)QP/AVQP/AV				
0.15 - 0.5	79/66	66-56/56-46		
0.5 - 5.0	73/60	56/46		
5.0 - 30	73/60	60/50		

NOTE : In the above table, the tighter limit applies at the band edges.

3.1.7 Conducted Power Line Test Result

Product	: Digital Cordless Telephone	Test Mode	: Normal
Test Item	: Conducted Emission Data	Temperature	:25 °C
Test Voltage	: DC 6.5V	Humidity	: 56%RH
Test Result	: PASS		

The frequency spectrum from 0.15 MHz to 30 MHz was investigated. All readings are quasi -peak values with a resolution bandwidth of 9 KHz.

· Temperature ∶ <u>26</u> °C

• Humidity : <u>53 %</u> RH

Adapter model: MN-A703-L145

	FCC 15 Class B									
Frequency	(dB	Level uV)	Factor	(dB	ssion uV)	Line/	(dB	nit uV)	Margin	(dBuV)
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV
0.158	35.08	22.72	10.30	45.38	33.02	Line	65.57	55.57	-20.19	-22.55
1.838	23.35	15.51	10.40	33.75	25.91	Neutral	56.00	46.00	-22.25	-20.09
0.178	33.47	21.04	10.30	43.77	31.34	Line	64.58	54.58	-20.81	-23.24
3.310	25.78	17.64	10.50	36.28	28.14	Neutral	56.00	46.00	-19.72	-17.86
0.198	31.59	19.64	10.30	41.89	29.94	Line	63.69	53.69	-21.80	-23.75
4.142	25.95	17.53	10.50	36.45	28.03	Neutral	56.00	46.00	-19.55	-17.97
	FCC 15 Class B									

Note: NF = No Significant Peak was Found. Adapter model: MN-A703-L145

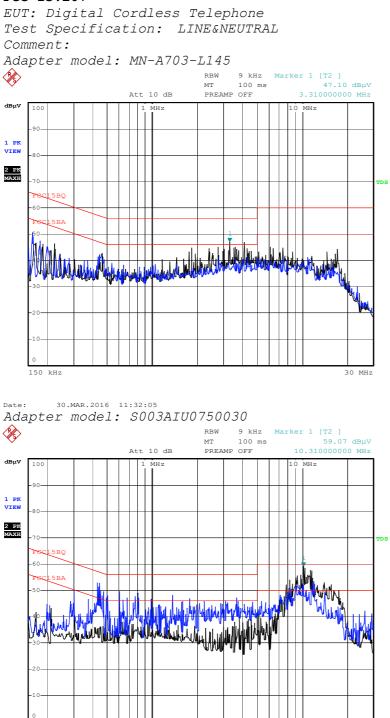
	FCC 15 Class B									
Frequency		Level uV)	Factor		ssion uV)	Line/	Liı (dB	mit uV)	Margin	(dBuV)
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV
0.298	35.23	23.72	10.30	45.53	34.02	Line	60.30	50.30	-14.77	-16.28
7.926	30.41	16.08	10.70	41.11	26.78	Neutral	60.00	50.00	-18.89	-23.22
0.430	38.82	28.78	10.40	49.22	39.18	Line	57.25	47.25	-8.03	-8.07
8.362	29.65	16.72	10.70	40.35	27.42	Neutral	60.00	50.00	-19.65	-22.58
0.442	39.88	29.46	10.40	50.28	39.86	Line	57.02	47.02	-6.74	-7.16
9.350	32.18	18.84	10.70	42.88	29.54	Neutral	60.00	50.00	-17.12	-20.46
0.606	32.58	21.94	10.40	42.98	32.34	Line	56.00	46.00	-13.02	-13.66
9.878	33.86	19.92	10.70	44.56	30.62	Neutral	60.00	50.00	-15.44	-19.38
0.806	33.55	21.47	10.40	43.95	31.87	Line	56.00	46.00	-12.05	-14.13
10.310	35.55	21.34	10.80	46.35	32.14	Neutral	60.00	50.00	-13.65	-17.86
1.366	30.35	19.24	10.50	40.85	29.74	Line	56.00	46.00	-15.15	-16.26
10.526	35.38	20.72	10.80	46.18	31.52	Neutral	60.00	50.00	-13.82	-18.48
9.130	32.44	20.32	10.70	43.14	31.02	Line	60.00	50.00	-16.86	-18.98
11.478	35.25	20.33	10.80	46.05	31.13	Neutral	60.00	50.00	-13.95	-18.87
12.018	29.65	18.86	10.80	40.45	29.66	Line	60.00	50.00	-19.55	-20.34
14.162	29.33	16.14	10.80	40.13	26.94	Neutral	60.00	50.00	-19.87	-23.06
				FCO	C 15 Cla	ss B				

Note: NF = No Significant Peak was Found.

Note:

1.Uncertainty in conducted emission measured is <+/ -2dB.

2. The emission levels of other frequencies were very low against the limit.


3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.

5.Margin Value = Emission Level - Limit Value.

Conducted Emission

FCC 15.207

Date: 30.MAR.2016 11:42:50

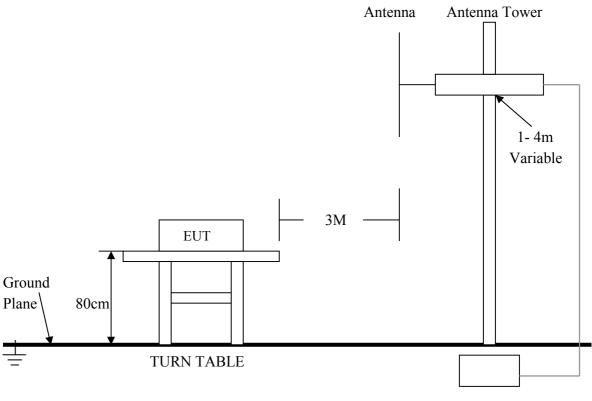
150 kHz

30 MHz

3. 6 Radiated Spurious Emission 3.6.1 Test Equipment

Please refer to section 6 this report.

3.6.2 Test Procedure


The transmitter was placed on a wooden turntable and was transmitting in a non radiating dummy load which was directly connected to the antenna connector. The battery was replaced by monitored voltage source. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna was height and polarization as well as the EUT azimuth where varied in orders to identify the maximum level of emission from the EUT. The test was performed by placing the EUT on 3 orthogonal axis. The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution. All tests was performed for the lower, the middle and the highest frequency.

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.17 - 2006. The specification used was the FCC 15 15.319(g).

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RWB	Video B/W	IF B/W	Detector
30~1000MHz	100kHz	300kHz	120kHz	QP
	1MHz	1MHz	/	РК
Above 1GHz	1MHz	30Hz	/	AV

3.6.3 Test Setup

Test Receiver

For the actual test configuration, please refer to the related items – Photos of Testing.

3.6.4 Configuration of The EUT

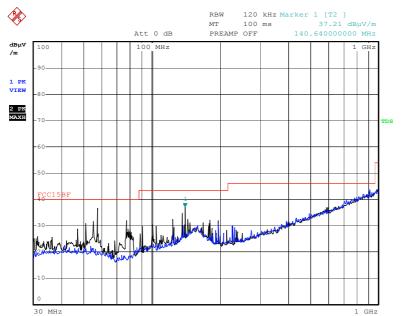
Same as section 3.1.4 of this report

3.6.5 EUT Operating Condition Same as section 3.1.5 of this report

3.6.6 Limit

According to FCC§15.319(g), notwithstanding other technical requirements specified in this subpart, attenuation of emissions below the general emission limits in §15.209 is not required.

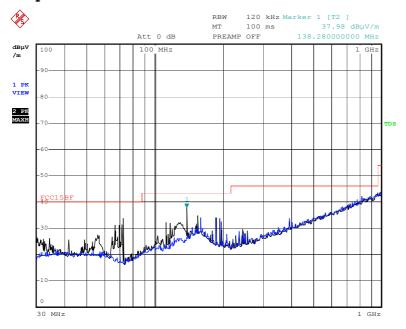
3.6.7 Radiated Spurious Emission Test Result


Product	: Digital Cordless Telephone	Test Mode	: CH Low ~ CH High : 25 °C
Test Item	: Radiated Spurious Emission	Temperature	
Test Voltage Test Result	: DC 6.5V : PASS	Humidity	: 56%RH

For Frequency from 30MHz to 1GHz Adapter model: MN-A703-L145

FCC 15 Class B								
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)		
196.600	16.55	13.87	30.42	Horiz./	43.5	-13.08		
54.00	15.56	10.66	26.22	Vert.	40.0	-13.78		
228.320	6.03	18.19	24.22	Horiz./	46.0	-21.78		
136.680	12.69	13.83	26.52	Vert.	43.5	-16.98		
855.520	13.45	22.68	36.13	Horiz./	46.0	-9.87		
140.640	16.82	10.96	27.78	Vert.	43.5	-15.72		
		FC	CC 15 Class E	3				

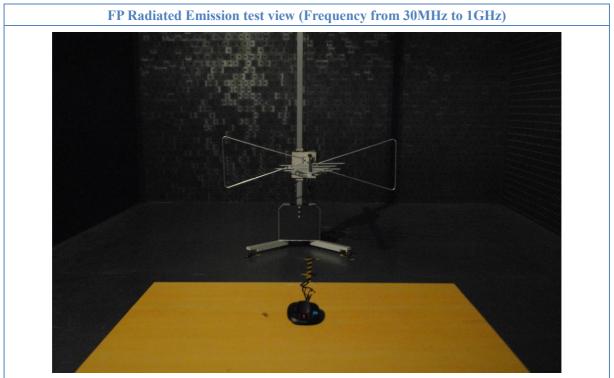
Adapter model: S003AIU0750030


	FCC 15 Class B								
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)			
159.120	13.12	10.96	24.08	Horiz./	43.5	-19.42			
138.280	16.51	13.83	30.34	Vert.	43.5	-13.16			
196.640	18.24	13.87	32.11	Horiz./	43.5	-11.39			
154.640	13.39	10.96	24.35	Vert.	43.5	-19.15			
393.200	13.45	20.91	34.36	Horiz./	46.0	-11.64			
193.440	10.51	13.87	24.38	Vert.	43.5	-19.12			
	FCC 15 Class B								

Radiated Emission Adapter model: MN-A703-L145

Date: 30.MAR.2016 11:00:59

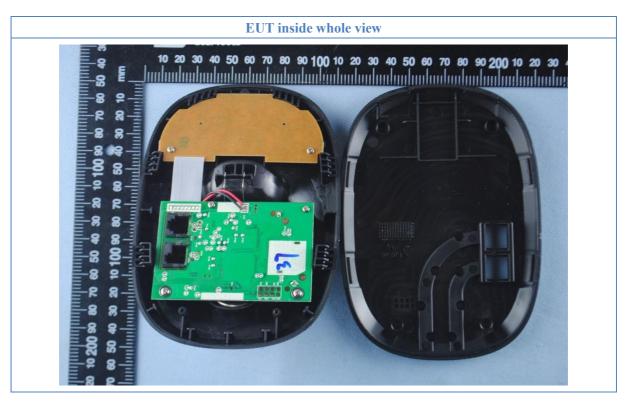
Adapter model: S003AIU0750030



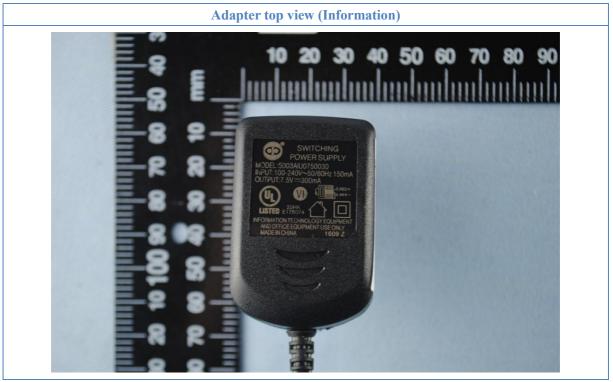
Date: 30.MAR.2016 11:20:51

4. Photos of Testing

4.1 EUT Test Photographs



4. 2 EUT Detailed Photographs



5. FCC ID Label

Refer to FCC ID label.

6. Test Equipment

Equipment/ Facilities	Manufacturer	Model #	Serial No.	Due Date
Turntable	Innco systems GmbH	CT-0801	KMO-SZ114	NCR
Antenna Tower	Innco systems GmbH	MM4000-PP	KMO-SZ115	NCR
Controller	Innco systems GmbH	CO2000	KMO-SZ116	NCR
Pre-Amplifier	Agilent	87405C	KMO-SZ155	Dec.6, 2016
Pre-Amplifier	Com-Power	PAM-840	KMO-SZ156	Dec.6, 2016
Horn Antenna	Com-Power	AH-840	KMO-SZ157	Dec.6, 2016
EMI Test Receiver	Rohde & Schwarz	ESPI7	KMO-SZ002	June 27, 2016
Spectrum Analyzer	Rohde & Schwarz	FSP40	KMO-SZ003	June 27, 2016
Signal Generator	FLUKE	PM5418+Y/C	KMO-SZ020	May 27, 2016
Loop Antenna	Rohde & Schwarz	HFH2-Z2	KMO-SZ004	August 19, 2018
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	KMO-SZ005	August 27, 2018
Trilog-Super Broadband Antenna	SCHWARZBECK	VULB9161	KMO-SZ006	August 19, 2018
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	KMO-SZ007	August 19, 2018
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	KMO-SZ008	August 19, 2018
AMN	Rohde & Schwarz	ESH3-Z5	KMO-SZ009	June 27, 2016
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	KMO-SZ077	Nov.29, 2016
ISN	SCHWARZBECK	NTFM 8158 CAT3	KMO-SZ070	Nov.19, 2016
ISN	SCHWARZBECK	NTFM 8158 CAT5	KMO-SZ071	Nov.19, 2016
ISN	SCHWARZBECK	NTFM 8158 CAT6	KMO-SZ072	Nov.19, 2016
KMO Shielded Room	KMO	KMO-001	KMO-SZ036	NCR
Coaxial Cable with N-Connectors	SCHWARZBECK	AK9515H	KMO-SZ037	Sep.18, 2016
AC Power Source / Analyzer	Agilent	6813B	KMO-SZ166	July 22, 2016
Power Meter	Rohde & Schwarz	OSP-B157	KMO-HK015	Nov.6, 2016
Digital Radio Communication Tester	Rohde & Schwarz	CMD60	KMO-SZ169	April 10, 2016
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	KMO-SZ170	April 10, 2016
Regulatory Test System 30 MHz to 40 GHz	Rohde & Schwarz	TS8997	KMO-HK015	Nov.6, 2016
Program Control Telephone Exchanger	Excelltel	CDX8000-M	KMO-SZ221	NCR
3m Anechoic Chamber	KMO	KMO-3AC	KMO-3AC-1	Nov.12, 2016
Temperature Chamber	TABAI	PSL-4GTW	N/A	Feb.10, 2017

The following test equipments were used during the radiated & conducted emission test: