

RADIO TEST REPORT FCC ID: VLJ-SH039

Product: Bluetooth earphone Trade Mark: Motorola Model No.: SH039 Serial Model: VerveBuds 110 Report No.: S19061903201002 Issue Date: 31 Jul. 2019

Prepared for

Binatone Electronics International Ltd. Floor 23A, 9 Des Voeux Road West, Sheung Wan Hong Kong China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1		ST RESULT CERTIFICATION	
2	SUI	MMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
3	8.1 8.2 8.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SET	FUP OF EQUIPMENT UNDER TEST	9
6	5.1 5.2 5.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 .10 .11
7	TES	ST REQUIREMENTS	.13
ר ר ר ר ר ר ר ר	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	.18 .30 .31 .33 .34 .36 .37 .38
8	TES	ST RESULTS	.39
8 8 8 8	8.1 8.2 8.3 8.4 8.5 8.6	DUTY CYCLE MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH MAXIMUM POWER SPECTRAL DENSITY LEVEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION	.43 .47 .51 .55

NTEK北测

1 TEST RESULT CERTIFICATION

Applicant's name:	Binatone Electronics International Ltd.	
Address:	Floor 23A, 9 Des Voeux Road West, Sheung Wan Hong Kong China	
Manufacturer's Name:	Binatone Electronics International Ltd.	
Address:	Floor 23A, 9 Des Voeux Road West, Sheung Wan Hong Kong China	
Product description		
Product name:	Bluetooth earphone	
Model and/or type reference:	SH039	
Serial Model:	VerveBuds 110	
	·	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 28 Jun. 2019 ~ 31 Jul. 2019	
Testing Engineer	:(Allen Liu)	
Technical Manager	: Jason chen (Jason Chen)	
Authorized Signatory	:(Sam Chen)	

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b) Peak Output Power		PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d) Spurious RF Conducted Emission		PASS				
15.203	Antenna Requirement	PASS				

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- 3. There are left and right ear plugs on the EUT. Both have been tested.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communique dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Bluetooth earphone			
Trade Mark	Motorola			
FCC ID	VLJ-SH039			
Model No.	SH039			
Serial Model	VerveBuds 110			
Model Difference	All the model are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Bluetooth Version	BT V4.0			
Antenna Type	FPCB Antenna			
Antenna Gain	2 dBi			
	DC supply:			
Power supply	Earphone: DC 3.7V/60mAh from Battery or DC 3.7V form Charging case Charging case: DC 3.7V/300mAh from Battery or DC 5V from USB Port			
	Adapter supply:			
HW Version	v1.3			
SW Version	v0.80			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No. Version Description Issued Date						
S19061903201002	Rev.01	Initial issue of report	Jul 31, 2019			
		-				
	+ +					
			<u> </u>			
	+					
	++					
	+					
	++					
	+					
		1				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item	Data Rate/ Modulation				
	BT V4.0 / GFSK				
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps				
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps				
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps				
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps				
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps				
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps				

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT is set to continuous transmission mode. duty cycle greater than 98%.

5. EUT built-in battery-powered, the battery is fully-charged.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode AC PLUG C-1 AE-1 E-1 EUT Adapter For Radiated Test Cases EUT For Conducted Test Cases C-2 Measurement EUT Instrument Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB cable	NO	NO	0.5m
C-2	RF cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2018.10.08	2019.10.07	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2018.10.08	2019.10.07	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2018.08.05	2019.08.04	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2018.08.05	2019.08.04	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.19	2020.05.18	1 year
2	LISN	R&S	ENV216	101313	2019.04.18	2020.04.19	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.19	2020.05.18	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

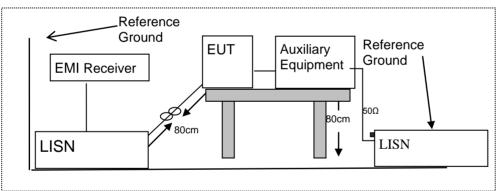
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov (MHz)	Conducted	Emission Limit	
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

EUT:		Bluetooth	h earphone Model Name :		:	SH039	1	
Temperature:	Temperature: 26 °C		Relative Humidity:		nidity:	54%		
Pressure:		1010hPa		Phase :		L		
Test Voltage	:	DC 5V fro AC 120V	om Adapter /60Hz	Test Mode:		Mode ²	1	
			T					
Frequency	Rea	ding Level	Correct Factor	Measure-ment	Lim	its	Margin	Remarl
(MHz)	((dBµV)	(dB)	(dBµV)	(dBļ	JV)	(dB)	Reman
0.4979		25.64	9.74	35.38	56.0	03	-20.65	QP
0.4979		15.28	9.74	25.02	46.0	03	-21.01	AVG
0.5737		28.29	9.74	38.03	56.0	00	-17.97	QP
0.5737		18.62	9.74	28.36	46.0	00	-17.64	AVG
0.9818		22.16	9.74	31.90	56.0	00	-24.10	QP
0.9818		11.51	9.74	21.25	46.0	00	-24.75	AVG
1.1737		21.89	9.74	31.63	56.0	00	-24.37	QP
1.1737		10.91	9.74	20.65	46.0	00	-25.35	AVG
2.2259		20.89	9.78	30.67	56.0	00	-25.33	QP
2.2259		11.00	9.78	20.78	46.0	00	-25.22	AVG
3.0698		19.61	9.83	29.44	56.0	00	-26.56	QP
3.0698		8.50	9.83	18.33	46.0	00	-27.67	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBuV Limit: AVG: 40 Whitehall peak AVG -20 0.150 0.5 (MHz) 5 30.000

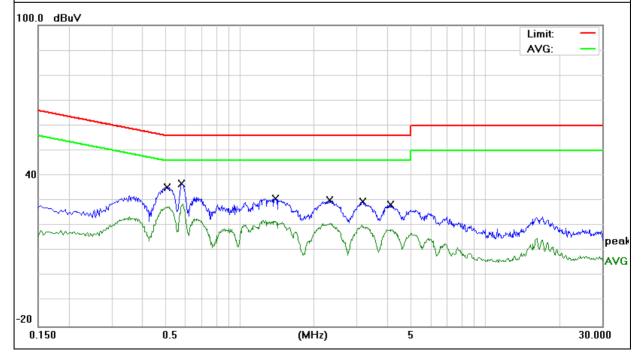
EUT: Bluetooth		n earphone		Model Name :		SH039		
Temperature:	Temperature: 26 °C		Relative Humidity:		54%			
Pressure:		1010hPa			Phase :		N	
		DC 5V fro AC 120V	om Adapter /60Hz		Test Mode	e:	Mode 1	
	1		1			1		
Frequency	Rea	ding Level	Correct Factor	Meas	sure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)		(dBµV)	(dBµV)	(dB)	Remark
0.5060		25.64	9.75	35.39		56.00	-20.61	QP
0.5060		15.58 9.75			25.33	46.00	-20.67	AVG
0.5779		27.12	9.75		36.87	56.00	-19.13	QP
0.5779		14.51	9.75		24.26	46.00	-21.74	AVG
1.3979		21.01	9.76		30.77	56.00	-25.23	QP
1.3979		10.49	9.76		20.25	46.00	-25.75	AVG
2.3260		20.53	9.81		30.34	56.00	-25.66	QP
2.3260		11.42	9.81	9.81		46.00	-24.77	AVG
3.1659		19.62	9.88		29.50	56.00	-26.50	QP
3.1659		8.44	9.88		18.32	46.00	-27.68	AVG
4.1258	18.38 9.92		28.30	56.00	-27.70	QP		
,	1			1				

18.33

46.00

-27.67

AVG

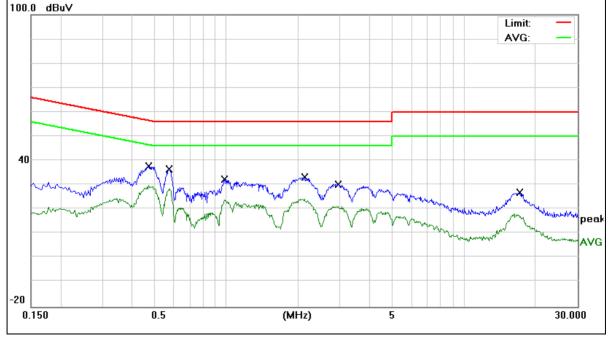

Remark:

4.1258

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

8.41

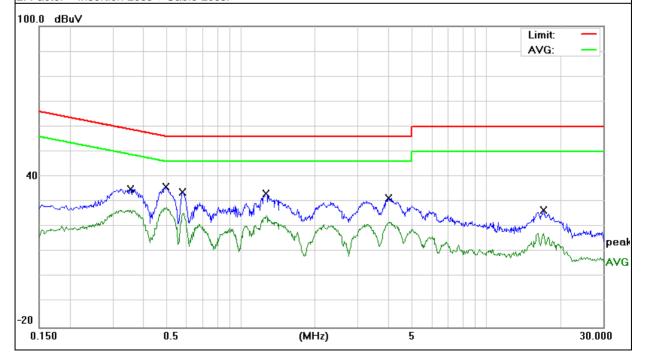
9.92


EUT:	Bluetooth earphone	Model Name :	SH039
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Lest Voltage .	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonto
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4697	27.99	9.74	37.73	56.52	-18.79	QP
0.4697	13.59	9.74	23.33	46.52	-23.19	AVG
0.5737	26.79	9.74	36.53	56.00	-19.47	QP
0.5737	15.71	9.74	25.45	46.00	-20.55	AVG
0.9818	22.66	9.74	32.40	56.00	-23.60	QP
0.9818	14.92	9.74	24.66	46.00	-21.34	AVG
2.1379	23.42	9.78	33.20	56.00	-22.80	QP
2.1379	15.55	9.78	25.33	46.00	-20.67	AVG
2.9580	20.55	9.83	30.38	56.00	-25.62	QP
2.9580	10.42	9.83	20.25	46.00	-25.75	AVG
17.1176	16.81	10.15	26.96	60.00	-33.04	QP
17.1176	5.21	10.15	15.36	50.00	-34.64	AVG

Remark:

1. All readings are Quasi-Peak and Average values. 2. Factor = Insertion Loss + Cable Loss.



EUT: Bluetooth earphone		Model Name :		SH039				
Temperature:		26 ℃		Relative Humidity:		lumidity:	54%	
Pressure:		1010hPa					Ν	
Test Voltage :	t Voltage : DC 5V from Adapter AC 240V/60Hz Test Mode		Ð:	Mode 1				
Frequency	кеа	ding Level	Correct Factor	Mea	sure-ment	Limits	Margin	Remark
(MHz)	((dBµV)	(dB)		(dBµV)	(dBµV)	(dB)	
0.3539		25.45	9.75		35.20	58.87	-23.67	QP
0.3539		15.58	9.75		25.33	48.87	-23.54	AVG
0.4939		26.08	9.75		35.83	56.10	-20.27	QP
0.4939		14.50	9.75		24.25	46.10	-21.85	AVG
0.5779		24.12	9.75		33.87	56.00	-22.13	QP
0.5779		13.27	9.75		23.02	46.00	-22.98	AVG
1.2660		23.51	9.75		33.26	56.00	-22.74	QP
1.2660		11.70	9.75		21.45	46.00	-24.55	AVG
3.9940		21.63	9.92		31.55	56.00	-24.45	QP
3.9940		10.66	9.92		20.58	46.00	-25.42	AVG
17.1178		16.36	10.14		26.50	60.00	-33.50	QP
17.1178		5.19	10.14		15.33	50.00	-34.67	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art10.20							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

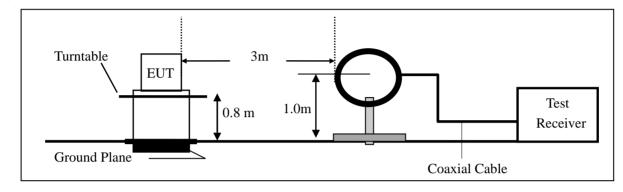
Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(iviriz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

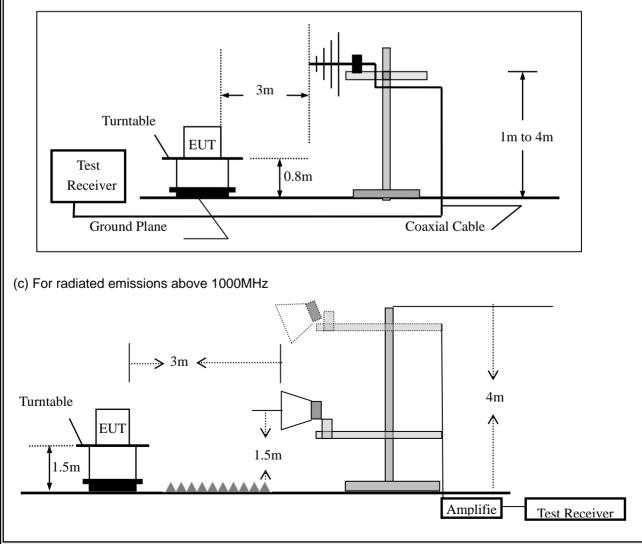
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

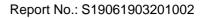
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab aug 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

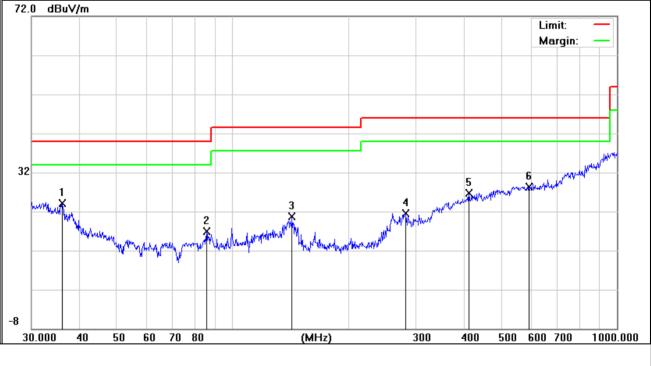
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Free] .	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MH	z)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

■ Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	Bluetooth earphone	Model Name :	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.7V(Left)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
Polar (H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	36.0007	7.81	16.33	24.14	40.00	-15.86	QP
V	85.5977	7.03	9.90	16.93	40.00	-23.07	QP
V	142.8240	7.50	13.21	20.71	43.50	-22.79	QP
V	281.9945	4.92	16.63	21.55	46.00	-24.45	QP
V	411.8240	6.70	20.04	26.74	46.00	-19.26	QP
V	590.9737	4.77	23.53	28.30	46.00	-17.70	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	31.6202	6.21	18.32	24.53	40.00	-15.47	QP
Н	53.1313	7.78	7.73	15.51	40.00	-24.49	QP
Н	90.2205	6.23	10.39	16.62	43.50	-26.88	QP
Н	140.8351	7.12	13.28	20.40	43.50	-23.10	QP
Н	260.1444	7.17	16.35	23.52	46.00	-22.48	QP
Н	419.1080	6.27	20.30	26.57	46.00	-19.43	QP
Remark: Absolute 72.0 dB	e Level= Reading	Level+ Facto	r, Margin= A	Absolute Level	- Limit		1
						Limit: Margir	n:
32 1 8 30.000	40 50 60	70 80	4 //***/****/****//		300 400	500 600 700	

Г

EUT: Tempe		Blue	etooth earph	one N	/lodel Na	ame :		SH	039			
	erature:	20 °	•		Relative		/:	48%				
Pressu			0hPa		est Mod	-	<u> </u>		Mode 1			
	oltage :	-	3.7V(Right)									
			,									
Polar (H/V)	Frequenc	ÿ	Meter Reading	Factor		ssion vel	Limi	ts	Margin		Rem	Remark
(п/v)	(MHz)		(dBuV)	(dB)	(dBı	ıV/m)	(dBuV	//m)	(dB)		
V	38.6160		9.07	14.99		.06	40.0		_	5.94	Q	
V	69.8448		14.78	6.97		.75	40.0			8.25	Q	
V V	100.9338		7.86	11.85		.71	43.5			3.79	Q	
V	<u>150.0107</u> 206.3976		<u>13.92</u> 14.95	12.77 10.70		.69 .65	<u>43.5</u> 43.5			6.81 7.85	Q Q	
V	252.0627		11.61	15.06		.67	46.0			9.33	Q	
Remark								•	· ·	0.00		
	Level= Rea	dingl	Level+ Fact	or, Margin=	Absolut	e Level	- Limit					
72.0 dB	uV/m						1					1
										Limit: Margi	n [.] —	
		_								margi		
											r	4
											- I I	-
			┿╾┿┛									
32											Manual Maria	
	1			4	5	6			Moun	manner		
manuel	, k		2	MnM	, X	with w	Margare Antomatical	Marina				
- nyda	when when when	m	2 Mayrun M	Martin	W. M	AM. And	permany described					1
	- When	ΨV	Mayrum	WW ·	M.M.							
												1
												1
-8												
	40 50	60	70 80		dHz)			400	500	600 700) 1000	

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	35.4992	5.91	16.52	22.43	40.00	-17.57	QP
Н	53.6931	8.57	7.63	16.20	40.00	-23.80	QP
Н	99.8777	6.77	11.75	18.52	43.50	-24.98	QP
Н	141.8262	7.07	13.24	20.31	43.50	-23.19	QP
Н	212.2692	13.25	10.94	24.19	43.50	-19.31	QP
H Remark	251.1802	15.19	15.01	30.20	46.00	-15.80	QP
	e Level= Reading 3uV/m	Level+ Facto	r, Margin= A	Absolute Leve	I - Limit	Limit: Margir]
32		WINNING AND	4 Nymadul Maraly	5 4	Wanned March Marcher		

	us Emissi		<u>1GHz (10</u>								
EUT:		_	oth earpho	ne		el No.:		SH	039		
Temperatu	re:	20 ℃			Rela	tive Humid	ity:	48%	6		
Test Mode	:	Mode2/ (Left)	Mode2/Mode3/Mo (Left)			Test By:			en Liu		
Frequenc		Cable	Antenna	Preamp Factor		Emission	Limi	ts	Margin	- ·	
y (MHz)		loss (dB)	Factor dB/m					(/m)	(dB)	Remark	Comment
(IVIHZ)	(dBµV)	dBµV) (dB) dB/m (dB) (dBµV/m) (d Low Channel (2402 MHz)-Abd						(ab)			
4000.00	00.45					45.05	DL	Vertical			
4839.88	62.15	5.21	35.59			58.65	74.0		-15.35	Pk	Vertical
4839.88	43.12	5.21	35.59	44.		39.62	54.0	-	-14.38	AV	Vertical
7206.76	63.96	6.48	36.27	44.		62.11	74.0		-11.89	Pk	Vertical
7206.76	43.62	6.48	36.27	44.		41.77	54.00		-12.23	AV	Vertical
4804.84	62.01	5.21	35.55	44.		58.47	74.00		-15.53	Pk	Horizontal
4804.84	43.53	5.21	35.55	44.30		39.99	54.00		-14.01	AV	Horizontal
7206.40	60.51	6.48	36.27	44.		58.74	74.00 54.00		-15.26	Pk	Horizontal
7206.40	43.00	6.48	36.27	44.52		41.23			-12.77	AV	Horizontal
			-			440 MHz)-A					
4880.09	63.05	5.21	35.66	44.	-	59.72	74.0	-	-14.28	Pk	Vertical
4880.09	43.57	5.21	35.66	44.		40.24	54.0		-13.76	AV	Vertical
7320.96	60.63	7.10	36.50	44.		59.80	74.0		-14.20	Pk	Vertical
7320.96	43.02	7.10	36.50	44.		42.19	54.0		-11.81	AV	Vertical
4880.65	63.22	5.21	35.66	44.	-	59.89	74.0	-	-14.11	Pk	Horizontal
4880.65	43.09	5.21	35.66	44.		39.76	54.0		-14.24	AV	Horizontal
7321.00	63.49	7.10	36.50	44.	43	62.66	74.0	00	-11.34	Pk	Horizontal
7321.00	43.05	7.10	36.50	44.	-	42.22	54.0	-	-11.78	AV	Horizontal
			_			480 MHz)-					
4960.60	63.44	5.21	35.66	44.		60.11	74.0		-13.89	Pk	Vertical
4960.60	43.68	5.21	35.66	44.		40.35	54.0		-13.65	AV	Vertical
7440.48	63.40	7.10	36.50	44.		62.57	74.0		-11.43	Pk	Vertical
7440.48	43.18	7.10	36.50	44.		42.35	54.0		-11.65	AV	Vertical
4960.18	61.15	5.21	35.66	44.		57.82	74.0		-16.18	Pk	Horizontal
4960.18	43.09	5.21	35.66	44.	20	39.76	54.0	00	-14.24	AV	Horizontal
7440.76	63.48	7.10	36.50	44.	43	62.65	74.0	00	-11.35	Pk	Horizontal
7440.76	43.73	7.10	36.50	44.	43	42.90	54.0	00	-11.10	AV	Horizontal

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(3) All other emissions more than 20dB below the limit.

EUT:		Blueto	oth earpho	ne	Mod	el No.:		SH	039				
Temperatu	ire:	20 ℃			Rela	ative Humic	lity:	489	%				
Test Mode	:	Mode2 (Right)	Mode2/Mode3/Mode4 (Right)			Test By: Allen Liu			en Liu				
Frequenc y	Read Level	Cable loss	Antenna Factor	Preamp Factor		Emission Level	Limits		Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dE	3)	(dBµV/m)	(dBµV	/m)	(dB)				
			Low	Chanr	nel (2	402 MHz)-/	Above ^	1G					
4804.34	62.00	5.21	35.59	44.30		58.50	74.0	0	-15.50	Pk	Vertical		
4804.34	40.14	5.21	35.59	44.3	30	36.64	54.0	0	-17.36	AV	Vertical		
7206.11	59.30	6.48	36.27	44.6	50	57.45	74.0	0	-16.55	Pk	Vertical		
7206.11	40.02	6.48	36.27	44.6	50	38.17	54.0	0	-15.83	AV	Vertical		
4804.17	61.99	5.21	35.55	44.3	30	58.45	74.00		-15.55	Pk	Horizontal		
4804.17	40.51	5.21	35.55	44.3	30	36.97	54.00		-17.03	AV	Horizontal		
7206.22	60.03	6.48	36.27	44.52		58.26	74.00		-15.74	Pk	Horizontal		
7206.22	39.47	6.48	36.27	44.52		37.70	54.00		-16.30	AV	Horizontal		
Mid Channel (2440 MHz)-Above 1G													
4880.47	62.83	5.21	35.66	44.2	20	59.50	74.0		-14.50	Pk	Vertical		
4880.47	43.14	5.21	35.66	44.2	20	39.81	54.0	0	-14.19	AV	Vertical		
7320.27	63.44	7.10	36.50	44.4	43	62.61	74.0	0	-11.39	Pk	Vertical		
7320.27	40.59	7.10	36.50	44.4	43	39.76	54.0	0	-14.24	AV	Vertical		
4880.37	61.55	5.21	35.66	44.2	20	58.22	74.0		-15.78	Pk	Horizontal		
4880.37	40.05	5.21	35.66	44.2	20	36.72	54.0	0	-17.28	AV	Horizontal		
7320.24	59.52	7.10	36.50	44.4	43	58.69	74.0	0	-15.31	Pk	Horizontal		
7320.24	42.42	7.10	36.50	44.4		41.59	54.0	_	-12.41	AV	Horizontal		
			High	Chanr	nel (2	480 MHz)-	Above	1G			-		
4960.48	63.00	5.21	35.52	44.2	21	59.52	74.0	0	-14.48	Pk	Vertical		
4960.48	40.67	5.21	35.52	44.2	21	37.19	54.0	0	-16.81	AV	Vertical		
7440.13	62.97	7.10	36.53	44.6	50	62.00	74.0	0	-12.00	Pk	Vertical		
7440.13	43.36	7.10	36.53	44.6	50	42.39	54.0	0	-11.61	AV	Vertical		
4960.33	61.37	5.21	35.52	44.2	21	57.89	74.0	0	-16.11	Pk	Horizontal		
4960.33	43.00	5.21	35.52	44.2	21	39.52	54.0	0	-14.48	AV	Horizontal		
7440.2	63.95	7.10	36.53	44.6	50	62.98	74.0	0	-11.02	Pk	Horizontal		
7440.2	44.56	7.10	36.53	44.6	50	43.59	54.0	0	-10.41	AV	Horizontal		

Spurious Emission in Restricted Band 231 EUT: Bluetooth earphone								1039		
Temperature: 20 °C						ve Humidit				
Test Mode		Mode2/ N	Mode2/ Mode4 (Left)			-		Allen Liu		
				'		,		-		
Frequenc	Meter	Cable	Antenna	Prea	amp	Emission	Limits	Margin	Detector	
у	Reading	Loss	Factor		ctor	Level		-		Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	IB)	(dBµV/m)	(dBµV/m) (dB)	Туре	
						SK				I
2310.00	63.47	2.97	27.80		.80	50.44	74	-23.5558	Pk	Horizonta
2310.00	43.37	2.97	27.80		6.80	30.34	54	-23.6647	AV	Horizonta
2310.00	64.47	2.97	27.80		6.80	51.44	74	-22.5555	Pk	Vertical
2310.00	43.81	2.97	27.80		.80	30.78	54	-23.2184	AV	Vertical
2390.00	60.39	3.14	27.21		.80	46.94	74	-27.0573	Pk	Vertical
2390.00	43.74	3.14	27.21		.80	30.29	54	-23.7114	AV	Vertical
2390.00	61.86	3.14	27.21		6.80	48.41	74	-25.5928	Pk	Horizonta
2390.00	43.13	3.14	27.21	43	.80	29.68	54	-24.3244	AV	Horizonta
2483.50	63.84	3.58	27.70	44	.00	51.12	74	-22.8847	Pk	Vertical
2483.50	43.30	3.58	27.70	44	.00	30.58	54	-23.4208	AV	Vertical
		_		1		-				
2483.50	62.25	3.58	27.70	44	.00	49.53	74	-24.4668	Pk	Horizonta
2483.50 2483.50	62.25 43.81	3.58 3.58	27.70 27.70		.00 .00	49.53 31.09	74 54	-24.4668 -22.9137	Pk AV	
2483.50 EUT:	43.81	3.58 Bluetooth		44 e	.00 Mode	31.09 I No.:	54 SH	-22.9137 039		
2483.50	43.81	3.58	27.70	44 e	.00 Mode	31.09	54 SH	-22.9137 039		
2483.50 EUT:	43.81 Jre:	3.58 Bluetooth 20 ℃	27.70	44 e M F	.00 Mode	31.09 I No.: ve Humidity	54 SH y: 489	-22.9137 039		Horizonta Horizonta
2483.50 EUT: Temperatu Test Mode	43.81 ure: ::	3.58 Bluetooth 20 ℃ Mode2/ M	27.70 n earphone Mode4 (Rig	44 e N F ght) 7	.00 Model Relati Test E	31.09 I No.: ve Humidit 3y:	54 SH y: 48 ⁴ Alle	-22.9137 039 6 en Liu		
2483.50 EUT: Temperatu Test Mode	43.81 ure: o: Meter	3.58 Bluetooth 20 °C Mode2/ N Cable	27.70 n earphone Mode4 (Rig Antenna	44 e M ght) 1 Prea	00 Model Relati Test E amp	31.09 I No.: ve Humidity 3y: Emission	54 SH y: 489	-22.9137 039 6		Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y	43.81 ure: e: Meter Reading	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss	27.70 n earphone Mode4 (Rig Antenna Factor	44 Prea Fac	00 Model Relati Test E amp ctor	31.09 I No.: ve Humidity By: Emission Level	54 SH y: 48 ⁴ Alle Limits	-22.9137 039 6	AV	Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc	43.81 ure: o: Meter	3.58 Bluetooth 20 °C Mode2/ N Cable	27.70 n earphone Mode4 (Rig Antenna	44 Prea Fac	.00 Mode Relati Test E amp ctor IB)	31.09 I No.: ve Humidity 3y: Emission	54 SH y: 48 ⁴ Alle	-22.9137 039 % en Liu Margin	AV	
2483.50 EUT: Temperatu Test Mode Frequenc y	43.81 ure: e: Meter Reading	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss	27.70 n earphone Mode4 (Rig Antenna Factor	44 e N fat) 7 Prea Fac (d	.00 Mode Relati Test E amp ctor IB)	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m)	54 SH y: 48 ⁴ Alle Limits	-22.9137 039 % en Liu Margin	AV	Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz)	43.81 ure: e: Meter Reading (dBµV)	3.58 Bluetooth 20 ℃ Mode2/ M Cable Loss (dB)	27.70 n earphone Mode4 (Rig Antenna Factor dB/m	44 e N Fac Fac (d 43	.00 Model Relati Test E amp ctor IB) GF	31.09 I No.: ve Humidit By: Emission Level (dBµV/m) SK	54 y: 48 ^c Alle Limits (dBµV/m	-22.9137 039 % en Liu Margin) (dB)	AV Detector Type	Horizonta Commen Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00	43.81 ure: :: Meter Reading (dBµV) 61.55	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss (dB) 2.97	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80	44 e N Fat Fat (d 43 43	.00 Model Relati Test E amp ctor IB) GF 5.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52	54 9: 48' Alle Limits (dBµV/m 74	-22.9137 039 % en Liu Margin) (dB) -25.48	AV Detector Type Pk	Horizonta Commen Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00	43.81 ure: e: Meter Reading (dBµV) 61.55 41.31	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss (dB) 2.97 2.97	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80	44 e M F ght) 1 Prea Fac (d 43 43 43	00 Model Relati Test E amp ctor IB) GF 3.80 5.80	31.09 I No.: ve Humidit 3y: Emission Level (dBµV/m) SK 48.52 28.28	54 SH y: 48 ⁴ Alle Limits (dBµV/m 74 54	-22.9137 039 % en Liu Margin) (dB) -25.48 -25.72	AV Detector Type Pk AV	Horizonta Commen Horizonta Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00	43.81 μre: e: Meter Reading (dBμV) 61.55 41.31 61.15	3.58 Bluetooth 20 °C Mode2/ № Cable Loss (dB) 2.97 2.97 2.97	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80	44 Prea Fac (d 43 43 43 43	Model Relati Test E amp ctor IB) GF 5.80 5.80 5.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12	54 y: 48 ^c Alle Limits (dBµV/m 74 54 74	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88	AV Detector Type Pk AV Pk	Horizonta Commen Horizonta Horizonta Vertical
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00	43.81 ure: e: Meter Reading (dBµV) 61.55 41.31 61.15 40.37	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss (dB) 2.97 2.97 2.97 2.97	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80	44 Pres Fac (d 43 43 43 43 43	Model Relati Test E amp ctor IB) GF 5.80 5.80 5.80 5.80 5.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34	54 y: 48 ^o Alle Limits (dBµV/m 74 54 74 54	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66	AV Detector Type Pk AV Pk AV	Horizonta Commen Horizonta Horizonta Vertical Vertical
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00 2310.00 2390.00	43.81 μre: :: Meter Reading (dBμV) 61.55 41.31 61.15 40.37 61.74	3.58 Bluetooth 20 °C Mode2/ N Cable Loss (dB) 2.97 2.97 2.97 2.97 3.14	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80 27.80 27.21	44 e N Factor Factor (d 43 43 43 43 43 43 43	00 Model Relati Test E amp ctor IB) GF 3.80 3.80 3.80 3.80 3.80 3.80	31.09 I No.: ve Humidit 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34 48.29	54 y: 48 ⁴ Alle Limits (dBµV/m 74 54 74 54 74 54	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66 -25.71	AV Detector Type Pk AV Pk AV Pk	Horizonta Commen Horizonta Horizonta Vertical Vertical Vertical
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00 2310.00 2390.00 2390.00 2390.00	43.81 μre: e: Meter Reading (dBμV) 61.55 41.31 61.75 40.37 61.74 42.33 63.20	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss (dB) 2.97 2.97 2.97 2.97 2.97 3.14 3.14 3.14	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80 27.21 27.21 27.21	44 e N Fat Fat (d 43 43 43 43 43 43 43 43 43	00 Model Relati Test E amp ctor IB) GF 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34 48.29 28.88 49.75	54 y: 48° Alle Limits (dBµV/m 74 54 74 54 74 54 74 54 74 54 74	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66 -25.71 -25.12 -24.25	AV Detector Type Pk AV Pk AV Pk AV	Horizonta Commen Horizonta Horizonta Vertical Vertical Vertical Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00 2390.00 2390.00	43.81 μre: Meter Reading (dBμV) 61.55 41.31 61.15 40.37 61.74 42.33 63.20 41.65	3.58 Bluetooth 20 ℃ Mode2/ N Cable Loss (dB) 2.97 2.97 2.97 2.97 2.97 3.14 3.14	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80 27.21 27.21 27.21 27.21	44 Prea Fac (d 43 43 43 43 43 43 43 43 43 43	00 Model Relati Test E amp ctor B) GF 3.80 3.80 3.80 3.80 3.80 3.80 3.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34 48.29 28.88	54 SH y: 48 ⁴ Alle Limits (dBµV/m 74 54 74 54 74 54 74	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66 -25.71 -25.12 -24.25 -25.80	AV Detector Type Pk AV Pk AV Pk AV Pk AV Pk	Horizonta Commen Horizonta Horizonta Vertical Vertical Vertical Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00 2310.00 2390.00 2390.00 2390.00	43.81 μre: e: Meter Reading (dBμV) 61.55 41.31 61.75 40.37 61.74 42.33 63.20	3.58 Bluetooth 20 °C Mode2/ M Cable Loss (dB) 2.97 2.97 2.97 2.97 3.14 3.14 3.14 3.14	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80 27.80 27.21 27.21 27.21 27.21 27.21 27.70	44 Pres Fac (d 43 43 43 43 43 43 43 43 43 43 43 43 43	00 Model Relati Test E amp ctor IB) GF 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34 48.29 28.88 49.75 28.20	54 y: 48° Alle Limits (dBµV/m 74 54 74 54 74 54 74 54 74 54 74 54	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66 -25.71 -25.12 -24.25	AV Detector Type Pk AV Pk AV Pk AV Pk AV	Horizonta Commen Horizonta Horizonta Vertical Vertical Vertical Horizonta Horizonta
2483.50 EUT: Temperatu Test Mode Frequenc y (MHz) 2310.00 2310.00 2310.00 2310.00 2390.00 2390.00 2390.00 2390.00 2390.00	43.81 μre: c: Meter Reading (dBμV) 61.55 41.31 61.15 40.37 61.74 42.33 63.20 41.65 60.36	3.58 Bluetooth 20 °C Mode2/ N Cable Loss (dB) 2.97 2.97 2.97 2.97 3.14 3.14 3.14 3.14 3.14 3.58	27.70 n earphone Mode4 (Rig Antenna Factor dB/m 27.80 27.80 27.80 27.80 27.21 27.21 27.21 27.21	44 Prea Fac (d 43 43 43 43 43 43 43 43 43 43 43 43 43	00 Model Relati Test E amp ctor IB) GF 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80	31.09 I No.: ve Humidity 3y: Emission Level (dBµV/m) SK 48.52 28.28 48.12 27.34 48.29 28.88 48.75 28.20 47.64	54 y: 48 ⁴ Alle Limits (dBµV/m 74 54 74 54 74 54 74 54 74 54 74 54 74 54 74	-22.9137 039 6 en Liu Margin) (dB) -25.48 -25.72 -25.88 -26.66 -25.71 -25.12 -25.80 -25.80 -26.36	AV Detector Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk	Horizonta Commen Horizonta Horizonta Vertical Vertical Vertical Vertical Horizonta Horizonta Vertical

Note: (1) All other emissions more than 20dB below the limit.

	purious Em										
EUT:	· · · · · ·					Model No.:			SH039		
Temp	Temperature:20 °C			Relative	e Humidity:	48%	48%				
Test N	est Mode: Mode2/ Mode4(Left)			Test By	Test By: A			Allen Liu			
	Frequenc v	Readin g Level	Cable Loss	Antenn a	Preamp Factor	Emission Level	Limits	Margin	Detecto r		
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	Comment	
	3260	63.70	4.04	29.57	44.70	52.61	74.00	-21.39	Pk	Vertical	
	3260	43.61	4.04	29.57	44.70	32.52	54.00	-21.48	AV	Vertical	
	3260	62.89	4.04	29.57	44.70	51.80	74.00	-22.20	Pk	Horizontal	
	3260	43.31	4.04	29.57	44.70	32.22	54.00	-21.78	AV	Horizontal	
	3332	61.48	4.26	29.87	44.40	51.21	74.00	-22.79	Pk	Vertical	
	3332	43.56	4.26	29.87	44.40	33.29	54.00	-20.71	AV	Vertical	
	3332	63.12	4.26	29.87	44.40	52.85	74.00	-21.15	Pk	Horizontal	
	3332	43.18	4.26	29.87	44.40	32.91	54.00	-21.09	AV	Horizontal	
	17797	49.61	10.99	43.95	43.50	61.05	74.00	-12.95	Pk	Vertical	
	17797	34.32	10.99	43.95	43.50	45.76	54.00	-8.24	AV	Vertical	
	11131	JT.JZ									
	17788	45.58	11.81	43.69	44.60	56.48	74.00	-17.52	Pk	Horizontal	
				43.69 43.69	44.60 44.60	56.48 44.98	74.00 54.00	-17.52 -9.02	Pk AV	Horizontal Horizontal	
EUT:	17788	45.58 34.08 Blue	11.81 11.81 etooth ea	43.69	44.60 Model N	44.98 No.:	54.00 SH(-9.02)39			
	17788	45.58 34.08	11.81 11.81 etooth ea	43.69	44.60 Model N	44.98	54.00 SH0 48%	-9.02)39 %			
	17788 17788 berature:	45.58 34.08 Blue 20 °	11.81 11.81 etooth ea	43.69	44.60 Model N Relative	44.98 No.: e Humidity:	54.00 SH0 48%	-9.02)39			
Temp	17788 17788 berature:	45.58 34.08 Blue 20 °	11.81 11.81 etooth ea	43.69 arphone	44.60 Model N Relative	44.98 No.: e Humidity:	54.00 SH0 48%	-9.02)39 %		Horizontal	
Temp	17788 17788 berature: Mode: Frequenc	45.58 34.08 Blue 20 ° Moo	11.81 11.81 etooth ea C de2/ Mod	43.69 Irphone e4(Right) Antenn	44.60 Model N Relative Test By Preamp	44.98 No.: e Humidity: r: Emission	54.00 SH(48% Alle	-9.02 039 6 n Liu	AV		
Temp	17788 17788 berature: Mode: Frequenc y	45.58 34.08 Blue 20 ° Moo Readin g Level	11.81 11.81 C de2/ Mod Cable Loss	43.69 arphone e4(Right) Antenn a	44.60 Model N Relative Test By Preamp Factor	44.98 No.: e Humidity: r: Emission Level (dBµ	54.00 SH(48% Alle Limits (dBµ	-9.02 039 6 n Liu Margin	AV Detecto r	Horizontal	
Temp	17788 17788 berature: Mode: Frequenc y (MHz)	45.58 34.08 20 ℃ Moo Readin g Level (dBµV)	11.81 11.81 ctooth ea C de2/ Mod Cable Loss (dB)	43.69 arphone e4(Right) Antenn a dB/m	44.60 Model N Relative Test By Preamp Factor (dB)	44.98 No.: Humidity: :: Emission Level (dBµ V/m)	54.00 SH(48% Alle Limits (dBµ V/m)	-9.02 039 6 n Liu Margin (dB)	AV Detecto r Type	Horizontal	
Temp	17788 17788 erature: Mode: Frequenc y (MHz) 3260	45.58 34.08 Blue 20 ° Moo Readin g Level (dBµV) 61.83	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04	43.69 arphone e4(Right) Antenn a dB/m 29.57	44.60 Model N Relative Test By Preamp Factor (dB) 44.70	44.98 No.: Humidity: Emission Level (dBµ V/m) 50.74	54.00 SH0 48% Alle Limits (dBµ V/m) 74	-9.02 039 6 n Liu Margin (dB) -23.26	AV Detecto r Type Pk	Horizontal Comment Vertical	
Temp	17788 17788 berature: Mode: Frequenc y (MHz) 3260 3260	45.58 34.08 Blue 20 ℃ Moc Readin g Level (dBµV) 61.83 55.23	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70	44.98 No.: Humidity: :: Emission Level (dBµ V/m) 50.74 44.14	54.00 SH(48% Alle Limits (dBµ V/m) 74 54	-9.02 039 6 n Liu Margin (dB) -23.26 -9.86	AV Detecto r Type Pk AV	Horizontal Comment Vertical Vertical	
Temp	17788 17788 berature: Mode: Frequenc y (MHz) 3260 3260 3260	45.58 34.08 Blue 20 % Moo Readin g Level (dBµV) 61.83 55.23 63.64	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57	44.60Model NRelativeTest ByPreampFactor(dB)44.7044.70	44.98 No.: Humidity: :: Emission Level (dBµ V/m) 50.74 44.14 52.55	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74	-9.02 039 6 n Liu Margin (dB) -23.26 -9.86 -9.86	AV Detecto r Type Pk AV Pk	Horizontal Comment Vertical Vertical Horizontal	
Temp	17788 17788 berature: Wode: Frequenc y (MHz) 3260 3260 3260 3260	45.58 34.08 Blue 20 ℃ Moo Readin g Level (dBµV) 61.83 55.23 63.64 55.48	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70 44.70	44.98 No.: Humidity: Emission Level (dBµ V/m) 50.74 44.14 52.55 44.39	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74 54	-9.02 039 6 n Liu Margin (dB) -23.26 -9.86 -21.45 -9.61	AV Detecto r Type Pk AV Pk AV	Horizontal Comment Vertical Vertical Horizontal Horizontal	
Temp	17788 17788 berature: Mode: Frequenc y (MHz) 3260 3260 3260 3260 3260 3332	45.58 34.08 Blue 20 ℃ Moo Readin g Level (dBµV) 61.83 55.23 63.64 55.48 62.33	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04 4.04 4.04	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57 29.87	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70 44.70 44.70	44.98 No.: Humidity: :: Emission Level (dBµ V/m) 50.74 44.14 52.55 44.39 52.06	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74 54	-9.02 39 6 n Liu Margin (dB) -23.26 -9.86 -21.45 -9.61 -21.94	AV Detecto r Type Pk AV Pk AV Pk	Horizontal Comment Vertical Vertical Horizontal Vertical	
Temp	17788 17788 werature: Mode: Frequenc y (MHz) 3260 3260 3260 3260 3260 3332 3332	45.58 34.08 Blue 20 ℃ Moo Readin g Level (dBµV) 61.83 55.23 63.64 55.48 62.33 55.27	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04 4.04 4.04 4.26 4.26	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57 29.87 29.87	44.60 Model N Relative Test By Freamp Factor (dB) 44.70 44.70 44.70 44.70 44.40	44.98 No.: Humidity: Emission Level (dBµ V/m) 50.74 44.14 52.55 44.39 52.06 45.00	54.00 SH0 489 Alle Limits (dBµ V/m) 74 54 74 54 74 54	-9.02 039 6 n Liu Margin (dB) -23.26 -9.86 -9.86 -21.45 -9.61 -21.94 -9.00	AV Detecto r Type Pk AV Pk AV Pk AV	Horizontal Comment Vertical Vertical Horizontal Horizontal Vertical Vertical	
Temp	17788 17788 herature: Wode: Frequenc y (MHz) 3260 3260 3260 3260 3260 3260 3332 3332	45.58 34.08 Blue 20 ℃ Moo C Readin g Level (dBµV) 61.83 55.23 63.64 55.48 62.33 55.27 63.17	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04 4.04 4.04 4.26 4.26 4.26	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57 29.87 29.87 29.87	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70 44.70 44.70 44.40	44.98	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74 54 74 54 74	-9.02 39 6 n Liu Margin (dB) -23.26 -9.86 -21.45 -9.61 -21.94 -9.00 -21.10	AV Detecto r Type Pk AV Pk AV Pk AV Pk AV Pk	Horizontal Comment Vertical Vertical Horizontal Vertical Vertical Vertical Vertical	
Temp	17788 17788 werature: Mode: Frequenc y (MHz) 3260 3260 3260 3260 3260 3260 3332 3332	45.58 34.08 Blue 20 % Moo Readin g Level (dBµV) 61.83 55.23 63.64 55.48 62.33 55.27 63.17 50.26	11.81 11.81 ctooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04 4.04 4.04 4.26 4.26 4.26 4.26	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57 29.87 29.87 29.87 29.87 29.87	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70 44.70 44.40 44.40 44.40	44.98 No.: Humidity: C Emission Level (dBµ V/m) 50.74 44.14 52.55 44.39 52.06 45.00 52.90 39.99	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74 54 74 54 74 54	-9.02 39 6 n Liu Margin (dB) -23.26 -9.86 -21.45 -9.61 -21.94 -9.00 -21.10 -14.01	AV Detecto r Type Pk AV Pk AV Pk AV Pk AV Pk AV	Horizontal Comment Vertical Vertical Horizontal Vertical Vertical Vertical Horizontal Horizontal	
Temp	17788 17788 werature: Mode: Frequenc y (MHz) 3260 3260 3260 3260 3260 3332 3332 3332	45.58 34.08 Blue 20 ° Moo Readin g Level (dBµV) 61.83 55.23 63.64 55.48 62.33 55.27 63.17 50.26 43.41	11.81 11.81 etooth ea C de2/ Mod Cable Loss (dB) 4.04 4.04 4.04 4.04 4.04 4.04 4.26 4.26 4.26 10.99	43.69 arphone e4(Right) Antenn a dB/m 29.57 29.57 29.57 29.57 29.87 29.87 29.87 29.87 29.87 29.87 43.95	44.60 Model N Relative Test By Preamp Factor (dB) 44.70 44.70 44.70 44.70 44.40 44.40 44.40 44.40	44.98 No.: = Humidity: : Emission Level (dBμ V/m) 50.74 44.14 52.55 44.39 52.06 45.00 52.90 39.99 54.85	54.00 SH(48% Alle Limits (dBµ V/m) 74 54 74 54 74 54 74 54 74	-9.02 39 6 n Liu Margin (dB) -23.26 -9.86 -9.86 -21.45 -9.61 -21.94 -9.00 -21.10 -14.01 -19.15	AV Detecto r Type Pk AV Pk AV Pk AV Pk AV Pk AV Pk	Horizontal Comment Vertical Vertical Horizontal Horizontal Vertical Horizontal Horizontal Vertical Vertical	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

```
The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.
```

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- \hat{g}) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Bluetooth earphone	Model No.:	SH039
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

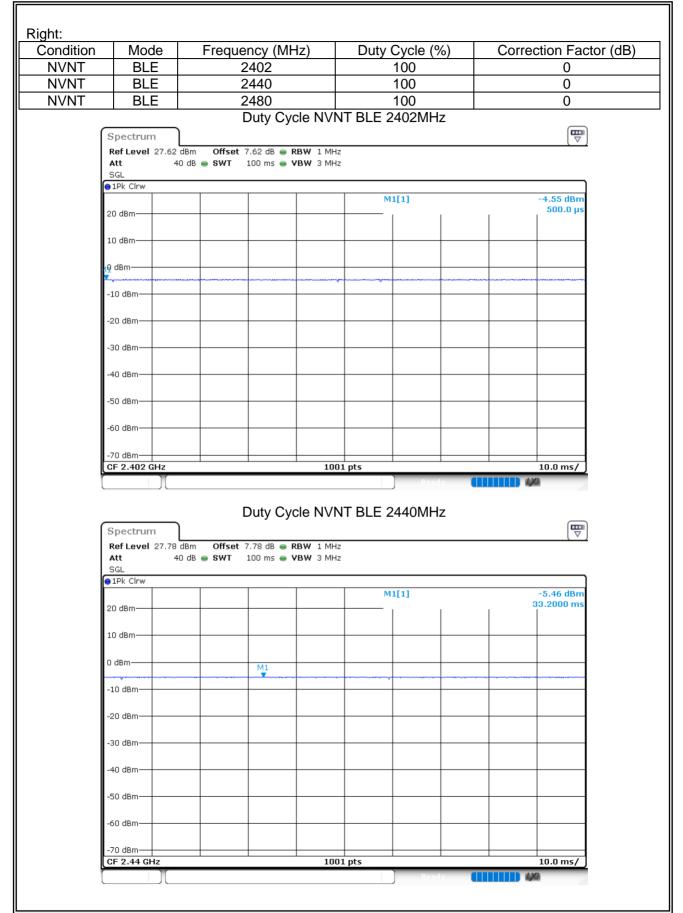
7.9.2 Result

The EUT antenna is permanent attached FPCB antenna (Gain: 2dBi). It comply with the standard requirement.

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequence	cy (MHz)	Duty C	Cycle (%)	Correction Factor (c	JΒ)
NVNT	BLE	24			100	0	
NVNT	BLE	24	40		100	0	
NVNT	BLE	24			100	0	
		Du	ity Cycle NV	NT BLE 24	402MHz	_	
6	Spectrum)					
	GGL	2 dBm Offset 7.6 40 dB e SWT 100	2 dB 👄 RBW 1 MH) ms 👄 VBW 3 MH				
•	1Pk Clrw			M1	[1]	-3.83 dBm	
2	0 dBm				[+]	70.6000 ms	
1	0 dBm						
o	dBm						
-					<u>*</u>		
-;	10 dBm						
-4	20 dBm						
-	30 dBm						
	40 dBm			_			
-1	50 dBm						
-1	50 dBm						
	70 dBm			01 pts		10.0 ms/	



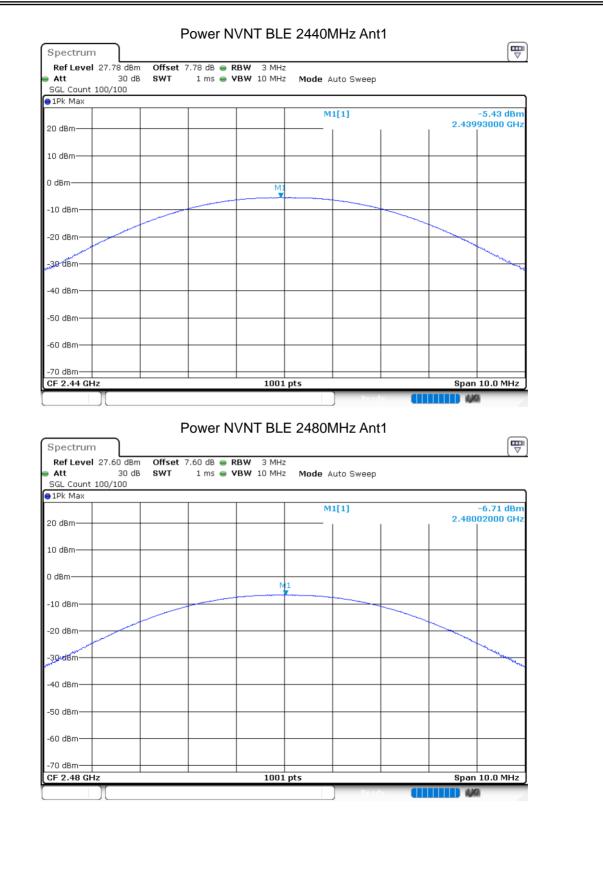
Ref Level 27.78 d Att 40	Bm Offset dB 🕳 SWT	: 7.78 dB 👄 I 100 ms 👄 '	VBW 1 MHz					
SGL	_							
1Pk Clrw			1					E DC dDm
20 dBm				M	1[1]			-5.36 dBm 73.1000 ms
20 0011								
10 dBm								
0 dBm						M1		
10 d0				· · ·				
-10 dBm								
-20 dBm							_	
-30 dBm							-	
40 dBm								
-40 dBm								
-50 dBm								
-60 dBm							+	
-70 dBm —						-		
SF 2.44 GHz	Pro Offical	Duty Cy			2480MH	dv 🚺		10.0 ms/
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40	Bm Offset dB ● SWT	: 7.60 dB 😑 I	cle NVN		2480MH	dv 🚺		440
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz		2480MH	lv (440
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2	2480MH	dv 🚺		440
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2		dy (
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 1Pk Clrw 20 dBm		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2		dy ()		-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL JIPk Clrw		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 1Pk Clrw 20 dBm 10 dBm		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL IPk Clrw 20 dBm 10 dBm 0 dBm		: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL IPk Clrw 20 dBm 10 dBm 0 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL DIPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL ID dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL DIPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz	T BLE 2				-6.66 dBm
CF 2.44 GHz Spectrum Ref Level 27.60 d Att 40 SGL ID dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dB • SWT	: 7.60 dB 😑 I	CIE NVN RBW 1 MHz					-6.66 dBm

Duty Cycle NVNT BLE 2480MHz Spectrum Ref Level 27.60 dBm Offset 7.60 dB 👄 RBW 1 MHz Att 40 dB 🔵 SWT 100 ms 😑 VBW 3 MHz SGL ⊖1Pk Clrw M1[1] -6.70 dBm 24.5000 m 20 dBm· 10 dBm· 0 dBm-M1 -10 dBm--20 dBm--30 dBm--40 dBm· -50 dBm--60 dBm--70 dBm-1001 pts CF 2.48 GHz 10.0 ms/

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdic
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)	· · /	
NVNT	BLE	2402	Ant 1	-3.759	0	-3.759	30	Pass
NVNT	BLE	2440	Ant 1	-5.405	0	-5.405	30	Pass
NVNT	BLE	2480	Ant 1	-6.593	0	-6.593	30	Pass
			Power N	IVNT BLE 240)2MHz Ant1			
	Spectre	um						
			fset 7.62 dB 👄					
	Att SGL Could SGL Could	30 dB SV nt 100/100	VT 1 ms 👄	VBW 10 MHz Mod	le Auto Sweep			
	1Pk Ma:							
					M1[1]	0.400	-3.76 dBm	
	20 dBm—				- 1 1	2.402	12000 GHz	
	10 dBm-							
	0 dBm			M1				
	-10 dBm-							
	-20 dBm-							
	-20 ubiii-						/	
	-30 dBm-						- marked along	
	-40 dBm-							
	-50 dBm-							
	-30 0811-							
	-60 dBm-							
	-70 dBm-							
	CF 2.40	2 GHz		1001 pts		Span	10.0 MHz	

Power NVNT BLE 2440MHz Ant1



Right: Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdio
		(MHz)		Power	Factor	Power	(dBm)	
		、 ,		(dBm)	(dB)	(dBm)	· · /	
NVNT	BLE	2402	Ant 1	-4.500	0	-4.500	30	Pass
NVNT	BLE	2440	Ant 1	-5.427	0	-5.427	30	Pass
NVNT	BLE	2480	Ant 1	-6.711	0	-6.711	30	Pass
			Power N	IVNT BLE 240)2MHz Ant1			
	Spectru	ım						
	Ref Lev Att	el 27.62 dBm Of 30 dB SV	fset 7.62 dB 👄		- Auto Succes			
		nt 100/100	YI IMS 🖶		e Auto Sweep			
	●1Pk Max							
	20 dBm—				M1[1]	2.401	-4.50 dBm 80000 GHz	
	20 ubiii-							
	10 dBm—							
	0 dBm			M1				
	-10 dBm—					_		
	-20 dBm-							
	-20 dBm-						and the second second	
	-40 dBm—							
	-50 dBm-							
	-30 ubiii-							
	-60 dBm—							
	-70 dBm-							

Г

Condition	Mode	Frequency (MHz)	Antenna	99% OBW	-6 dl Bandw			t -6 dB dwidth	Verdio
		()		(MHz)	(MH:			IHz)	
NVNT	BLE	2402	Ant 1	1.027	0.70	8	_ ≥	0.5	Pass
NVNT	BLE	2440	Ant 1	1.027	0.70	8	≥	0.5	Pass
NVNT	BLE	2480	Ant 1	1.031	0.71		≥	0.5	Pass
			OBW NV	NT BLE 240	2MHz Ant1			_	
	Spectru	ım							
		el 20.00 dBm		100 kHz					
	Att SGL Cour	30 dB SW nt 1000/1000	T 19.1 µs 👄 VBW	/ 300 kHz Mode	Auto FFT				
	●1Pk Max		1						
					M1[1]			12.46 dBm 23780 GHz	
	10 dBm—				Occ Bw			73027 MHz	
	0 dBm								
	-10 dBm—				M1				
	-20 dBm—	T1				T2			
	-30 dBm-					Y			
	-50 0011								
	-40 dBm—						\rightarrow		
							\sim		
	-50 dBm—								
	-60 dBm—								
	-70 dBm—								
	CF 2.402	2 GHz		1001 pts			Spa	n 2.0 MHz	
					Ready			7	

Spectrum

T

OBW NVNT BLE 2440MHz Ant1 👄 RBW 100 kHz SWT 19.1 µs 🖷 VBW 300 kHz Mode Auto FFT

1001 pts

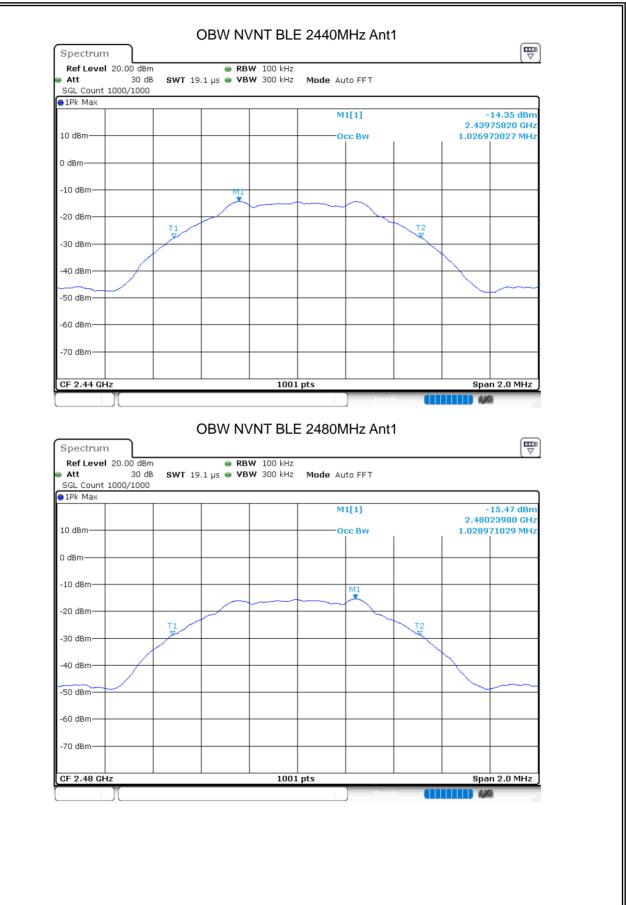
-60 dBm

-70 dBm-

CF 2.48 GHz

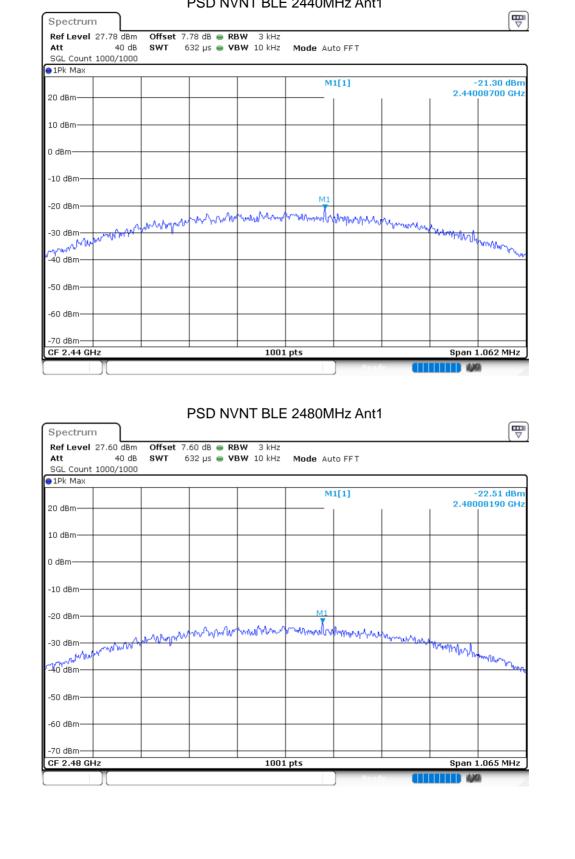
Span 2.0 MHz

14.00


Г

Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdic
		(MHz)		OBW	Bandwidth	Bandwidth	
				(MHz)	(MHz)	(MHz)	
NVNT	BLE	2402	Ant 1	1.027	0.686	≥0.5	Pass
NVNT	BLE	2440	Ant 1	1.027	0.71	≥0.5	Pass
NVNT	BLE	2480	Ant 1	1.029	0.714	≥0.5	Pass
			OBW NV	NT BLE 240	2MHz Ant1	_	
	Spectru	m					
		/el 20.00 dBm		/ 100 kHz		` <u> </u>	
	Att SGL Cou	30 dB SWT nt 1000/1000	19.1 µs 👄 VBW	/ 300 kHz Mode	Auto FFT		
	⊖1Pk Ma>	(1			
	10 dBm—				M1[1] -Occ Bw	-13.10 dBm 2.40175420 GHz 1.026973027 MHz	
	0 dBm						
	-10 dBm-		M1				
	-20 dBm-				~		
	-20 0011	T1 P			T2 V		
	-30 dBm-						
	-40 dBm-	+ /					
	-50 dBm-	\downarrow \vdash					
	-60 dBm-		_				
	-70 dBm-		_				
	CF 2.402	2 GHz		1001 pts		Span 2.0 MHz	

8.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

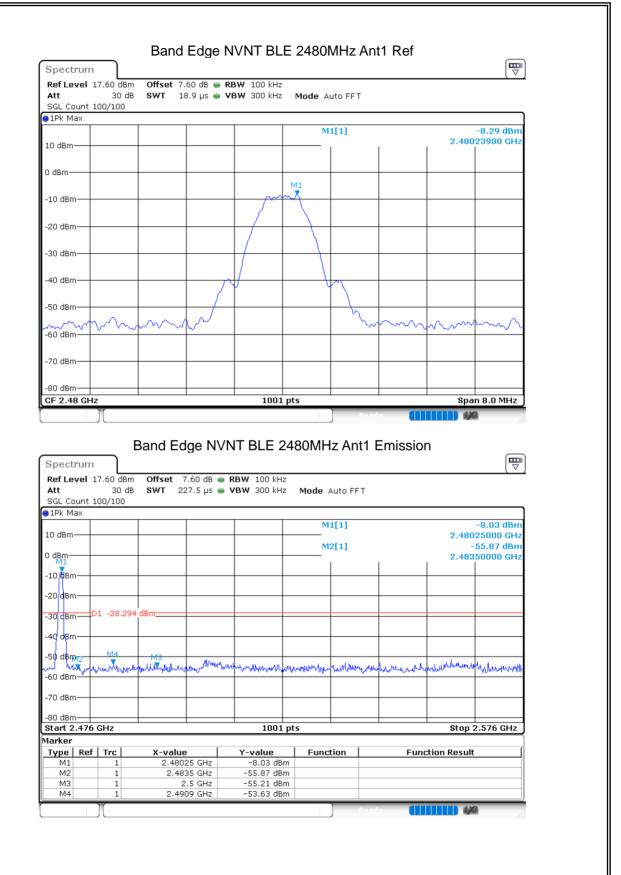

Left:						
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit	Verdict
					(dBm/3kHz)	
NVNT	BLE	2402	Ant 1	-19.472	8	Pass
NVNT	BLE	2440	Ant 1	-21.297	8	Pass
NVNT	BLE	2480	Ant 1	-22.508	8	Pass
		PSI	D NVNT BL	E 2402MHz Ant1		
	Spectru	Im)
	Ref Leve	el 27.62 dBm Offset 7.62 d	з 😑 RBW Зkн	Z		<u> </u>
	Att SGL Cour	40 dB SWT 632 µ nt 1000/1000	s 👄 VBW 10 kH	z Mode Auto FFT		
	⊖1Pk Max					
	20 dBm—			M1[1]	-19.47 dBm 2.40207960 GHz	
	20 UBIII-					

-30 dBm								W reenshirtha	hun Mur Tra
-40 dBm								W-manufrathy	www.www.ww
-40 dBm	- Martin And	A-Wrape w						Whankingh	mar Mar Joy
-20 dBm -30 dBm -740 dBm -40 dBm	- Martin	J-Antrapa co					and and an and a start of the s	Wynnymyl	mar Ing
-30 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1. Malaco					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Wyogonghowsky	www.uu
-20 d8m	melina	A Malan					"HIMMAN AN	Mannahan	
					1	ማ ማበንንም አስተግራ ሌላ	No	1	1
-20 dBm			1. A. n. Aw	hundhanan	M1	lose e e e e			
-10 dBm									
0 dBm									
10 dBm									

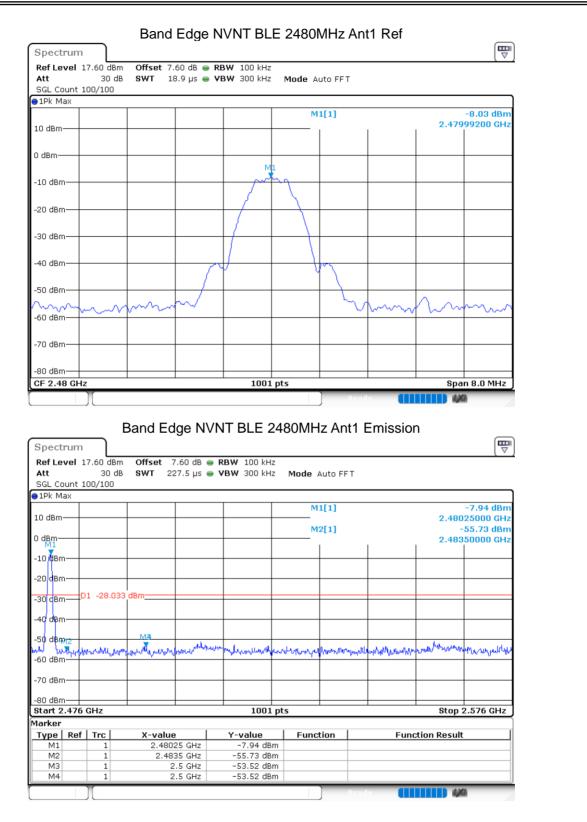
ondition	Mode	Frequency (MHz)	Antenna	Max PSD	(dBm/3kHz)	Limit (dBm/3k	
NVNT	BLE	2402	Ant 1	-2	0.332	8	Pass
NVNT	BLE	2440	Ant 1		1.364	8	Pass
NVNT	BLE	2480	Ant 1		2.588	8	Pass
	Att	el 27.62 dBm Offset 7.62 dl 40 dB SWT 632 µ 1000/1000	3 • RBW 3 kH 5 • VBW 10 kH	M1	1]	2.402081	
	-50 dBm- -60 dBm- -70 dBm- CF 2.402		10	01 pts		Span 1.02	9 MH2
		PSI	O NVNT BL	E 2440MH	lz Ant1		

Report No.: S19061903201002

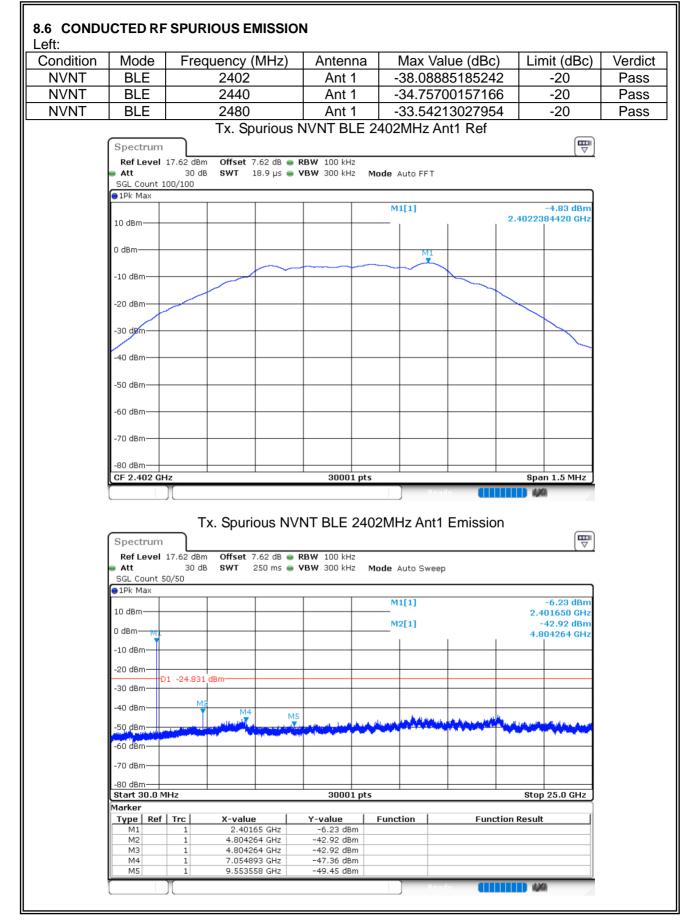
Att 40 SGL Count 1000/10		632 µs 👄 VE	3W 10 kHz	Mode Au	to FFT				
∋1Pk Max		1	I					04.05 JD	
20 dBm					1[1]			21.36 dBm 08620 GHz	
10 dBm									
0 dBm									
-10 dBm									
-20 dBm		L D D Da	manhand	M1	almon work of				
-30 dBm	mound	house the me in	-0-0HD040-		an alwa Istara a	Monowing	1 - And March of	man Mar War	
manululum							00	marken	
-40 dBm									
-50 dBm									
-60 dBm	_								
-70 dBm			1001	pts			Span :	L.065 MHz	
CF 2.44 GHz									
	Bm Offset	PSD NV 7.60 dB ● R 32.2 µs ● V	BW 3 kHz			ý (
	Bm Offset dB SWT 6		BW 3 kHz					- ///	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 1Pk Max	Bm Offset dB SWT 6	7.60 dB 👄 R	BW 3 kHz	Mode A				(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 1Pk Max	Bm Offset dB SWT 6	7.60 dB 👄 R	BW 3 kHz	Mode A	uto FFT			- () () () () () () () () () () () () ()	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm	Bm Offset dB SWT 6	7.60 dB 👄 R	BW 3 kHz	Mode A	uto FFT			(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 1Pk Max 20 dBm 10 dBm	Bm Offset dB SWT 6	7.60 dB 👄 R	BW 3 kHz	Mode A	uto FFT			(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 1Pk Max 20 dBm 10 dBm 0 dBm 0	Bm Offset dB SWT 6	7.60 dB 👄 R	BW 3 kHz	Mode A	uto FFT			(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm 10 dBm -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT			(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm 10 dBm -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm 10 dBm -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm 10 dBm -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPk Max 20 dBm 10 dBm -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	(₩) 22.59 dBm	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 1Pk Max 20 dBm 10 dBm 0 dBm 0	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1Pk Max 20 dBm 10 10 dBm -0 -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1Pk Max 20 dBm 10 10 dBm -0 -10 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz	Mode A	uto FFT		2.480	22.59 dBm 08020 GHz	
Spectrum Ref Level 27.60 d Att 40 SGL Count 1000/10 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	Bm Offset dB SWT 6 100	7.60 dB e R 32.2 µs e V	BW 3 kHz /BW 10 kHz		uto FFT		2.480	22.59 dBm 08020 GHz	

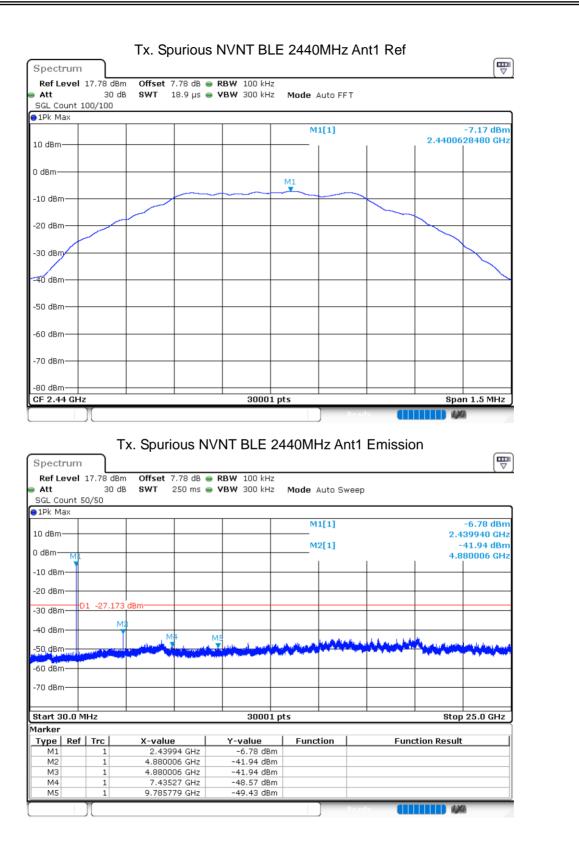


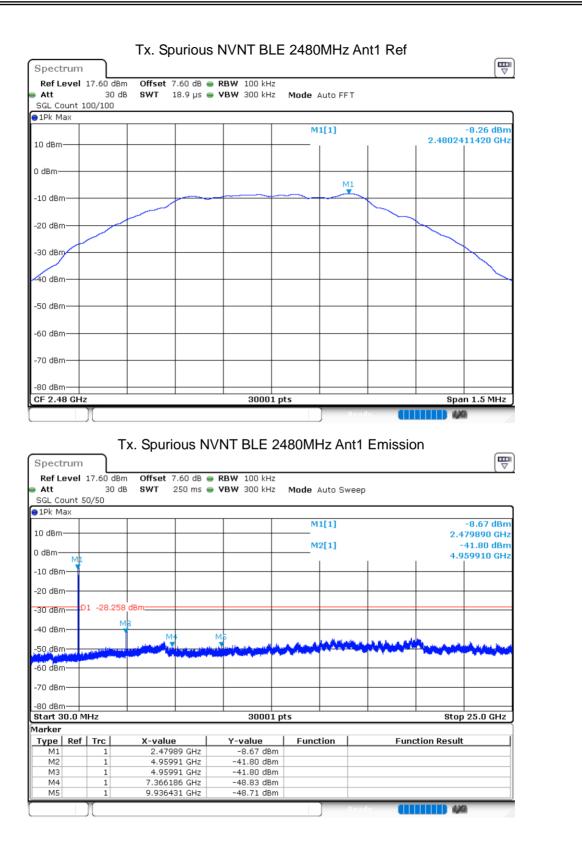
8.5 BAND EDGE

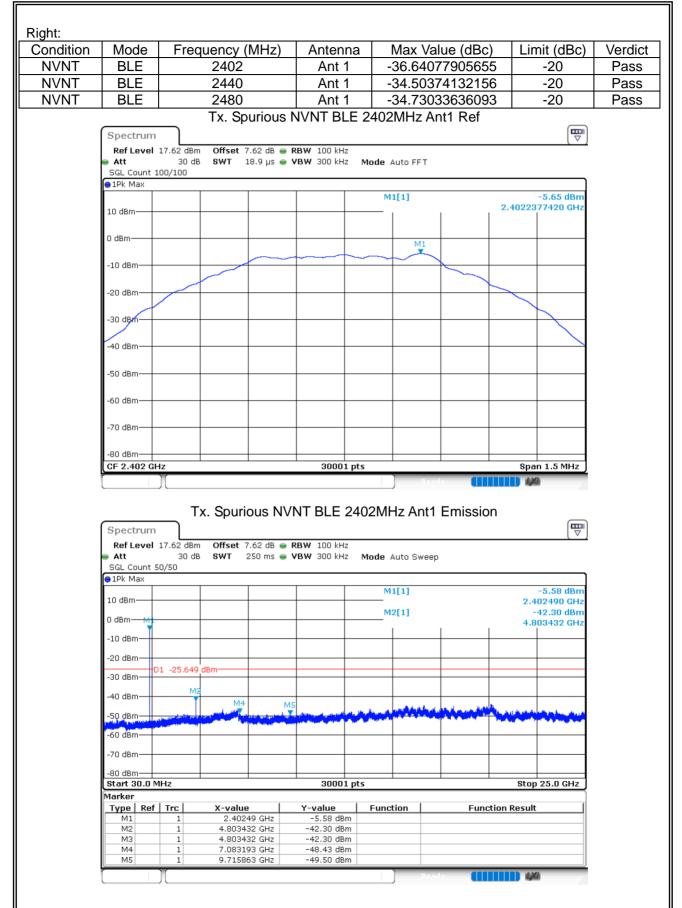

Γ

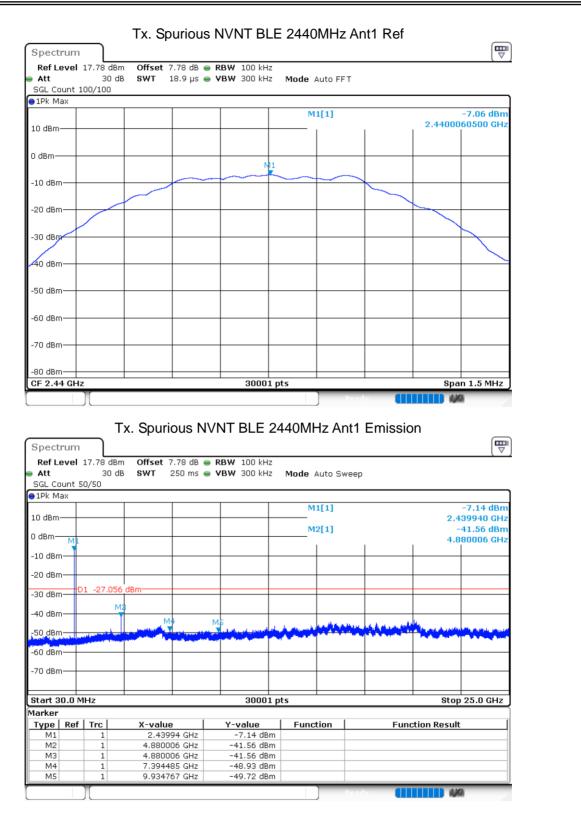
on	Mode	⊢re	equency (MHz)	Antenna	Max V	/alue (dBc)	Limit (dBc)	Verd
Г	BLE		2402	Ant 1		345565033	-20	Pas
Т	BLE		2480	Ant 1		671867371	-20	Pas
				NVNT BLE 2				
	Spectrur							
	Ref Level		m Offset 7.62 dB 👄	RBW 100 kHz			(∨)	
	Att	30 d	IB SWT 18.9 μs 🖷		lode Auto FFT			
	SGL Count	100/100						
	TEK MIGA				M1[1]		-5.59 dBm	
	10 dBm						2.40175220 GHz	
	0 dBm			M1				
	10 10-			- Kon				
	-10 dBm—							
	-20 dBm							
	-30 dBm—				\rightarrow			
	-40 dBm—			~γ	-42			
	-50 dBm		nm.			1.0.000		
	-60 dBm-	\sim	m i m			www.	~~~~~	
	-70 dBm—							
	-80 dBm-	<u> </u>						
	CF 2.402 (1001 ptc			Pease 0.0 MUs	
			Band Edge N	1001 pts	R	adv (1111) 1 Emission	Span 8.0 MHz	
	Spectrur Ref Level	n 17.62 dB		VNT BLE 240)2MHz Ant		Span 8.0 MHz	
	Ref Level Att	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240)2MHz Ant			
	Ref Level	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240)2MHz Ant			
	Ref Level Att SGL Count 1Pk Max	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240)2MHz Ant		-6.19 dBm	
	Ref Level Att SGL Count	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240	02MHz Ant Mode Auto FFT		-6.19 dBm 2.40195000 GHz	
	Ref Level Att SGL Count 1Pk Max	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm	
	Ref Level Att SGL Count 1Pk Max	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm	
	Ref Level Att SGL Count 1Pk Max 10 dBm	n 17.62 dB 30 d	m Offset 7.62 dB (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm	
	Ref Level Att SGL Count 1Pk Max 10 dBm	n 17.62 dB 30 d	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm	
	Ref Level Att SGL Count 1Pk Max 10 dBm	n17.62 dB30 d	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm	
	Ref Level Att SGL Count 1Pk Max 10 dBm	n17.62 dB30 d	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant? Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm	0 17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	0 17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000,GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm	0 17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	0 17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	0 17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	02MHz Ant Mode Auto FFT 		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm	D1 -25.5	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	2004 Auto FFT		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm Btart 2.30	17.62 dB 30 c 100/100	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	D2MHz Ant*	Although and a second and a sec	-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.4000000 GHz -52.23 dBm 2.400 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -80 dBm Btart 2.30	D1 -25.5	m Offset 7.62 dB (B SWT 227.5 μs (VNT BLE 240	2004 Auto FFT		-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.4000000 GHz -52.23 dBm 2.400 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -80 dBm Start 2.30 Marker Type M1	D1 -25.5	m Offset 7.62 dB B SWT 227.5 μs SWT 227.5 μs SS dBm	VNT BLE 240 RBW 100 kHz VBW 300 kHz VBW 300 kHz M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	D2MHz Ant*	Although and a second and a sec	-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.4000000 GHz -52.23 dBm 2.400 GHz	
	Ref Level Att SGL Count ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 2.30 Marker Type M1	17.62 dB 30 c 100/100	m Offset 7.62 dB B SWT 227.5 μs SWT 227.5 μs SGBm SGBm SGBm SGBm SGBm SGBm SGBm SGBm	VNT BLE 240	D2MHz Ant*	Although and a second and a sec	-6.19 dBm 2.40195000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.40000000 GHz -52.23 dBm 2.4000000 GHz -52.23 dBm 2.400 GHz	

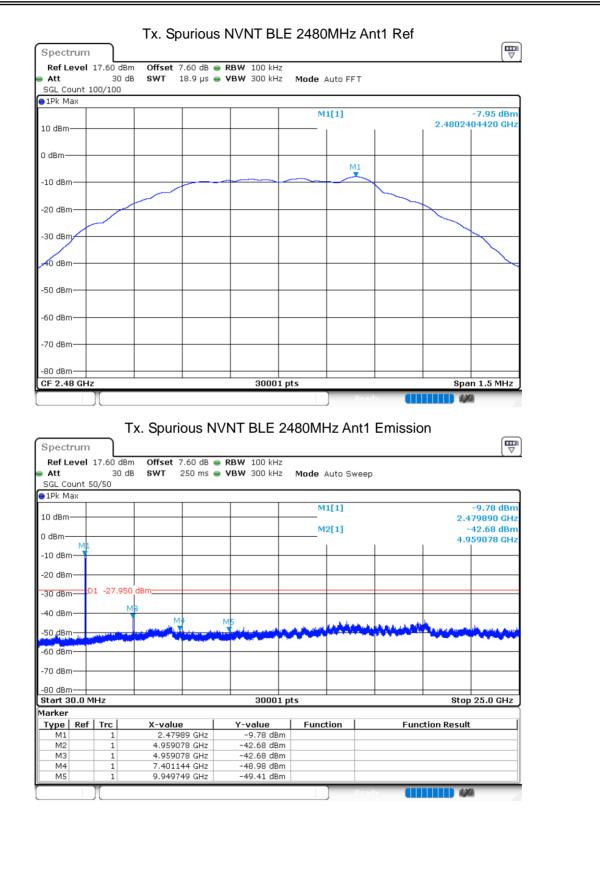












END OF REPORT