Page: 1 of 69 # **TEST REPORT** Application No.: HKEM2110001108AT Applicant: BINATONE ELECTRONICS INTERNATIONAL LIMITED Address of Applicant: 25/F, Guangdong Investment Tower, 148 Connaught Road Central, Sheung Wan, Hong Kong **Equipment Under Test (EUT):** **EUT Name:** Video Baby Monitor Model No.: Nursery Pal Glow+ (BU), Nursery Pal Glow Plus (BU) Additional Model: Please refer to section 2 of this report which indicates which item was actually tested and which were electrically identical. Trademark: Hubble **FCC ID**: VLJ-NP560BU **IC**: 4522A-NP560BU HVIN: NP560BU Standard(s): CFR 47 FCC Part 15 Subpart C, 2020 RSS-247 Issue 2: May 2017 RSS-Gen: Issue 5 Amdt 2019 **Date of Receipt:** 2021-11-07 **Date of Test:** 2021-11-07 to 2021-11-17 **Date of Issue:** 2021-11-18 Test Result: Pass* #### Law Man Kit EMC Manager This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at http://www.sgs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability indemnification and jurisdiction issues defined therein. Any holder of this document is advested that information contained hereon reflects the Company's findings at the time of its intervention only any within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. ^{*} In the configuration tested, the EUT complied with the standards specified above. Report No.: HKEM211000110803 Page: 2 of 69 | | Revision Record | | | | | | | |---------|-----------------|------------|----------|----------|--|--|--| | Version | Chapter | Date | Modifier | Remark | | | | | 01 | | 2021-11-18 | | Original | Authorized for issue by: | | | |--------------------------|--------------------------|------------------| | | Len Xn. | | | | Leo Xu /Project Engineer | Date: 2021-11-18 | | | Law | | | | Law Man Kit | | | | /Reviewer | Date: 2021-11-18 | Report No.: HKEM211000110803 Page: 3 of 69 # 2 Test Summary | Radio Spectrum Technical Requirement | | | | | | | | |--------------------------------------|-------------------------------------|-----|---|------|--|--|--| | Item Standard Method Requirement Res | | | | | | | | | Antenna Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4) | Pass | | | | | Radio Spectrum Matter Part | | | | | | |---|-------------------------------------|---|--|--------|--| | Item | Standard | Method | Requirement | Result | | | Conducted Disturbance at AC Power Line(150kHz- 30MHz) | 47 CFR Part 15,
Subpart C 15.207 | ANSI C63.10: 2013
Section 6.2 | 47 CFR FCC Part 15,
Subpart C 15.207 | Pass | | | Minimum 6dB | 47 CFR Part 15, | ANSI C63.10 (2013) | 47 CFR Part 15, | Pass | | | Bandwidth | Subpart C 15.247 | Section 11.8.1 | Subpart C 15.247a(2) | | | | Conducted Peak | 47 CFR Part 15, | ANSI C63.10 (2013) | 47 CFR Part 15, | Pass | | | Output Power | Subpart C 15.247 | Section 11.9.2.3 | Subpart C 15.247(b)(3) | | | | Power Spectrum | 47 CFR Part 15, | ANSI C63.10 (2013) | 47 CFR Part 15, | Pass | | | Density | Subpart C 15.247 | Section 11.10.2 | Subpart C 15.247(e) | | | | Conducted Band | 47 CFR Part 15, | ANSI C63.10 (2013) | 47 CFR Part 15, | Pass | | | Edges Measurement | Subpart C 15.247 | Section 11.13.3.2 | Subpart C 15.247(d) | | | | Conducted Spurious | 47 CFR Part 15, | ANSI C63.10 (2013) | 47 CFR Part 15, | Pass | | | Emissions | Subpart C 15.247 | Section 11.11 | Subpart C 15.247(d) | | | | Radiated Emissions
which fall in the
restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.10.5 | 47 CFR Part 15,
Subpart C 15.209 &
15.247(d) | Pass | | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.4,6.5,6.6 | 47 CFR Part 15,
Subpart C 15.209 &
15.247(d) | Pass | | | Radio Spectrum Technical Requirement | | | | | | | |--|-------------------------------|-----|---------------------|------|--|--| | Item Standard Method Requirement Resul | | | | | | | | Antenna Requirement | RSS-Gen Issue 5,
Amdt 2019 | N/A | RSS-Gen Section 6.8 | Pass | | | | Radio Spectrum Matter Part | | | | | | | |---|-----------------------------------|--------------------------------------|------------------------|--------|--|--| | Item | Standard | Method | Requirement | Result | | | | Conducted Emissions
at AC Power Line
(150kHz-30MHz) | RSS-Gen Issue 5:
Amdt 2019 | ANSI C63.10 (2013)
Section 6.2 | RSS-Gen Section 8.8 | Pass | | | | 99% Bandwidth | RSS-Gen Issue 5:
Amdt 2019 | ANSI C63.10 Section
6.9.3 | RSS-Gen Section 6.7 | Pass | | | | Minimum 6dB
Bandwidth | RSS-247 Issue 2,
February 2017 | ANSI C63.10 (2013)
Section 11.8.1 | RSS-247 Section 5.2(a) | Pass | | | | Conducted Peak
Output Power | RSS-247 Issue 2,
February 2017 | ANSI C63.10 (2013)
Section 11.9.1 | RSS-247 Section 5.4(d) | Pass | | | Page: 4 of 69 | Radio Spectrum Matter Part | | | | | | | |---|-----------------------------------|---|--|--------|--|--| | Item Standard Method | | Method | Requirement | Result | | | | Power Spectrum Density | RSS-247 Issue 2,
February 2017 | ANSI C63.10 (2013)
Section 11.10.2 | RSS-247 Clause 5.2(b) | Pass | | | | Conducted Band
Edges Measurement | RSS-247 Issue 2,
February 2017 | ANSI C63.10 (2013)
Section 11.12 | RSS-247 Section 5.5 | Pass | | | | Spurious Emissions | RSS-247 Issue 2,
February 2017 | ANSI C63.10 (2013)
Section 11.11 | RSS-247 Section 5.5 | Pass | | | | Radiated Emissions which fall in the restricted bands | RSS-Gen Issue 5:
Amdt 2019 | ANSI C63.10 (2013)
Section 6.4&6.5&6.6 | RSS-247 Section Section
3.3 & RSS-Gen Section
8.10 | Pass | | | | Frequency stability | RSS-247 Issue 2,
February 2017 | RSS-Gen Section 6.11 | RSS-Gen Section 8.11 | Pass | | | Note: Frequency stability requested in RSS GEN Section 8.1.1 has been complied since the result of band edge can demonstrate. # **Declaration of EUT Family Grouping:** Item no.: Nursery Pal Glow+ (BU), Nursery Pal Glow Plus (BU) According to the confirmation from the applicant, the above models are identical in all electrical aspects in relating to the circuit design, PCB layout, electrical components used, internal wiring and functions. The differences are only the model name. Therefore, only the model Nursery Pal Glow+ (BU) was tested in this report. #### Abbreviation: Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radiated Frequency. CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage. Temp: In this whole report Temp means Temperature. Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure. N/A: In this whole report not application. Report No.: HKEM211000110803 Page: 5 of 69 # Contents | | | | Page | |---|----------------|--|------| | 1 | COVER | PAGE | 1 | | 2 | TEST S | SUMMARY | 3 | | | | | | | 3 | CONTE | NTS | 5 | | 4 | GENER | RAL INFORMATION | 7 | | | 4.1 DE | ETAILS OF E.U.T. | 7 | | | 4.2 DE | ESCRIPTION OF SUPPORT UNITS | 8 | | | 4.3 Mi | EASUREMENT UNCERTAINTY | 8 | | | | ST LOCATION | | | | | ST FACILITY | | | | | EVIATION FROM STANDARDS | | | | | BNORMALITIES FROM STANDARD CONDITIONS | | | 5 | EQUIP | MENT LIST | 10 | | 6 | RADIO | SPECTRUM TECHNICAL REQUIREMENT | 13 | | | 6.1 AN | NTENNA REQUIREMENT | 13 | | | 6.1.1 | Test Requirement: | - | | | 6.1.2 | Conclusion | | | 7 | RADIO | SPECTRUM MATTER TEST RESULTS | 14 | | | 7.1 Co | ONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) | 14 | | | | E.U.T. Operation | | | | 7.1.2 | Test Setup Diagram | | | | 7.1.3 | Measurement Procedure and Data | | | | | 9% Bandwidth | | | | | E.U.T. Operation | | | | 7.2.2 | Test Setup Diagram | | | | 7.2.3 | Measurement Procedure and Data | | | | | INIMUM 6DB BANDWIDTH | | | | | E.U.T. Operation Test Setup Diagram | | | | | Measurement Procedure and Data | | | | | ONDUCTED PEAK OUTPUT POWER | | | | 7.4.1 | E.U.T. Operation | | | | 7.4.2 | Test Setup Diagram | | | | 7.4.3 | Measurement Procedure and Data | 20 | | | | OWER SPECTRUM DENSITY | | | | | E.U.T. Operation | | | | 7.5.2 | Test Setup Diagram | | | | 7.5.3 | Measurement Procedure and Data | | | | | ONDUCTED BAND EDGES MEASUREMENT | | | | 7.6.1
7.6.2 | E.U.T. Operation Test Setup Diagram | | | | 7.6.2
7.6.3 | Measurement Procedure and Data | | | | | DNDUCTED SPURIOUS EMISSIONS | | | | | E.U.T. Operation | | | | 7.7.2 | Test Setup Diagram | | | | 7.7.3 | Measurement Procedure
and Data | | | | | | | Report No.: HKEM211000110803 Page: 6 of 69 | | 7.8 | RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | 26 | |---|-------|---|----| | | 7.8.1 | | | | | 7.8.2 | | 27 | | | 7.8.3 | | 27 | | | 7.9 | RADIATED SPURIOUS EMISSIONS | | | | 7.9.1 | 1 E.U.T. Operation | 30 | | | 7.9.2 | 2 Test Setup Diagram | 30 | | | 7.9.3 | | 31 | | 8 | PHO |)TOGRAPHS | 41 | | 9 | APP | PENDIX | 42 | | | 9.1 | 99% BANDWIDTH | 42 | | | 9.2 | MINIMUM EMISSION BANDWIDTH 6 DB | 48 | | | 9.3 | RF OUTPUT POWER | 54 | | | 9.4 | Power Spectral Density | | | | 9.5 | BAND EDGE | 61 | | | 9.6 | CONDUCTED SPURIOUS EMISSION | 69 | Page: 7 of 69 # 4 General Information # 4.1 Details of E.U.T. | T. I DCtall3 Of E.O. I . | | | | |--------------------------|--|--|--| | Power supply: | Model: YWK-AD050150-U | | | | | Input: AC 100-240V, 50/60Hz, 0.3A | | | | | Output: DC 5V, 1.5A, 7.5W | | | | Test voltage: | AC 120 V | | | | Cable: | Power Cable: 180cm unshielded 2 wires DC cable | | | | Antenna Gain: | 0 dBi | | | | Antenna Type: | Integral Antenna | | | | Channel Spacing: | 5MHz | | | | Modulation Type: | 802.11b: DSSS (CCK, DQPSK, DBPSK) | | | | | 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK) | | | | Data rate: | 802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11 Mbps | | | | | 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54 | | | | | 802.11n: 6.5Mbps, 13Mbps, 19.5Mbps, 26Mbps, 39Mbps, 52Mbps, 58.5Mbps, 65Mbps | | | | Number of Channels: | 802.11b/g/n(HT20):11 | | | | Operation Frequency: | 802.11b/g/n(HT20): 2412MHz to 2462MHz | | | | Tested Channels: | 2412MHz, 2442MHz, 2462MHz | | | | Series number: | A1 | | | | Hardware Version: | V1.0 | | | | Software Version: | RC06 | | | | | Remark: Power level setting was not adjustable and fixed default through SW Version. | | | # Frequency List | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------|---------|--------------------| | 1 | 2412 | 5 | 2432 | 9 | 2452 | | 2 | 2417 | 6 | 2437 | 10 | 2457 | | 3 | 2422 | 7 | 2442 | 11 | 2462 | | 4 | 2427 | 8 | 2447 | | | Remark: 1. Testing Channels are highlighted in **bold**. Page: 8 of 69 # 4.2 Description of Support Units The EUT has been tested with corresponding accessories as below: Supplied by client | Description | Manufacturer | Model No. | SN/Certificate NO | |---------------|-------------------|-------------------|-------------------| | Test Software | MicroRidge System | Version 3.0.0.108 | N/A | # Supplied by SGS: | Description | Manufacturer | Model No. | SN/Certificate NO | |-----------------|--------------|-----------|-------------------| | NoteBook (EMC4) | Dell | P75F | N/A | # 4.3 Measurement Uncertainty RF | No. | Item | Measurement Uncertainty | |----------|----------------------------------|---------------------------| | 1 | Radio Frequency | ± 7.25 x 10 ⁻⁸ | | 2 | Duty cycle | ± 0.37% | | 3 | Occupied Bandwidth | ± 3% | | 4 | RF conducted power (30MHz-40GHz) | 1.5dB | | 5 | RF power density | 1.5dB | | 6 | Conducted Spurious emissions | 1.5dB | | | | 4.4dB (30MHz-1GHz) | | 7 | RF Radiated power & | 4.7dB (1GHz-6GHz) | | ' | Radiated Spurious emission test | 4.7dB (6GHz-18GHz) | | | | 5.7dB (18GHz-40GHz) | | 8 | Temperature test | ± 1°C | | 9 | Humidity test | ± 3% | | 10 | Supply voltages | ± 1.5% | | 11 | Time | ± 3% | #### Remark: The U_{lab} (lab Uncertainty) is less than U_{cispr} (CISPR Uncertainty), so the test results - compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; - non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. According to decision rule based on Clause 4.2 of CISPR 16-4-2, the EUT complied with the standards specified above. Page: 9 of 69 # 4.4 Test Location All tests were performed at: SGS Hong Kong Limited Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong Tel: +852 2305 2570 Fax: +852 2756 4480 No tests were sub-contracted. # 4.5 Test Facility The test facility is recognized, certified, or accredited by the following organizations: ## • IAS Accreditation (Lab Code: TL-187) SGS HONG KONGLimited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org). The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government. ### FCC Recognized Accredited Test Firm(CAB Registration No.: 514599) SGS HONG KONG Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599. # • Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015) SGS HONG KONG Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103. #### 4.6 Deviation from Standards None # 4.7 Abnormalities from Standard Conditions None Page: 10 of 69 # 5 Equipment List WMS32 Test Software Minimum 6dB Bandwidth, Conducted Peak Output Power, Power Spectrum Density, Conducted Band **Edges Measurement, Conducted Spurious Emissions Equipment** Manufacturer **Model No Inventory No Cal Date** Cal Due Date SMBV100A VECTOR SMBV100A E234 2022/08/16 Rohde & Schwarz 2021/08/17 SIGNAL GENERATOR FSV40 SIGNAL Rohde & Schwarz FSV40 E235 2021/08/17 2022/08/16 ANALYZER 40GHz Wireless Conn. Tester Rohde & Schwarz CMW270 E240 2021/08/20 2022/08/19 (CMW) OSP OSP-B157W8 E242 Rohde & Schwarz 2021/04/20 2022/04/19 J12J103539-Cable Rohde & Schwarz E239 2021/09/17 2022/09/16 00-2 R&S | Conducted Emissions at Mains Terminals (150kHz-30MHz) | | | | | | | |---|-----------------|-------------------------|---------------------|------------|--------------|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | EMI Test Receiver
9kHz to 3.6GHz | Rohde & Schwarz | ESR3 / 102326 | E231 | 2021/08/17 | 2022/08/16 | | | Artificial Mains Network (LISN) | Schwarzbeck | NSLK 8127 /
8127312 | E005 | 2021/04/13 | 2022/04/12 | | | Impulse Limiter | Rohde & Schwarz | ESH-3-Z2 /
357881052 | E028 | 2021/07/15 | 2022/07/14 | | | EMC32 Test Software | R&S | Version 10 | N/A | | | | Version 10 N/A | Radiated Spurious Emissions (30MHz-1GHz) | | | | | | |---|-----------------|---------------|--------------|------------|--------------| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | 3m Semi-Anechoic
Chamber | ChamPro | N/A | E229 | 2021/08/09 | 2022/08/08 | | Coaxial Cable | SGS | N/A | E167 | 2021/07/15 | 2022/07/14 | | EMI Test Receiver
9kHz to 7GHz | Rohde & Schwarz | ESR7 / 102298 | E314 | 2021/04/26 | 2022/04/25 | | TRILOG Super Broadb.
Test Antenna,
(25) 30-1000 MHz | Schwarzbeck | 9168-1110 | E311 | 2020/02/13 | 2022/02/12 | | EMC32 Test software | Rohde & Schwarz | Version 10 | N/A | N/A | N/A | | Boresight Mast
Controller | ChamPro | AM-BS-4500-E | E237 | N/A | N/A | | Turntable with Controller | ChamPro | EM1000 | E238 | N/A | N/A | Report No.: HKEM211000110803 Page: 11 of 69 | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | |---|-----------------|------------------------------|--------------|------------|--------------| | 3m Semi-Anechoic
Chamber | ChamPro | N/A | E229 | 2021/08/09 | 2022/08/08 | | Coaxial Cable | SGS | N/A | E167 | 2021/07/15 | 2022/07/14 | | EMI Test Receiver
9kHz to 7GHz | Rohde & Schwarz | ESR7 / 102298 | E314 | 2021/04/26 | 2022/04/25 | | TRILOG Super Broadb.
Test Antenna,
(25) 30-1000 MHz | Schwarzbeck | 9168-1110 | E311 | 2020/02/13 | 2022/02/12 | | Signal and Spectrum
Analyzer
2Hz - 26.5GHz | Rohde & Schwarz | FSW26 | E296 | 2021/09/17 | 2022/09/16 | | Spectrum Analyzer
9kHz - 30GHz | Rohde & Schwarz | FSP30 | E204 | 2020/03/11 | 2022/03/10 | | Horn Antenna 1 - 18GHz | Schwarzbeck | BBHA9120D | E211 | 2020/01/29 | 2022/01/28 | | Horn Antenna
15 - 40GHz | Schwarzbeck | BBHA9170 | E212 | 2020/01/29 | 2022/01/28 | | Preamplifier 33dB,
1 - 18GHz | Schwarzbeck | BBV9718 | E214 | 2019/04/24 | 2022/04/23 | | Preamplifier 33dB,
18 - 26.5GHz | Schwarzbeck | BBV9719 | E215 | 2020/09/21 | 2022/09/20 | | Broadband Coaxial
Preamplifier typ. 30 dB,
18-40GHz | Schwarzbeck | BBV 9721 | E266 | 2021/09/17 | 2022/09/16 | | Highpass Filter
3.5-26.5GHz | Wainwright | WHNX3.5/26.5
G-6SS | E205 | 2019/04/24 | 2022/04/23 | | Band Reject Filter
2.4-2.5GHz | Wainwright | WRCJV
2400/2500-
2100 | E206 | 2019/04/24 | 2022/04/23 | | RF cable SMA to SMA
10000mm | HUBER+SUHNER | SF104-
26.5/2*11SMA
45 | E207-1 | 2021/09/17 | 2022/09/16 | | Boresight Mast
Controller | ChamPro | AM-BS-4500-E | E237 | N/A | N/A | | Turntable with Controller | ChamPro | EM1000 | E238 | N/A | N/A | Report No.: HKEM211000110803 Page: 12 of 69 | General used equipmen | t | | | | | |--|----------------------------------|--------------|--------------|------------|--------------| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal
Due Date | | Digital temperature & humidity data logger | SATO | SK-L200TH II | E232 | 2021/08/16 | 2022/08/15 | | Electronic Digital
Thermometer with
Hygrometer | nil | 2074/2075 | E159 | 2021/08/16 | 2022/08/15 | | Barometer with digital thermometer | SATO | 7612-00 | E218 | 2021/03/29 | 2022/03/28 | | Conditional Chamber | Zhong Zhi Testing
Instruments | CZ-E-608D | E216 | 2021/08/17 | 2022/08/16 | Page: 13 of 69 # 6 Radio Spectrum Technical Requirement # 6.1 Antenna Requirement # 6.1.1 Test Requirement: FCC Part 15 Subpart C Section 15.247 & 15.203 RSS-Gen Section 8.3 #### 6.1.2 Conclusion #### Standard Requirement: Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer. #### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi. Photo of antenna refer to Appendix – Internal photo. Page: 14 of 69 # 7 Radio Spectrum Matter Test Results # 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Requirement 47 CFR Part 15, Subpart C 15.207, RSS-Gen Section 8.8 Test Method: ANSI C63.10 (2013) Section 6.2 Limit: | Francisco of amicaian/MII- | Conducted limit(dBµV) | | | | |---|-----------------------|-----------|--|--| | Frequency of emission(MHz) | Quasi-peak | Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | | *Decreases with the logarithm of the frequency. | | | | | Page: 15 of 69 #### 7.1.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 51.2 % RH : Test mode a :TX mode Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11q; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)..11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. ### 7.1.2 Test Setup Diagram #### 7.1.3 Measurement Procedure and Data - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. - 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor Report No.: HKEM211000110803 Page: 16 of 69 Mode:a; Line: Live Line | Frequency | QuasiPeak | Average | Limit | Margin | Corr. | - " | |-----------|-----------|---------|--------|--------|-------|--------| | (MHz) | (dBµV) | (dBµV) | (dBµV) | (dB) | (dB) | Result | | 0.430000 | | 36.60 | 47.25 | 10.65 | 10.1 | Pass | | 0.430000 | 41.43 | | 57.25 | 15.82 | 10.1 | Pass | | 0.434000 | | 35.29 | 47.18 | 11.89 | 10.1 | Pass | | 0.434000 | 40.92 | | 57.18 | 16.26 | 10.1 | Pass | | 0.454000 | | 28.43 | 46.80 | 18.37 | 10.1 | Pass | | 0.926000 | 31.89 | | 56.00 | 24.11 | 10.1 | Pass | | 1.022000 | 30.43 | | 56.00 | 25.57 | 10.1 | Pass | | 1.642000 | 31.62 | | 56.00 | 24.38 | 10.2 | Pass | | 1.710000 | | 23.12 | 46.00 | 22.89 | 10.2 | Pass | | 1.718000 | 31.13 | | 56.00 | 24.87 | 10.2 | Pass | | 1.730000 | | 23.72 | 46.00 | 22.28 | 10.2 | Pass | | 1.750000 | | 24.62 | 46.00 | 21.38 | 10.2 | Pass | Report No.: HKEM211000110803 Page: 17 of 69 Mode:a; Line: Neutral Line | Frequency | QuasiPeak | Average | Limit | Margin | Corr. | 5 " | |-----------|-----------|---------|--------|--------|-------|------------| | (MHz) | (dBµV) | (dBµV) | (dBµV) | (dB) | (dB) | Result | | 0.430000 | | 36.60 | 47.25 | 10.65 | 10.1 | Pass | | 0.430000 | 41.43 | - | 57.25 | 15.82 | 10.1 | Pass | | 0.434000 | | 35.29 | 47.18 | 11.89 | 10.1 | Pass | | 0.434000 | 40.92 | | 57.18 | 16.26 | 10.1 | Pass | | 0.454000 | | 28.43 | 46.80 | 18.37 | 10.1 | Pass | | 0.926000 | 31.89 | | 56.00 | 24.11 | 10.1 | Pass | | 1.022000 | 30.43 | | 56.00 | 25.57 | 10.1 | Pass | | 1.642000 | 31.62 | | 56.00 | 24.38 | 10.2 | Pass | | 1.710000 | | 23.12 | 46.00 | 22.89 | 10.2 | Pass | | 1.718000 | 31.13 | | 56.00 | 24.87 | 10.2 | Pass | | 1.730000 | | 23.72 | 46.00 | 22.28 | 10.2 | Pass | | 1.750000 | | 24.62 | 46.00 | 21.38 | 10.2 | Pass | Page: 18 of 69 # 7.2 99% Bandwidth Test Requirement RSS-Gen Section 6.6 Test Method: ANSI C63.10 Section 6.9.3 # 7.2.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 51.2 % RH Test mode a:TX mode Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. # 7.2.2 Test Setup Diagram # Spectrum Analyzer E.U.T Non-Conducted Table # Ground Reference Plane #### 7.2.3 Measurement Procedure and Data Page: 19 of 69 # 7.3 Minimum 6dB Bandwidth Test Requirement 47 CFR Part 15, Subpart C 15.247a(2) Test Method: ANSI C63.10 (2013) Section 11.8.1 Limit: ≥500 kHz #### 7.3.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 49.1 % RH Test mode b:TX mode Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20)..11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. #### 7.3.2 Test Setup Diagram # Spectrum Analyzer E.U.T Non-Conducted Table # Ground Reference Plane ### 7.3.3 Measurement Procedure and Data Page: 20 of 69 # 7.4 Conducted Peak Output Power Test Requirement 47 CFR Part 15 Subpart C 15.247:2019(b)(1) & 15.247(b)(3), RSS-247 Section 5.4(b) Test Method: ANSI C63.10 (2013) Section 7.8.5 7.4.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 51.2 % RH Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). #### 7.4.2 Test Setup Diagram # Ground Reference Plane #### 7.4.3 Measurement Procedure and Data Page: 21 of 69 # 7.5 Power Spectrum Density Test Requirement 47 CFR Part 15, Subpart C 15.247(e), RSS-247 Clause 5.2(b) Test Method: ANSI C63.10 (2013) Section 11.10.2 Limit: ≤8dBm in any 3 kHz band during any time interval of continuous transmission # 7.5.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 49.1 % RH Test mode b:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. #### 7.5.2 Test Setup Diagram # Spectrum Analyzer E.U.T Non-Conducted Table # Ground Reference Plane ### 7.5.3 Measurement Procedure and Data Page: 22 of 69 # 7.6 Conducted Band Edges Measurement Test Requirement 47 CFR Part 15, Subpart C 15.247:2019(d), RSS-247 Section 5.5 Test Method: ANSI C63.10 (2013) Section7.8.6 Limit: In any 100 kHz bandwidth outside In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. Attenuation below the
general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated FCC Part15 C Section 15.205 Restricted bands of operation. (a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below: emission limits specified in §15.209(a) (see §15.205(c) | MHz | MHz | MHz | GHz | |----------------------------|-----------------------|-----------------|---------------| | 0.090 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | ¹ 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614 | 5.35 - 5.46 | | 2.1735 - 2.1905 | 16.80425 - 16.80475 | 960 - 1240 | 7.25 - 7.75 | | 4.125 - 4.128 | 25.5 - 25.67 | 1300 - 1427 | 8.025 - 8.5 | | 4.17725 - 4.17775 | 37.5 - 38.25 | 1435 - 1626.5 | 9.0 - 9.2 | | 4.20725 - 4.20775 | 73 - 74.6 | 1645.5 - 1646.5 | 9.3 - 9.5 | | 6.215 - 6.218 | 74.8 - 75.2 | 1660 - 1710 | 10.6 - 12.7 | | 6.26775 - 6.26825 | 108 - 121.94 | 1718.8 - 1722.2 | 13.25 - 13.4 | | 6.31175 - 6.31225 | 123 - 138 | 2200 - 2300 | 14.47 - 14.5 | | 8.291 - 8.294 | 149.9 - 150.05 | 2310 - 2390 | 15.35 - 16.2 | | 8.362 - 8.366 | 156.52475 - 156.52525 | 2483.5 - 2500 | 17.7 - 21.4 | | 8.37625 - 8.38675 | 156.7 - 156.9 | 2655 - 2900 | 22.01 - 23.12 | | 8.41425 - 8.41475 | 162.0125 - 167.17 | 3260 - 3267 | 23.6 - 24.0 | | 12.29 - 12.293 | 167.72 - 173.2 | 3332 - 3339 | 31.2 - 31.8 | | 12.51975 - 12.52025 | 240 - 285 | 3345.8 - 3358 | 36.43 - 36.5 | | 12.57675 - 12.57725 | 322 - 335.4 | 3600 - 4400 | | | 13.36 - 13.41 | | | | | | | | | RSS-Gen Section 8.10 Restricted bands of operation. Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply: (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio Page: 23 of 69 apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, *Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).* - (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6. - (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6. | Table 7 – Restricted frequency | MHz | GHz | |--------------------------------|-----------------------|---| | bands* MHz | | | | 0.090 - 0.110 | 149.9 - 150.05 | 9.0 - 9.2 | | 0.495 - 0.505 | 156.52475 - 156.52525 | 9.3 - 9.5 | | 2.1735 - 2.1905 | 156.7 - 156.9 | 10.6 - 12.7 | | 3.020 - 3.026 | 162.0125 - 167.17 | 13.25 - 13.4 | | 4.125 - 4.128 | 167.72 - 173.2 | 14.47 - 14.5 | | 4.17725 - 4.17775 | 240 - 285 | 15.35 - 16.2 | | 4.20725 - 4.20775 | 322 - 335.4 | 17.7 - 21.4 | | 5.677 - 5.683 | 399.9 - 410 | 22.01 - 23.12 | | 6.215 - 6.218 | 608 - 614 | 23.6 - 24.0 | | 6.26775 - 6.26825 | 960 - 1427 | 31.2 - 31.8 | | 6.31175 - 6.31225 | 1435 - 1626.5 | 36.43 - 36.5 | | 8.291 - 8.294 | 1645.5 - 1646.5 | Above 38.6 | | 8.362 - 8.366 | 1660 - 1710 | * Certain frequency bands | | 8.37625 - 8.38675 | 1718.8 - 1722.2 | listed in table 7 and in bands | | 8.41425 - 8.41475 | 2200 - 2300 | above 38.6 GHz are | | 12.29 - 12.293 | 2310 - 2390 | designated for licence-exempt applications. These frequency | | 12.51975 - 12.52025 | 2483.5 - 2500 | applications: These frequency bands and the requirements | | 12.57675 - 12.57725 | 2655 - 2900 | that apply to related devices | | 13.36 - 13.41 | 3260 - 3267 | are set out in the 200 and 300 | | 16.42 - 16.423 | 3332 - 3339 | series of RSSs. | | 16.69475 - 16.69525 | 3345.8 - 3358 | 301100 01 11000. | | 16.80425 - 16.80475 | 3500 - 4400 | | | 25.5 - 25.67 | 4500 - 5150 | | | 37.5 - 38.25 | 5350 - 5460 | | | 73 - 74.6 | 7250 - 7750 | | | 74.8 - 75.2 | 8025 - 8500 | | | 108 - 138 | | | Page: 24 of 69 # 7.6.1 E.U.T. Operation **Operating Environment:** Temperature: 22.5 °C Humidity: 51.1 % RH : Test mode a:TX mode Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). # 7.6.2 Test Setup Diagram # Ground Reference Plane # 7.6.3 Measurement Procedure and Data Page: 25 of 69 # 7.7 Conducted Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.247:2019(d), RSS-247 Section 5.5 Test Method: ANSI C63.10 (2013) Section 7.8.8 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. ## 7.7.1 E.U.T. Operation Operating Environment: Temperature: 22.5 °C Humidity: 51.2 % RH Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). ## 7.7.2 Test Setup Diagram # Ground Reference Plane #### 7.7.3 Measurement Procedure and Data Page: 26 of 69 # 7.8 Radiated Emissions which fall in the restricted bands Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.247(d), Section 3.3 & RSS-Gen Section 8.9 Test Method: ANSI C63.10 (2013) Section 6.10.5 Limit: Table 5 - General field strength limits at frequencies above 30 MHz | Frequency
(MHz) | Field strength
(μ V/m at 3 m) | |--------------------|-----------------------------------| | 30 - 88 | 100 | | 88 - 216 | 150 | | 216 - 960 | 200 | | Above 960 | 500 | Table 6 - General field strength limits at frequencies below 30 MHz | Frequency | Magnetic field strength (H-
Field)
(µ A/m) | Measurement distance
(m) | |----------------|---|-----------------------------| | 9 - 490 kHz 1 | 6.37/F (F in kHz) | 300 | | 490 - 1705 kHz | 63.7/F (F in kHz) | 30 | | 1.705 - 30 MHz | 0.08 | 30 | **Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector. ### 7.8.1 E.U.T. Operation Operating Environment: Temperature: 23.1 °C Humidity: 51.4 % RH Test mode a:TX mode_Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. Page: 27 of 69 #### 7.8.2 Test Setup Diagram 30MHz-1GHz Above 1GHz #### 7.8.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. - Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Report No.: HKEM211000110803 Page: 28 of 69 # Worse test reulst as shown below: Mode: 802.11b | Frequency | Antenna | Emission Level (dBµV/m) | | Limit (d | Result | | |-----------|--------------|-------------------------|---------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Nesuit | | 2390.000 | Н | 61.2 | 49.2 | 74.0 | 54.0 | Pass | | 2483.500 | V | 59.1 | 47.8 | 74.0 | 54.0 | Pass | Mode: 802.11g | Frequency | Antenna | Emission Level (dBµV/m) | | Limit (d | Result | | |-----------|--------------|-------------------------|---------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Resuit | | 2390.000 | Н | 62.2 | 47.6 | 74.0 | 54.0 | Pass | | 2483.500 | V | 60.9 | 48.9 | 74.0 | 54.0 | Pass | Mode: 802.11n20 | Frequency | Antenna | Emission Level (dBµV/m) | | Limit (d | Result | | |-----------|--------------|-------------------------|---------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Result | | 2390.000 | V | 61.9 | 47.8 | 74.0 | 54.0 | Pass | | 2483.500 | V | 64.2 | 48.1 | 74.0 | 54.0 | Pass | Page: 29 of 69 # 7.9 Radiated Spurious Emissions Test Requirement Section 3.3 & RSS-Gen Section 8.9 Test Method: ANSI C63.10 (2013) Section 6.4, 6.5 & 6.6 Limit: Table 5 - General field strength limits at frequencies above 30 MHz | Frequency
(MHz) | Field strength
(μ V/m at 3 m) | |--------------------|-----------------------------------| | 30 - 88 | 100 | | 88 - 216 | 150 | | 216 - 960 | 200 | | Above 960 | 500 | Table 6 - General field strength limits at frequencies below 30 MHz | Frequency | Magnetic field strength (H-
Field)
(| Measurement distance
(m) | |----------------|--|-----------------------------| | 9 - 490 kHz 1 | 6.37/F (F in kHz) | 300 | | 490 - 1705 kHz | 63.7/F (F in kHz) | 30 | | 1.705 - 30 MHz | 0.08 | 30 | **Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector. Page: 30 of 69 # 7.9.1 E.U.T. Operation Operating Environment: Temperature: 22.3 °C Humidity: 52.3 % RH : Test mode a:TX mode Keep the EUT in continuously transmitting mode with all modulation types. All data rates for each modulation type have been tested and found the data rate @ 1Mbps is the worst case of IEEE 802.11b; data rate @ 6Mbps is the worst case of IEEE 802.11g; data rate @ 6.5Mbps is the worst case of IEEE 802.11n(HT20). Only the data of worst case is recorded in the report. # 7.9.2 Test Setup Diagram Below 30MHz 30MHz-1GHz Above 1GHz Page: 31 of 69 #### 7.9.3 Measurement Procedure and Data a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. #### Remark: - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 3) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Report No.: HKEM211000110803 Page: 32 of 69 802.11b Radiated emission below 1GHz Horizontal (worse plots was shown as below) | Frequency | QuasiPeak | | Corr. | Margin | Limit | 5 " | |------------|-----------|------|--------|--------|----------|--------| | (MHz) | (dBµV/m) | Pol. | (dB/m) | (dB) | (dBµV/m) | Result | | 240.005000 | 35.3 | Н | 12.4 | 10.7 | 46.0 | Pass | | 300.006429 | 38.8 | Н | 14.9 | 7.2 | 46.0 | Pass | | 354.534286 | 31.7 | Н | 16.1 | 14.3 | 46.0 | Pass | | 518.187143 | 41.0 | Н | 20.1 | 5.0 | 46.0 | Pass | | 518.187143 | 41.0 | Н | 20.1 | 5.0 | 46.0 | Pass | | 627.312143 | 41.8 | н | 22.3 | 4.2 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 33 of 69 # Vertical (worse plots was shown as below) | Frequency | QuasiPeak | Del | Corr. | Margin | Limit | Result | |------------|-----------|------|--------|--------|----------|--------| | (MHz) | (dBµV/m) | Pol. | (dB/m) | (dB) | (dBµV/m) | Result | | 45.658571 | 36.3 | V | 14.1 | 3.7 | 40.0 | Pass | | 63.118571 | 39.5 | V | 13.3 | 0.5 | 40.0 | Pass | | 354.534286 | 42.3 | ٧ | 16.1 | 3.8 | 46.0 | Pass | | 589.135714 | 43.0 | ٧ | 21.6 | 3.0 | 46.0 | Pass | | 627.242857 | 43.2 | ٧ | 22.3 | 2.8 | 46.0 | Pass | | 632.716429 | 41.6 | ٧ | 22.3 | 4.4 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 34 of 69 Above 1GHz Channel:Low | Frequency | Frequency Antenna Emission Level (dE | | vel (dBµV/m) | Limit (d | BμV/m) | Remark | |-----------|--------------------------------------|------|--------------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1152.875 | Н | 41.7 | / | 74.0 | 54.0 | Pass | | 3699.250 | Н | 47.2 | / | 74.0 | 54.0 | Pass | | 4864.500 | V | 48.6 | / | 74.0 | 54.0 | Pass | | 8191.000 | Н | 57.9 | 45.0 | 74.0 | 54.0 | Pass | | 9574.000 | V | 57.8 | 44.9 | 74.0 | 54.0 | Pass | | 11921.000 | V | 61.6 | 48.0 | 74.0 | 54.0 | Pass | # Channel:Middle | Frequency | requency Antenna Emission Level (dBμV/m) | | Limit (d | BμV/m) | Remark | | |-----------|--|------|----------|--------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1923.600 | V | 41.2 | / | 74.0 | 54.0 | Pass | | 4473.000 | V | 46.5 | 1 | 74.0 | 54.0 | Pass | | 7892.000 | Н | 58.3 | 44.4 | 74.0 | 54.0 | Pass | | 9691.500 | Н | 59.7 | 44.8 | 74.0 | 54.0 | Pass | | 10667.500 | V | 61.2 | 46.7 | 74.0 | 54.0 | Pass | | 11026.000 | Н | 62.8 | 47.7 | 74.0 | 54.0 | Pass | Channel: High | Frequency | requency Antenna Emission Level (dBμV/m) | | Limit (d | BμV/m) | Remark | | |-----------|--|------|----------|--------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1143.875 | V | 39.9 | / | 74.0 | 54.0 | Pass | | 1349.750 | V | 40.3 | / | 74.0 | 54.0 | Pass | | 3926.250 | Н | 45.5 | 1 | 74.0 | 54.0 | Pass | | 5014.500 | V | 51.6 | 1 | 74.0 | 54.0 | Pass | | 8297.500 | Н | 58.2 | 45.0 | 74.0 | 54.0 | Pass | | 10885.500 | V | 61.6 | 48.0 | 74.0 | 54.0 | Pass | Report No.: HKEM211000110803 Page: 35 of 69 802.11g Radiated emission below 1GHz Horizontal (worse plots was shown as below) | Frequency | QuasiPeak | Pol. | Corr. | Margin | Limit | Decult | |------------|-----------|------|--------|--------|----------|--------| | (MHz) | (dBµV/m) | POI. | (dB/m) | (dB) | (dBµV/m) | Result | | 300.006429 | 39.4 | Н | 14.9 | 6.6 | 46.0 | Pass | | 354.534286 | 39.0 | Н | 16.1 | 7.0 | 46.0 | Pass | | 518.187143 | 41.1 | Н | 20.1 | 4.9 | 46.0 | Pass | | 572.715000 | 37.6 | Н | 21.0 | 8.4 | 46.0 | Pass | | 589.135714 | 37.7 | Н | 21.6 | 8.3 | 46.0 | Pass | | 627.312143 | 41.4 | Н | 22.3 | 4.6 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 36 of 69 # Vertical (worse plots was shown as below) | Frequency | QuasiPeak | Pol. | Corr. | Margin | Limit | Result | |------------|-----------|------|--------
--------|----------|--------| | (MHz) | (dBµV/m) | | (dB/m) | (dB) | (dBµV/m) | | | 63.049286 | 32.9 | V | 13.3 | 7.1 | 40.0 | Pass | | 230.027857 | 33.1 | V | 11.3 | 12.9 | 46.0 | Pass | | 354.534286 | 42.2 | V | 16.1 | 3.8 | 46.0 | Pass | | 518.187143 | 43.4 | ٧ | 20.1 | 2.6 | 46.0 | Pass | | 589.066429 | 40.6 | V | 21.6 | 5.4 | 46.0 | Pass | | 627.312143 | 43.9 | V | 22.3 | 2.1 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 37 of 69 Above 1GHz Channel:Low | Frequency | Antenna | Emission Level (dBµV/m) | | Limit (| Remark | | |-----------|--------------|-------------------------|---------|---------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Kemark | | 1906.370 | V | 44.1 | / | 74.0 | 54.0 | Pass | | 4782.125 | Н | 48.7 | 1 | 74.0 | 54.0 | Pass | | 5173.500 | V | 49.6 | / | 74.0 | 54.0 | Pass | | 7899.000 | V | 57.2 | 45.3 | 74.0 | 54.0 | Pass | | 8131.000 | Н | 58.3 | 44.7 | 74.0 | 54.0 | Pass | | 10552.000 | Н | 62.4 | 48.0 | 74.0 | 54.0 | Pass | #### Channel:Middle | Frequency | Antenna | Emission Level (dBµV/m) | | Limit (d | dΒμV/m) | Remark | |-----------|--------------|-------------------------|---------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1227.000 | Н | 42.3 | / | 74.0 | 54.0 | Pass | | 3689.250 | Н | 46.9 | / | 74.0 | 54.0 | Pass | | 4987.000 | V | 49.5 | / | 74.0 | 54.0 | Pass | | 7899.000 | Н | 58.5 | 44.5 | 74.0 | 54.0 | Pass | | 9288.500 | V | 58.7 | 47.8 | 74.0 | 54.0 | Pass | | 10891.500 | V | 60.9 | 48.9 | 74.0 | 54.0 | Pass | Channel: High | Frequency | Antenna | Emission Le | vel (dBµV/m) | Limit (d | Result | | |-----------|--------------|-------------|--------------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Result | | 1966.625 | V | 43.5 | / | 74.0 | 54.0 | Pass | | 3790.875 | V | 46.1 | / | 74.0 | 54.0 | Pass | | 5937.500 | Н | 49.4 | / | 74.0 | 54.0 | Pass | | 8181.000 | V | 58.5 | 45.0 | 74.0 | 54.0 | Pass | | 10921.000 | Н | 61.6 | 47.9 | 74.0 | 54.0 | Pass | | 11563.000 | V | 61.7 | 48.9 | 74.0 | 54.0 | Pass | Report No.: HKEM211000110803 Page: 38 of 69 802.11n20 Radiated emission below 1GHz Horizontal (worse plots was shown as below) | Frequency | QuasiPeak | Pol. | Corr. | Margin | Limit | Result | |------------|-----------|------|--------|--------|----------|--------| | (MHz) | (dBµV/m) | POI. | (dB/m) | (dB) | (dBµV/m) | Result | | 300.006429 | 34.4 | Н | 14.9 | 11.6 | 46.0 | Pass | | 327.235714 | 33.3 | Н | 15.8 | 12.7 | 46.0 | Pass | | 354.534286 | 38.9 | Н | 16.1 | 7.1 | 46.0 | Pass | | 518.187143 | 41.2 | Н | 20.1 | 4.9 | 46.0 | Pass | | 572.715000 | 34.7 | Н | 21.0 | 11.3 | 46.0 | Pass | | 627.312143 | 41.1 | Н | 22.3 | 4.9 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 39 of 69 ### Vertical (worse plots was shown as below) | Frequency | QuasiPeak | Dal | Corr. | Margin | Limit | Decult | |------------|-----------|------|--------|--------|----------|--------| | (MHz) | (dBµV/m) | Pol. | (dB/m) | (dB) | (dBµV/m) | Result | | 64.157857 | 37.3 | Н | 13.2 | 2.8 | 40.0 | Pass | | 354.534286 | 40.0 | Н | 16.1 | 6.1 | 46.0 | Pass | | 518.187143 | 43.6 | Н | 20.1 | 2.4 | 46.0 | Pass | | 589.066429 | 42.5 | Н | 21.6 | 3.5 | 46.0 | Pass | | 627.312143 | 43.5 | Н | 22.3 | 2.5 | 46.0 | Pass | | 632.785714 | 41.2 | Н | 22.3 | 4.8 | 46.0 | Pass | Report No.: HKEM211000110803 Page: 40 of 69 Above 1GHz Channel:Low | Frequency | Antenna | Emission Le | vel (dBµV/m) | Limit (d | BμV/m) | Remark | |-----------|--------------|-------------|--------------|----------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1906.000 | Н | 45.4 | / | 74.0 | 54.0 | Pass | | 4785.500 | V | 49.4 | / | 74.0 | 54.0 | Pass | | 5077.000 | Н | 48.2 | / | 74.0 | 54.0 | Pass | | 7561.500 | V | 53.4 | / | 74.0 | 54.0 | Pass | | 8590.500 | Н | 58.1 | 45.0 | 74.0 | 54.0 | Pass | | 10495.500 | V | 62.4 | 48.2 | 74.0 | 54.0 | Pass | Channel:Middle | Frequency | Antenna | Antenna Emission Level (dBμV/m) Limit (dBμV/m) | | Remark | | | |-----------|--------------|--|---------|--------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1886.375 | V | 43.9 | / | 74.0 | 54.0 | Pass | | 2184.375 | V | 41.5 | / | 74.0 | 54.0 | Pass | | 4948.000 | Н | 47.2 | 1 | 74.0 | 54.0 | Pass | | 8321.700 | Н | 58.3 | 44.2 | 74.0 | 54.0 | Pass | | 9378.000 | V | 59.4 | 45.1 | 74.0 | 54.0 | Pass | | 10491.000 | V | 60.5 | 46.8 | 74.0 | 54.0 | Pass | Channel: High | Frequency | Antenna | Emission Le | vel (dBµV/m) | Limit (dBµV/m) | | Remark | |-----------|--------------|-------------|--------------|----------------|---------|--------| | (MHz) | Polarization | Peak | Average | Peak | Average | Remark | | 1216.000 | V | 41.9 | / | 74.0 | 54.0 | Pass | | 1853.250 | V | 42.3 | / | 74.0 | 54.0 | Pass | | 4929.000 | V | 47.6 | 1 | 74.0 | 54.0 | Pass | | 7324.000 | V | 56.7 | 43.2 | 74.0 | 54.0 | Pass | | 10512.500 | Н | 58.6 | 46.6 | 74.0 | 54.0 | Pass | | 11415.000 | V | 61.9 | 47.6 | 74.0 | 54.0 | Pass | Report No.: HKEM211000110803 Page: 41 of 69 #### **Photographs** 8 Remark: Photos refer to Appendix: External Photo, Internal Phot, and Setup Photo Page: 42 of 69 # 9 Appendix ### 9.1 99% Bandwidth 802.11b: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 13.500000 | | | 2405.250000 | 2418.750000 | | 2437.000000 | 13.300000 | | | 2430.350000 | 2443.650000 | | 2462.000000 | 13.500000 | | | 2455.250000 | 2468.750000 | 99 % Bandwidth 99 % Bandwidth Report No.: HKEM211000110803 Page: 43 of 69 99 % Bandwidth ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|----------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 200.000 kHz | >= 200.000 kHz | | VBW | 1.000 MHz | >= 600.000 kHz | | SweepPoints | 400 | ~ 400 | | Sweeptime | 47.266 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.30 dB | 0.30 dB | | Run | 32 / max. 150 | max. 150 | | Stable | 3/3 | 3 | | Max Stable Difference | 0.22 dB | 0.30 dB | Page: 44 of 69 802.11g: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 16.500000 | | | 2403.750000 | 2420.250000 | | 2437.000000 | 16.600000 | | | 2428.750000 | 2445.350000 | | 2462.000000 | 16.600000 | | | 2453.650000 | 2470.250000 | 99 % Bandwidth 99 % Bandwidth Report No.: HKEM211000110803 Page: 45 of 69 99 % Bandwidth ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|----------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 200.000 kHz | >= 200.000 kHz | | VBW | 1.000 MHz | >= 600.000 kHz | | SweepPoints | 400 | ~ 400 | | Sweeptime | 47.266 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.30 dB | 0.30 dB | | Run | 31 / max. 150 | max. 150 | | Stable | 3 / 3 | 3 | | Max Stable Difference | 0.06 dB | 0.30 dB | Page: 46 of 69 #### 802.11n20: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 17.700000 | | | 2403.150000 | 2420.850000 | | 2442.000000 | 17.700000 | | | 2433.150000 | 2450.850000 | | 2462.000000 | 17.700000 | | | 2453.150000 | 2470.850000 | 99 % Bandwidth 99 % Bandwidth Report No.: HKEM211000110803 Page: 47 of 69 99 % Bandwidth ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|----------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 200.000 kHz | >= 200.000 kHz | | VBW | 1.000 MHz | >= 600.000 kHz | | SweepPoints | 400 | ~ 400 | | Sweeptime | 47.266 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.30 dB | 0.30 dB | | Run | 22 / max. 150 | max. 150 | | Stable | 3/3 | 3 | | Max Stable Difference | 0.17 dB | 0.30 dB | Page: 48 of 69 ### 9.2 Minimum Emission Bandwidth 6 dB 802.11b: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 7.500000 | 0.500000 | | 2408.275000 | 2415.775000 | | 2437.000000 | 8.500000 | 0.500000 | | 2432.425000 | 2440.925000 | | 2462.000000 | 8.850000 | 0.500000 | | 2457.525000 | 2466.375000 | 6 dB Bandwidth 6 dB Bandwidth Report No.: HKEM211000110803 Page: 49 of 69 #### 6 dB Bandwidth ### Measurement | Setting | Instrument
Value | Target Value |
-----------------------|---------------------|---------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 100.000 kHz | ~ 100.000 kHz | | VBW | 300.000 kHz | ~ 300.000 kHz | | SweepPoints | 800 | ~ 800 | | Sweeptime | 94.922 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.50 dB | 0.50 dB | | Run | 53 / max. 150 | max. 150 | | Stable | 5 / 5 | 5 | | Max Stable Difference | 0.40 dB | 0.50 dB | Page: 50 of 69 802.11g: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 16.450000 | 0.500000 | | 2403.775000 | 2420.225000 | | 2437.000000 | 16.500000 | 0.500000 | | 2428.725000 | 2445.225000 | | 2462.000000 | 16.550000 | 0.500000 | | 2453.725000 | 2470.275000 | #### 6 dB Bandwidth 6 dB Bandwidth Page: 51 of 69 #### 6 dB Bandwidth ## Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|---------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 100.000 kHz | ~ 100.000 kHz | | VBW | 300.000 kHz | ~ 300.000 kHz | | SweepPoints | 800 | ~ 800 | | Sweeptime | 94.922 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.50 dB | 0.50 dB | | Run | 18 / max. 150 | max. 150 | | Stable | 5 / 5 | 5 | | Max Stable Difference | 0.27 dB | 0.50 dB | Page: 52 of 69 #### 802.11n20: | DUT Frequency
(MHz) | Bandwidth
(MHz) | Limit Min
(MHz) | Limit Max
(MHz) | Band Edge Left
(MHz) | Band Edge
Right
(MHz) | |------------------------|--------------------|--------------------|--------------------|-------------------------|-----------------------------| | 2412.000000 | 17.400000 | 0.500000 | | 2403.125000 | 2420.525000 | | 2442.000000 | 17.650000 | 0.500000 | | 2433.125000 | 2450.775000 | | 2462.000000 | 17.700000 | 0.500000 | | 2453.125000 | 2470.825000 | #### 6 dB Bandwidth 6 dB Bandwidth Page: 53 of 69 #### 6 dB Bandwidth ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|---------------| | Span | 40.000 MHz | 40.000 MHz | | RBW | 100.000 kHz | ~ 100.000 kHz | | VBW | 300.000 kHz | ~ 300.000 kHz | | SweepPoints | 800 | ~ 800 | | Sweeptime | 94.922 us | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | FFT | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.50 dB | 0.50 dB | | Run | 23 / max. 150 | max. 150 | | Stable | 5 / 5 | 5 | | Max Stable Difference | 0.09 dB | 0.50 dB | Page: 54 of 69 ### 9.3 RF output power | Operation Mode | DUT
Frequency
(MHz) | Limit Max
(dBm) | Gated
Level
(dBm) | Result | |----------------|---------------------------|--------------------|-------------------------|--------| | 802.11b | 2412.000000 | 30.0 | 13.0 | PASS | | 802.11b | 2437.000000 | 30.0 | 11.8 | PASS | | 802.11b | 2462.000000 | 30.0 | 12.5 | PASS | | 802.11g | 2412.000000 | 30.0 | 11.4 | PASS | | 802.11g | 2437.000000 | 30.0 | 9.6 | PASS | | 802.11g | 2462.000000 | 30.0 | 10.1 | PASS | | 802.11n20 | 2412.000000 | 30.0 | 10.8 | PASS | | 802.11n20 | 2437.000000 | 30.0 | 10.0 | PASS | | 802.11n20 | 2462.000000 | 30.0 | 9.8 | PASS | Remark: Antenna gain: 0 dBi Remark: Cable loss 0.8dB was considered and set in system configuration. (only worst case shown) 802.11b: Page: 55 of 69 ### 802.11g: 802.11n20: #### Peak Power Page: 56 of 69 ### 9.4 Power Spectral Density 802.11b: | DUT Frequency
(MHz) | Frequency
(MHz) | PSD
(dBm) | Limit
Max
(dBm) | Result | |------------------------|--------------------|--------------|-----------------------|--------| | 2412.000000 | 2411.775000 | -2.867 | 8.0 | PASS | | 2437.000000 | 2436.225000 | -5.143 | 8.0 | PASS | | 2462.000000 | 2462.525000 | -4.987 | 8.0 | PASS | Power Spectral Density Power Spectral Density Page: 57 of 69 #### Power Spectral Density 802.11g: | DUT Frequency
(MHz) | Frequency
(MHz) | PSD
(dBm) | Limit
Max
(dBm) | Result | |------------------------|--------------------|--------------|-----------------------|--------| | 2412.000000 | 2413.575000 | -7.440 | 8.0 | PASS | | 2437.000000 | 2441.975000 | -9.104 | 8.0 | PASS | | 2462.000000 | 2466.975000 | -9.236 | 8.0 | PASS | #### Power Spectral Density Page: 58 of 69 #### Power Spectral Density ### Power Spectral Density Page: 59 of 69 #### 802.11n20: | DUT Frequency
(MHz) | Frequency
(MHz) | PSD
(dBm) | Limit
Max
(dBm) | Result | |------------------------|--------------------|--------------|-----------------------|--------| | 2412.000000 | 2416.975000 | -5.060 | 8.0 | PASS | | 2442.000000 | 2435.725000 | -6.671 | 8.0 | PASS | | 2462 000000 | 2466 975000 | -6 072 | 8.0 | PASS | #### Power Spectral Density #### Power Spectral Density Page: 60 of 69 #### Power Spectral Density ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|----------------| | Span | 30.000 MHz | 30.000 MHz | | RBW | 100.000 kHz | <= 100.000 kHz | | VBW | 300.000 kHz | >= 300.000 kHz | | SweepPoints | 600 | ~ 600 | | Sweeptime | 12.000 ms | 12.000 ms | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | RMS | RMS | | SweepCount | 1 | 1 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | Sweep | Sweep | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.50 dB | 0.50 dB | | Run | 80 / max. 150 | max. 150 | | Stable | 3 / 3 | 3 | | Max Stable Difference | 0.27 dB | 0.50 dB | Page: 61 of 69 ### 9.5 Band Edge 802.11b Band Edge Low ### **Inband Peak** | Frequency | Level | |-------------|-------| | (MHz) | (dBm) | | 2411.375000 | 1.7 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2398.525000 | -44.5 | 16.2 | -28.3 | PASS | | 2398.425000 | -44.6 | 16.3 | -28.3 | PASS | | 2398.375000 | -44.6 | 16.3 | -28.3 | PASS | | 2398,575000 | -44.7 | 16.4 | -28.3 | PASS | | 2397.525000 | -44.8 | 16.5 | -28.3 | PASS | | 2397.475000 | -44.8 | 16.5 | -28.3 | PASS | | 2399.725000 | -45.0 | 16.7 | -28.3 | PASS | | 2398.075000 | -45.1 | 16.8 | -28.3 | PASS | | 2399.375000 | -45.2 | 16.9 | -28.3 | PASS | | 2399.625000 | -45.2 | 17.0 | -28.3 | PASS | | 2397.875000 | -45.3 | 17.0 | -28.3 | PASS | | 2398.025000 | -45.4 | 17.1 | -28.3 | PASS | | 2399.675000 | -45.4 | 17.1 | -28.3 | PASS | | 2399.575000 | -45.4 | 17.1 | -28.3 | PASS | | 2370.975000 | -45.5 | 17.2 | -28.3 | PASS | Page: 62 of 69 ### 802.11b Band Edge High ### **Inband Peak** | Frequency | Level | |-------------|-------| | (MHz) | (dBm) | | 2461.475000 | 0.8 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2496.925000 | -46.1 | 16.8 | -29.2 | PASS | | 2496.975000 | -46.5 | 17.2 | -29.2 | PASS | | 2496.875000 | -46.7 | 17.4 | -29.2 | PASS | | 2492.975000 | -46.7 | 17.5 | -29.2 | PASS | | 2498.225000 | -46.8 | 17.6 | -29.2 | PASS | | 2483.675000 | -46.8 | 17.6 | -29.2 | PASS | | 2499.975000 | -46.8 | 17.6 | -29.2 | PASS | | 2500.000000 | -46.8 | 17.6 | -29.2 | PASS | | 2487.225000 | -46.8 | 17.6 | -29.2 | PASS | | 2496.825000 | -46.9 | 17.7 | -29.2 | PASS | | 2483.525000 | -46.9 | 17.7 | -29.2 | PASS | | 2498.175000 | -47.0 | 17.8 | -29.2 | PASS | | 2483.725000 | -47.0 | 17.8 | -29.2 | PASS | | 2487.325000 | -47.1 | 17.8 | -29.2 | PASS | | 2487.275000 | -47.2 | 18.0 | -29.2 | PASS | Page: 63 of 69 802.11g Band Edge Low ### **Inband Peak** | Frequency | Level | |-------------|-------| | (MHz) | (dBm) | | 2419.525000 | -4.1 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2399.825000 | -41.4 | 7.3 | -34.1 | PASS | | 2399.875000 | -41.7 | 7.6 | -34.1 | PASS | | 2399.025000 | -41.9 | 7.8 | -34.1 | PASS | | 2399.975000 | -42.0 | 7.9 | -34.1 | PASS | | 2398.975000 | -42.3 | 8.2 | -34.1 | PASS | | 2399.925000 | -42.4 | 8.3 | -34.1 | PASS | | 2399.775000 | -42.7 | 8.6 | -34.1 | PASS | | 2397.975000 | -42.9 | 8.8 | -34.1 | PASS | | 2398.025000 | -43.1 | 9.0 | -34.1 | PASS | | 2398.625000 | -43.1 | 9.0 | -34.1 | PASS | | 2399.275000 | -43.1 | 9.0 | -34.1 | PASS | | 2399.225000 | -43.2 | 9.1 | -34.1 | PASS | | 2399.425000 | -43.3 | 9.2 | -34.1 | PASS | | 2399.625000 | -43.3 | 9.2 | -34.1 | PASS | | 2399.675000 | -43.4 | 9.3 | -34.1 | PASS | Page: 64 of 69 802.11g Band Edge High ## **Inband Peak** | Frequency | Level | |-------------|-------| | (MHz) | (dBm) | | 2455,775000 | -4.5 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2494.775000 | -46.6 | 12.1 | -34.5 | PASS | | 2499.675000 | -46.6 | 12.1 | -34.5 | PASS | | 2494.675000 | -46.8 | 12.3 | -34.5 | PASS | | 2494.625000 | -46.8 | 12.3 | -34.5 | PASS | | 2494.725000 | -46.8 | 12.3 | -34.5 |
PASS | | 2499.625000 | -47.1 | 12.6 | -34.5 | PASS | | 2497.975000 | -47.1 | 12.6 | -34.5 | PASS | | 2490.225000 | -47.2 | 12.7 | -34.5 | PASS | | 2498.025000 | -47.2 | 12.7 | -34.5 | PASS | | 2487.775000 | -47.3 | 12.8 | -34.5 | PASS | | 2487.725000 | -47.3 | 12.8 | -34.5 | PASS | | 2499.725000 | -47.3 | 12.8 | -34.5 | PASS | | 2489.625000 | -47.4 | 12.9 | -34.5 | PASS | | 2495.175000 | -47.4 | 12.9 | -34.5 | PASS | | 2490.275000 | -47.4 | 12.9 | -34.5 | PASS | Page: 65 of 69 ### 802.11n20 Band Edge Low ### **Inband Peak** | Frequency | Level | |-------------|-------| | (MHz) | (dBm) | | 2419.525000 | -4.6 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2399.725000 | -42.5 | 8.0 | -34.6 | PASS | | 2399.675000 | -42.5 | 8.0 | -34.6 | PASS | | 2399.625000 | -43.0 | 8.4 | -34.6 | PASS | | 2399.575000 | -43.1 | 8.5 | -34.6 | PASS | | 2399.525000 | -43.3 | 8.7 | -34.6 | PASS | | 2399.475000 | -43.4 | 8.8 | -34.6 | PASS | | 2399.875000 | -43.5 | 8.9 | -34.6 | PASS | | 2399.775000 | -43.8 | 9.3 | -34.6 | PASS | | 2399.825000 | -44.0 | 9.4 | -34.6 | PASS | | 2399.925000 | -44.0 | 9.4 | -34.6 | PASS | | 2397.925000 | -44.0 | 9.5 | -34.6 | PASS | | 2397.975000 | -44.2 | 9.6 | -34.6 | PASS | | 2399.975000 | -44.2 | 9.7 | -34.6 | PASS | | 2396.675000 | -44.5 | 9.9 | -34.6 | PASS | | 2398.225000 | -44.6 | 10.0 | -34.6 | PASS | Page: 66 of 69 ### 802.11n20 Band Edge High ### **Inband Peak** | Frequency
(MHz) | Level | |--------------------|-------| | 2455 775000 | -5.1 | Remark: Limit = Inband peak - 30dB | Frequency
(MHz) | Level
(dBm) | Margin
(dB) | Limit
(dBm) | Result | |--------------------|----------------|----------------|----------------|--------| | 2489.225000 | -45.3 | 10.2 | -35.1 | PASS | | 2489.275000 | -45.7 | 10.5 | -35.1 | PASS | | 2489.175000 | -45.9 | 10.7 | -35.1 | PASS | | 2499.875000 | -46.7 | 11.6 | -35.1 | PASS | | 2497.025000 | -46.8 | 11.7 | -35.1 | PASS | | 2495.075000 | -46.9 | 11.8 | -35.1 | PASS | | 2496.975000 | -47.0 | 11.9 | -35.1 | PASS | | 2494.125000 | -47.1 | 11.9 | -35.1 | PASS | | 2486.225000 | -47.1 | 12.0 | -35.1 | PASS | | 2489.325000 | -47.1 | 12.0 | -35.1 | PASS | | 2495.025000 | -47.2 | 12.0 | -35.1 | PASS | | 2499.825000 | -47.2 | 12.1 | -35.1 | PASS | | 2494.175000 | -47.2 | 12.1 | -35.1 | PASS | | 2485.725000 | -47.3 | 12.1 | -35.1 | PASS | | 2496.025000 | -47.3 | 12.1 | -35.1 | PASS | Report No.: HKEM211000110803 Page: 67 of 69 ### Measurement | Setting | Instrument
Value | Target Value | |-----------------------|---------------------|----------------| | RBW | 100.000 kHz | <= 100.000 kHz | | VBW | 300.000 kHz | >= 300.000 kHz | | SweepPoints | 1670 | ~ 1670 | | Sweeptime | 1.670 ms | AUTO | | Reference Level | 10.000 dBm | 10.000 dBm | | Attenuation | 30.000 dB | AUTO | | Detector | MaxPeak | MaxPeak | | SweepCount | 100 | 100 | | Filter | 3 dB | 3 dB | | Trace Mode | Max Hold | Max Hold | | Sweeptype | Sweep | AUTO | | Preamp | off | off | | Stablemode | Trace | Trace | | Stablevalue | 0.50 dB | 0.50 dB | | Run | 19 / max. 150 | max. 150 | | Stable | 3/3 | 3 | | Max Stable Difference | 0.29 dB | 0.50 dB | Page: 68 of 69 ### 9.6 Conducted spurious emission (Only worst case is shown) 802.11b ### 802.11g Page: 69 of 69 #### 802.11n20 ### **Measurement Setting** | Setting | Instrument Value | Target Value | | | | |-----------------------|------------------|--------------|--|--|--| | RBW | 100.000 kHz | <= 100.000 | | | | | VBW | 300.000 kHz | >= 300.000 | | | | | SweepPoints | 238 | ~ 238 | | | | | Sweeptime | 23.700 ms | AUTO | | | | | Reference Level | -10.000 dBm | -30.000 dBm | | | | | Attenuation | 20.000 dB | AUTO | | | | | Detector | MaxPeak | MaxPeak | | | | | SweepCount | 3 | 3 | | | | | Filter | 3 dB | 3 dB | | | | | Trace Mode | Max Hold | Max Hold | | | | | Sweeptype | Sweep | AUTO | | | | | Preamp | off | off | | | | | Stablemode | Trace | Trace | | | | | Stablevalue | 0.50 dB | 0.50 dB | | | | | Run | 14 / max. 40 | max. 40 | | | | | Stable | 3/3 | 3 | | | | | Max Stable Difference | 0.00 dB | 0.50 dB | | | | Remark: Cable loss 0.8dB was considered and set in system configuration. - End of the Report -