

FCC SAR TEST REPORT

Report No: STS1503010H01

Issued for

Binatone Electronics International Ltd.

Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong.

Product Name:	Digital Video Baby Monitor (Parent Unit)
Brand Name:	Motorola
Model No.:	MBP867 PU
Series Model:	N/A
FCC ID:	VLJ-MBP867PU
	ANSI/IEEE Std. C95.1
Test Standard:	FCC 47 CFR Part 2 (2.1093)
	IEEE 1528: 2003
Max. SAR (1g):	-Body:0.698 W/kg
f this document must be done	in full. No single part of this document may be reproduced witho

ample.

Any reproduction of this document must be done in full. No single part of this document may be permission from STS, All Test Data Presented in this report is only applicable to presented Test

Shenzhen STS Test Services Co., Ltd. 1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Baoan District, Shenzhen, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name:	Binatone Electronics International Ltd.
Address:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong.
Manufacture's Name	Dongguan TaoSen Electronic Technology Co. Ltd.
Address:	No.7 Huanguoshan Road, Xinan Community, Changan Town, Dongguan City, Guangdong, China
Product description	
Product name:	Digital Video Baby Monitor (Parent Unit)
Trademark:	Motorola
Model and/or type reference :	MBP867 PU
Serial Model :	N/A
Standards	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2003

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	
Date (s) of performance of tests	Mar. 04,2015
Date of Issue	Mar. 04,2015
Test Result	Pass

Testing Engineer :	Allen Chen
_	(Allen Chen)
Technical Manager :	John . zon
	(John Zou)
Authorized Signatory :	Boney Juney

(Bovey Yang)

TABLE OF CONTENS

Page 3 of 42

1. General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Facility	5
2. Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
3.2.1 Probe 3.2.2 Phantom	8 9
3.2.3 Device Holder	9
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	11
5.1 Validation System	11
5.2 Validation Result	11
6. SAR Evaluation Procedures	12
7. EUT Test Position	13
7.1 Body-worn Position Conditions	13
8. Uncertainty	14
8.1 Measurement Uncertainty	14
8.2 System cheek Uncertainty	16
9. Conducted Power Measurement	18
10. Test Setup Photo	19
11. SAR Result Summary	24
12. Equipment List	25
Appendix A. System Validation Plots	26
Appendix B. SAR Test Plots	28
Appendix C. Probe Calibration And Dipole Calibration Report	42

Report No.: STS1503010H01

1.1 EUT Description

Equipment	Digital Video Baby Monitor (Parent Unit)
Brand Name	Motorola
Model No.	MBP867 PU
Serial Model	N/A
FCC ID	VLJ-MBP867PU
Model Difference	N/A
Hardware Version	NIL
Software Version	NIL
Frequency Range	2400-2483.5MHz
Transmit	16.00dBm
Power(MAX):	10.00dBm
Max. Reported	Body:
SAR(1g):	2.4GHz: 0.698W/kg
Antenna	Internal
Specification:	

Ambient conditions in the SAR laboratory:

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

1.3 Test Facility

Shenzhen STS Test Services Co., Ltd.

Add. : 1/F, Building 2, Zhuoke Science Park, Chongqing Road, Fuyong, Baoan District, Shenzhen, China FCC Registration No.: 842334;IC Registration No.: 12108A-1

2. Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v05r02	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r03	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 648474	Handset SAR

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. According to EN 50360 and 1999/519/EC the limit for General Population/Uncontrolled exposure should be applied for this device, it is 2.0 W/kg as averaged over any 10 gram of tissue.

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments**:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE

GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

3. SAR Measurement System

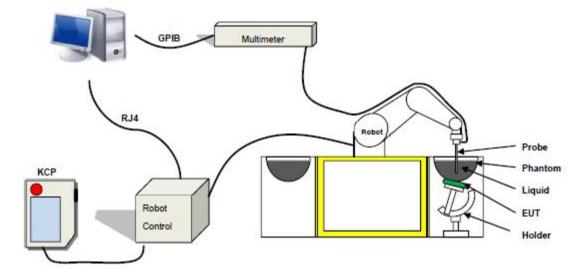
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

p is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System


SATIMO SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Shenzhen STS Test Services Co., Ltd.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 17/14 EP221 with following

specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter :5 mm
- Distance between probe tip and sensor center: 2.7mm
- Distance between sensor center and the inner phantom surface: 4 mm
- (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB

- Calibration range: 450MHz to 2600MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:less than 30°

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

Shenzhen STS Test Services Co., Ltd.

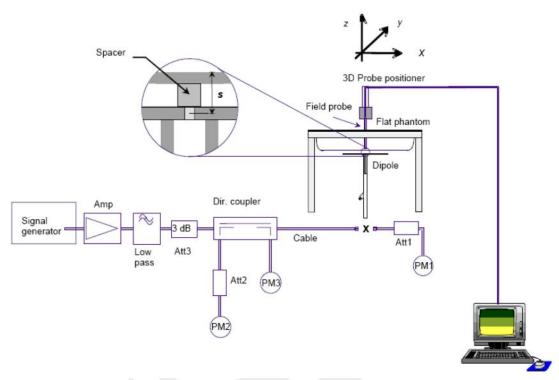
4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

LIQUID MEASUREMENT RESULTS

Date: Jan.31, 2015& Feb 12, 2015 **Ambient condition:** Temperature 22.0°C **Relative humidity:** 53.7% LIQUID MEASUREMENT RESULTS: Jan.31, 2015


Body Simula	Body Simulating Liquid Frequency [°C]		-	Measured	
Frequency			Parameters Target		Limited[%]
2402 MHz	21.6	Permitivity:	52.7	53.48	50.065-55.335
2402 11112	21.0	Conductivity:	1.95	1.86	1.8525-2.0475
2441 MHz	21.6	Permitivity:	52.7	53.10	50.065-55.335
		Conductivity:	1.95	1.89	1.8525-2.0475
2450 MHz	21.6	Permitivity:	52.7	52.94	50.065-55.335
2430 MITZ		Conductivity:	1.95	1.90	1.8525-2.0475
2479 MHz	21.6	Permitivity:	52.7	52.42	50.065-55.335
	21.0	Conductivity:	1.95	1.96	1.8525-2.0475

5.1 Validation System

Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

Ambient condition: Temperature 22.0°C Relative humidity: 53.7%

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/K g)	Limited[%]	Date
2450 Body	63.1	3.460	55.358	52.37	48.771-59.609	2015-03-04

Note: The tolerance limit of System validation ±10%.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

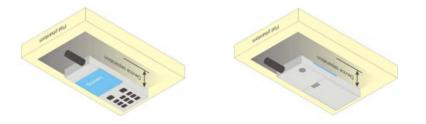
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.



7. EUT Test Position

This EUT was tested in Body back, Body front and 4 edges.

7.1 Body-worn Position Conditions

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm.

Shenzhen STS Test Services Co., Ltd.

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2003. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff	
Measu	Measurement System									
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8	
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8	
3	Hemispherical isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	8	
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8	
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8	
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8	
7	Readout electronics	0.5	Ν	1	1	1	0.50	0.50	8	
8	Response time	0	R	√3	1	1	0	0	8	
9	Integration time	1.4	R	√3	1	1	0.81	0.81	8	
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8	
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8	
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8	
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8	
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8	

Test sample related

Shenzhen STS Test Services Co., Ltd.

Page 15 of 42

Report No.: STS1503010H01

15	Device positioning	2.6	Ν	1	1	1	2.6	2.6	11
16	Device holder	3	Ν	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phant	om and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
19	Liquid conductivity (target)	2.5	Ζ	1	0.78	0.71	1.95	1.90	5
20	Liquid conductivity (meas)	4	Ζ	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.90	8
22	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Combined standard			RSS	U	$_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}}$	2	10.63%	10.54%	
Expar (P=95	nded uncertainty %)			$U = k U_c$,k=2	2		21.26%	21.08%	

Shenzhen STS Test Services Co., Ltd.

╡

Report No.: STS1503010H01

8.2 System cheek Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Measu	urement System								
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8
3	Hemispherical isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	8
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8
7	Modulation response	0	N	1	1	1	0	0	8
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	8
9	Response time	0	R	√3	1	1	0	0	8
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8
Dipole)								

Shenzhen STS Test Services Co., Ltd.

1	
Ş	-

Page 17 of 42

Report No.: STS1503010H01

			-			-		-	
16	Deviation of experimental source from numerical source	4	Ν	1	1	1	4.00	4.00	8
17	Input power and SAR drit measurement	5	R	√3	1	1	2.89	2.89	8
18	Dipole Axis to liquid Distance	2	R	√3	1	1			8
Phant	om and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
20	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	2.0	N	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	N	1	1	0.84	2.00	1.68	8
22	Liquid conductivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.90	5
23	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.90	8
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.90	5
26	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Comb	nined standard		RSS	U	$_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}}$	2	10.15%	10.05%	
Expar (P=95	nded uncertainty %)	$U = k U_c$, k=2 21.29% 21.10%							

Shenzhen STS Test Services Co., Ltd.

╡

9. Conducted Power Measurement

Test Result:

2.4GHz

Mode	Frequency (MHz)	PEAK Power (dBm)
	2402	18.826
2450MHz	2440	19.102
	2479	18.945

Shenzhen STS Test Services Co., Ltd.

Body Front side

Body Back side

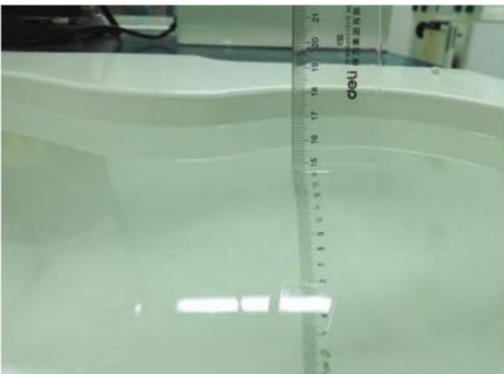
Body back with Headset

Horizontal near antenna

Page 21 of 42 Report No.: STS1503010H01

Horizontal away from antenna

Vertical near antenna



Vertical away from antenna

Shenzhen STS Test Services Co., Ltd.

Liquid depth (15 cm)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1503010H01

11. SAR Result Summary

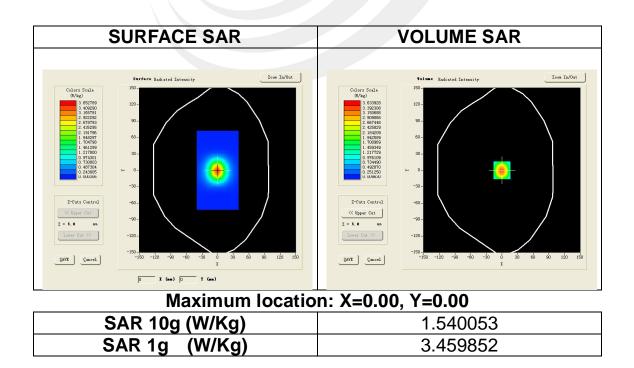
Band	Mode	Test Position	Channel	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
		Body back	Mid	0.312	-0.96	19.5	16.00	0.698	1
		Body front	Mid	0.138	0.34	19.5	16.00	0.309	2
		Horizontal (1)	Mid	0.305	-0.56	19.5	16.00	0.683	3
2.4G	DATA (body-worn)	Horizontal (2)	Mid	0.062	-0.27	19.5	16.00	0.139	4
		Vertical(1)	Mid	0.105	0.88	19.5	16.00	0.235	5
		Vertical(2)	Mid	0.026	0.79	19.5	16.00	0.058	6
		Body back with Ear.	Mid	0.264	-0.18	19.5	16.00	0.591	7

Note:

The test separation of all above table is 0mm.

12. Equipment List

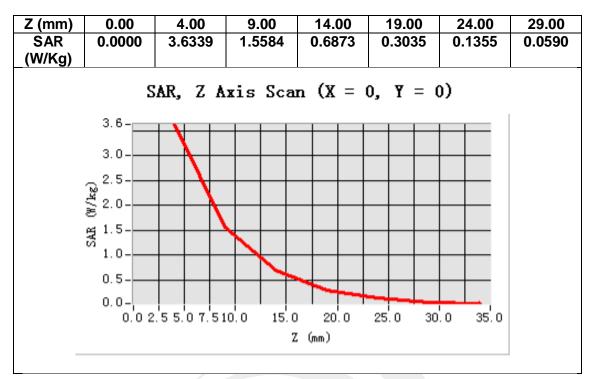
NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
3	2450MHzDipole	SATIMO	SID2450	SN 30/14 DIP2G450-335	2014.09.01	2015.08.31
4	E-Field Probe	SATIMO	SSE5	SN 17/14 EP221	2014.09.01	2015.08.31
5	Antenna	SATIMO	ANTA3	SN 07/13 ZNTA52	2014.09.01	2015.08.31
6	Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2014.09.01	2015.08.31
7	Phantom1	SATIMO	SAM	SN 32/14 SAM115	2014.09.01	2015.08.31
8	Phantom2	SATIMO	SAM	SN 32/14 SAM116	2014.09.01	2015.08.31
9	SAR TEST BENCH	SATIMO	PPNN POSITIONNIN G SYSTEM	SN 32/14 MSH97	2014.09.01	2015.08.31
10	SAR TEST BENCH	SATIMO	LAPTOP POSITIONNIN G SYSTEM	SN 32/14 LSH29	2014.09.01	2015.08.31
11	Dielectric Probe Kit	SATIMO	SCLMP	SN 32/14 OCPG52	2014.09.01	2015.08.31
12	Multi Meter	KeiBBNNey	Multi Meter 2000	4050073	2014.11.20	2015.11.19
13	Signal Generator	R&S	SMF100A	104260	2014.10.27	2015.10.26
14	Power Meter	R&S	NRP	100510	2014.10.25	2015.10.24
15	Power Sensor	R&S	NRP-Z11	101919	2014.10.25	2015.10.24
16	Network Analyzer	R&S	5071C	EMY46103472	2014.12.12	2015.12.11

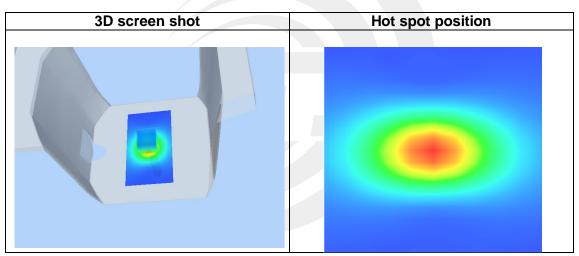

Appendix A. System Validation Plots

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2015.03.04 Measurement duration: 14 minutes 23 seconds

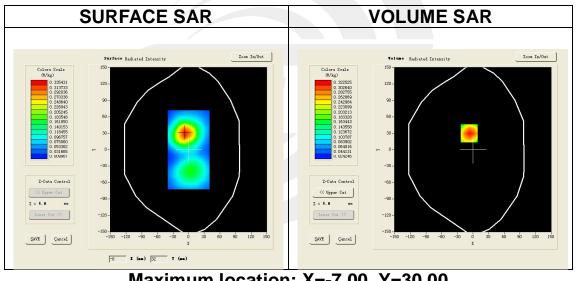
Experimental conditions.


Device Position	Validation plane		
Band	2450 MHz		
Channels	Mid		
Signal	Crest factor: 1.0		
Frequency (MHz)	2450		
Relative permittivity (real part)	53.10		
Relative permittivity	12.930000		
Conductivity (S/m)	1.89		
Power drift (%)	-1.200000		
Ambient Temperature	22.0°C		
Liquid Temperature	21.6		
Probe	SN 17/14 EP221		
ConvF	4.25		
Crest factor:	1:1		



Page 27 of 42

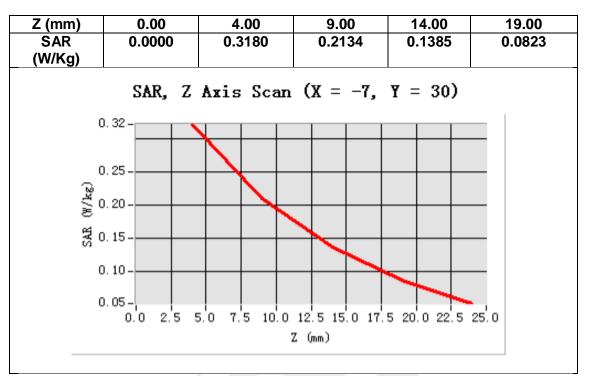
Report No.: STS1503010H01



Shenzhen STS Test Services Co., Ltd.

Appendix B. SAR Test Plots Plot 1: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT); EUT Model: MBP867 PU

Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back side
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	-0.96

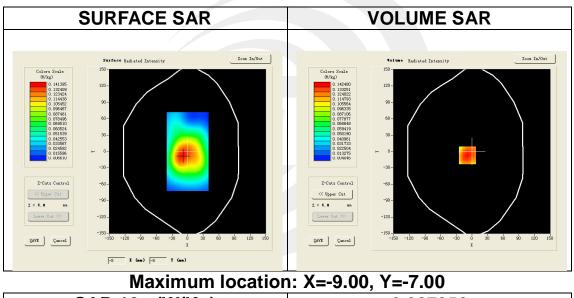


Maximum location. A=7.00, f=30.00		
SAR 10g (W/Kg)	0.203680	
SAR 1g (W/Kg)	0.312441	

Page 29 of 42

Report No.: STS1503010H01

3D screen shot	Hot spot position


Shenzhen STS Test Services Co., Ltd.

Plot 2: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU

Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body Front side
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	0.34

SAR 10g (W/Kg)	0.087359
SAR 1g (W/Kg)	0.138042

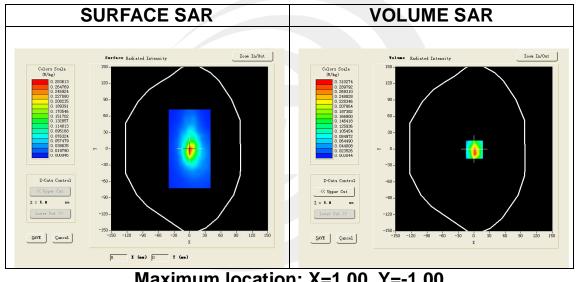
Page 31 of 42

Report No.: STS1503010H01

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00	
SAR	0.0000	0.1435	0.0890	0.0563	0.0346	0.0216	0.0129	
(W/Kg)								
	SAR, Z Axis Scan (X = -9, Y = -7)							
	0.14-							
	0.12-	$+ \mathbf{N}$						
	0.10	$+$ λ						
	0.10- 24 6.08-		\mathbf{X}					
	쮫 0.06	+ + +	+N					
	0.04-	+ $+$ $+$	+					
	0.02-							
	0.01-	2.5 5.0 7.5	10.0 15.1	0 20.0	25.0 30	.0 35.0		
	0.02.55.07.510.0 15.0 20.0 25.0 30.0 35.0 Z (mm)							

3D screen shot	Hot spot position

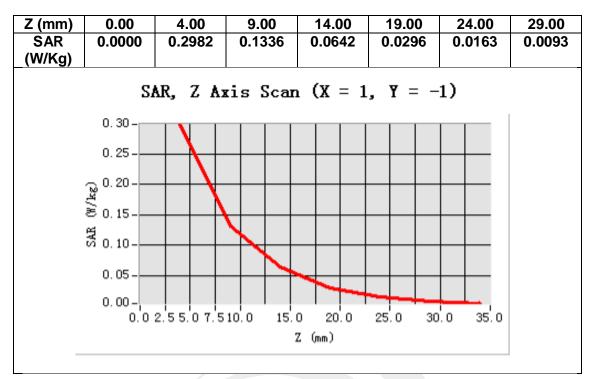
╡


Shenzhen STS Test Services Co., Ltd.

Plot 3: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU

Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Horizontal (1)
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	-0.56

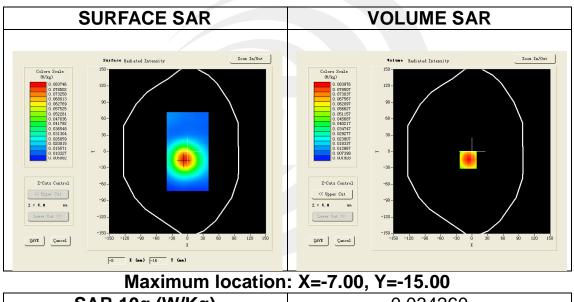


SAR 10g (W/Kg)	0.126082	
SAR 1g (W/Kg)	0.305275	

Page 33 of 42

Report No.: STS1503010H01

3D screen shot	Hot spot position


Shenzhen STS Test Services Co., Ltd.

Plot 4: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU

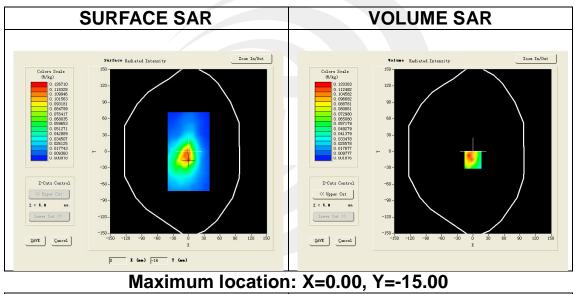
Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Horizontal (2)
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	-0.27

SAR 10g (W/Kg)	0.034260
SAR 1g (W/Kg)	0.062403

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00	
SAR (W/Kg)	0.0000	0.0630	0.0546	0.0312	0.0164	0.0109	0.0060	
	SAR, Z Axis Scan (X = -7, Y = -15)							
	0.08-							
	0.07-							
	0.06-	$+ + \mathbf{\lambda}$						
	(² 0.05							
	e							
	0.02-							
	0.00- 0.0	2.55.07.5	10.0 15.	0 20.0	25.0 30	.0 35.0		
_				Z (mm)				

3D screen shot	Hot spot position

╡


Shenzhen STS Test Services Co., Ltd.

Plot 5: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU

Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Vertical(1)
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	0.88

SAR 10g (W/Kg)	0.050457
SAR 1g (W/Kg)	0.105231

Page 37 of 42

Report No.: STS1503010H01

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1056	0.0401	0.0289	0.0154	0.0123	0.0012
(W/Kg)							_
	SA	R, Z Ax	is Scan	(X = 0,	Y = −1	15)	
	0.11-						
	0.10-	+ + +	+ $+$ $+$				
	⊕ ^{0.08} -	++++++					
	2 2 2 2 2 3 0.06 -						
	g 0.04 -						
	0.02-						
	0.00-						
	0.0	2.55.07.5			25.0 30	.0 35.0	
				Z (mm)			

3D screen shot	Hot spot position		

╡

Shenzhen STS Test Services Co., Ltd.

 1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Bao'an District, Shenzhen, China


 Tel: 0755-36886288
 Fax: 0755-36886277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Plot 6: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU

Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Vertical (2)
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	0.79

Page 39 of 42

Report No.: STS1503010H01

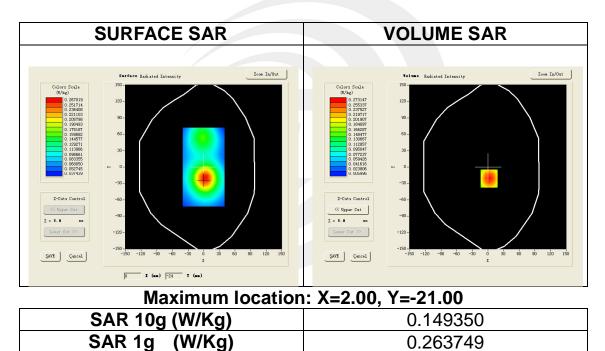
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0252	0.0183	0.0090	0.0063	0.0059	0.0029
(W/Kg)							
	SA	R, Z Ax	is Scan	(X = 2,	, 	13)	
	0.024 -						
	0. 020	N					
	(⊉ 0.015- €						
	∰ 0.010						
	0.005						
	0.002-					┝╍╍┥╍╴╷	
	0.0	2.5 5.0 7.5			25.0 30	i. 0 35. 0	
				Z (mm)			

3D screen shot	Hot spot position		

╡

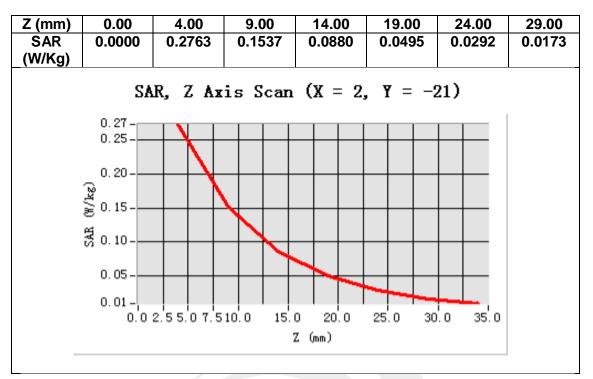
Shenzhen STS Test Services Co., Ltd.

 1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Bao'an District, Shenzhen, China


 Tel: 0755-36886288
 Fax: 0755-36886277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Plot 7: DUT: DIGITAL VIDEO BABY MONITOR (PARENT UNIT);

EUT Model: MBP867 PU


Test Data	2015-03-04
Probe	SN 17/14 EP221
ConvF	4.25
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,
	Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back with Ear.
Band	2.4G
Channels	Mid
Signal	Crest factor: 1.0
Frequency (MHz)	2440
Relative permittivity (real part)	52.94
Conductivity (S/m)	1.90
Variation (%)	-0.18

Page 41 of 42

Report No.: STS1503010H01

3D screen shot	Hot spot position		

Shenzhen STS Test Services Co., Ltd.

1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Bao'an District, Shenzhen, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.

1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Bao'an District, Shenzhen,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.1.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN,CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 17/14 EP221

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JS
Checked by :	Jérôme LUC	Product Manager	9/19/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	him nethowski

Distribution : Shenzhen STS Test Services Co., Ltd.		Customer Name
	Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
А	9/19/2014	Initial release

Page: 2/9

TABLE OF CONTENTS

1	Devi	evice Under Test4					
2	Prod	Product Description					
	2.1	General Information	4				
3	Meas	surement Method					
	3.1	Linearity	4				
	3.2	Sensitivity	5				
	3.3	Lower Detection Limit	5				
	3.4	Isotropy	5				
	3.5	Boundary Effect	5				
4	Meas	surement Uncertainty					
5	Calib	oration Measurement Results					
	5.1	Sensitivity in air	6				
	5.2	Linearity	7				
	5.3	Sensitivity in liquid	7				
	5.4	Isotropy	8				
6	List	of Equipment9					

Page: 3/9

1 **DEVICE UNDER TEST**

Device Under Test		
Device Type COMOSAR DOSIMETRIC E FIELD PR		
Manufacturer	Satimo	
Model	SSE5	
Serial Number	SN 17/14 EP221	
Product Condition (new / used)	New	
Frequency Range of Probe	0.4 GHz- 6 GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ	
	Dipole 2: R2=0.167 MΩ	
	Dipole 3: R3=0.178 MΩ	

A yearly calibration interval is recommended.

2 **PRODUCT DESCRIPTION**

2.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 <u>ISOTROPY</u>

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

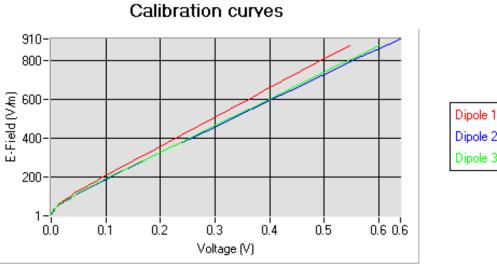
Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 **CALIBRATION MEASUREMENT RESULTS**

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

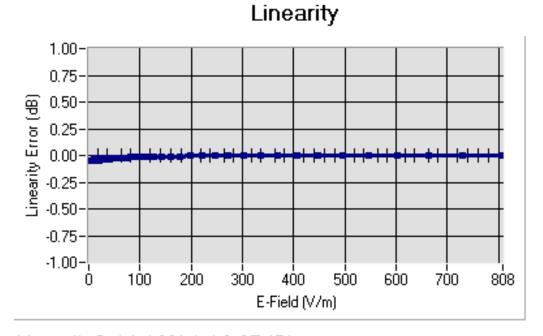

5.1 SENSITIVITY IN AIR

Normx dipole $1 (\mu V/(V/m)^2)$		
4.81	6.15	6.02

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	100	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



Dipole 2 Dipole 3

Page: 6/9

5.2 <u>LINEARITY</u>

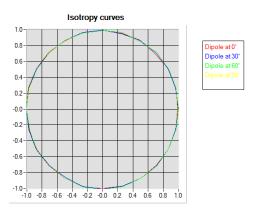
Linearity:0+/-1.16% (+/-0.05dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	(MHz +/-			
	100MHz)			
HL450	450	43.90	0.87	4.84
BL450	450	58.63	0.98	4.98
HL750	750	42.06	0.89	4.53
BL750	750	56.57	0.99	4.70
HL850	835	42.81	0.89	4.83
BL850	835	53.46	0.96	5.02
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.89
HL1800	1800	41.31	1.38	4.25
BL1800	1800	53.27	1.51	4.34
HL1900	1900	41.09	1.42	4.71
BL1900	1900	54.20	1.54	4.85
HL2000	2000	39.72	1.43	4.27
BL2000	2000	53.91	1.53	4.44
HL2450	2450	39.05	1.77	4.11
BL2450	2450	52.97	1.93	4.25
HL2600	2600	38.35	1.92	4.20
BL2600	2600	51.81	2.19	4.32

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

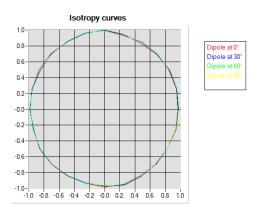


5.4 <u>ISOTROPY</u>

HL900 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.04 dB 0.07 dB



HL1800 MHz

- Axial isotropy:

- Hemispherical isotropy:

Page: 8/9

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

SAR Reference Dipole Calibration Report

Ref : ACR.262.5.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN,CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 30/14 DIP0G835-332

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JES
Checked by :	Jérôme LUC	Product Manager	9/19/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	Mim Muthowski

	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
А	9/19/2014	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	oration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 **DEVICE UNDER TEST**

Device Under Test			
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE		
Manufacturer	Satimo		
Model	SID835		
Serial Number	SN 30/14 DIP0G835-332		
Product Condition (new / used)	New		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

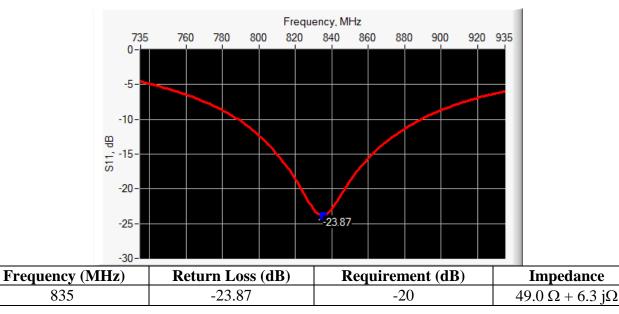
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page:	5/11
I uge.	5/11



6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u>

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS

Page: 6/11

900	149.0 ±1 %.	83.3 ±1 %.	3.6 ±1 %.
1450	89.1 ±1 %.	51.7 ±1 %.	3.6 ±1 %.
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.
1750	75.2 ±1 %.	42.9 ±1 %.	3.6 ±1 %.
1800	72.0 ±1 %.	41.7 ±1 %.	3.6 ±1 %.
1900	68.0 ±1 %.	39.5 ±1 %.	3.6 ±1 %.
1950	66.3 ±1 %.	38.5 ±1 %.	3.6 ±1 %.
2000	64.5 ±1 %.	37.5 ±1 %.	3.6 ±1 %.
2100	61.0 ±1 %.	35.7 ±1 %.	3.6 ±1 %.
2300	55.5 ±1 %.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	3.6 ±1 %.
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %.
3000	41.5 ±1 %.	25.0 ±1 %.	3.6 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.	3.6 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ϵ_r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

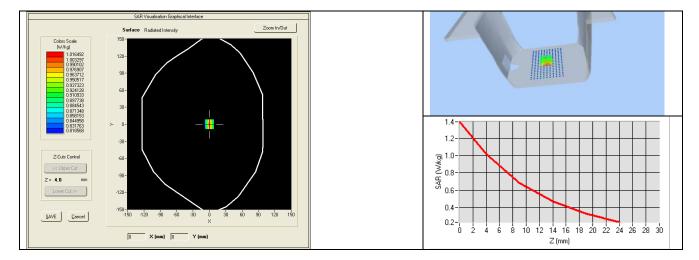
7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.63 (0.96)	6.22	6.15 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

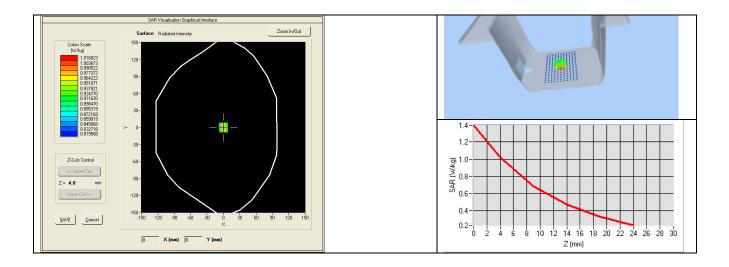
Page: 8/11

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r ')		Conductivi	i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11



5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	9.93 (0.99)	6.35 (0.63)	

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
EquipmentManufacturer /DescriptionModel		Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

SAR Reference Dipole Calibration Report

Ref: ACR.262.8.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN,CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 30/14 DIP1G900-333

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JS
Checked by :	Jérôme LUC	Product Manager	9/19/2014	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	thim Mitchourchi

	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
А	9/19/2014	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	oration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 **DEVICE UNDER TEST**

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID1900	
Serial Number	SN 30/14 DIP1G900-333	
Product Condition (new / used) New		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

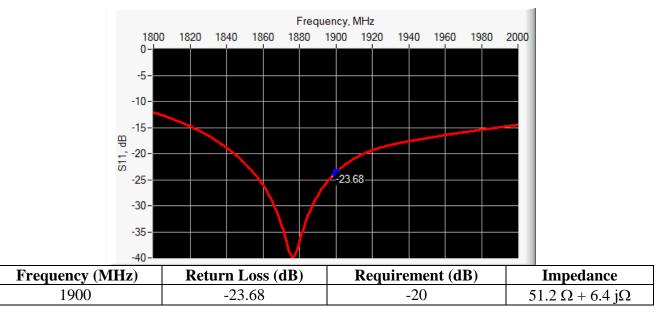
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

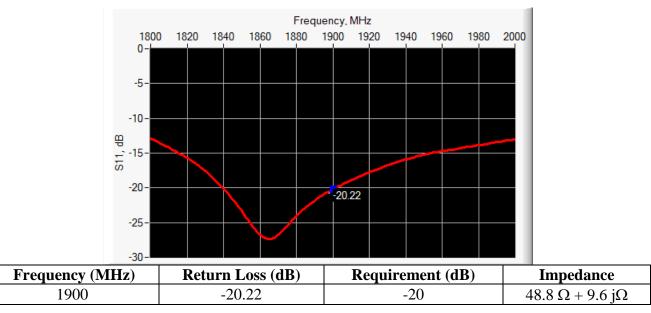
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 3	5/11
---------	------



6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	m	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

	· · ·				- I I	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative per	Relative permittivity (ϵ_r')		i ty (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

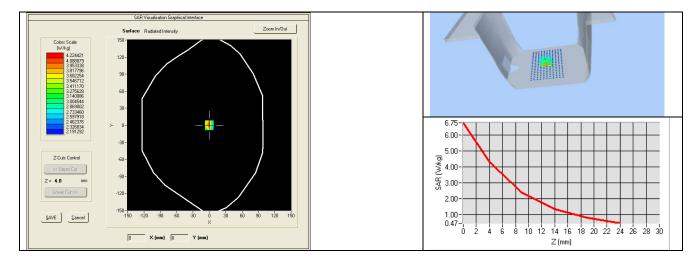
7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.1 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.84 (3.98)	20.5	20.20 (2.02)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

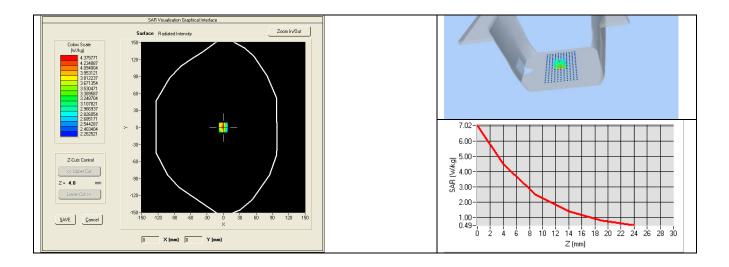
Page: 8/11

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ϵ_r ')		i ty (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11



5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.2 sigma : 1.54
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	43.33 (4.33)	21.59 (2.16)

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet										
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date						
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.						
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.						
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016						
Calipers	Carrera	CALIPER-01	12/2013	12/2016						
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014						
Multimeter	Keithley 2000	1188656	12/2013	12/2016						
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016						
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.						
Power Meter	HP E4418A	US38261498	12/2013	12/2016						
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016						
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.						
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015						

Page: 11/11

SAR Reference Dipole Calibration Report

Ref : ACR.262.10.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN,CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 30/14 DIP2G450-335

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name Function		Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JS
Checked by :	Jérôme LUC	Product Manager	9/19/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	Mim Muthowski

	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
А	9/19/2014	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test4	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	pration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valie	lation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 **DEVICE UNDER TEST**

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID2450			
Serial Number	SN 30/14 DIP2G450-335			
Product Condition (new / used) New				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss			
400-6000MHz	0.1 dB			

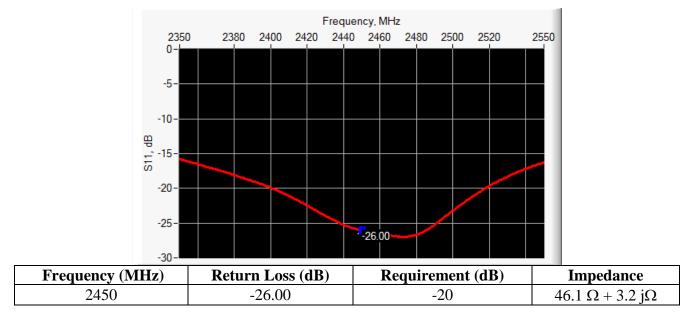
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

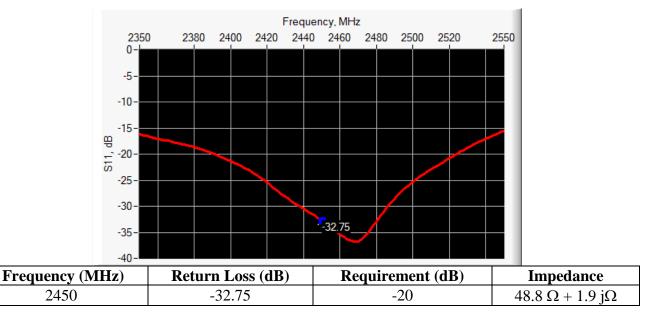
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty		
1 g	20.3 %		
10 g	20.1 %		

Page: 3	5/11
---------	------



6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u>

6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

					_	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative per	Relative permittivity (ϵ_r ')		i ty (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

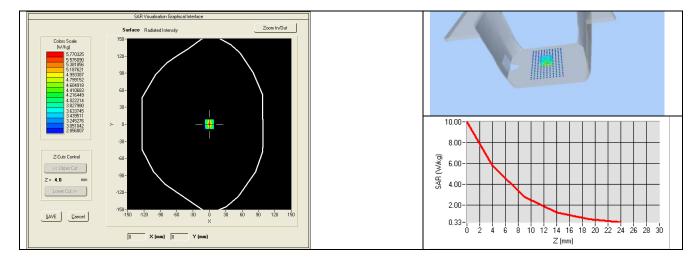
7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 39.0 sigma : 1.77
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

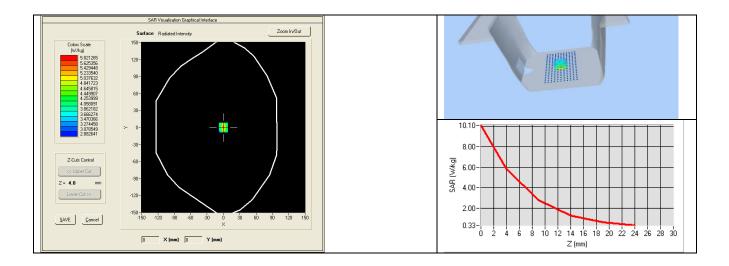
Page: 8/11

2450	52.4	54.70 (5.47)	24	24.11 (2.41)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ϵ_r ')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11



5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.0 sigma : 1.93
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	55.65 (5.57)	24.56 (2.46)	

Page: 10/11

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

BODY LIQUID 2450 MHZ CALIBRATION REPORT

Prepared By:	Jérôme Luc, SATIMO
Project Description:	SAR TEST BENCH
Prepared For (End User):	Shenzhen STS Test Services Co., Ltd.

This document is issued by SATIMO, in confidence and is not to be reproduced in whole or in part without the prior written permission. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or in part without the prior written permission of SATIMO.

COMOSAR BODY Liquid 2450 MHz Calibration Report

 Ref: CR.262.19.14.SATU.A

 Page: 2/4
 Issue: A
 Date:

Date: 9/19/2014

BODY LIQUID 2450 MHz CALIBRATION REPORT

DATE: 9/19/2014

OBJECT: BODY LIQUID 2450 MHz

MANUFACTURER: SATIMO

SERIAL NUMBER: SN 32/14 BLJ488

CUSTOMER: Shenzhen STS Test Services Co., Ltd.

CONTRACT: -

DATE OF CALIBRATION: 09/01/2014

WARRANTY:

This Calibration certificate may not be reproduced other than in full. Calibration certificates without signature and seal are not valid. This documentation contains property information which is protected by copyright. All right are reserved. No part of this document may be photocopied, reproduced without the prior written agreement of SATIMO. SATIMO shall not be liable for errors contained herein or for incidental or consequential in connection with the furnishing, performance or use of this material. Warranty doesn't apply to Normal wear, Normal tear, Improper use, Improper maintain, Improper installation.

SAR TEAM MANAGER

COMOSAR BODY Liquid 2450 MHz Calibration Report

Ref: CR.262.19.14.SATU.A

Page: 3/4 Issue: A

Date: 9/19/2014

PRODUCT DESCRIPTION

Components :

De-ionised water Sodium chloride Diethylen Glycol Butyl Ether

CALIBRATION TEST EQUIPMENT

ТҮРЕ	IDENTIFICATION	DATE OF CALIBRATION	
Vector Network Analyzer	Rhode & Schwarz ZVA (SN100132)	02/2016	
Dielectric probe kit	SATIMO OCP (SN: SN 35/10 OCPG37)	09/2014	

FCC RECOMMENDED REFERENCE VALUES

Frequency (MHz)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)	
150	61.9	0.8	
300	58.2	0.92	
450	56.7	0.94	
835	55.2	0.97	
900	55	1.05	
915	55	1.06	
1450	54	1.3	
1610	53.8	1.4	
1800-2000	53.3	1.52	
2450	52.7	1.95	
3000	52	2.73	
5800	48.2	6	

COMOSAR BODY Liquid 2450 MHz Calibration Report

Ref: CR.262.19.14.SATU.A

Page: 4/4 Issue: A

Date: 9/19/2014

DIELECTRIC PARAMETERS MEASURED

Setup Calibrate Measure							
Frequency (MHz)	Epsilon '	Epsilon "	Sigma (S/m)	FCC Recommendations +			
2300.00	51.57	14.12	1.80	Epsilon': -2.51 % Epsilon'': -0.17 %			
2325.00	51.47	14.20	1.83	Epsilon': -2.64 % Epsilon'': 0.21 %			
2350.00	51.43	14.18	1.85	Epsilon': -2.66 % Epsilon'': -0.19 %			
2375.00	51.36	14.26	1.88	Epsilon': -2.73 % Epsilon'': 0.18 %			
2400.00	51.23	14.31	1.91	Epsilon': -2.92 % Epsilon'': 0.29 %			
2425.00	51.06	14.35	1.93	Epsilon': -3.18 % Epsilon'': 0.38 %			
2450.00	51.17	14.35	1.95	Epsilon': -2.90 % Epsilon'': 0.16 %			
2475.00	51.11	14.42	1.98	Epsilon': -2.95 % Epsilon'': -0.12 %			
2500.00	51.05	14.47	2.01	Epsilon': -3.01 % Epsilon'': -0.58 %			
2525.00	50.98	14.54	2.04	Epsilon': -3.08 % Epsilon'': -0.85 %			
2550.00	51.07	14.67	2.08	Epsilon': -2.86 % Epsilon'': -0.62 %			
2575.00	50.93	14.69	2.10	Epsilon": -3.07 % Epsilon": -1.25 %			
2600.00	50.77	14.70	2.12	Epsilon": -3.31 % Epsilon": -1.79 %			
2625.00	50.74	14.84	2.16	Epsilon": -3.30 % Epsilon": -1.57 %			
2650.00	50.66	14.83	2.18	Epsilon": -3.40 % Epsilon": -2.27 %			
2675.00	50.55	14.79	2.20	Epsilon": -3.55 % Epsilon": -3.12 %			
2700.00	50.49	14.86	2.23	Epsilon': -3.62 % Epsilon'': -3.25 %			

Freq (MHz)	Parameters	Liquid Temp (°C)	Target Value	Measured Values	Deviation (%)	Limits (%)
2450	Permittivity	21.0	52.7	51.2	-2.9	± 5
	Conductivity (S/m)	21.0	1.95	1.95	+0.0	± 5