

FCC/IC - TEST REPORT

Report Number	68.950.16.624.02 Date of Issue: May 22, 2017				
Model	MBP49BU				
Product Type	Digital Video Baby monitor				
Applicant	Binatone Electronics International Limited				
Address	: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong				
Manufacturer	: Binatone Electronics International Limited				
Address	: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong				
Test Result	Positive Degative				
Total pages including Appendices	36				

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Та	ble of Contents
2	De	tails about the Test Laboratory
3	De	scription of the Equipment Under Test4
4	Su	mmary of Test Standards
5	Su	mmary of Test Results
6	Ge	neral Remarks7
7	Те	st Setups
8	Sy	stems test configuration
9	Те	chnical Requirement
ç	9.1	Conducted Emission
ç	9.2	Conducted peak output power13
ç	9.3	20 dB bandwidth and 99% bandwidth15
ç	9.4	Carrier Frequency Separation
ç	9.5	Number of hopping frequencies
ç	9.6	Dwell Time
ç	9.7	Spurious RF conducted emissions24
ç	9.8	Band edge testing
ç	9.9	Spurious radiated emissions for transmitter
10	Те	st Equipment List
11	Sy	stem Measurement Uncertainty

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China
	Shenzhen City, 518052,

FCC Registration No.: 502708

IC Registration No: 10320A-1

Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299

3 Description of the Equipment Under Test

Product:	Digital Video Baby monitor
Model no.:	MBP49BU
Brand Name:	motorola
FCC ID:	VLJ-MBP49BU
IC ID:	4522A-MBP49BU
Options and accessories:	NIL
Rating:	5VDC, 1A Powered by external power supply Adapter Model: S006AKU0500100 Adaptor Input: 100-240VAC, 50/60Hz; 200mA Adaptor Output: 5.0VDC, 1000mA
RF Transmission Frequency:	2402-2479MHz
No. of Operated Channel:	23
Modulation:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain:	0dBi
Description of the EUT:	The Equipment Under Test (EUT) is a baby monitor operated at 2.4GHz

Channel List:

CH1=2402MHz	CH2=2404MHz	CH3=2406MHz
CH4=2408MHz	CH5=2410MHz	CH6=2415MHz
CH7=2420MHz	CH8=2425MHz	CH9=2430MHz
CH10=2435MHz	CH11=2440MHz	CH12=2445MHz
CH13=2450MHz	CH14=2455MHz	CH15=2460MHz
CH16=2465MHz	CH17=2467MHz	CH18=2469MHz
CH19=2471MHz	CH20=2473MHz	CH21=2475MHz
CH22=2477MHz	CH23=2479MHz	

Remark: The product will only use 22 Channels (from Channel 1 to Channel 22) under normal operating condition. The last one Channel (Channel 23) is only used in matching mode.

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart CPART 15 - RADIO FREQUENCY DEVICES10-1-2016 EditionSubpart C - Intentional Radiators			
RSS-Gen Issue 4 November 2014 General Requirements for the Certification of Radio Apparatus			
RSS-247 Issue 2 May 2017	RSS-247 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices		

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and C63.10 (2014).

5 Summary of Test Results

	Technical Requirements						
FCC Part 15 Sub	part C						
Test Condition			Pages	Test Site	Test Result		
§15.207	RSS-GEN A8.8	Conducted emission AC power port	10	Site 1	Pass		
§15.247 (b) (1)	RSS-247 5.4(b)	Conducted peak output power	13	Site 1	Pass		
§15.247(a)(1)	RSS-247 5.1(a)	20dB bandwidth&99% bandwidth	15	Site 1	Pass		
§15.247(a)(1) RSS-247 5.1(b) Carrier frequency separation		18	Site 1	Pass			
§15.247(a)(1)(iii) RSS-247 5.1(d) Number of hopping frequencies		20	Site 1	Pass			
§15.247(a)(1)(iii)	(iii) RSS-247 5.1(d) Dwell Time		22	Site 1	Pass		
§15.247(a)(2) RSS-247 5.2 (a) 6dB bandwidth		6dB bandwidth			N/A		
§15.247(e)	RSS-247 5.2 (b)	Power spectral density			N/A		
		Spurious RF conducted emissions	26	Site 1	Pass		
§15.247(d)	§15.247(d) RSS-247 5.5 Band edge		30	Site 1	Pass		
§15.247(d) & §15.209	RSS-247 5.5 & RSSGEN 6.13	Spurious radiated emissions for transmitter	35	Site 1	Pass		
§15.203	RSSGEN 8.3	Antenna requirement	See note 2		Pass		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integral antenna, which gain is 0dBi. In accordance to §15.203 and § RSSGEN 8.3, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is update base on report 68.950.16.624.01, For MBP49 BU update it Change the PCB and bottom plastic, but he PCB & plastic material are totally same as before, and the RF module including it's antenna gain, output power, hardware and software is totally same as before, so only Spurious radiated emissions for transmitter update in this report, and this report is intended for FCC ID: VLJ-MBP49BU and IC: 4522A-MBP49BU complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-Gen and RSS-247.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:	January 21, 2017
Testing Start Date:	January 21, 2017

Testing End Date: May 18, 2017

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Reviewed by:

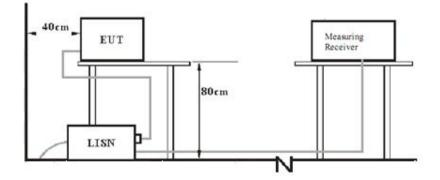
Johnshi

John Zhi EMC Project Manager

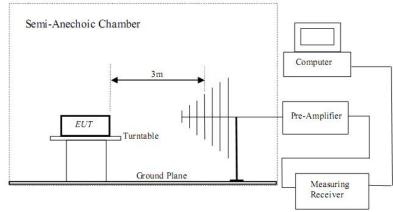
Prepared by:

Leon shart

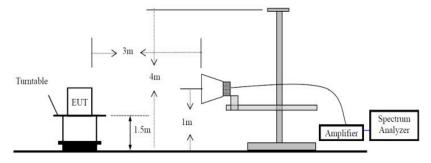
Leon Zhang EMC Project Engineer


EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

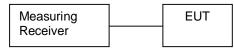
Page 7 of 36


7 Test Setups

7.1 AC Power Line Conducted Emission test setups



7.2 Radiated test setups


Below 1GHz:

Above 1GHz:

7.3 Conducted RF test setups

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION MANUFACTURER		MODEL NO.(SHIELD)	S/N(LENGTH)	
Notebook	Notebook Lenovo			

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

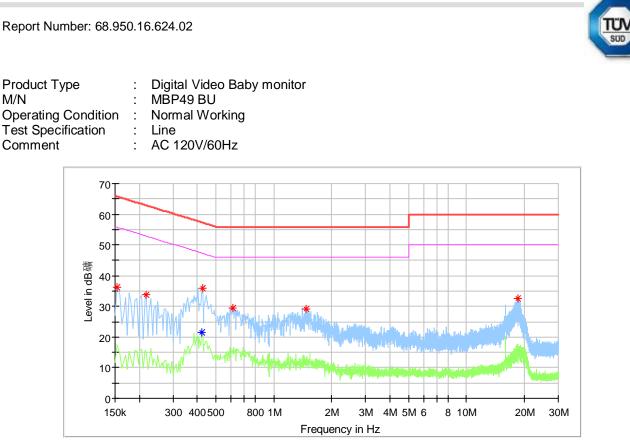
Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

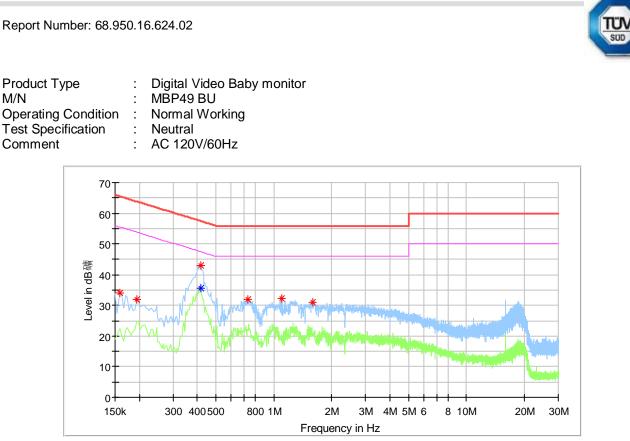
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line


Limit

According to §15.207 & RSS-GEN A8.8, conducted emissions limit as below:

	Frequency	QP Limit	AV Limit
	MHz	dBµV	dBµV
	0.150-0.500	66-56*	56-46*
	0.500-5	56	46
	5-30	60	50
P		1 11 01 0	


Decreasing linearly with logarithm of the frequency

M/N

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.154000	36.08		65.78	29.70	L1	9.7
0.218000	33.88		62.89	29.01	L1	9.7
0.422000		21.53	47.41	25.87	L1	9.7
0.426000	36.00		57.33	21.33	L1	9.7
0.614000	29.59		56.00	26.41	L1	9.7
1.466000	29.27		56.00	26.73	L1	9.7
18.558000	32.47		60.00	27.53	L1	10.1

M/N

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.158000	34.09		65.57	31.48	N	9.6
0.194000	31.86		63.86	32.01	N	9.6
0.418000		35.66	47.49	11.83	N	9.7
0.418000	42.88		57.49	14.61	N	9.7
0.730000	32.02		56.00	23.98	N	9.7
1.102000	32.12		56.00	23.88	N	9.7
1.586000	31.16		56.00	24.84	N	9.7

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) & RSS-247 5.4(b), conducted peak output power limit as below:

Frequency	Range	Limit	Limit
MHz		W	dBm
2400-248	33.5	≤1	≤30

Conducted peak output power

GFSK modul	ation Test Result	
_	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 2402MHz	15.23	Pass
Middle channel 2440MHz	16.03	Pass
High channel 2477MHz	16.08	Pass

Remark: The RF module of MBP49BU and MBP50BU are same, only the peripheral circuit is different. And the conducted peak output power of MBP49BU is less than MBP50BU. So we use the MBP50BU's conductive date directly. Radiated Emission test is necessary and indispensable for MBP49BU.

9.3 20 dB bandwidth and 99% bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit [kHz]

N/A

20 dB bandwidth and 99% bandwidth

GFSK Modulation test result

equency MHz	20 dB Bandwidth kHz	e 99% bandwidth kHz	Limit kHz	Result
2402	2735.0	2503.6		Pass
2440	2706.0	2547.0		Pass
2477	2706.0	2604.9		Pass
Spectrun	<u> </u>			
	31.00 dBm Offset 1.00 dB (45 dB SWT 126.3 us (
Att Pk Max	45 dB SWT 126.3 μs (VBW 100 kHz Mode Auto FFT		
		D1[1]		0.47 dB 2.7350 MHz
20 dBm		Occ Bw M1[1]		3617945 MHz -15.04 dBm
10 dBm			2.	4005960 GHz
0.40	D1 4.700 dBm	mon		
0 dBm	Ţ	1		
-10 dBm				
-20 dBm	D2 -15.300 dBm			
-20 UBII	mm	vi) *	5	
-30 dBm			The second	
-40 dBm	MMM		Jampas	
m	mut		hand	mound
-50 dBm				minun
-60 dBm				
00 0011				
CF 2.402 0	GHz	691 pts	Sp	an 10.0 MHz
)[Measuring	••••	18.10.2016 16:33:33
Date: 18.OCT.	2016 16:33:33			
Spectrun				
-	31.00 dBm Offset 1.00 dB (RBW 30 kHz		(*)

⊖1Pk Max 0.62 dB 2.7060 MHz 2.547033285 MHz -14.37 dBm 2.4386110 GHz D1[1] Occ Bw M1[1] 20 dBm 10 dBm-D1 5.590 dB Manne 0 dBm प्रव -10 dBm -D2 -14.410 dBr im -20 dBm -30 dBr M ٨r -40 dBm you -50 dB -60 dBm 691 pts Span 10.0 MHz CF 2.44 GHz 18.10.2016 16:35:35 Measuring...

Date: 18.OCT.2016 16:35:36

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

20 dB bandwidth and 99% bandwidth

Date: 18.OCT.2016 16:37:36

9.4 Carrier Frequency Separation

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

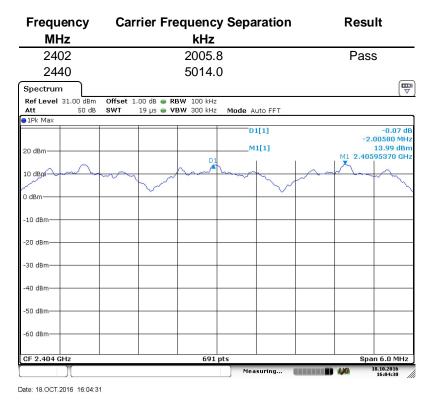
Limit

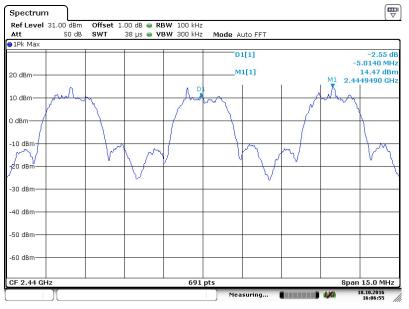
Limit kHz

≥25KHz or 2/3 of the 20 dB bandwidth which is greater

GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
2402	1823.3
2440	1804.0
2477	1804.0





Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

GFSK Modulation test result

Date: 18.OCT.2016 16:06:56

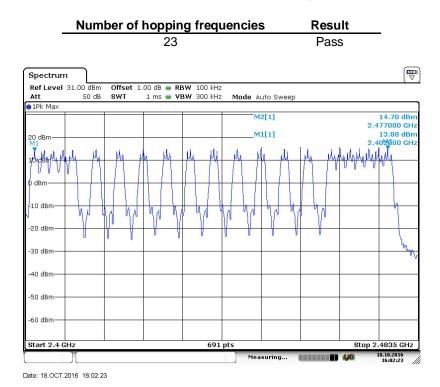
EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit


Limit number ≥ 15

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), Here GFSK modulation mode was used to show compliance.

Remark: The product will only use 22 Channels (from Channel 1 to Channel 22) under normal operating condition. The last one Channel (Channel 23) is only used in matching mode.

9.6 Dwell Time

Test Method

- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

According to §15.247(a)(1)(iii) & RSS-210 A8.1(c) The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

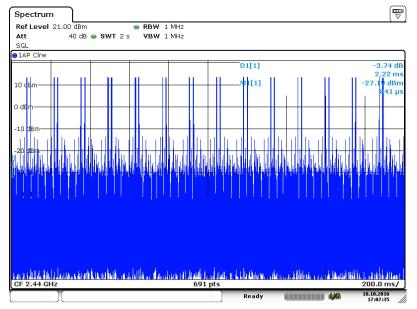
Dwell time

The maximum dwell time shall be 0.4 s.

We test Low frequency, middle frequency and high frequency, only worse case recorded in the report.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 22 [ch] = 8.8 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.


The maximum number of hopping channels in $8.8s = 28^{\circ}(8.8/2) = 123.2$

Test Result

Modulation	Frequency	Reading (ms)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	2440MHz	2.225	123.2	274.12	< 400	Pass

GFSK Modulation-2440MHz

Date: 18.OCT.2016 17:07:35

Spectrum			
	BW 1 MHz		
Att 40 dB — SWT 5 ms V SGL	BW 1 MHz		
		D1[1]	-0.49 dB
r-h	alu		2.22464 ms
10 dBm		_M1[1]	-44.80 dBm 840.58 μs
		1 1	640.56 µs
0 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm		D1	a the sear is exernal
A DE COMENCIE DE LA COMPANY			(telestine) a plantester (s) poble))
		and the first of the second	
In tall at the data		i shika sheka fan kar shin dike	a ath, a full an densiti Adalah da A
AD dBm			
		a la station de la serie de	
CF 2.44 GHz	601 nts		500.0 μs/
	691 pts		
		Ready	18.10.2016 17:03:57

Date: 18.OCT.2016 17:03:57

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 23 of 36

9.7 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

2402MHz

18m			M1[1]		-36.87 dBn 774.70 MH:
IBm			M1[1		-36.87 dBn 774.70 MH:
IBm						_
Bm						
IBm 						
lBm 						
50511.121						
					M1	
teradocorrang	polynomenut	androddor char	her and a data	مسلحماص أمأسهم وحراسها	•	moundant
	tour other of	thead and an and a state of a sta	there are a superior of the su	strant was an ange to prove you and a state of the second a date	touchouse and a finite francisco francisco finite and a fille scale of a fille scale of a fille scale of a fille	MI M

Date: 18.OCT.2016 16:27:14

Spectrun	ī								
Ref Level Att	31.00 dBm 50 dB		1.00 dB 👄 RI 250 ms 👄 V			ute Cureer			
9 1Pk Max	30 UB	3991	230 1115 💻 🖣	3 W 300 KHZ	MUUE A	uto Sweep			
20 dBm						1[1] 2[1]			9.27 dBm 2.3930 GHz -40.08 dB 7.7280 GHz
10 dBm								1.	
0 dBm									
-10 dBm	Ð1 -10.730	dBm							
-20 dEm—									
-30 dBm	wanter	a wanted		www.uhtm	multim	Mundre	D2 Marthin	www.www.	be when have have
-50 dBm									
-60 dBm									
Start 1.0 G	Hz			691	pts				26.0 GHz
					Mea	suring		1/0	18.10.2016 16:26:43 //

Date: 18.OCT.2016 16:26:43

EMC_SZ_FR_21.00 FCC Release 2014-03-20 SUD

2440MHz

Ref Level Att	50 dB	SWT	1.00 dB 👄 RI 9.7 ms 👄 VI			uto Sweep			
∋1Pk Max									
					м	1[1]			-36.53 dBn 741.00 MH;
20 dBm									/+1.00 MH
10 dBm									
0 dBm									
-10 dBm	D1 -9.620 c	Bm							
-20 dBm									
-30 dBm							M1		
WAQ./d&mail	the when the state	and and and and	the state weather	Molecon all a state	تسىيەلىلىلىلە مىللى بىل لى	Adora and particle	andania	andrehander	Lobridd an mary
-50 dBm									
-60 dBm									
Start 30.0				691	L				op 1.0 GHz

Date: 18.OCT.2016 16:25:27

Spectrun	ı								
	31.00 dBm		1.00 dB 👄 R						
Att	50 dB	SWT	260 ms 🖷 V	BW 300 kHz	Mode A	uto Sweep			
⊖1Pk Max									
					M	1[1]			10.38 dBm 2.4500 GHz
					M	2[1]			30.95 dBm
20 dBm									5.3208 GHz
10 dBm									
0 dBm									
-10 dBm	⊧D1 -9.620 c	IBm							
-20 dBm									
-30 dBm			_			M2	an a	n carato o	8
46 demine	pourdellate	renormal	han Maraldon and	Anderserville	www	- V & Wein W	n Carlanana	when the house	www.
-50 dBm									
-60 dBm									
Start 25.9	9999 MHz			691	pts				26.0 GHz
					Mea	suring		4/0	18.10.2016 16:24:59

Date: 18.OCT.2016 16:25:00

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 26 of 36

SUD

Spurious RF conducted emissions

2477MHz

Att	50 dB	SWT	9.7 ms 👄 VE	3W 300 kHz	Mode A	uto Sweep		
∋1Pk Max								
					M	1[1]		-37.20 dBm 978.20 MHz
20 dBm								
10 dBm								
0 dBm								
-10 dBm (D1 -9.980 c	Bm						
-20 dBm								
-30 dBm								
					N			 M1
cAQ,,dBon ,j∞o	<mark>politerason Willia</mark>	al madel har and har and	and the second second	port and a second second second	an a	a dialitation and the	and the second	
-50 dBm								+
-60 dBm								

Date: 18.OCT.2016 16:23:42

Spectrun	n								
Ref Level Att	31.00 dBm 50 dB		1.00 dB 👄 R 250 ms 👄 V			uto Sweep			
1Pk Max						4141			10.33 dBn
						1[1]			2.4650 GH
20 dBm					D	2[1]		1	-41.27 d 2.0840 GH
м1 10 dB <mark></mark> л									
10 UBI I									
0 dBm									
-10 dBm									
-10 ubm	D1 -9.980 c	Bm							
-20 dBm—									
					D2				
-30 dBm		white	menerra	ampherhunder	matrike	Munner	perhan	mohlin	emohowhit
440 dBm	when the se								
-50 dBm									
-60 dBm									
Start 1.0 (GHz			691	pts			Stor	26.0 GHz

Date: 18.OCT.2016 16:22:39

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.8 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

According to §15.247(d) & RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Band edge testing

GFSK Modulation Test Result:

Hopping On:

Spect	rum										
Ref Le	vel 3	31.00 dBr	n Offset 1	.00 dB (● RBW 100 k	Hz					
Att		50 di	B SWT 13	32.7 µs (🔵 VBW 300 k	Hz	Mode /	Auto FF	Г		
⊖1Pk M	ах										
						-	M	1[1]			13.71 dBm
20 dBm											39250 GHz
20 uBill							M	2[1]			15.36 dBm
10 dBm								1	1	2.4	000000 GMz
TO GDIII											1 million
0 dBm-											1 .
o abiii			d D								
-10 dBn	1	01 -6.290	dBm			_					42
											X
-20 dBn	n		-			-					V
-30 dBn	n					-					
					N O				M3	N	
~40.dBn	hout	Mar May and	month	- www.	the way town	mon	formation	warnen a	wat when and	upper outfor	
			1.00		13				22		
-50 dBn	+-י					+-					
-60 dBn	-+-י					+					
Start 2	.35 G	Hz			69	1 pts				Stop	2.405 GHz
Marker											
Туре	Ref	Trc	X-value		Y-value		Func	tion	Fur	nction Result	t
M1		1	2.40392		13.71 c						
M2 M3		1		.4 GHz 39 GHz	-15.36 c -40.59 c						
11/13			2.3	59 GH2	-40.59 t		<u> </u>				
		Л					Mea	suring		l LXA	18.10.2016 16:11:46

Date: 18.OCT.2016 16:11:46

Ref Level	31.00 dBn	n Offset 1.00 dB 👄	RBW 100 kHz			
Att	50 di			Mode Auto Swe	ер	
1Pk Max						
				M1[1]		14.56 dBr
00 d0m						2.477010 GH
20 dBm				M2[1]		-32.46 dBi
u du Bm					1	2.483500 GH
Ao Gionn						
0 dBm			_			
	D1 -5.440	dBm				
-10 dBm—			_			
"\						
-20 dB <mark>m</mark> —						
Les .	140					
-30 dBm 🕂	MZ .					
	VIIII	Marchellen M3	manue allade men	-	and the star of the sold	un relation of the she
-40 dBm						
-50 dBm						
-JU UBIII-						
-60 dBm						
00 00.00						
Start 2.47	25 GHz		691 pts	5		Stop 2.55 GHz
1arker	U UIIL		000 pt			
	ef Trc	X-value	Y-value	Function	Eunr	tion Result
	1	2.47701 GHz	14.56 dBm			
M1		2.4835 GHz	-32,46 dBm			
M1 M2	1	2.4835 GHZ	-39.53 dBm			

Date: 18.OCT.2016 16:13:14

EMC_SZ_FR_21.00 FCC Release 2014-03-20

Hopping Off:

	rum									(🛛
Ret Le	vel 3	1.00 dBr		-	RBW 100 kHz					
		50 d	B SWT	1.1 ms 🖷	VBW 300 kHz	Mode A	uto Swe	ep		
1Pk M	ax									
						M	1[1]			10.55 dBr
20 dBm							0111			2.401360 GH -15.34 dBn
						IVI:	2[1]			-15.34 dBn 2.40000Ø/GH
10 dBm									-	2.400000
10 00111										M
) dBm—										
									1	1 11
-10 dBn		1 -9.450	dBm	_	_					Ma
20 dBm	∩—			_	_					
-30 dBrr					_					- /
									MB	1
48 d8n	Yalad Ale	A Con and port	shadqoodqaaaba	where a lynn on	adamandahanan ang ang ang ang ang ang ang ang ang	- and the strength of the	math	A ALBART C. ADA	meno that atterne	June -
-50 dBm										
-60 dBrr	∩—									
Start 2	.31 G	Hz	1		691 pt	5			Sto	op 2.405 GHz
larker										
Type	Ref	Trc	X-val	ue	Y-value	Funct	tion [unction Res	sult
M1		1		0136 GHz	10.55 dBm					
M2		1		2.4 GHz	-15.34 dBm					
MЗ		1		2.39 GHz	-40.05 dBm					

Date: 18.OCT.2016 16:17:06

Ref Le Att	evel 3	- aa -										
				_								、
		50	dB SWT 1	1.1 ms 😑	VBW 30	J kHz	Mode A	uto Swe	ер			
∋1Pk M	lax											
							M	1[1]				11.13 dBn
20 dBm											2	.476360 GH
20 ubiii M1							M	2[1]				-38.87 dBn
10 dBm									1		2	.483500 GH
Telepin												
0 dBm-												
p usm-												
-10 dBn		1 -8.8	70 dBm=									
-10 461	"											
-20 dBn	_											
-20 UB	"											
-30 dBn												
-30 UDII		2		МЗ								
-40 dBn	_ \u] •	hurne	ward marine and man	manute	destinent	America	mound	andering	miller	boundary	Mon mande	unament.
-+0 ubn	"											
-50 dBn												
50 abri	"											
-60 dBn												
00 001	"											
Start 2	0 475	CU 7				691 pts					01/	op 2.55 GHz
/larker		diliz				091 pt3					50	5p 2.00 GHz
Type		Trc	X-value	a 1	Y-va	lue I	Func	tion		Eupe	tion Resu	ılt
M1	1.61	1		36 GHz		13 dBm	. unc			. and	Alon Kest	
M2		1		35 GHz		87 dBm						
MЗ		1	2	2.5 GHz		67 dBm						
		1) Mar-	suring			100	18.10.2016

Date: 18.OCT.2016 16:15:03

EMC_SZ_FR_21.00 FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.9 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned
- 5. Use the following spectrum analyzer settings According to C63.10:
 - For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).

4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector	
30-88	100	40	QP	
88-216	150	43.5	QP	
216-960	200	46	QP	
960-1000	500	54	QP	
Above 1000	500	54	AV	
Above 1000	5000	74	PK	

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
38.676111	29.43	Horizontal	40.00	QP	10.57	Pass
168.063333	39.15	Horizontal	43.50	QP	4.35	Pass
180.026667	41.51	Horizontal	43.50	QP	1.99	Pass
480.133889	31.50	Horizontal	46.00	QP	14.50	Pass
38.945556	27.18	Vertical	40.00	QP	12.82	Pass
168.063333	29.77	Vertical	43.50	QP	13.73	Pass
180.026667	31.64	Vertical	43.50	QP	11.86	Pass
326.388889	34.11	Vertical	46.00	QP	11.89	Pass
576.163889	27.94	Vertical	46.00	QP	18.06	Pass
8756.718750	41.71	Horizontal	74.00	PK	32.29	Pass
14412.187500	49.97	Horizontal	74.00	PK	24.03	Pass
4803.750000	48.26	Vertical	74.00	PK	25.74	Pass
8808.750000	40.53	Vertical	74.00	PK	33.47	Pass

FHSS Mode GFSK Modulation 2402MHz Test Result

FHSS Mode GFSK Modulation 2440MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
12200.15625	52.00	Horizontal	74.00	PK	22.00	Pass
14637.18750	49.90	Horizontal	74.00	PK	24.10	Pass
12200.156250	52.17	Vertical	74.00	PK	21.83	Pass
14640.000000	50.32	Vertical	74.00	PK	23.68	Pass

FHSS Mode GFSK Modulation 2477MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
7486.40625	39.80	Horizontal	74.00	PK	34.20	Pass
12388.12500	49.56	Horizontal	74.00	PK	24.44	Pass
8795.625000	40.80	Vertical	74.00	PK	33.20	Pass
12381.562500	52.46	Vertical	74.00	PK	21.54	Pass

Remark: Testing is carried out with frequency rang 30MHz to 18GHz, the detected values which are noise floor or below the limit 35dB will not be recorded.

10 Test Equipment List

List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2017-7-15
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2017-8-3
Horn Antenna	Rohde & Schwarz	HF907	102294	2017-7-15
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2017-7-15
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measure	System Measurement Uncertainty							
Test Items	Extended Uncertainty							
Uncertainty for Radiated Emission in 3m	Horizontal: 4.99dB;							
chamber 30MHz-1000MHz	Vertical: 4.97dB;							
Uncertainty for Radiated Emission in 3m	Horizontal: 4.96dB;							
chamber 1000MHz-18000MHz	Vertical: 4.95dB;							
Uncertainty for Conducted RF test with TS	Power level test involved: 2.04dB							
8997	Frequency test involved:1.1×10 ⁻⁷							