

TEST REPORT

Date: 2013-10-31 Report No.: 60.870.13.032.01F

Applicant:	Binatone Electronics International Ltd. Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong		
Description of Samples:	Model name: Brand name: Model no.: FCCID:	Baby Monitor (Baby Unit) MOTOROLA MBP27TBU VLJ-MBP27TBU	
Date Samples Received:	2013-09-25		
Date Tested:	2013-09-25 to 2	2013-10-28	
Investigation Requested:	FCC Part 15 St	ubpart C, Section 15.247	
Conclusions:	The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.		
Remarks:			
Checked by:		Approved by:-	

Ray Cheung Project Engineer Wireless & Telecom Department Jeff Pong Operation Manager Wireless & Telecom Department

CONTENT:

	Cover	Page 1 of 29 Page 2-3 of 29
1.0	Content	rage 2-3 01 29
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 4 of 29
1.2	Applicant Details	Page 4 of 29
1.3	Equipment Under Test [EUT]	Page 5 of 29
1.4	Related Submittal(s) Grants	Page 5 of 29
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 6 of 29
2.2	Test Standards and Results Summary	Page 6 of 29
<u>3.0</u>	Test Methodology	
3.1	Radiated Emission	Page 7 of 29
3.2	Field Strength Calculation	Page 7 of 29
3.3	Conducted Emission	Page 7 of 29
<u>4.0</u>	Test Results	
4.1	Number of Frequency Hopping	Page 8 of 29
4.2	20dB Bandwidth Measurement	Page 9-10 of 29
4.3	Hopping Channel Carrier Frequency Separation	Page 11 of 29
4.4	Average Time of Occupancy	Page 12-14 of 29
4.5	Pseudorandom Hopping Algorithm	Page 15 of 29
4.6	Band Edge Measurement	Page 16-17 of 29
4.7	Maximum Output Power	Page 18-20 of 29
4.8	Out of Band Emissions and Emissions in Restricted Bands	Page 21-25 of 29
4.9	Conducted Emission on AC Mains	Page 26-28 of 29

5.0 List of Measurement Equipments

Page 29 of 29

Appendix A

Photos of Test Setup

Appendix B

External EUT Photos

Appendix C

Internal EUT Photos

1.0 General Details

1.1 Test Laboratory

Global United Technology Services Co. Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District Registration Number: 600491

Tested by:

Ampli John Zhi

1.2 Applicant Details

Applicant

Binatone Electronics International Ltd. Floor 23A, 9 Des Voeux Road West, Sheung Wan Hong Kong

Manufacturer

Alford Industries Ltd Unit 02, 6th Floor, Yen Sheng Centre, 64 Hoi Yuen Road, Kwun Tong, Hong Kong

1.3 Equipment Under Test [EUT]

Description of EUT

Draduat Descriptions	Deby Maritar (Deby Llait)
Product Description:	Baby Monitor (Baby Unit)
Model No.:	MBP27TBU
Brand Name:	MOTOROLA
FCCID:	VLJ-MBP27TBU
Rating:	- DC6.0V, 500mA powered by AC/DC power adaptor
Operated Frequency:	2410.875 -2471.625 MHz
No. of Operated Channel:	19
Accessories and Auxiliary Equipments:	Nil
Antenna Type:	Integral
Manufacture of Antenna:	Alford.

0dBi

N/A

General Operation of EUT

Antenna Gain: Antenna Model:

The Equipment Under Test (EUT) is a Camera of Wireless Monitoring System.

FHSS Operation Principle:

This module is controlled by microchip to generate Pseudorandom Frequency Hopping Sequence, this module support 19 hopping channels. Refer to section 4.5 of this report to have more detail of Pseudorandom Hopping Algorithm.

1.4 Related Submittal(s) Grants

This is a signal application subjected to Certificate Authorization.

2.0 <u>Technical Details</u>

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.4: 2003

2.2 Test Standards and Results Summary Tables

Test Condition	Test Requirement		sult
		Pass	N/A
Number of Frequency Hopping	Section 15.247 (a1)		
20dB Bandwidth Measurement	Section 15.247 (a1)		
Hopping Channel Carrier Frequency Separation	Section 15.247 (a1)		
Average Time of Occupancy	Section 15.247 (a1)		
Pseudorandom Hopping Algorithm	Section 15.247 (a1)		
Band Edge Measurement	Section 15.247		
Maximum Output Power	Section 15.247 (b1)		
Out of Band Emission	Section 15.247 (d)		
Radiated Emission in Restricted Band	Section 15.247 (d)		
Conducted Emission on AC Mains	Section 15.207		
RF Exposure	Section 15.247 (i)		
Antenna Requirement	Section 15.203	See note 1	

Note 1 : The EUT uses a permanently attached antenna, which in accordance to Section 15.203, is considered sufficient to comply with the provisions of this section.

Remark: N/A - Not Applicable

3.0 Test Methodology

3.1 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

3.2 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor System Factor = AF + CF + FA – PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

- R = Reading of Spectrum Analyzer / Test Receiver in dBuV.
- AF = Antenna Factor in dB.

CF = Cable Attenuation Factor in dB.

- FA = Filter Attenuation Factor in dB.
- PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

3.3 Conducted Emissions

The test was performed in accordance with ANSI C63.4: 2003, with the following: initial measurements were performed in peak and average detection modes on the live line of personal computer, any emissions recorded within 30dB of the relevant limit lines were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

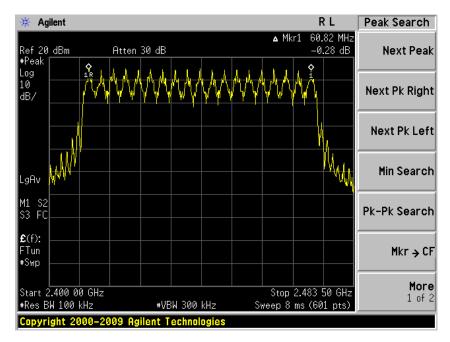
4.0 Test Results

4.1 Number of Hopping Frequency

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1)(iii) 2013-09-30 Transmitting mode. Max Hold

Result: PASS

Measured Result :


Operating Channel Frequency in sequence (MHz):

2410.875 ; 2414.25 ; 2417.625 ; 2421 ; 2424.375 ; 2427.75 ; 2431.125 ; 2434.5 ; 2437.875 ; 2441.25 ; 2444.625 ; 2448 ; 2451.375 ; 2454.75 ; 2458.125 ; 2461.5 ; 2464.875 ; 2468.25 ; 2471.625

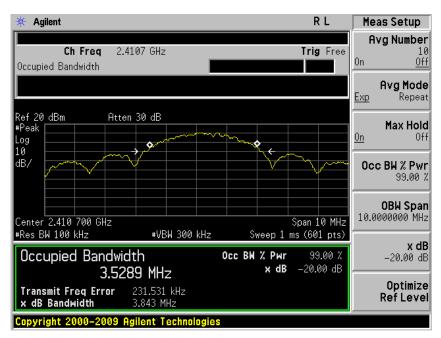
Limit for Number of Hopping Channel [Section 15.247 (a1)(iii)]

At least 15 non-overlapping channels of each sequence for 2400-2483.5MHz.

Result data graph shows the number of operation channels:

4.2 20dB Bandwidth Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1) 2013-09-30 Transmitting mode. Max Hold

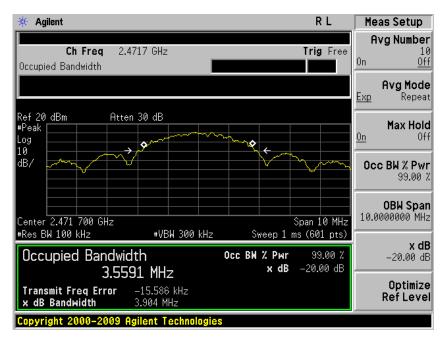

Test Setup:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Channel	Measured frequency (MHz)	20dB Bandwidth (MHz)
Lowest	2.410.875	3.843
Middle	2.444.625	3.777
Highest	2.471.625	3.904

This result is used for checking the hopping channel carrier frequencies separation.

Result data graph shows 20 dB bandwidth, CF = 2410.875MHz, BW = 3.843MHz



Agilent R Meas Setup 44 Т Avg Number Trig Free 10 <u>Off</u> Ch Freq 2.4447 GHz 0n Occupied Bandwidth Avg Mode <u>Exp</u> Repeat Ref 20 dBm Atten 30 dB Max Hold #Peak <u>0n</u> Off Log ۵ Ô 10 dB/ Occ BW % Pwr 99.00 % **OBW Span** 10.0000000 MHz Center 2.444 700 GHz #Res BW 100 kHz Span 10 MHz #VBW 300 kHz Sweep 1 ms (601 pts) x dB Occupied Bandwidth Occ BW % Pwr 99.00 % -20.00 dB x dB -20.00 dB 3.5378 MHz Optimize Transmit Freq Error -15.114 kHz **Ref Level** x dB Bandwidth 3.777 MHz opyright 2000-2009 gilent Technologies

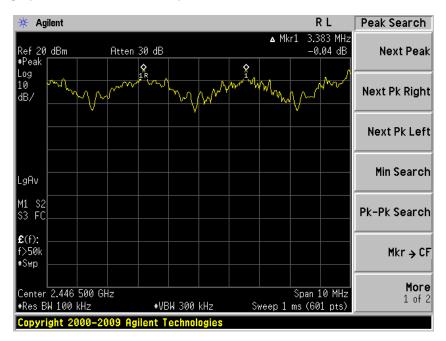
Result data graph shows 20 dB bandwidth, CF = 2444.625MHz, BW = 3.777MHz

Result data graph shows 20 dB bandwidth, CF = 2471.625MHz, BW = 3.904MHz

4.3 Hopping Channel Carrier Frequency Separation

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1) 2013-09-30 Transmitting mode. Max Hold

Result: PASS


Measured Result :

Refer to the delta marker, the frequency separation between two adjacent channels is 3.38 MHz, therefore, the requirement of channel separated by a minimum of 25kHz of the hopping channel is applied.

Limits for Hopping Channel Separation [Section 15.247 (a1)]:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25KHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Result data graph shows the channel separation:

4.4 Average Time of Channel Occupancy

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1)(iii) 2013-09-30 Transmitting mode. Zero span, Sweep time 1s

Result : PASS

Measured Result :

Each transmission only 19 channels will be used.

Observe time = 19 channels x 0.4s =7.6s

There are 15 pulses within 1s

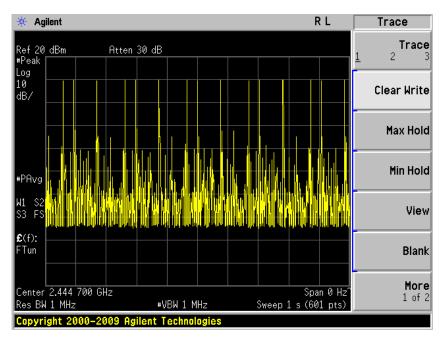
And one set of pulses = 2.51ms

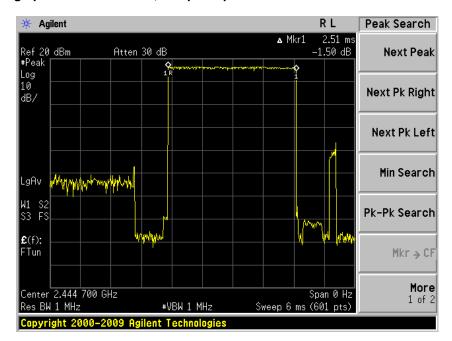
Therefore, the average channel occupancy times (ms)

= 2.51ms x 15 x 7.6

So, total transmitting time is 0.286s. (<0.4s).

Limits for Average Time of Occupancy [Section 15.247 (a1)(iii)]:


The average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 seconds multiplied by the number of hopping channels employed.


🔆 Agilent			RL	Peak Search
#Peak	Atten 30 dB	▲ Mkr	1 60.82 MHz -0.28 dB	Next Peak
Log 10 dB/	www.www	MMMM	₩Å	Next Pk Right
				Next Pk Left
			Mult	Min Search
M1 S2 S3 FC				Pk-Pk Search
£ (f): FTun #Swp				Mkr → CF
Start 2.400 00 GHz #Res BW 100 kHz	#VBW 300 H		2.483 50 GHz ms (601 pts)	More 1 of 2
Copyright 2000-20	09 Agilent Technolo			

Result data graph shows total 19 channels are used.

Result data graph shows total 15 pulses with 1s.

Result data graph zooms into detail, one pulse period is 2.51ms.

4.5 Pseudorandom Hopping Algorithm

Pseudorandom Frequency Hopping

MBP27TBU uses FHSS technology with 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875 MHz to 2471.625MHz. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list.

Pseudorandom Frequency Hopping Sequence

2410.875 ; 2414.25 ; 2417.625 ; 2421 ; 2424.375 ; 2427.75 ; 2431.125 ; 2434.5 ; 2437.875 ; 2441.25 ; 2444.625 ; 2448 ; 2451.375 ; 2454.75 ; 2458.125 ; 2461.5 ; 2464.875 ; 2468.25 ; 2471.625

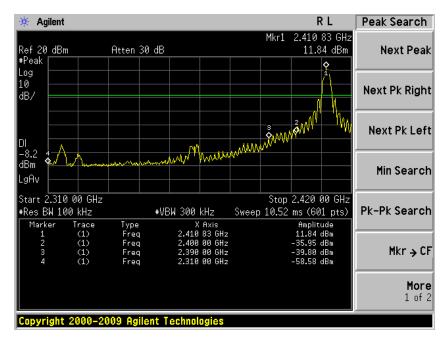
Requirement for Pseudorandom Hopping Algorithm [Section 15.247 (a1)]:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on average by the transmitter.

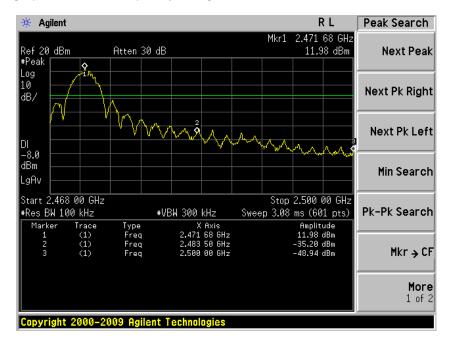
4.6 Band Edge Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 2013-09-30 Transmitting mode. Max Hold

Result: PASS


Measured Result :

Refer to the figure, it shows the frequency of lower band edge and upper band edge separately.


Limits of Band Edge for Carrier Frequencies Operated within the Bands [Section 15.247]:

The carrier frequencies should operate within 2400-2483.5MHz.

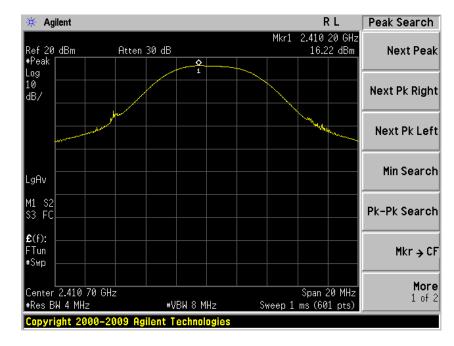
Result data graph shows the frequency of lowest channel.

Result data graph shows the frequency of highest channel.

4.7 Maximum Output Power

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: FCC part 15 section 15.247 (a1) ANSI C63.4:2003 2013-09-30 Transmitting mode. Peak RBW 1MHz ; VBW 1MHz

Test Setup:


Result : PASS

Frequency	Peak Out	put Power	Limit	
(MHz)	(dBm)	(W)	(dBm)	(W)
Lowest Channel : 2410.875	16.22	0.042	21	0.125
Middle Channel : 2444.625	15.93	0.039	21	0.125
Highest Channel : 2471.625	15.96	0.039	21	0.125

Limits for Maximum Output Power [Section 15.247 (a1)(iii)]:

For frequency hopping systems employing at least 75 hopping channels: 1 Watt For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts

Result data graph shows the frequency of lowest channel

Result data graph shows the frequency of middle channel

🔆 Agilent		R L Peak Search
Ref 20_dBm Atten 30	Mkr: dB	L 2.471 07 GHz 15.96 dBm NextPeak
#Peak Log 10	O 1	
dB/		Next Pk Right
and the second s		Next Pk Left
LgAv		Min Search
M1 S2 S3 FC		Pk-Pk Search
€(f): FTun #Swp		Mkr → CF
Center 2.471 70 GHz #Res BW 4 MHz	#VBW 8 MHz Sweep	Span 20 MHz More 1 ms (601 pts) 1 of 2

Result data graph shows the frequency of highest channel

4.8 Out of Band Emissions and Emissions in Restricted Bands

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: FCC part 15 section 15.247 (d) ANSI C63.4:2003 2013-10-26 Transmitting mode. Peak RBW 100KHz ; VBW 300KHz

Test Setup:

Result : PASS

Out of Frequency Band Emissions:

For out of band emissions that are close to or exceed 20dB attenuation requirement, and emission falls into restricted band, radiated emission was performed in order to show compliance with the general radiated emission requirement.

Result Summary:

Refer to the emission data graph, result shows that the significant emissions detected are with more than 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Limits for Out of Frequency Band Emission [Section 15.247 (d)]:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Attenuation below the general limits specified in Section 15.209(a) is not required.

Frequency (MHz)	Field Strength [µV/m]	Field Strength [dBµV/m]
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

Limit for Radiated Emission Falling in Restricted Bands [Section 15.209]:

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

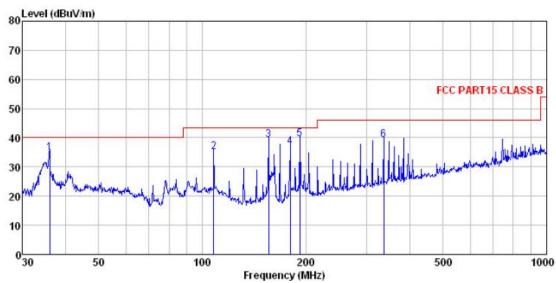
The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result : PASS

All Emission and Emissions Fall into Restricted Band were recorded as below:

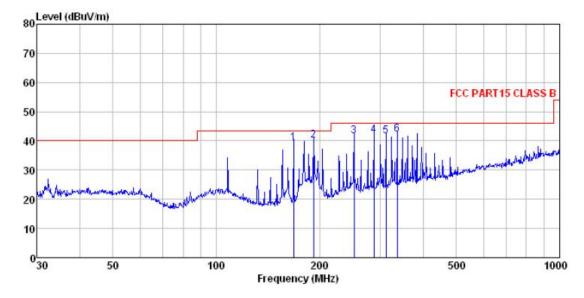
	Radiated Emissions						
	Emissions Frequency	E-Field Polarity	Reading	System Factor	Field strength at 3m	Limit	Delta to Limit
	MHz		dBuV/m	dB	dBuV/m	dBuV/m	dBuV/m
	Lowest Chann						
PK	4820.36	Н	59.25	8.30	67.55	74.00	-6.45
AV	4820.35	Н	42.28	8.30	50.58	54.00	-3.42
PK	4825.00	V	57.14	8.31	65.45	74.00	-8.55
AV	4825.00	V	42.29	8.31	50.60	54.00	-3.40
	Middle Chann						
PK	4888.00	Н	59.22	8.40	67.62	74.00	-6.38
AV	4888.00	Н	42.55	8.40	50.95	54.00	-3.05
PK	4888.00	V	59.82	8.40	68.22	74.00	-5.78
AV	4888.00	V	42.18	8.40	50.58	54.00	-3.42
	Highest Chann	nel					
PK	4942.00	Н	58.98	8.46	67.44	74.00	-6.56
AV	4942.00	Н	41.71	8.46	50.17	54.00	-3.83
PK	7417.00	Н	42.31	16.52	58.83	74.00	-15.17
AV	7417.00	Н	32.12	16.52	48.64	54.00	-5.36
PK	4951.00	V	59.30	8.46	67.76	74.00	-6.24
AV	4951.00	V	42.23	8.46	50.69	54.00	-3.31
	Spurious Emis	ssions					
QP	36.00	V	51.82	-16.86	34.96	40.00	-5.04
QP	107.89	V	51.25	-16.20	35.05	43.50	-8.45
QP	155.91	V	59.28	-19.89	39.39	43.50	-4.11
QP	180.02	V	55.69	-18.66	37.03	43.50	-6.47
QP	191.75	V	57.43	-17.76	39.67	43.50	-3.83
QP	336.04	V	52.84	-13.53	39.31	46.00	-6.69
QP	167.82	Н	58.78	-19.47	39.31	43.50	-4.19
QP	191.75	Н	58.02	-17.76	40.26	43.50	-3.24
QP	252.06	Н	57.54	-15.95	41.59	46.00	-4.41
QP	287.99	Н	56.90	-15.03	41.87	46.00	-4.13
QP	312.18	Н	56.24	-14.50	41.74	46.00	-4.26
QP	336.04	Н	55.61	-13.53	42.08	46.00	-3.92

Refer to Figures shows the worst case channel's emission data graph from 30MHz-26GHz.


Result Summary:

- 1) Communication mode: All other emissions are more than 20dB below FCC part 15.209 limit.
- 2) No further spurious emissions found between 30 MHz and lowest internal used/generated frequency and from 30MHz to 1GHz.

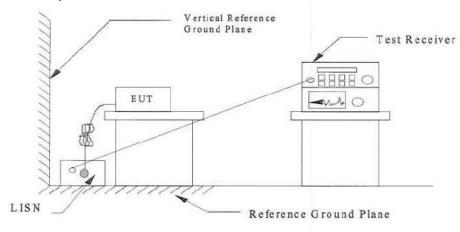
Remarks:


- 1. "*" Radiated emissions which fall in the restricted bands as defined in Section 15.205(a).
- 2. Emission level with more than 20dB below the FCC required limit is not mentioned in table.
- 3. Delta to Limit = Field strength $(dB\mu V/m) Limit (dB\mu V/m)$.
- 4. Calculated measurement uncertainty: 9kHz -30MHz: 1.8dB. 30MHz -1GHz: 5.2dB. 1GHz -18GHz: 5.1dB.

Radiated emission data graph (Vertical polarization, 30MHz-1GHz)

Remark: Only background noise was measured from 1GHz-26GHz excluding the operation frequency relational.

Radiated emission data graph (Horizontal polarization, 30MHz-1GHz)


Remark: Only background noise was measured from 1GHz-26GHz excluding the operation frequency relational.

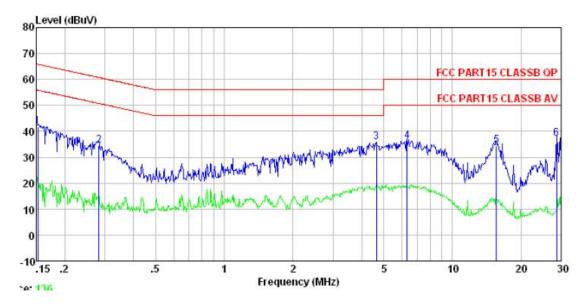
4.9 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: Worst Case Channel: FCC part 15 Section 15.207 Class B ANSI C63.4:2003 2013-10-10 -Transmitting mode CISPR Quasi Peak 100 kHz 1

Test Setup:

Results: PASS

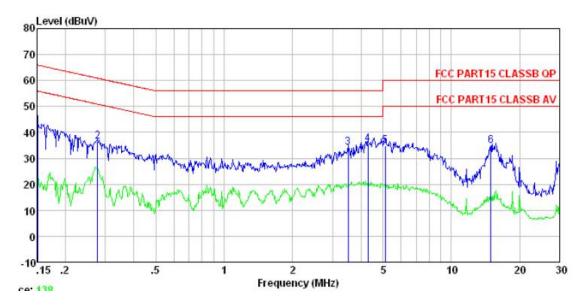
- Refer Figures and tables for the result.


Limits for Conducted Emission [Section 15.207]:

Frequency Range	Quasi-Peak Limit	Average Limit
[MHz]	[dBµV]	[dBµV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency.

Remarks: Calculated measurement uncertainty: ±2.8dB



Result data graph shows the conducted emission (Live).

Refer to the following table for the result details:

	Conducted Emission						
Frequency (MHz)	Detector (QP/AV)	Phase	Result (dBµV)	Limit (dBµV)	Margin		
0.152	QP	L	41.67	65.87	-24.20		
0.282	QP	L	34.35	60.76	-26.41		
4.647	QP	L	35.70	56.00	-20.30		
6.352	QP	L	36.24	60.00	-23.76		
15.635	QP	L	34.43	60.00	-25.57		
28.603	QP	L	37.06	60.00	-22.94		

Result data graph shows the conducted emission (Neutral).

Refer to the following table for the result details:

Conducted Emission								
Frequency	Detector	Phase	Result	Limit	Margin			
(MHz)	(QP/AV)		(dBµV)	(dBµV)				
0.152	QP	Ν	39.00	65.91	-26.91			
0.277	QP	Ν	36.42	60.90	-24.48			
3.509	QP	N	34.12	56.00	-21.88			
4.292	QP	N	35.33	56.00	-20.67			
5.112	QP	N	34.93	60.00	-25.07			
14.907	QP	N	34.69	60.00	-25.31			

5.0 List of Measurement Equipment

Description	Manufacturer	Model no.	Serial no.	CAL due				
3m Semi-Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	29 May 2014				
EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	03 Jul 2014				
BiConiLog Antenna	SCHWARZBECK MESS- ELEKTRONIK	VULB9163	GTS214	04 Feb 2043				
Double-ridged waveguide horn	SCHWARZBECK MESS- ELEKTONIK	3160	GTS217	29 Mar 2014				
Horn Antenna	ETS-LINDGREN	3160	GTS217	29 Mar 2014				
Amplifier (100kHz – 3GHz)	HP	8347A	GTS204	03 Jul 2014				
Amplifier (2GHz – 20GHz)	HP	8349B	GTS206	03 Jul 2014				
Band filter	Amindeon	82346	GTS219	30 Mar 2014				
Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	09 May 2014				
DC Power Supply	Instek	PS-3030	GTS232	09 May 2014				
Spectrum Analyzer	R&S	FS300	101335	02 Aug 2014				

Radiated Emission and Bandwidth Emissions

Conducted Emissions

Description	Manufacturer	Model no.	Serial no.	CAL due
SHIELDING ROOM	ZhongYu Electron	7.0(L)X3.0(W) X 3.0(H)	GTS252	07 Sep 2013
EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	02 Jul 2014
10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	02 Jul 2014
Coaxial Switch	ANRITSU CORP	MP59B	GTS225	02 Jul 2014
LISN	SCHWARZBECK MESS- ELEKTRONIK	NSLK 8127	GTS226	02 Jul 2014
Coaxial Cable	GTS	N/A	GTS227	02 Jul 2014
Thermo meter	KTJ	TA328	GTS233	05 Jul 2014

N/A Not Applicable or Not Available