

TEST REPORT

Date: 2012-11-14 Report No.: 60.870.12.038.02F

Applicant:	Binatone Electronics International Ltd. Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong				
Description of Samples:	Model name: Brand name: Model no.: FCCID:	Baby Monitor (Parent Unit) MOTOROLA MBP25PU, MBP26PU VLJ-MBP25PU			
Date Samples Received:	2012-10-29				
Date Tested:	2012-11-02 to 2012-11-07				
Investigation Requested:	FCC Part 15 Subpart C, Section 15.247				
Conclusions:	The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.				
Remarks:					

Checked by:

Approved by:-

Ray Cheung Project Engineer Wireless & Telecom Department Jeff Pong Operation Manager Wireless & Telecom Department

CONTENT:

	Cover	Page 1 of 30
	Content	Page 2-3 of 30
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 4 of 30
1.2	Applicant Details	Page 4 of 30
1.3	Equipment Under Test [EUT]	Page 5 of 30
1.4	Related Submittal(s) Grants	Page 5 of 30
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 6 of 30
2.2	Test Standards and Results Summary	Page 6 of 30
<u>3.0</u>	Test Methodology	
3.1	Radiated Emission	Page 7 of 30
3.2	Field Strength Calculation	Page 7 of 30
3.3	Conducted Emission	Page 7 of 30
<u>4.0</u>	Test Results	
4.1	Number of Frequency Hopping	Page 8 of 30
4.2	20dB Bandwidth Measurement	Page 9-10 of 30
4.3	Hopping Channel Carrier Frequency Separation	Page 11 of 30
4.4	Average Time of Occupancy	Page 12-14 of 30
4.5	Pseudorandom Hopping Algorithm	Page 15 of 30
4.6	Band Edge Measurement	Page 16-17 of 30
4.7	Maximum Output Power	Page 18-20 of 30
4.8	Out of Band Emissions and Emissions in Restricted Bands	Page 20-25 of 30
4.9	Conducted Emission on AC Mains	Page 26-28 of 30

RF Exposure Compliance Requirement

Page 29 of 30

List of Measurement Equipments Page 30 of 30 Appendix A

Photos of Test Setup

Appendix B

<u>5.0</u>

<u>6.0</u>

External EUT Photos

Appendix C

Internal EUT Photos

1.0 General Details

1.1 Test Laboratory

SEM. Test Compliance Service Co., Ltd 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen Registration Number: 994117

Test By:

Johnsti John Zhi

1.2 Applicant Details Applicant

Binatone Electronics International Ltd. Floor 23A, 9 Des Voeux Road West, Sheung Wan Hong Kong

Manufacturer

Alford Industries Ltd. Unit 02, 6th Floor, Yen Sheng Centre, 64 Hoi Yuen Road, Kwun Tong, Kowloon, HK

1.3 Equipment Under Test [EUT]

Description of EUT

Product Description:	Baby Monitor (Parent Unit)
Model No.:	MBP25PU, MBP26PU
Brand Name:	MOTOROLA
FCCID:	VLJ-MBP25PU
Rating:	 DC 6V, 500mA powered by AC/DC power adaptor or
	- DC 3.6V, 900mAh Ni-MH Rechargeable Battery
Operated Frequency:	2410.875 – 2471.625 MHz
No. of Operated Channel:	19
Accessories and Auxiliary Equipments:	- AC/DC power adaptor.

Antenna Type: Manufacture of Antenna: Antenna Gain: Antenna Model: Integral Alford Industries Ltd. 0 dBi N/A

General Operation of EUT

The Equipment Under Test (EUT) is a monitor of wireless baby monitor system which operated at 2.4GHz.

As per Client Declaration, the circuit design, PCB Layout, shielding and interface of MBP25PU and MBP26PU are identical, only the cosmetic are different. So we use MBP25PU as a representative model to perform all testing.

FHSS Operation Principle:

This module is controlled by microchip to generate Pseudorandom Frequency Hopping Sequence, this module support 19 hopping channels. Refer to section 4.5 of this report to have more detail of Pseudorandom Hopping Algorithm.

1.4 Related Submittal(s) Grants

This is a signal application subjected to Certificate Authorization.

2.0 Technical Details

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15 and ANSI C63.4: 2003

2.2 Test Standards and Results Summary Tables

Test Condition	Test Requirement	Test Re	esult
		Pass	N/A
Number of Frequency Hopping	Section 15.247 (a1)		
20dB Bandwidth Measurement	Section 15.247 (a1)		
Hopping Channel Carrier Frequency Separation	Section 15.247 (a1)		
Average Time of Occupancy	Section 15.247 (a1)		
Pseudorandom Hopping Algorithm	Section 15.247 (a1)		
Band Edge Measurement	Section 15.247		
Maximum Output Power	Section 15.247 (b1)		
Out of Band Emission	Section 15.247 (d)		
Radiated Emission in Restricted Band	Section 15.247 (d)		
Conducted Emission on AC Mains	Section 15.207		
RF Exposure	Section 15.247 (i)		
Antenna Requirement	Section 15.203	See note 1	

Note 1 : The EUT uses a permanently attached antenna, which in accordance to Section 15.203, is considered sufficient to comply with the provisions of this section.

Remark: N/A - Not Applicable

3.0 Test Methodology

3.1 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

3.2 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor System Factor = AF + CF + FA – PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

R = Reading of Spectrum Analyzer / Test Receiver in dBuV.

AF = Antenna Factor in dB.

CF = Cable Attenuation Factor in dB.

FA = Filter Attenuation Factor in dB.

PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

3.3 Conducted Emissions

The test was performed in accordance with ANSI C63.4: 2003, with the following: initial measurements were performed in peak and average detection modes on the live line of personal computer, any emissions recorded within 30dB of the relevant limit lines were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

4.0 Test Results

4.1 Number of Hopping Frequency

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1)(iii) 2012-11-07 Transmitting mode. Max Hold

Result: PASS

Measured Result :

Operating Channel Frequency in sequence (MHz):

2410.875 ; 2414.25 ; 2417.625 ; 2421 ; 2424.375 ; 2427.75 ; 2431.125 ; 2434.5 ; 2437.875 ; 2441.25 ; 2444.625 ; 2448 ; 2451.375 ; 2454.75 ; 2458.125 ; 2461.5 ; 2464.875 ; 2468.25 ; 2471.625

Limit for Number of Hopping Channel [Section 15.247 (a1)(iii)]

At least 15 non-overlapping channels for 2400-2483.5MHz.

Result data graph shows the number of operation channels:

4.2 20dB Bandwidth Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1) 2012-11-07 Transmitting mode. Max Hold

Test Setup:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Channel	Measured frequency (MHz)	20dB Bandwidth (MHz)
Lowest	2410.875	3.891
Middle	2444.625	3.888
Highest	2471.625	3.892

This result is used for checking the hopping channel carrier frequencies separation.

Agilent 15:41:07 Dec 43, 55 Meas Setup Avg Number Ch Freq 2.411 GHz Trig Free 10 <u>Off</u> Occupied Bandwidth 0n Center 2.411000000 GHz Avg Mode <u>Exp</u> Repeat Atten 30 dB Ref 20 dBm #Peak Max Hold Log 10 <u>0n</u> Off dB/ Occ BW % Pwr 99.00 % **OBW Span** Center 2.411 GHz #Res BW 100 kHz 10.0000000 MHz Span 10 MHz #VBW 300 kHz Sweep 4 ms (401 pts) x dB Occupied Bandwidth Occ BW % Pwr 99.00 % -20.00 dB 3.5514 MHz x dB -20.00 dB Optimize -61.074 kHz Transmit Freq Error Ref Level 3.891 MHz x dB Bandwidth SCREN014.GIF file saved

Result data graph shows 20 dB bandwidth of Lowest Channel, BW = 3.891MHz

** Agilent 15:39:50 Dec 43, 55 Ch Freq 2.445 GHz Trig Free Occupied Bandwidth Avg Numbe Center 2.4450000000 GHz Avg Mode Ref 20 dBm Atten 30 dB Peak Avg Mode Log Atten 30 dB Peak Avg Mode Center 2.445 GHz Span 10 MHz Max Hole Occ BH 2 Span 10 MHz Occ BH 2 Pw 99.00 % Center 2.445 GHz Span 10 MHz OBH Span Press BH 100 kHz #VBW 300 kHz Sweep 4 ms (401 pts) X dd Occupied Bandwidth Occ BM % Pwr 99.00 % X dd J.S5575 MHz Sweep 4 ms (401 pts) X dd -20.00 dB Transmit Freq Error -323.753 kHz X dB -20.00 dB Atten 3.888 MHz Atten 3.888 MHz Atten 3.888 MHz Atten 3.888 MHz					
Ch Freq 2.445 GHz Trig Free Occupied Bandwidth 0n 0f Center 2.4450000000 GHz Avg Numbe Ref 20 dBm Atten 30 dB Peak Peak 0 0 0 Baddwidth 0 0 0 Baddwidth 0 0 0 Center 2.445 GHz 8 0 Center 2.445 GHz 99.00 0 Center 2.445 GHz 99.00 0 Press BW 100 kHz +VBW 300 kHz Sweep 4 ms (401 pts) Occupied Bandwidth 0cc BW % Pwr 99.00 % Jass575 MHz x dB -20.00 dB Transmit Freq Error -323.753 kHz x dB x dB Bandwidth 3.888 MHz 0ptimizz Attrasset 3.888 MHz Ref Level	Agilent 15:39:50 De	ec 43, 55			Meas Setup
Occupied Bandwidth On 0	Ch Freq 2.4	45 GHz	Tri	g Free	Avg Number
Center 2.445000000 GHz Ref 20 dBm Atten 30 dB **Peak Max Hole Log Max Hole 0 Ma	Occupied Bandwidth				10 On Off
Ref 20 dBm Atten 30 dB *Peak	Center 2.445000	000 GHz			 Ava Mode
Net Peak Intel 36 dD Log Intel 36 dD 10 dB/ dB/ Intel 36 dD Center 2.445 GHz Span 10 MHz *Res BW 100 kHz #VBW 300 kHz Sweep 4 ms (401 pts) Occ BW % Pw 99.00 0BW Span Intel 36 dD * Kes BW 100 kHz #VBW 300 kHz Sweep 4 ms (401 pts) Cccupied Bandwidth Occ BW % Pwr 99.00 % 3.5575 MHz x dB -20.00 dB Transmit Freq Error -323.753 kHz x dB x dB Bandwidth 3.888 MHz Optimize A:\SCREN012.6IF file saved G	Dof 20 dBm A+++	n 30 dB			Exp Repeat
10 dB/	#Peak	A WWW WAYNAM	~~ ~~		Max Hold On Off
Center 2.445 GHz Span 10 MHz Span 10 MHz Span 10 MHz 10.0000000 MH *Res BW 100 kHz *VBW 300 kHz Sweep 4 ms (401 pts) 10.0000000 MH Occupied Bandwidth Occ BM % PMr 99.00 % x dB 3.5575 MHz x dB -20.00 dB -20.00 dB Transmit Freg Error -323.753 kHz x dB -20.00 dB Optimize x dB Bandwidth 3.888 MHz 3.888 MHz A:\SCREN012.6IF file saved A:	dB/ →		Marke Market		Occ BW % Pwr 99.00 %
Mess DA 100 Kn2 WODA 300 Kn2 Sweep 4 mis (401 pts) Occupied Bandwidth Occ BM % PMr 99.00 % 3.5575 MHz x dB -20.00 dB Transmit Freg Error -323.753 kHz Optimize x dB Bandwidth 3.888 MHz Ref Leve A:\SCREN012.6IF file saved State State	Center 2.445 GHz	*UBN 300 htta	Span	10 MHz	OBW Span 10.0000000 MHz
Transmit Freq Error -323.753 kHz Optimize x dB Bandwidth 3.888 MHz Ref Leve A:\SCREN012.GIF file saved Content of the saved Content of the saved	Occupied Bandwin	dth 75 MHz	Осс ВЖ % Ржг x dB – 20	99.00 % 9.00 dB	x dB –20.00 dB
A:\SCREN012.GIF file saved	Transmit Freq Error x dB Bandwidth	-323.753 kHz 3.888 MHz			Optimize Ref Level
	A:\SCREN012.GIF file s	aved			

Result data graph shows 20 dB bandwidth of Middle Channel, BW = 3.888MHz

Result data graph shows 20 dB bandwidth of Highest Channel, BW = 3.892MHz

4.3 Hopping Channel Carrier Frequency Separation

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1) 2012-11-07 Transmitting mode. Max Hold

Result: PASS

Measured Result :

Refer to the delta marker, the frequency separation between two adjacent channels is 3.375MHz, therefore, the requirement of channel separated by a minimum of 25kHz of the hopping channel is applied.

Limits for Hopping Channel Separation [Section 15.247 (a1)]:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25KHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Result data graph shows the channel separation:

4.4 Average Time of Channel Occupancy

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a1)(iii) 2012-11-07 Transmitting mode. Zero span, Sweep time 1s

Result : PASS

Measured Result :

Each transmission only 19 channels will be used.

Observe time = 19 channels \times 0.4s =7.6s

There are 15 pulses within 1s

And one set of pulses = 360us

Therefore, the average channel occupancy times (ms)

= 360us x 15 x 10

So, total transmitting time is 0.056s. (<0.4s).

Limits for Average Time of Occupancy [Section 15.247 (a1)(iii)]:

The average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Result data graph shows total 19 channels are used

Result data graph shows total 15 pulses with 760ms

Report No.: 60.870.12.038.02F

🔆 Agilent		Marker
	Mkr1 ∆	360 µs
Ref 20 dBm Atten 30 d	1B –52	38 dB Select Marker
Log 1R	*n	<u>1</u> 2 3 4
10 dB/		Normal
		Delta
		Delta Pair
personal and		(Tracking Ref) Ref <u>Delta</u>
W1 S2 mark MAY MAR	An alter a constant of the second of the sec	Span Pair
AA		Span <u>Center</u>
Marker 🛆		
360.0000000 µs		011
–52.38 dB		
Center 2.411 GHz	Spa	n 0 Hz More
Res BW 1 MHz	VBW 1 MHz Sweep 4 ms (40	1 pts)
A:\SCREN111.GIF file saved		

Result data graph zooms into detail, one pulse period is 360us

4.5 Pseudorandom Hopping Algorithm

Pseudorandom Frequency Hopping

MBP25PU uses FHSS technology with 19 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2410.875MHz to 2471.625MHz. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list.

Pseudorandom Frequency Hopping Sequence

2410.875 ; 2414.25 ; 2417.625 ; 2421 ; 2424.375 ; 2427.75 ; 2431.125 ; 2434.5 ; 2437.875 ; 2441.25 ; 2444.625 ; 2448 ; 2451.375 ; 2454.75 ; 2458.125 ; 2461.5 ; 2464.875 ; 2468.25 ; 2471.625

Requirement for Pseudorandom Hopping Algorithm [Section 15.247 (a1)]:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on average by the transmitter.

4.6 Band Edge Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 2012-11-07 Transmitting mode. Max Hold

Result: PASS

Measured Result :

Refer to the figure, it shows the frequency of lower band edge and upper band edge separately.

Limits of Band Edge for Carrier Frequencies Operated within the Bands [Section 15.247]:

The carrier frequencies should operate within 2400-2483.5MHz.

Result data graph shows the frequency of lowest channel.

🔆 Agilent 15:35:38 Dec 43,	55		Marker
	Mkr3	2.48350 GHz	
Ref 20 dBm Atten 30 d	3	-39.89 dBm	Select Marker
Peak 1 Log X			1 2 <u>3</u> 4
10 dB/			Marker Trace
			Huto 1 2 3
Plus Marker	And man	mar	Readout, Frequency
dBm 2.483500000 GHz -39.89 dBm			Function
Start 2.468 GHz		Stop 2.5 GHz	
#Res BW 100 kHz	/BW 100 kHz Sweep 4.123	ms (401 pts)	Marker Table
Marker Trace Type	X Axis 2 47168 GH→	Amplitude	<u>Un</u> Uff
2 (1) Freq	2.47360 GHz	-13.7 dBm	
3 (1) Freq	2.48350 GHz	-39.89 dBm	Marker All Off
			More 2 of 2
A:\SCREN008.GIF file saved			

Result data graph shows the frequency of highest channel.

4.7 Maximum Output Power

Test Requirement:	FCC part 15 section 15.247 (a1)	
Test Method:	ANSI C63.4:2003	
Test Date:	2012-11-07	
Mode of Operation:	Transmitting mode.	
Detector Function:	Peak	
Measurement BW:	RBW 1MHz ; VBW 1MHz	

Test Setup:

Result : PASS

Frequency	Peak Out	out Power	Limit		
(MHz)	(dBm)	(W)	(dBm)	(W)	
Lowest Channel : 2410.875	11.51	0.014	21	0.125	
Middle Channel : 2444.625	10.22	0.011	21	0.125	
Highest Channel : 2471.625	10.62	0.012	21	0.125	

Limits for Maximum Output Power [Section 15.247 (a1)(iii)]:

For frequency hopping systems employing at least 75 hopping channels: 1 Watt For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts

Result data graph shows the frequency of lowest channel

Result data graph shows the frequency of middle channel

🔆 🔆 Agi	lent 15:25	:14 Dec	43, 5	5						Peak Search
D.4 20	dBm	0	ar vo				Mkr1	2.472	05 GHz	
Peak		Htten .	20 0D					10.0		Meas Tools+
Log					\$					
10 dB7										Neut Deak
uD7										NextPeak
	Marker							no.		Next Pk Right
	2.4720	50000	GHz						mark and the second sec	
	10.62	dBm								Next Pk Left
M1 S2 S3 EC										Min Search
ÂA										nin Sear on
										Pk-Pk Search
Center	2.472 GHz							Span 2	0 MHz	More
#Res B	BW 3 MHz		VE	BW 3 MI	Hz	S۷	veep 4	ms (40	1 pts)	I UF 2
A:\SC	REN004.GI	file sav	ed							

Result data graph shows the frequency of highest channel

4.8 Out of Band Emissions and Emissions in Restricted Bands

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: FCC part 15 section 15.247 (d) ANSI C63.4:2003 2012-11-02 Transmitting mode. Peak RBW 100KHz ; VBW 300KHz

Test Setup:

Result : PASS

Out of Frequency Band Emissions:

For out of band emissions that are close to or exceed 20dB attenuation requirement, and emission falls into restricted band, radiated emission was performed in order to show compliance with the general radiated emission requirement.

Result Summary:

Refer to the emission data graph, result shows that the significant emissions detected are with more than 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Limits for Out of Frequency Band Emission [Section 15.247 (d)]:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Attenuation below the general limits specified in Section 15.209(a) is not required.

	Field Strength	Field Strength		
	[μV/m]	[dBµV/m]		
30-88	100	40.0		
88-216	150	43.5		
216-960	200	46.0		
Above 960	500	54.0		

Limit for Radiated Emission Falling in Restricted Bands [Section 15.209]:

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result : PASS

All Emission and Emissions Fall into Restricted Band were recorded as below:

	Radiated Emissions							
	Emissions Frequency	E-Field Polarity	Reading	System Factor	Field strength at 3m	Limit	Delta to Limit	
	MHz		dBuV/m	dB	dBuV/m	dBuV/m	dBuV/m	
	Lowest Chann	nel						
PK	4818.00	V	64.57	-3.90	60.67	74.00	-13.33	
PK	7233.00	V	48.70	1.12	49.82	74.00	-24.18	
PK	4818.00	Н	62.00	-3.90	58.10	74.00	-15.90	
PK	7532.00	Н	46.83	2.25	49.08	74.00	-24.92	
	Middle Chann	el						
PK	4887.00	V	45.08	-3.69	41.39	74.00	-32.61	
PK	7325.00	V	50.18	1.53	51.71	74.00	-22.29	
PK	4887.00	Н	63.44	-3.69	59.75	74.00	-14.25	
PK	7532.00	Н	47.41	2.25	49.66	74.00	-24.34	
	Highest Channel							
PK	4933.00	V	64.89	-3.56	61.33	74.00	-12.67	
PK	7417.00	V	51.68	1.93	53.61	74.00	-20.39	
PK	4933.00	Н	57.17	-3.56	53.61	74.00	-20.39	
PK	7417.00	Н	51.68	1.93	53.61	74.00	-20.39	
	Spurious Emi	ssions						
QP	37.81	V	30.20	9.33	39.53	40.00	-0.47	
QP	134.56	V	24.72	3.78	28.50	43.50	-15.00	
QP	321.06	V	20.45	10.46	30.91	46.00	-15.09	
QP	489.03	V	21.48	11.77	33.25	46.00	-12.75	
QP	893.86	V	17.15	19.27	36.42	46.00	-9.58	
QP	37.81	V	26.07	9.33	35.40	40.00	-4.60	
QP	100.23	Н	19.59	6.81	26.40	43.50	-17.10	
QP	327.89	Н	21.43	10.33	31.76	46.00	-14.24	
QP	539.48	Н	21.99	13.04	35.03	46.00	-10.97	
QP	744.87	Н	17.10	17.94	35.04	46.00	-10.96	

Refer to Figures shows the worst case channel's emission data graph from 30MHz-26GHz.

Result Summary:

- 1) Communication mode: All other emissions are more than 20dB below FCC part 15.209 limit.
- 2) No further spurious emissions found between 30 MHz and lowest internal used/generated frequency and from 30MHz to 1GHz.

Remarks:

- 1. "*" Radiated emissions which fall in the restricted bands as defined in Section 15.205(a).
- 2. Emission level with more than 20dB below the FCC required limit is not mentioned in table.
- 3. Delta to Limit = Field strength $(dB\mu V/m) Limit (dB\mu V/m)$.
- 4. Calculated measurement uncertainty: 9kHz -30MHz: 1.8dB. 30MHz -1GHz: 5.2dB. 1GHz -18GHz: 5.1dB.

Radiated emission data graph (Vertical polarization, 30MHz-1GHz)

Remark: Only background noise was measured from 1GHz-26GHz excluding the operation frequency relational.

Radiated emission data graph (Horizontal polarization, 30MHz-1GHz)

Remark: Only background noise was measured from 1GHz-26GHz excluding the operation frequency relational.

4.9 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement:	FCC part 15 Section 15.207 Class B
Test Method:	ANSI C63.4:2003
Test Date:	2012-11-07
Mode of Operation:	-Transmitting mode
Detector Function:	CISPR Quasi Peak
Measurement BW:	100 kHz
Worst Case Channel:	1

Test Setup:

Results: PASS

- Refer Figure and tables the result.

Limits for Conducted Emission [Section 15.207]:

Frequency Range [MHz]	Quasi-Peak Limit [dBuV]	Average Limit [dBuV]
0.15-0.5	66 to 56*	56 to 46*
0.5-5.0	56	46
5.0-30.0	60	50

* Decreases with the logarithm of the frequency.

Remarks: Calculated measurement uncertainty: ±2.8dB

Result data graph shows the conducted emission (Live).

Refer to the following table for the result details:

Conducted Emission							
Frequency	Detector	Phase	Result	Limit	Margin		
(MHz)	(QP/AV)		(dBµV)	(dBµV)			
0.250	AV	L	45.80	51.75	-5.95		
0.254	QP	L	52.38	61.61	-9.23		
0.514	AV	L	37.72	46.00	-8.28		
0.550	QP	L	46.41	56.00	-9.59		
0.982	AV	L	36.68	46.00	-9.32		
0.986	QP	L	45.98	56.00	-10.02		
2.402	QP	Ĺ	43.99	56.00	-12.01		

Result data graph shows the conducted emission (Neutral).

Refer to the following table for the result details:

Conducted Emission							
Frequency (MHz)	Detector (QP/AV)	Phase	Result (dBuV)	Limit (dBuV)	Margin		
0.262	QP	N	50.64	61.36	-10.72		
0.266	AV	Ν	40.85	51.24	-10.39		
0.502	QP	N	45.91	56.00	-10.09		
0.534	AV	Ν	34.68	46.00	-11.32		
0.954	AV	N	31.93	46.00	-14.07		
1.418	QP	N	44.15	56.00	-11.85		

5.0 RF Exposure Compliance Requirement

Test Requirement:	FCC part 15 section 15.247 (i)
Test Method:	FCC part 15 section 1.1307 (b1)
	OET Bulletin 65, Edition 01-01

Results: PASS

Systems operation under the provision of this section shall be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guideline,

The EUT is considered as a mobile device according to OET Bulletin 65, Edition 01-01, therefore distance to human body of min. 20cm is determined.

Frequency Band:	2.410.875 GHz ~2.471.625GHz	
Device Category:	 Portable (< 20cm separation) Mobile (>20cm separation) Others : 	
Exposure Classification:	Occupational/ Controlled exposure General Population / Uncontrolled exposure	
Max. Output Power	14.16mW	
Antenna Gain	0 dBi (Numeric gain:1)	
Evaluation Applied:	 ☑ MPE Evaluation ☑ SAR Evaluation 	

MPE calculation:

The radiated (EIRP) = 14.16 mW

The power density at 20cm from the antenna : = EIRP / 4π R^2 = 0.0028mW / cm^2

Limits for General Population/Uncontrolled Exposure [OET Bulletin 65, Edition 01-01]:

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

6.0 List of Measurement Equipment

Description	Manufacturer	Model no.	Serial no.	CAL due		
Spectrum Analyzer	Agilent	E4402B	US41192821	27 Mar 2013		
Test Receiver	R&S	ESI26	838786/013	27 Mar 2013		
DC Power Supply	LW	APR-3003	N/A	15 Jul 2013		
Spectrum Analyzer	R & S	FSP30	836079/035	27 Mar 2013		
Positioning Controller	C&C	CC-C-1F	N/A	19 Dec 2012		
RF Switch	EM	EMSW18	SW060023	19 Dec 2012		
Pre-amplifier	Agilent	8447F	3113A06717	27 Mar 2013		
Pre-amplifier	Compliance Direction	PAP-1G18	24002	27 Mar 2013		
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	24 Feb 2013		
Horn Antenna	ETS	3117	00086197	24 Feb 2013		
Anechoic chamber	Albatross Projects	MCDC	SW060023	19 Mar 2013		

Radiated Emission and Bandwidth Emissions

Conducted Emissions

Description	Manufacturer	Model no.	Serial no.	CAL due
Test Receiver	Rohde & Schwarz	ESPI	101611	27 Mar 2013
L.I.S.N	Schwarzbeck	NSLK8126	8126-224	27 Mar 2013
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	27 Mar 2013
AMN	EMCO	3825/2	11967C	27 Mar 2013

N/A Not Applicable or Not Available