

FCC Test Report

FCC EVALUATION REPORT FOR CERTIFICATE

Project Reference No.	270658		
Product	Remote Training System		
Brand Name	\Lambda motorola		
Model	TRAVELFENCE50CU		
Alternate Model WIRELESSFENCE25CU			
Tostad apparding to	FCC Rules and Regulations Part 15 Subpart C 2013, 15.247		
Tested according to	ANSI C63.4-2009		

Tested in period	2014-10-26 to 2014-10-30	
Issued date	2014-10-31	
Name and address	Nemko	
of the Test House	Nemko Shanghai Ltd. Shenzhen Bra Unit CD, Floor 10, Tower 2, Financia Park, Nanshan District, Shenzhen, (Phone : +86 755 8221 0420	al base, Kefa Road 8#, Hi-Technology
Tested by	20ne Peng	2014-10-31
	Zone Peng	date
Verified by	Davon Lon	2014-11-05
	Daria Liu	date

This form is only for use by Nemko, or by others according to special agreement with Nemko. The report may be reproduced infull. Partial reproduction may only be made with the written content of Nemko Hongkong. This report applies only to the sample(s) tested. It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components.

Contents of This Report

1. Client Information	4
1.1 Applicant	4
1.2 Manufacturer	4
1.3 Scope	4
2. Equipment under Test (EUT)	5
2.1 Identification of EUT	5
2.2 Detail spec:	5
2.3 Additional Information Related to Testing	
3. General Test Conditions	6
3.1 Location	6
3.2 Operating Environment	
3.3 Operating During Test	6
3.4 Test Equipment	6
4. Measurement Uncertainty	
5. Radiated Electromagnetic Disturbances	
5.1 Test Procedure	8
5.2 Measurement Equipment	8
5.3 Test Result	8
5.3.1 Diagram 5-1	
5.3.2 Diagram 5-2	11
5.3.3 Diagram 5-3	
5.3.4 Diagram 5-4	15
6. 6dB Bandwidth test	
6.1 Test Procedure	18
6.2 Measurement Equipment	
6.3 Test Result	
6.3.1 Diagram 6-1	
7. Band Edge Compliance Test	
7.1 Test Procedure	
7.2 Measurement Equipment	
7.3 Test Result	
7.3.1 Diagram 7-1	
8. Power Spectral Density Test	
8.1 Test Procedure	
8.2 Measurement Equipment	
8.3 Test Result	
8.3.1 Diagram 8-1	
9. Peak Output Power Test	
9.1 Test Procedure	
9.2 Measurement Equipment	
9.3 Test Result	
10 POWER LINE CONDUCTED EMISSION TEST.	
10.1 Test Procedure	26

FCC ID:VLJ-F50C Reference No.:270658

26
26
27
28
29
29
29

1. Client Information

1.1 Applicant

Company Name:	BINATONE ELECTRONICS INTERNATIONAL LTD.
Company Address:	Flat 23A, 9 Des Voeux Road West, Hong Kong

1.2 Manufacturer

Company Name:	Foshan Shunde Alford Electronics Co., Ltd.			
Company Address:	Xinjiao Industrial Park, DaLiang, ShunDe, Foshan City, Guangdong Province, China			

1.3 Scope

•Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.247.

2. Equipment under Test (EUT)

2.1 Identification of EUT

Category:	N/A		
Name:	Remote Training System		
Model Name:	TRAVELFENCE50CU		
Alternate model:	WIRELESSFENCE25CU		
Brand name:	ᄊ motorola		
Remark:	The two models are electrical identical.		

2.2 Detail spec: Operation Frequency: 2441MHz Type of Modulation : CSS

Antenna Type: Integral Antenna Antenna Number : 1 Antenna gain: 0dBi Channel number: 1

Max PK Output power: 21.31dBm

2.3 Additional Information Related to Testing

CH 2441 MHz

Remark: Only the worse case found by prescan is listed

3. General Test Conditions

3.1 Location

Global United Technology Services Co., Ltd. -- Nemko ELA 632 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China FCC Registration No.:600491 IC Registration No.9079A-1 Note: all test are witnessed by NEMKO engineer

3.2 Operating Environment

All tests and measurements were performed in a shielded enclosure or a controlled environment suitable for the tests conducted. The climatic conditions in the test area are automatically controlled and recorded continuously.

Parameters	Recording during test	Accepted deviation
Ambient temperature	24-25°C	15 – 35 ⁰C
Relative humidity	50-55%RH	30 - 60%RH
Atmospheric pressure	101.2 kPa -101.3kPa	86-106kPa

3.3 Operating During Test

Test mode

TM1 : 120VAC 60Hz Charging and continuous transmiting Mode

Remark : Input voltage have been adjusted from 85% to 115% ,no influence of Fundamental emission found .

3.4 Test Equipment

The test equipments used in testing are calibrated on a regular basis. For most of the testing equipments accredited calibration is conducted once a year. For certain equipment the calibration interval is longer. Between the calibrations all test equipment are controlled and verified on a regular basis. The test equipments used are defined in each test section of this report.

4. Measurement Uncertainty

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95 %.

Conducted Emission :	3.45dB	
Radiated Emission:	30MHz~1000MHz	4.50dB
	1GHz-18GHz	4.70dB

5. Radiated Electromagnetic Disturbances

5.1 Test Procedure

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast.

The EUT were rotated 0 to 360 degree and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. The test result are reported as below.

For below 1GHz

RBW=120 kHz; VBW=300KHz.QP detector, The frequency range from 30MHz to 1000MHz is checked. For above 1GHz. The frequency range from 1GHz to 25GHz(10th harmonics) is checked.

 $\mathsf{RBW}{=}1\mathsf{MHz} \text{ ; } \mathsf{VBW}{=}1\mathsf{MHz}, \mathsf{PK} \text{ detector for peak emissions measurement above } 1\mathsf{GHz}$

RBW=1MHz ; VBW=3MHz, RMS detector for average emissions measure above 1GHz

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	EMI Test Receiver	Jul. 04 2015	ESU26	GTS203	R&S
\boxtimes	BiConiLog Antenna	Feb. 26 2015	VULB9163	GTS214	SCHWARZBECK
\boxtimes	Horn Antenna	Feb. 26 2015	BBHA9120D	GTS215	SCHWARZBECK
\boxtimes	Horn Antenna	Feb. 26 2015	BBHA9170	GTS216	SCHWARZBECK
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS213	GTS
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS211	GTS
\boxtimes	Coaxial cable	Apr. 01 2015	N/A	GTS210	GTS
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS212	GTS
\boxtimes	Amplifier	Jul. 04 2015	8347A	GTS204	HP

5.2 Measurement Equipment

5.3 Test Result

Remark: If PK value is lower than AV limit , only show PK diagram as below.

From 18GHz to 25GHz, Spurious Emission can not be found .

For restriction band test :Only list the restriction band test which there found emission. For other restriction band: no emission found.

For Radiated emission test : The EUT have been tested at X,Y,Z axial direction, Only list the worse mode.

Mode	Freq range	Test ANT polarity	Diagram	Test Result
TX MODE	30MHz-1GHz:	Н	5-1	Pass
	30MHz-1GHz:	V	5-2	Pass
	1GHz-18GHz:	Н	5-3	Pass
	1GHz-18GHz:	V	5-4	Pass

NOTES:

1.All modes were measured and only the worst case emission was reported.

2. H =Horizontal V=Vertical

3. Emission = Reading +Antenna Factor + Cable Loss –Amp Factor

4. Emission level dB μ V = 20 log Emission level μ V/m

5. The lower limit shall apply at the transition frequencies

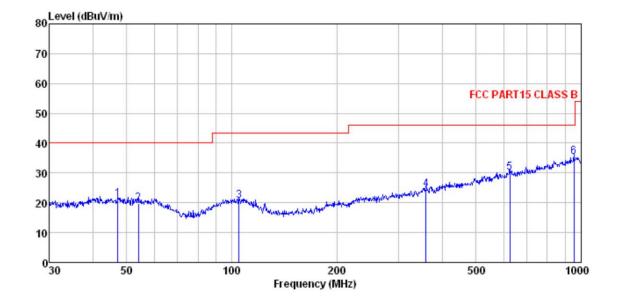
6. All the emissions appearing within 15.205 Restricted bands shall not exceed the limits shown in (15.209 limit)#.

7. Unwanted emissions not falling within restricted frequency bands shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits;

Remark :

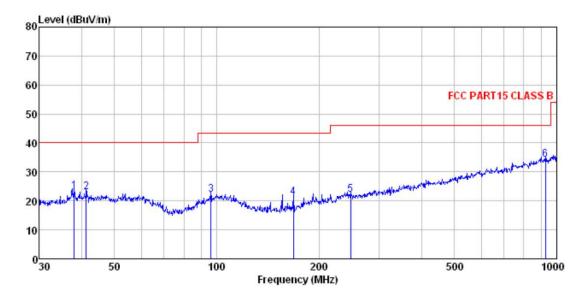
The limit of " # "of 3 meter distance is

Frequency	Distance	Field strength		Distance	Field strength
MHz	m	μV/m	dBµV/m(QP)	m	dBµV/m(QP)
30-88	3	100	40.0	10	30.0
88-216	3	150	43.5	10	33.5
216-960	3	200	46.0	10	36.0
960-1000	3	500	54.0	10	44.0
Above 1000	3	74.0 dBµV/m (PK)		/	/
		54.0 dBµV/m (AV)			

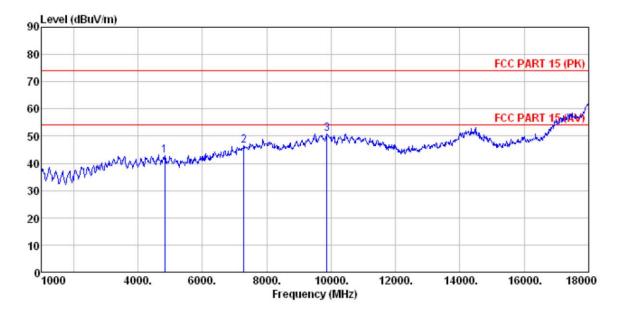

15.205 Restricted bands:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10,495-0.505	16.69475-16.69525	608614	5.355.46
2.1735-2.1905	16.80425-16.80475	960-1240	725-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-3825	1435-1626.5	9.0-92
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	1325-134
6.31175-6.31225	123-138	2200-2300	14,47-14,5
8.291-8.294	1499-150.05	2310-2390	15.35-162
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	312-31.8
12.51975-12.52025	240-285	3345.8-3358	36,4336,5
12.57675-12.57725	322-335.4	3600-4400	(9)
13.36-13.41.			

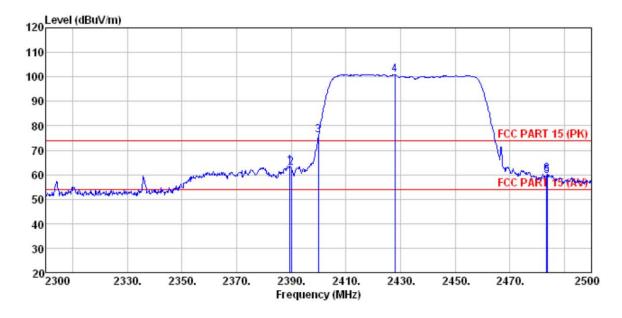
 1 Until February 1 , 1999 , this restricted band shall be 0.490–0.510 MHz . $^2\mathrm{Above}$ 38.6


5.3.1 Diagram 5-1

	Freq				Preamp Factor			Over Limit	Remark
	MHz	dBu∛		B	dB	dBuV/m	dBuV/m	B	
1 2 3 4 5 6	104.903 359.186 625.078	36.46 37.58 36.92	15.42 15.06 14.68 16.40 20.54 23.43	0.81 1.23 2.67 3.82		19.90 20.58 24.65 30.20	40.00 43.50 46.00 46.00	-20.10 -22.92 -21.35 -15.80	QP QP QP QP

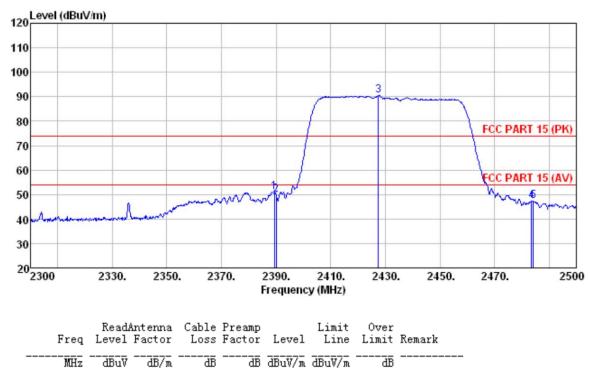

5.3.2 Diagram 5-2

	- Freq				Preamp Factor				Remark
	MHz	dBu∛		B	B	dBuV/m	dBu∛/m	B	
1 2 3 4 5 6	96.099 167.824 247.682	37.79 40.77	14.07	0.68 1.16 1.67 2.11	32.06 32.04 31.75 32.04 32.16 31.20	23.06 22.10 21.30 22.24	40.00 43.50 43.50 46.00	-16.94 -21.40 -22.20 -23.76	QP QP QP QP

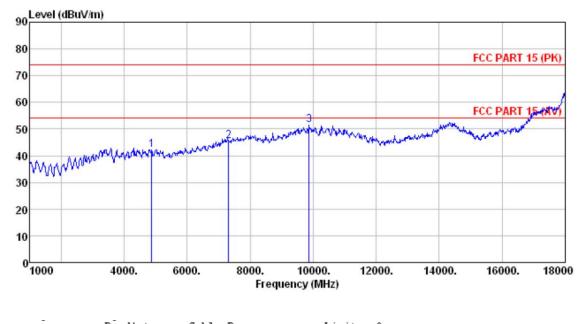


5.3.3 Diagram 5-3

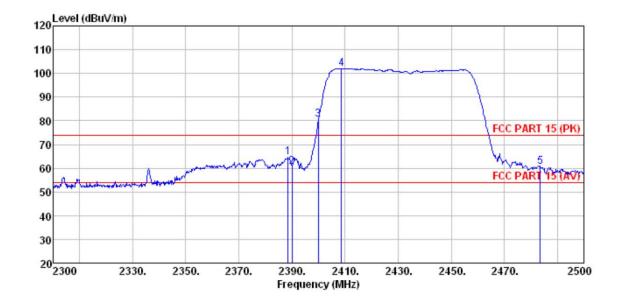
	Freq				Preamp Factor				
	MHz	dBu∛		dB	dB	dBu∛/m	dBu∛/m	dB	
1 2 3	4842.000 7290.000 9874.000	30.30	36.33	11.70	31.92	46.41	74.00	-27.59	Peak



Freq	ReadAn Level B			Preamp Factor			Over Limit	Remark
MHz	dBu∛		āB		dBu∛/m	dBuV/m	dB	
$\begin{array}{cccc} 1 & 2389.\ 600 \\ 2 & 2390.\ 000 \\ 3 & 2400.\ 000 \\ 4 & 2428.\ 000 \\ 5 & 2483.\ 500 \\ 6 & 2483.\ 800 \end{array}$	73.41 98.11 56.45	27.59 27.59 27.58 27.52 27.53 27.53	5.38 5.38 5.39 5.42 5.47 5.47	30.18	62.74 76.20 100.99 59.52	74.00 74.00	-10.43 -11.26 -14.48 -13.88	Peak Peak Peak Peak

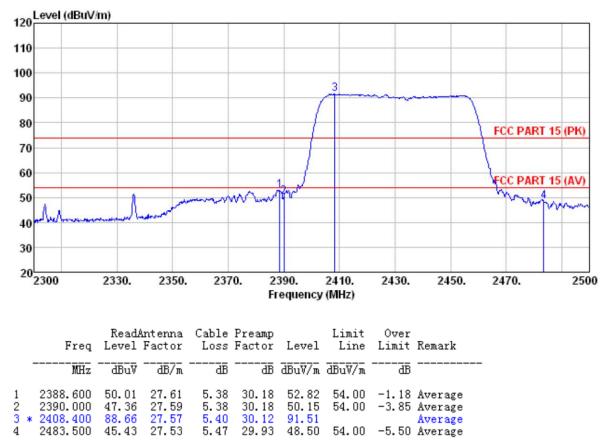


2 3 * 4	2483.500	47.22 87.65 44.39	27.59 27.52 27.53	5.38 <mark>5.42</mark> 5.47	30.18 30.12 29.93	50.01 90.47 47.46	54.00 54.00	-2.91 Average -3.99 Average <u>Average</u> -6.54 Average -6.54 Average
---------------	----------	-------------------------	-------------------------	-----------------------------------	-------------------------	-------------------------	----------------	--



5.3.4 Diagram 5-4

	Freq	Read/ Level	Antenna Factor						
	MHz	dBu∛		<u>a</u> B	dB	dBuV/m	dBuV/m	B	
2	4876.000 7324.000 9874.000	29.20	36.37	11.72	31.89	45.40	74.00	-28.60	Peak



Freq	Read# Level			Preamp Factor				Remark
MHz	dBu∛	d B/m	<u>d</u> B		dBu∛/m	dBuV/m	dB	
$\begin{array}{ccccc} 1 & 2388, 600 \\ 2 & 2390, 000 \\ 3 & 2400, 000 \\ 4 & 2408, 600 \\ 5 & 2483, 500 \end{array}$	57.63 77.85 99.13	27.59 27.58 27.57	5.38 5.39 5.40		60.42 80.64 101.98	74.00	-13.58	Peak Peak Peak

6. 6dB Bandwidth test

6.1 Test Procedure

6dB Bandwidth:

Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum with the power of which is lower than peak power for 6dB.

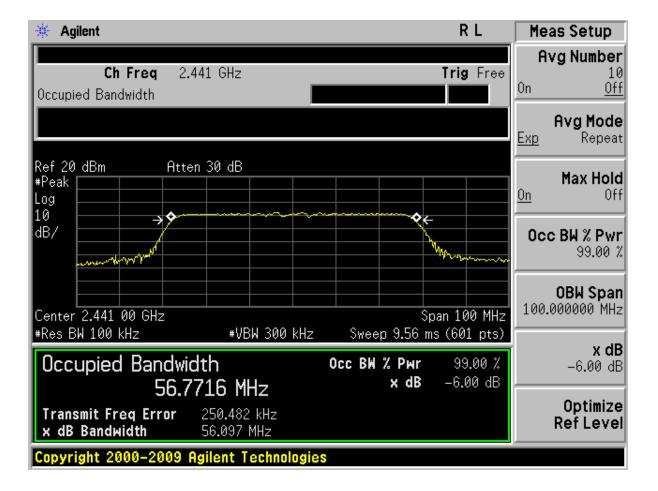
- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) $_\,3$ x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

6.3 Test Result


Remark : Conducted measurement.

6dB Bandwidth:

Diagram	6dB bandwidth (MHz)	99% bandwidth (MHz)	>Limit kHz	Result
6-1	56.097	56.7716	500	PASS

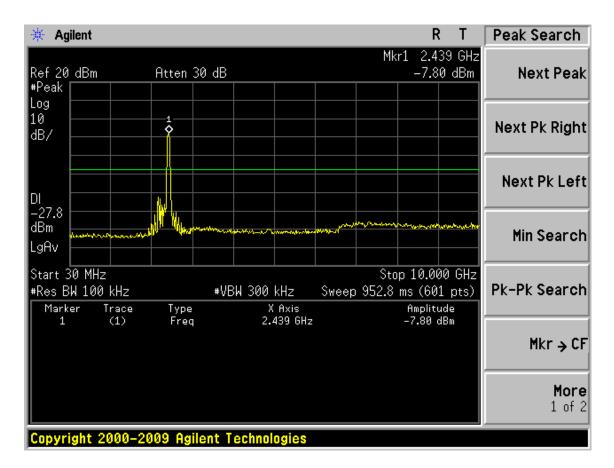
6.3.1 Diagram 6-1

7. Band Edge Compliance Test

7.1 Test Procedure

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

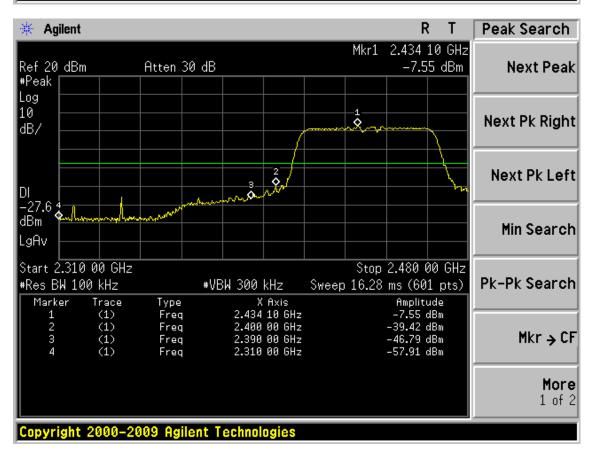
7.2 Measurement Equipment


	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

7.3 Test Result

Conducted measurement PK detector Max hold RMB100kHz VBW 300kHz

Channel	Test Data	Test Result
2441MHz	Diagram 7-1	Pass


7.3.1 Diagram 7-1

🔆 Ag	jilent								F	۲L	Peak Search
Ref 20 #Peak	dBm		Atten	30 dB				Mkr		50 GHz 16 dBm	Next Peak
Log 10 dB/											Next Pk Right
DI -27.8				1 ¢							Next Pk Left
dBm LgAv	and the second		y na se	mout	arah separtapan	Yayıladə yüldəri kər		y, lydd fel o gallyn yw ar fel		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Min Search
		Hz ace	Туре			Axis		p 1.43	4 s (60 Amplit	ude	Pk-Pk Search
1	(1)	Freq		14.	650 GHz	2		-50.96	dBm	Mkr→CF
											More 1 of 2

Copyright 2000-2009 Agilent Technologies

🔆 Agile	ent				RL	Peak Search
Ref 20 c #Peak	dBm	Atten 30 dB		Mkr1	2.433 83 GHz -7.53 dBm	Next Peak
Log 10 dB/			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		Next Pk Right
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			h.Morece	2 ****	Next Pk Left
-27.5   dBm   LgAv						Min Search
	400 00 GHz 100 kHz r Trace	#VE	W 300 kHz X Axis		2.500 00 GHz ms (601 pts) Amplitude	Pk-Pk Search
1 2 3	(1) (1) (1)	Freq Freq Freq	2.433 83 GHz 2.483 50 GHz 2.500 00 GHz		-7.53 dBm -43.03 dBm -46.97 dBm	Mkr → CF
						<b>More</b> 1 of 2
Copyrig	ht 2000-20	009 Agilent T	echnologies			



## 8. Power Spectral Density Test

#### 8.1 Test Procedure

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

The transmitter output was connected to a spectrum analyzer. The maximum power density level was measured by spectrum analyzer with RBW >3kHz and Detector: PK Cable loss and attenuator loss have been added in Spectrum setting offset .

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW >=3 kHz.
- 4. Set the VBW>=  $3 \times RBW$ .
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### 8.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
$\boxtimes$	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

#### 8.3 Test Result

Channel	Diagram	Result (dBm)	<limit (dbm)<="" th=""><th>Result</th></limit>	Result
2441MHz	8-1	-7.66	8	Pass





## 8.3.1 Diagram 8-1

🔆 Agilent				R L	Peak Search
Ref 20 dBm	Atten 30 dB		Mkr1	2.436 57 GHz -7.66 dBm	Next Peak
#Peak Log 10 dB/					Next Pk Right
		1 *	~~~~	~~~~	Next Pk Left
LgAv					Min Search
M1 S2 S3 FC				γ γ	Pk-Pk Search
<b>£</b> (f): FTun Swp					Mkr → CF
Center 2.441 00 GHz #Res BW 100 kHz	#VBW		weep 6.72	Span 70 MHz ms (601 pts)	More 1 of 2
Copyright 2000-20	109 Agilent Tec	chnologies			



## 9. Peak Output Power Test

### 9.1 Test Procedure

For systems using digital modulation in the 2400—2483.5MHz, The Peak out put power shall not exceed 1W(30dBm)

The transmitter output was connected to a PK power meter ,Cable loss have been added in power meter setting offset .

## 9.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
$\boxtimes$	Power Meter	July 01 2015	ML2495A	GTS540	Anritsu
$\boxtimes$	Power Sensor	July 01 2015	MA2411B	GTS541	Anritsu

#### 9.3 Test Result

#### **PEAK Output power : PASS**

СН	Peak output Power (dBm)	AV output Power (dBm)	Limit (dBm)
2441MHz	21.31	14.39	30



## 10 POWER LINE CONDUCTED EMISSION TEST

#### 10.1 Test Procedure

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Eroquency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		
*-Decreases with the logarithm of the frequency.				

#### **10.2 Measurement Equipment**

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
$\boxtimes$	Shielding Room	Jul. 04 2015	7.0(L)x3.0(W)x3.0(H)	GTS252	ZhongYu Electron
$\boxtimes$	EMI Test Receiver	Jul. 04 2015	ESCS30	1102.4500K30	Rohde & Schwarz
$\boxtimes$	10dB Pulse Limita	Jul. 04 2015	N/A	GTS224	Rohde & Schwarz
$\boxtimes$	LISN	Jul. 04 2015	NSLK 8127	8127549	SCHWARZBECK MESS-ELEKTRONIK
$\square$	Coaxial Cable	Apr. 01 2015	N/A	N/A	GTS

#### 10.3 Test Result

The EUT was placed on a non-metallic table, 80cm above the ground plane. The other peripheral devices power cord connected to the power mains through another line impedance stabilization network. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4-2003 on conducted Emission test.

#### Preview measurements:

## Final measurement:

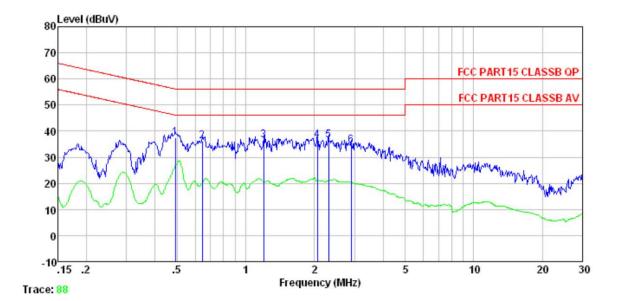
0.15 MHz to 30 MHz

0.15 MHz to 30 MHz Receiver settings:QP&AV detector

Receiver settings: PK&AV detector

RBW:9 kHzTest modePower LineTest DataTest ResultTM1LineDiagram 10-1PassNeutralDiagram 10-2Pass

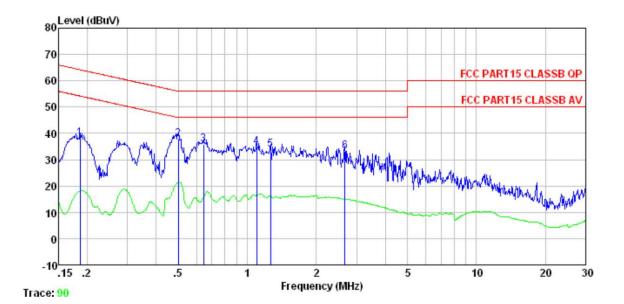
#### NOTES:


1. Measurements using CISPR quasi-peak mode & average mode.

2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.

3: If PK value is lower than AV limit then QP and AV value are deemed to be complied with rules and only diagram will be shown as below.




## 10.3.1 Diagram 10-1



	Freq		LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0.491 0.644 1.197 2.066 2.309 2.900	37.17 35.82 36.10 36.15 36.07 34.26	0.12 0.13 0.13 0.12 0.13 0.13 0.15	0.13 0.15 0.15	36.42 36.35	56.00 56.00 56.00 56.00	-18.74 -19.92 -19.64 -19.58 -19.65 -21.44	QP QP QP QP QP



## 10.3.2 Diagram 10-2



	Freq		LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	$0.644 \\ 1.100$	37.99 37.67 35.61 34.69 33.64 32.83	0.07 0.08	0.11 0.13 0.13 0.13	35.81 34.90 33.85	56.01 56.00 56.00 56.00	-20.19 -21.10	QP QP QP QP QP



## 11. Antenna requirement

### 11.1 Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

## 11.2 Result

The antenna used for this product is Internal Patch antenna that no antenna other than that furnished by the responsible party shall be used with the device, The maximum peak gain of this antenna is 0dBi.

**END OF REPORT**