

FCC TEST REPORT

Product Name:	Micro Video Drone
Trade Mark:	N/A
Model No.:	BKST003
Report Number:	170400776SHA-001
Test Standards:	FCC 47 CFR Part 15 Subpart C
FCC ID:	VLEST003T
Test Result:	PASS
Date of Issue:	April 6, 2017

Prepared for:

Asian Express Holdings Limited Room 1702 Sino Centre 582 - 592 Nathan Road Mongkok Kowloon Hong Kong

Prepared by:

Intertek Testing Service Shanghai Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China TEL: +86 (0)21 61278200 FAX: +86 (0)21 54262353

Prepared by: Wade I

Reviewed by:

Daniel Zhao Reviewer

Wade Zhang Project Engineer

Version

Version No.	Date	Description
V1.0	April 6, 2017	Original

CONTENTS

1.	GENE	ERAL INFORMATION	4
1.	GENE 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	CLIENT INFORMATION EUT INFORMATION 1.2.1 GENERAL DESCRIPTION OF EUT 1.2.2 DESCRIPTION OF ACCESSORIES. PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD OTHER INFORMATION. DESCRIPTION OF SUPPORT UNITS TEST LOCATION. TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS	4 4 4 5 5 6
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
	1.11	MEASUREMENT UNCERTAINTY	
3.	EQUI	SUMMARY PMENT LIST CONFIGURATION	8
	4.1	 ENVIRONMENTAL CONDITIONS FOR TESTING 4.1.1 NORMAL OR EXTREME TEST CONDITIONS 4.1.2 RECORD OF NORMAL ENVIRONMENT. 	9
	4.2 4.3 4.4	TEST CHANNELS	9 9
	4.5 4.6	4.4.1 FOR RADIATED EMISSIONS TEST SETUP	10 10 11
5.	-	O TECHNICAL REQUIREMENTS SPECIFICATION	
5.	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.1 5.2 5.3 5.4 5.5	REFERENCE DOCUMENTS FOR TESTING ANTENNA REQUIREMENT RADIATED EMISSION RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY 20DB OCCUPIED BANDWIDTH	13 13 24
		X 1 PHOTOGRAPHS OF TEST SETUP X 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant: Asian Express Holdings Limited			
Address of Applicant:	s of Applicant: Room 1702 Sino Centre 582 - 592 Nathan Road Mongkok Kowloon Hong Kor		
Manufacturer: Asian Express Holdings Limited			
Address of Manufacturer:	Room 1702 Sino Centre 582 - 592 Nathan Road Mongkok Kowloon Hong Kong		

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Micro Video Drone				
Model No.:	BKST003				
Add. Model No.:	BKST004				
Trade Mark:	N/A				
DUT Stage:	Production Unit				
EUT Supports Function:	General 2.4GHz Technique				
Power Supply:	2×1.5V AAA batteries.				
Software Version:	N/A				
Hardware Version: N/A					
Sample Received Date:	March 30, 2017				
Sample Tested Date:	March 30, 2017 to April 6, 2017				
Note: The test data is gathered from a production sample, provided by the manufacturer. The appearance of others models listed in the report is different from main-test model BKST003, but the circuit and the electronic construction do not change, declared by the manufacturer.					

1.2.2 Description of Accessories

None.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Range:	2405 MHz to 2476 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK
Number of Channels:	25
Channel Separation:	≥ 2 MHz
Antenna Type:	Integral Antenna
Antenna Gain:	1.9 dBi
Maximum Field Strength:	81.31 dBµV/m
Normal Test Voltage:	3.0 Vdc

1.4 OTHER INFORMATION

	Operation Frequency Each of Channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2405 MHz	8	2433 MHz	15	2452 MHz	22	2470 MHz		
2	2413 MHz	9	2437 MHz	16	2455 MHz	23	2472 MHz		
3	2422 MHz	10	2440 MHz	17	2457 MHz	24	2474 MHz		
4	2424 MHz	11	2442 MHz	18	2460 MHz	25	2476 MHz		
5	2426 MHz	12	2445 MHz	19	2462 MHz				
6	2428 MHz	13	2447 MHz	20	2465 MHz				
7	2430 MHz	14	2450 MHz	21	2467 MHz				

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested independently

1) Support Equipment

Description	Manufacturer Model No.		Serial Number	Supplied by	

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by

1.6 TEST LOCATION

Sub-contact laboratory for testing

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Compliance Certification Services (Shenzhen) Inc.

Address: No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr, Shenzhen, Guangdong, China. Telephone: +86 (0) 755 28055000 Fax: +86 (0) 755 29055221

1.7 TEST FACILITY

Shenzhen UnionTrust Quality and Technology Co., Ltd.

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872.

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty		
1	Conducted emission 9KHz-150KHz	±3.2878 dB		
2	Conducted emission 150KHz-30MHz	±3.2878 dB		
3	Radiated emission 30MHz-200Hz	±3.8928 dB		
4	Radiated emission 200MHz-1GHz	±3.8753 dB		
5	Radiated emission 1GHz-8GHz	±5.3112 dB		
6	Radiated emission Above 8GHz	±5.3493 dB		

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases						
Test Item	Test Requirement	Test Method	Result			
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS			
Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A			
Radiated Emission	FCC 47 CFR Part 15 Subpart C Section 15.249 (a)/15.209	ANSI C63.10-2013	PASS ^{Note2}			
Restricted bands around fundamental frequency (Radiated Emission)	FCC 47 CFR Part 15 Subpart C Section 15.249(a)/15.205	ANSI C63.10-2013	PASS ^{Note2}			
20dB Occupied Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.215 (c)	ANSI C63.10-2013	PASS ^{Note3}			
 N/A: In this whole report not application. Subcontract to Compliance Certification Services (Shenzhen) Inc. 						

Subcontract to Shenzhen UnionTrust Quality and Technology Co., Ltd.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List 966(1)								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
	Amplifier	HP	8447D	2944A08999	Feb. 12, 2017	Feb. 11, 2018			
	Antenna	SCHAFFNER	CBL6143	5082	Feb. 12, 2017	Feb. 11, 2018			
2	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
	EMI TEST RECEIVER	ROHDE&SCHW ARZ	ESPI	101026	Feb. 12, 2017	Feb. 11, 2018			
	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb. 15, 2017	Feb. 14, 2018			
2	Test S/W	FARAD	EZ-EMC/ CCS-03A1						

		Radiated Emiss	sion Test Equi	pment List 966(2	2)	
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
Y	PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	Feb. 17, 2017	Feb. 16, 2018
۲	High Noise Amplifier	Agilent	8449B	3008A01838	Feb. 11, 2017	Feb. 10, 2018
Z	Horn Antenna	SCHWARZBEC K	BBHA9120	D286	Feb. 12, 2017	Feb. 11, 2018
Y	Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	Feb. 11, 2017	Feb. 10, 2018
	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R
K	Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R
1	Controller	СТ	N/A	N/A	N.C.R	N.C.R
<	Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R
N	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb. 15, 2017	Feb. 14, 2018
	Test S/W	FARAD		LZ-RF /	CCS-SZ-3A2	

	RF Conducted Test Equipment List					
Used Equipment Manufacturer Model No.				Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

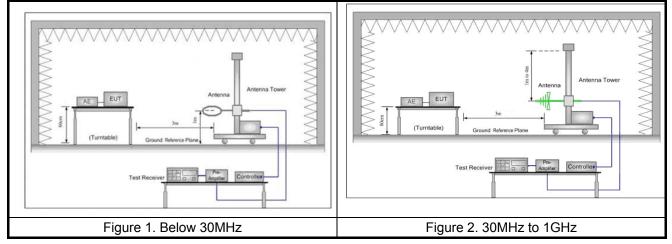
4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Se	elected Values During 1	lests .		
Test Condition	Ambient				
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)		
NT/NV	+15 to +35	3.0	20 to 75		
Remark: 1) NV: Normal Voltage; NT: Normal Temperature					

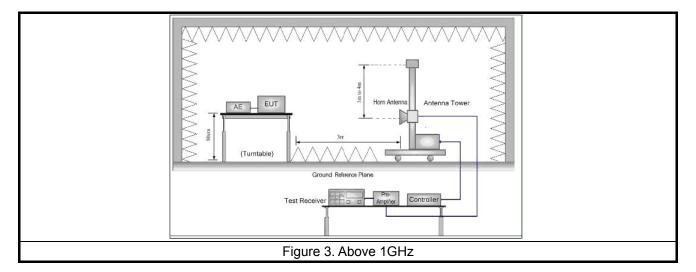
4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
Conducted Emission				
Radiated Emission	27	46	100.2	Evan ai
Restricted bands around fundamental frequency (Radiated Emission)	27	46	100.2	Evan ai
20dB Occupied Bandwidth	24.1	65	99.8	Tiny You

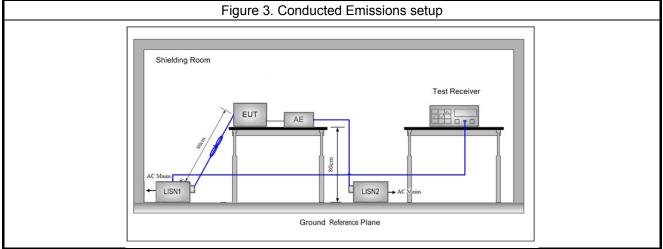
4.2TEST CHANNELS

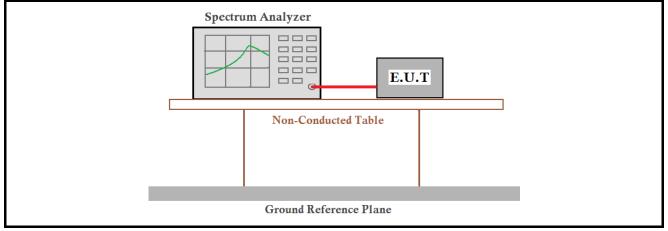

Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists		ts
		Lowest(L)	Middle(M)	Highest(H)
GFSK	2405 MHz to 2476 MHz	Channel 1	Channel 13	Channel 25
		2405 MHz	2447 MHz	2476 MHz

4.3 EUT TEST STATUS


Modulation Mode	Tx Function	Description
GFSK	1Tx	Keep the EUT in continuously transmitting or receiving with
GFSK	11X	modulation test single.

4.4 TEST SETUP


4.4.1 For Radiated Emissions test setup



4.4.2 For Conducted Emissions test setup

4.4.3 For Conducted Emissions test setup

4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 2×1.5V AAA batteries. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	X axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Type of Modulation	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	0.184	1.164	0.16	15.81	5.43	-15.92
2) Duty Cycle f 3) Average fac	On Time/ Period actor = 10 * log(tor = 20 log ₁₀ Du	1/ Duty cycle);				
The test plot a						
LXI	ent Spectrum Analyzer - Swept : RF 50 Ω C rker 5 Δ 1.16400 ms	C 5 PN0: Fast ↔→ Trig	SENSE:INT SOURCE OFF AVg Typ Free Run Avg Hold m: 10 dB	DET	23456 Marker	er
10				۵ AMkr5 1.16 0 28-	64 ms 82 dB	5
-10. -10. -20.	0	م معلم الم		4546	Nori	nal
-40. -50. -60.		X4	w approx		De	lta
-70. -80. -90.					Fixe	d⊳
Re	nter 2.447000000 GH: s BW 8 MHz	#VBW 8.0 M	FUNCTION FU	Spa Sweep 2.000 ms (100 NCTION WIDTH FUNCTION VA		Off
2 3 4 5 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	266.0 μs -39.8 32.00 μs (Δ) 4 518.0 μs -40.0 1.164 ms (Δ) -0	.415 dB 35 dBm .728 dB 52 dB .282 dB 35 dBm		Propertie	s►
7 8 9 10 11						ore of 2
MSG				STATUS		
Remark: On T	ime = Δ2 + Δ4 >	κ 4 = 56 μs + 32	µs x 4 = 184 µs	s = 0.184 ms		

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 1.9 dBi.

5.3 RADIATED EMISSION

Test Requirement:FCC 47 CFR Part 15.209 and 15.249Test Method:ANSI C63.10-2014

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
Above T GHZ	Peak	1 MHz	10 Hz	Average

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009 MHz-0.490 MHz	2400/F(kHz)			300	
0.490 MHz-1.705 MHz	24000/F(kHz)			30	
1.705 MHz-30 MHz	30			30	
30 MHz-88 MHz	100	40.0	Quasi-peak	3	
88 MHz-216 MHz	150	43.5	Quasi-peak	3	
216 MHz-960 MHz	200	46.0	Quasi-peak	3	
Above 1 GHz	500	54.0	Average	3	
Field strength of the fundamental signal					
Frequency	Lin	nit (dBµV/m @3m)	F	Remark	

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

- 1. From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

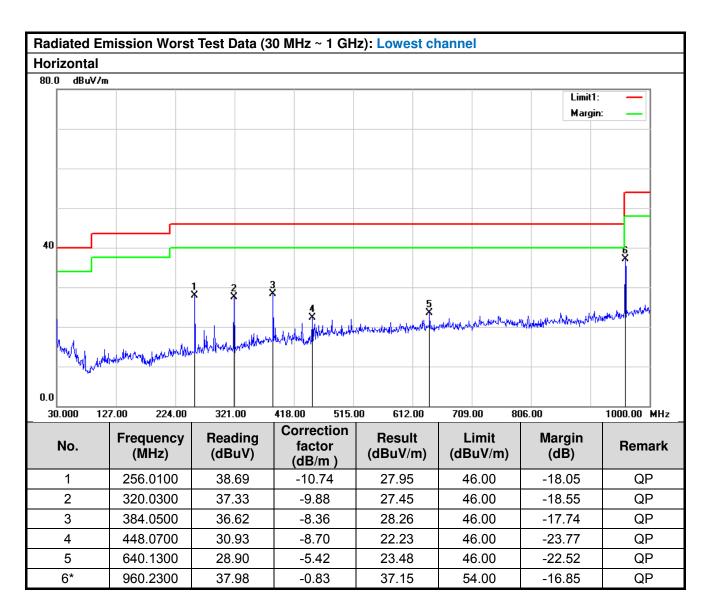
Equipment Used: Refer to section 3 for details.

Test Result: Pass

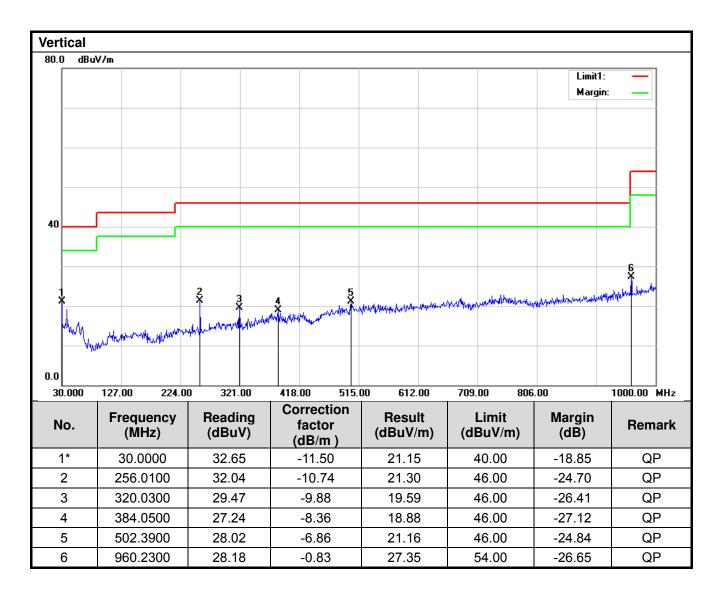
The measurement data as follows:

Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Antenna Polaxis	Pass/Fail
Lowest Channel					1 4001 411
56.71	94.00	-37.29	Average	Horizontal	Pass
72.63	114.00	-41.37	Peak	Horizontal	Pass
65.39	94.00	-28.61	Average	Vertical	Pass
81.31	114.00	-32.69	Peak	Vertical	Pass
Middle Channel					
59.51	94.00	-34.49	Average	Horizontal	Pass
75.43	114.00	-38.57	Peak	Horizontal	Pass
63.65	94.00	-30.35	Average	Vertical	Pass
79.57	114.00	-34.43	Peak	Vertical	Pass
Highest Channel					
59.59	94.00	-34.41	Average	Horizontal	Pass
75.51	114.00	-38.49	Peak	Horizontal	Pass
63.69	94.00	-30.31	Average	Vertical	Pass
79.61	114.00	-34.39	Peak	Vertical	Pass

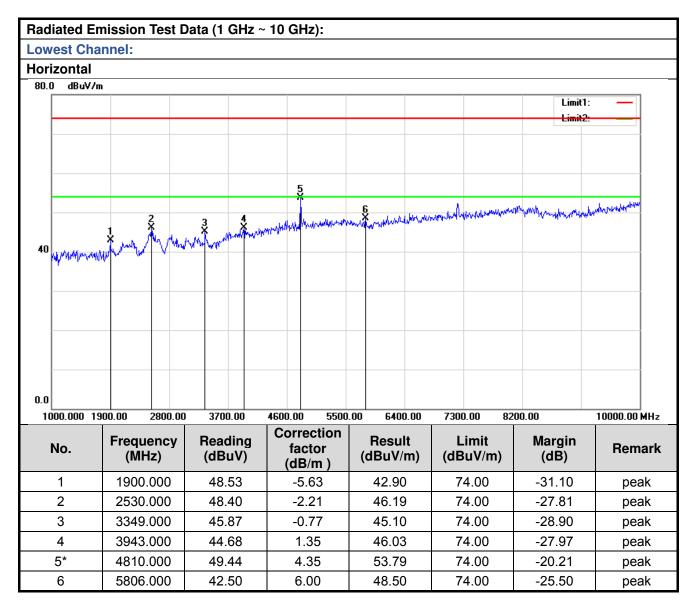
Remark: Average Result = Peak Result + Average Factor.

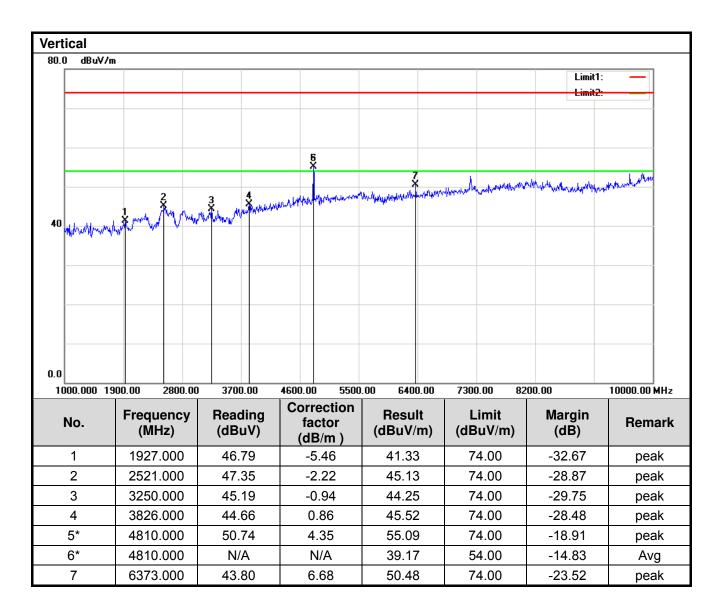

Radiated Emission Test Data (9 KHz ~ 30 MHz):

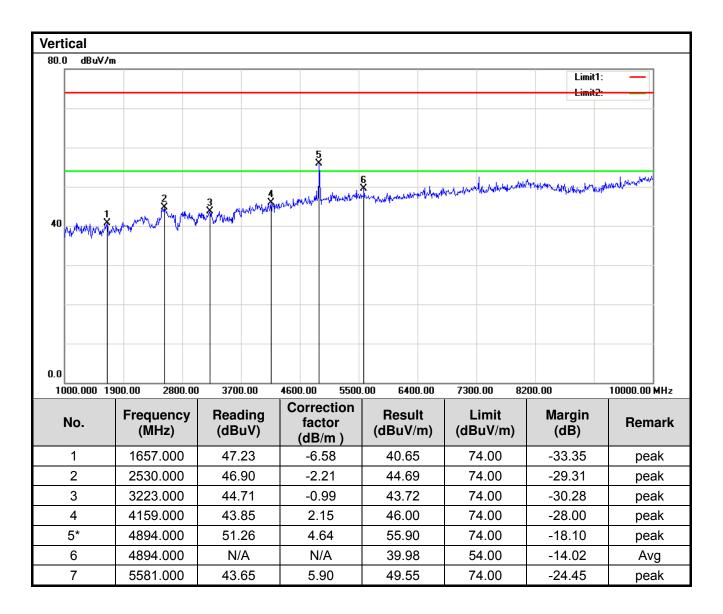
The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


Radiated Emission Test Data (Above 10 GHz):

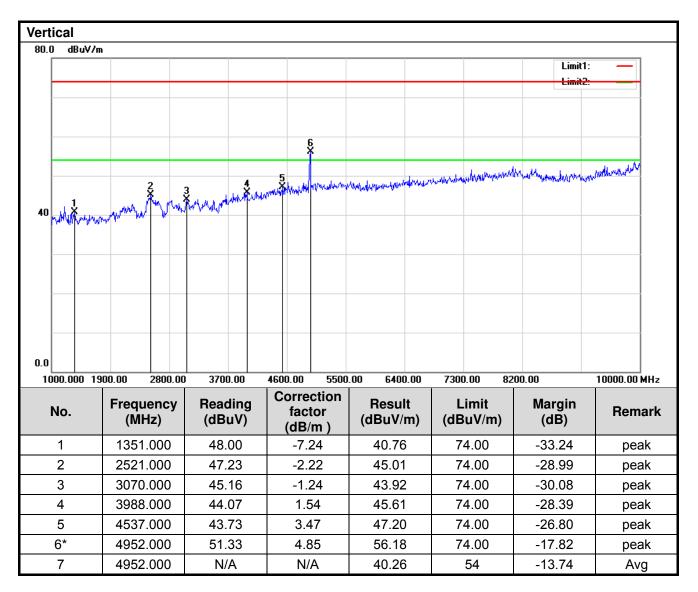
The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.







lorizontal							
80.0 dBuV.	/m				1		
						Limit1:	-
						Limitz:	
	the second second		5 X				
				6		Almen . w. w.	as hardbeet to the
	2 3	4	have an	When south the second sold	when display many and		··· ·
	1 $\frac{2}{3}$ $\sqrt{1}$	of the way with the spec	moderna in				
40 Marthan	ALAN W VV	uniya wada					
Ada we Have							
		2700.00	400.00 5500	00 6400.00	7200 00 92	200.00	10000.00 MH
0.0	1900.00 2800.00	3700.00	4600.00 5500	.00 6400.00	7300.00 82	200.00	10000.00 MHz
1000.000			Correction				
	Frequency	Reading	Correction factor	Result	Limit	Margin	
1000.000			Correction				
1000.000	Frequency	Reading	Correction factor	Result	Limit	Margin	
1000.000 No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
No.	Frequency (MHz) 1756.000	Reading (dBuV) 47.75	Correction factor (dB/m) -6.36	Result (dBuV/m) 41.39	Limit (dBuV/m) 74.00	Margin (dB) -32.61	Remark
1000.000 No. 1 2	Frequency (MHz) 1756.000 2242.000	Reading (dBuV) 47.75 46.61	Correction factor (dB/m) -6.36 -3.67	Result (dBuV/m) 41.39 42.94	Limit (dBuV/m) 74.00 74.00	Margin (dB) -32.61 -31.06	Remark peak peak
1000.000 1 1 2 3 3	Frequency (MHz) 1756.000 2242.000 2791.000	Reading (dBuV) 47.75 46.61 46.21	Correction factor (dB/m) -6.36 -3.67 -1.74	Result (dBuV/m) 41.39 42.94 44.47	Limit (dBuV/m) 74.00 74.00 74.00	Margin (dB) -32.61 -31.06 -29.53	Remark peak peak peak
No. 1 2 3 4	Frequency (MHz) 1756.000 2242.000 2791.000 3934.000	Reading (dBuV) 47.75 46.61 46.21 45.01	Correction factor (dB/m) -6.36 -3.67 -1.74 1.31	Result (dBuV/m) 41.39 42.94 44.47 46.32	Limit (dBuV/m) 74.00 74.00 74.00 74.00	Margin (dB) -32.61 -31.06 -29.53 -27.68	peak peak peak



80.0 dBu¥/i	.						
						Limit1: Limit2:	-
40 m/m/m/wet	n in	Martin and Antonio	un and a start of the start of	S. Milling, property of the second se	wanter and a second	Marth Martine Martin Alfred	det y mart
0.0 1000.000 1 No.	Frequency	Reading	4600.00 5500 Correction factor	Result	Limit	00.00 Margin	10000.00 MHz
1000.000 1 No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1000.000 1: No. 1	Frequency (MHz) 1927.000	Reading (dBuV) 46.68	Correction factor (dB/m) -5.46	Result (dBuV/m) 41.22	Limit	Margin (dB) -32.78	
1000.000 1 No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m) 74.00 74.00	Margin (dB) -32.78 -29.26	Remark
1000.000 1: No. 1	Frequency (MHz) 1927.000	Reading (dBuV) 46.68	Correction factor (dB/m) -5.46	Result (dBuV/m) 41.22	Limit (dBuV/m) 74.00	Margin (dB) -32.78	Remark
1000.000 11 No. 1 2	Frequency (MHz) 1927.000 2485.000	Reading (dBuV) 46.68 47.08	Correction factor (dB/m) -5.46 -2.34	Result (dBuV/m) 41.22 44.74	Limit (dBuV/m) 74.00 74.00	Margin (dB) -32.78 -29.26	Remark peak peak
1000.000 11 No. 1 2 3	Frequency (MHz) 1927.000 2485.000 3250.000	Reading (dBuV) 46.68 47.08 45.38	Correction factor (dB/m) -5.46 -2.34 -0.94	Result (dBuV/m) 41.22 44.74 44.44	Limit (dBuV/m) 74.00 74.00 74.00	Margin (dB) -32.78 -29.26 -29.56	Remark peak peak peak
No. 1 2 3 4	Frequency (MHz) 1927.000 2485.000 3250.000 4006.000	Reading (dBuV) 46.68 47.08 45.38 43.76	Correction factor (dB/m) -5.46 -2.34 -0.94 1.61	Result (dBuV/m) 41.22 44.74 44.44 45.37	Limit (dBuV/m) 74.00 74.00 74.00 74.00	Margin (dB) -32.78 -29.26 -29.56 -28.63	Remark peak peak peak peak

Remark:

- 1. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 2. Average Result = Peak Result + Average Factor.

5.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY

Test Requirement: FCC 47 CFR Part 15.209 and 15.205

Test Method: ANSI C63.10-2014

Limits:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Frequency	Limit (dBµV/m @3m)	Remark	
30 MHz-88 MHz	40.0	Quasi-peak Value	
88 MHz-216 MHz	43.5	Quasi-peak Value	
216 MHz-960 MHz	46.0	Quasi-peak Value	
960 MHz-1 GHz	54.0	Quasi-peak Value	
Above 1 GHz	54.0	Average Value	
Above 1 GHz	74.0	Peak Value	

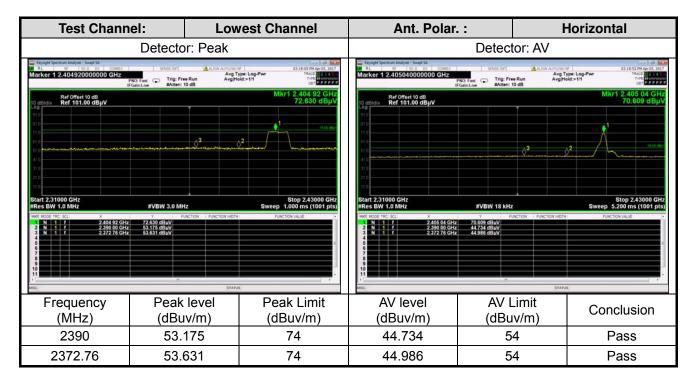
Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

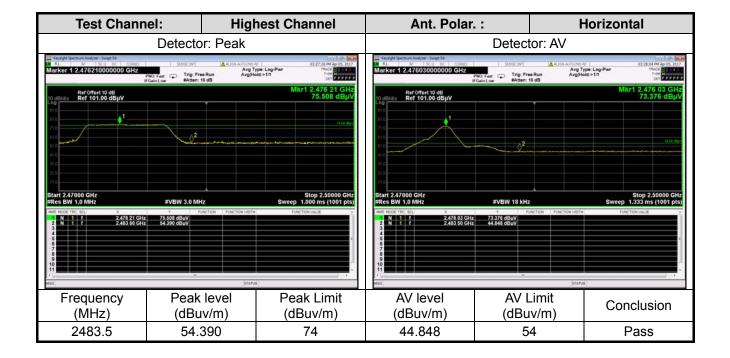
1. Use radiated spurious emission test procedure described in clause 5.3. The transmitter output (antenna port) was connected to the test receiver.

2. Set the PK and AV limit line.


3. Record the fundamental emission and emissions out of the band-edge.

4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details.


Test Result: Pass

The measurement data as follows:

Test Channel: Low			est Channel	Ant. Polar. :			Vertical	
	Detecto	r: Peak		Detector: AV				
Kepight Spectrum Analyses - Swept SA RF SG D DC CORREC Display Line 74.00 dBµV PN IFG	SENSE DAT	Run Avg Ho	03:13:40 PM 4pr 05, 2017 ype: Log-Pwr 1d:5-1/1 Der P.P.P.P Der P.P.P.P		PNO: Fast Trig: Free FGain:Low #Atten: 10	Run Avg/H	ë ∣ vpe: Log-Pwr sid⇒1/1	03:14:59 PM Apr 05, 2017 TRACE 0 2 3 4 5 TYPE 0 DET P P P P P
Ref Offset 10 dB		Y	Mkr1 2.402 40 GHz 81.312 dBµV	Ref Offset 10 dB			Mkr1	2.405 04 GHz 79.327 dBµV
10 10 110 10 110 10 110 10 110 10 110 10 111 10 110 10 111 10 110 10 111 10 111 10 111 10 111 10 111 10 111 10 111 10	#VBW 3.0 MH; *10 *12 *13 *12 *10 *10 *10 *10 *10 *10 *10 *10		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	310 310 70 310 70 310 70 310 70 310 70 310 710 310 710 310 710 310 710 310 710 70 710 70 710 70 710 70 70 70 70 10 70 70	79 327 dBuV		Sweep 5.	5top 2.43000 GHz 200 ms (1001 pts)
2 N 1 r 2390 00 GHz 3 N 1 r 2372 04 GHz 4 GHz 6 G 7 I I 10 I 11 I 10 I	54,637 dBuV 57,631 dBuV	(57.470)		2 N 1 f 2390 00 0H 3 N 1 f 2372 76 0Hz 6 0 7 0 10 11 11 11 11 11 11 11 11 1	79.327 dBµV 44.772 dBµV 60.915 dBµV	(STAT)	a:	
Frequency (MHz)	Peak (dBu		Peak Limit (dBuv/m)	AV level (dBuv/m)	AV L (dBuv	• • • •	Cond	clusion
2390	54.6	637	74	44.772	54	ŀ	P	ass
2372.64 57.6		31	74	50.915	54	ŀ	P	ass

Test Channel: High			est Channel	Ant. Polar.	:	Ve	ertical
	Detector	: Peak		Detector: AV			
Krystyft Spectrum Analyze - Swept SA K K	SENSE JMT Trig: Free R #Atten: 10 d	un Avg/Hol	Se: Log-Pwr TRACE 12 3 4 5		SDISE 3MT NO: Fast Trig: Free Run GalicLow #Atten: 10 dB	Avg Type: Log Avg[Hold:>1/1	033151 PH Apr 05, 2017 TRACE 12 4 TRACE 12 4 TRACE 12 4 DET PEPEPP
Ref Offset 10 dB			Mkr1 2.475 43 GHz 79.608 dBµV	Ref Offset 10 dB 10 dB/div Ref 101.00 dBµV			Mkr1 2.476 03 GHz 77.704 dBµV
		¢ ³		810 710 810 410 810 410 810 410 810	Q ²		MOD BAS
NIII X <thx< th=""> X X X</thx<>	#VBW 3.0 MHz 79.608 dBuV 54.260 dBuV 57.139 dBuV	TON FUNCTION WOTH	Stop 2.50000 GHz Sweep 1.000 ms (1001 pts) Pactoriacie	N 1 F 2 N 1 f 2.476 03 GHz 2 N 1 f 2.476 03 GHz 3 N 1 f 2.476 03 GHz 4 6 6 6 6	#VBW 18 kHz 77.704.08uV 44.885.08uV	FUNCTION WOTH	Stop 2.50000 GHz Sweep 1.333 ms (1001 pts) Function value
		(STATUR)		10 10 11 11 12 11		STATUS	
Frequency (MHz)	Peak l (dBuv		Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Lim (dBuv/n		Conclusion
2483.5	54.20	60	74	44.885	54		Pass
2486.17	57.13	39	74	N/A	54		Pass

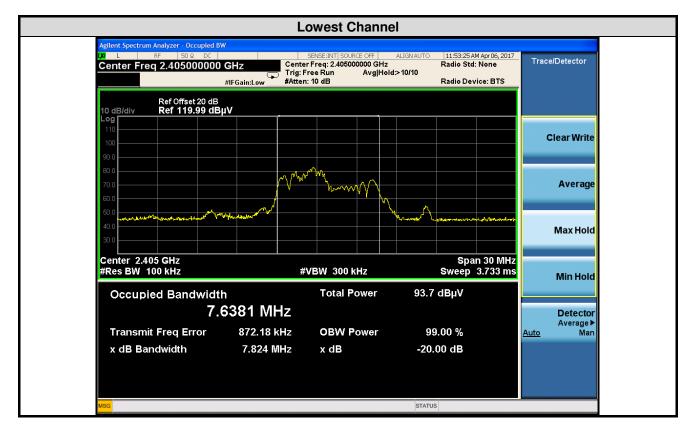
5.520DB OCCUPIED BANDWIDTH

Test Requirement:	FCC 47 CFR Part 15.215			
Test Method:	ANSI C63.10-2014			
Test Setup:	Refer to section 4.4.3 for details.			
Limits:	N/A			
Equipment Used:	Refer to section 3 for details.			
Test Result:	Pass			
The measurement procedure shall be as follows:				

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

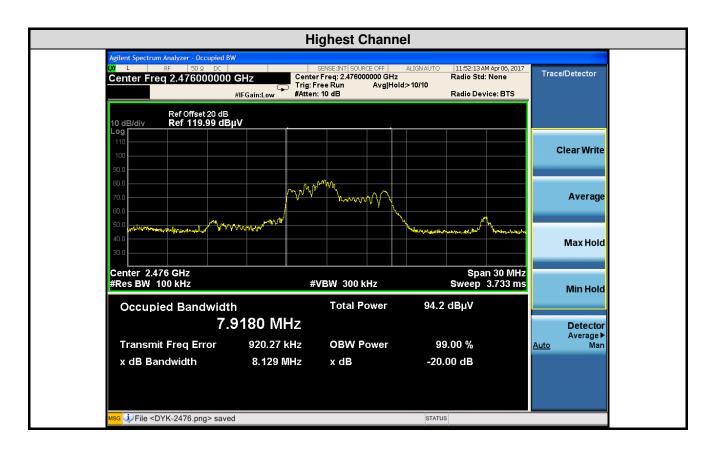
Use the following spectrum analyzer settings:

- a) Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- b) RBW \geq 1% of the 20 dB bandwidth
- c) VBW ≥ RBW
- d) Sweep = auto;
- e) Detector function = peak
- f) Trace = max hold
- g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.


Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Result: Pass The measurement data as follows:

Test Channel	20 dB Bandwidth (MHz)		
Lowest	7.824		
Middle	8.296		
Highest	8.129		



The test plot as follows:

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of Intertek, this report can't be reproduced except in full.