
## **Masimo Corporation**

Radius T°

FCC 15.247:2020

**Bluetooth LE Radio** 

Report: MASI0638 Rev. 1, Issue Date: September 29, 2020







NVLAP LAB CODE: 200676-0

## **CERTIFICATE OF TEST**



Last Date of Test: August 25, 2020

Masimo Corporation

EUT: Radius T°

## **Radio Equipment Testing**

#### **Standards**

| Specification   | Method                       |
|-----------------|------------------------------|
| FCC 15.247:2020 | ANSI C63.10:2013, KDB 558074 |

#### **Results**

| Method Clause                 | Test Description                    | Applied | Results | Comments                                |
|-------------------------------|-------------------------------------|---------|---------|-----------------------------------------|
| 6.2                           | Powerline Conducted Emissions       | No      | N/A     | Not required for a battery powered EUT. |
| 6.5, 6.6,<br>11.12.1, 11.13.2 | Spurious Radiated Emissions         | Yes     | Pass    |                                         |
| 11.6                          | Duty Cycle                          | Yes     | N/A     |                                         |
| 11.8.2                        | Occupied Bandwidth                  | Yes     | Pass    |                                         |
| 11.9.1.1                      | Output Power                        | Yes     | Pass    |                                         |
| 11.9.1.1                      | Equivalent Isotropic Radiated Power | Yes     | Pass    |                                         |
| 11.10.2                       | Power Spectral Density              | Yes     | Pass    |                                         |
| 11.11                         | Band Edge Compliance                | Yes     | Pass    |                                         |
| 11.11                         | Spurious Conducted Emissions        | Yes     | Pass    |                                         |

#### **Deviations From Test Standards**

None

Approved By:

Johnny Candelas, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

## **REVISION HISTORY**



| Revision<br>Number | Description                                                                                    | Date<br>(yyyy-mm-dd) | Page Number |
|--------------------|------------------------------------------------------------------------------------------------|----------------------|-------------|
| 01                 | Revised the EIRP module to update Antenna Gain to 1.99dBi instead of 5.67dBi originally noted. | 2020-09-29           | 33-35       |

# ACCREDITATIONS AND AUTHORIZATIONS



#### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

#### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

#### **European Union**

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

#### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### **Taiwan**

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

#### **Singapore**

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

#### **Hong Kong**

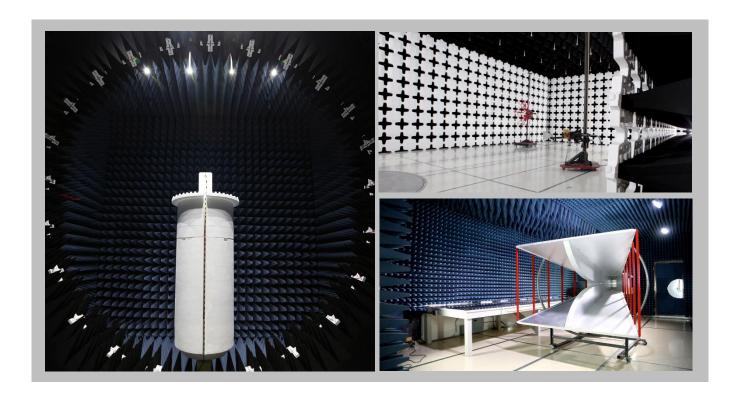
**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

#### **Vietnam**

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

#### SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


## **FACILITIES**







| California                                                                     | Minnesota                                                       | Oregon                                                             | Texas                                                | Washington                                                          |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Labs OC01-17<br>41 Tesla<br>Irvine, CA 92618                                   | Labs MN01-10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445 | Labs EV01-12<br>6775 NE Evergreen Pkwy #400<br>Hillsboro, OR 97124 | Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074 | Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011 |  |  |
| (949) 861-8918                                                                 | (612)-638-5136                                                  | (503) 844-4066                                                     | (469) 304-5255                                       | (425)984-6600                                                       |  |  |
|                                                                                |                                                                 | NVLAP                                                              |                                                      |                                                                     |  |  |
| NVLAP Lab Code: 200676-0                                                       | NVLAP Lab Code: 200881-0                                        | NVLAP Lab Code: 200630-0                                           | NVLAP Lab Code:201049-0                              | NVLAP Lab Code: 200629-0                                            |  |  |
| Innovation, Science and Economic Development Canada                            |                                                                 |                                                                    |                                                      |                                                                     |  |  |
| 2834B-1, 2834B-3                                                               | 2834E-1, 2834E-3                                                | 2834D-1                                                            | 2834G-1                                              | 2834F-1                                                             |  |  |
|                                                                                | BSMI                                                            |                                                                    |                                                      |                                                                     |  |  |
| SL2-IN-E-1154R                                                                 | SL2-IN-E-1152R                                                  | SL2-IN-E-1017                                                      | SL2-IN-E-1158R                                       | SL2-IN-E-1153R                                                      |  |  |
|                                                                                | VCCI                                                            |                                                                    |                                                      |                                                                     |  |  |
| A-0029                                                                         | A-0109                                                          | A-0108                                                             | A-0201                                               | A-0110                                                              |  |  |
| Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA |                                                                 |                                                                    |                                                      |                                                                     |  |  |
| US0158                                                                         | US0175                                                          | US0017                                                             | US0191                                               | US0157                                                              |  |  |



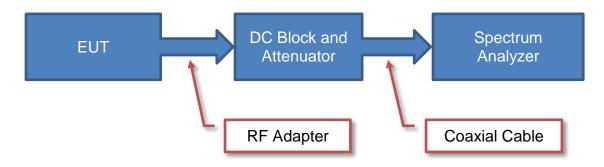
## **MEASUREMENT UNCERTAINTY**



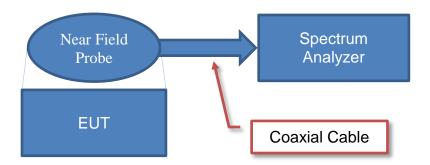
### **Measurement Uncertainty**

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

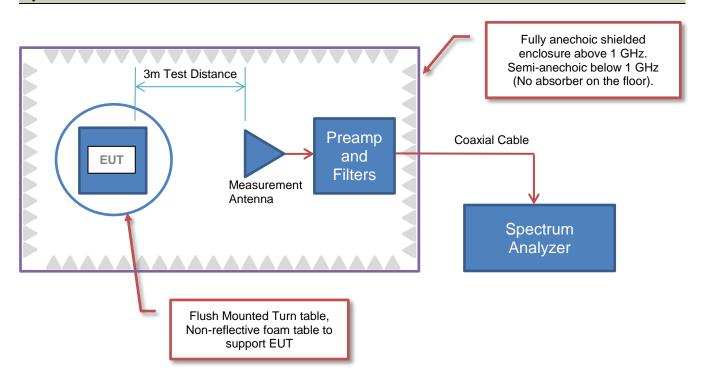
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy                    | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 1.2 dB  | -1.2 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.1 dB  | -5.1 dB  |
| AC Powerline Conducted Emissions (dB) | 2.6 dB  | -2.6 dB  |


## **Test Setup Block Diagrams**




#### **Antenna Port Conducted Measurements**



### **Near Field Test Fixture Measurements**



### **Spurious Radiated Emissions**



## PRODUCT DESCRIPTION



### **Client and Equipment Under Test (EUT) Information**

| Company Name:            | Masimo Corporation |
|--------------------------|--------------------|
| Address:                 | 52 Discovery       |
| City, State, Zip:        | Irvine, CA 92618   |
| Test Requested By:       | Anami Joshi        |
| EUT:                     | Radius T°          |
| First Date of Test:      | May 26, 2020       |
| Last Date of Test:       | August 25, 2020    |
| Receipt Date of Samples: | May 26, 2020       |
| Equipment Design Stage:  | Production         |
| Equipment Condition:     | No Damage          |
| Purchase Authorization:  | Verified           |

### **Information Provided by the Party Requesting the Test**

#### **Functional Description of the EUT:**

Radius T° sensors are battery powered, disposable sensors that are designed to continuously measure body temperature. The sensors are capable of adhering to patient's and continuously transmitting adjusted temperature measurement via Bluetooth communication protocol to a host device.

#### **Testing Objective:**

To demonstrate compliance of the Bluetooth LE radio to FCC 15.247 requirements.

## **CONFIGURATIONS**



## Configuration MASI0638-1

| EUT         |                    |                   |               |  |  |
|-------------|--------------------|-------------------|---------------|--|--|
| Description | Manufacturer       | Model/Part Number | Serial Number |  |  |
| Radius T°   | Masimo Corporation | 27869             | ENG-1         |  |  |

| Peripherals in test setup boundary                       |    |         |                 |  |  |
|----------------------------------------------------------|----|---------|-----------------|--|--|
| Description Manufacturer Model/Part Number Serial Number |    |         |                 |  |  |
| HP Laptop PC                                             | HP | ProBook | 5CD5469F1H      |  |  |
| HP Laptop Power Adapter                                  | HP | PPP009H | F12921029065683 |  |  |

| Cables         |        |            |         |                         |              |
|----------------|--------|------------|---------|-------------------------|--------------|
| Cable Type     | Shield | Length (m) | Ferrite | Connection 1            | Connection 2 |
| AC Cable       | No     | 1.8m       | No      | HP Laptop Power Adapter | AC Mains     |
| DC Cable       | No     | 1.8m       | No      | HP Laptop Power Adapter | HP Laptop PC |
| FTDI USB Cable | Yes    | 1.6m       | No      | HP Laptop Power Adapter | Radius T°    |

## Configuration MASI0638- 2

| EUT         |                    |                   |               |  |  |
|-------------|--------------------|-------------------|---------------|--|--|
| Description | Manufacturer       | Model/Part Number | Serial Number |  |  |
| Radius T°   | Masimo Corporation | 27869             | ENG-2         |  |  |

| Peripherals in test setup boundary                       |    |         |                 |  |  |
|----------------------------------------------------------|----|---------|-----------------|--|--|
| Description Manufacturer Model/Part Number Serial Number |    |         |                 |  |  |
| HP Laptop PC                                             | HP | ProBook | 5CD5469F1H      |  |  |
| HP Laptop Power Adapter                                  | HP | PPP009H | F12921029065683 |  |  |

| Cables         |        |            |         |                         |              |  |
|----------------|--------|------------|---------|-------------------------|--------------|--|
| Cable Type     | Shield | Length (m) | Ferrite | Connection 1            | Connection 2 |  |
| AC Cable       | No     | 1.8m       | No      | HP Laptop Power Adapter | AC Mains     |  |
| DC Cable       | No     | 1.8m       | No      | HP Laptop Power Adapter | HP Laptop PC |  |
| FTDI USB Cable | Yes    | 1.6m       | No      | HP Laptop Power Adapter | Radius T°    |  |

## **MODIFICATIONS**



## **Equipment Modifications**

| Item | Date       | Test                                      | Modification                         | Note                                                                | Disposition of EUT                                |
|------|------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
| 1    | 2020-05-26 | Spurious Radiated Emissions               | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Element following<br>the test. |
| 2    | 2020-05-27 | Duty Cycle                                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Element following<br>the test. |
| 3    | 2020-05-27 | Occupied<br>Bandwidth                     | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Element following<br>the test. |
| 4    | 2020-05-27 | Output Power                              | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test.       |
| 5    | 2020-05-27 | Equivalent<br>Isotropic Radiated<br>Power | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test.       |
| 6    | 2020-05-27 | Power Spectral<br>Density                 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Element following<br>the test. |
| 7    | 2020-05-27 | Band Edge<br>Compliance                   | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test.       |
| 8    | 2020-05-27 | Spurious<br>Conducted<br>Emissions        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test.       |
| 9    | 2020-08-25 | Spurious Radiated<br>Emissions            | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                  |

## **POWER SETTINGS**



The EUT was tested using the power settings provided by the manufacturer:

### **SETTINGS FOR ALL TESTS IN THIS REPORT**

| Modulation Types | Туре | Channel | Position     | Frequency (MHz) | Power Setting |
|------------------|------|---------|--------------|-----------------|---------------|
|                  |      | 0       | Low Channel  | 2402            | 4 dBm         |
| BLE              | DTS  | 20      | Mid Channel  | 2442            | 4 dBm         |
|                  |      | 39      | High Channel | 2480            | 4 dBm         |



PSA-ESCI 2020 04 03

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### **MODES OF OPERATION**

Transmitting BLE. Low Ch 2402 MHz, Mid Ch 2442 MHz, High Ch 2480 MHz

#### **POWER SETTINGS INVESTIGATED**

3.3 VDC via FTDI USB Cable

#### **CONFIGURATIONS INVESTIGATED**

MASI0638 - 1

#### FREQUENCY RANGE INVESTIGATED

| Start Frequency 30 MHz      | Stop Frequency  | 26000 MHz     |
|-----------------------------|-----------------|---------------|
| Ctart i requeries   Co mile | Otop i roquono, | 20000 1111 12 |

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| ILSI EQUIFINIENI             |                    |                        |     |            |          |
|------------------------------|--------------------|------------------------|-----|------------|----------|
| Description                  | Manufacturer       | Model                  | ID  | Last Cal.  | Interval |
| Filter - High Pass           | Micro-Tronics      | HPM50111               | HHX | 2019-07-02 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics      | LPM50004               | LFT | NCR        | 0 mo     |
| Attenuator                   | Fairview Microwave | SA18H-20               | TKQ | 2019-07-02 | 12 mo    |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                 | AFP | 2019-07-02 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AM-1402                | AOZ | 2019-07-02 | 12 mo    |
| Cable                        | Northwest EMC      | 10kHz-1GHz RE Cables   | OCH | 2019-09-09 | 12 mo    |
| Antenna - Biconilog          | EMCO               | 3142B                  | AXK | 2019-10-30 | 24 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-18002650-25-10P | AOI | 2019-12-13 | 12 mo    |
| Cable                        | Northwest EMC      | 18-26GHz RE Cables     | OCK | 2019-12-13 | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-09                | AHN | NCR        | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-12001800-30-10P | AOF | 2020-02-27 | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-08                | AHT | NCR        | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-08001200-30-10P | AOE | 2020-02-27 | 12 mo    |
| Cable                        | Northwest EMC      | 8-18GHz RE Cables      | OCO | 2020-02-27 | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-07                | AHR | NCR        | 0 mo     |
| Amplifier - Pre-Amplifier    | Cernex             | CBL01084020-xx         | PAX | 2020-02-28 | 12 mo    |
| Cable                        | Northwest EMC      | 1-8GHz RE Cables       | OCJ | 2020-02-28 | 12 mo    |
| Antenna - Double Ridge       | EMCO               | 3115                   | AHB | 2020-04-08 | 24 mo    |

#### **TEST DESCRIPTION**

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

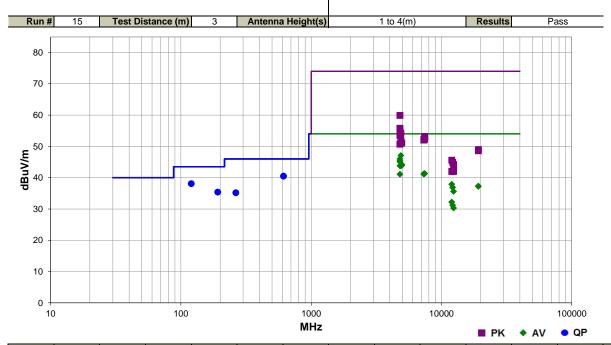
PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.


Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10\*log(1/dc).



|                     |                       |                                                                                                                                                                                    |                  |             | EmiR5 2019.08.15.1      | PSA-ESCI 2020.04.03.0 |  |  |  |  |  |  |  |
|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------------------|-----------------------|--|--|--|--|--|--|--|
| Work Order:         | MASI0638              | Date:                                                                                                                                                                              | 2020-05-26       |             |                         |                       |  |  |  |  |  |  |  |
| Project:            | None                  | Temperature:                                                                                                                                                                       | 21.7 °C          |             |                         |                       |  |  |  |  |  |  |  |
| Job Site:           | OC10                  | Humidity:                                                                                                                                                                          | 49.4% RH         |             |                         |                       |  |  |  |  |  |  |  |
| Serial Number:      | ENG-1                 | Barometric Pres.:                                                                                                                                                                  | 1004 mbar        |             | Tested by: Nolan De Ram | os                    |  |  |  |  |  |  |  |
| EUT:                | Radius T°             |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |
| Configuration:      | 1                     |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |
|                     | Masimo Corporation    |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |
| Attendees:          | Nghi Nguyen           |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |
| EUT Power:          | 3.3 VDC via FTDI USI  | B Cable                                                                                                                                                                            |                  |             |                         |                       |  |  |  |  |  |  |  |
| Operating Mode:     | Transmitting BLE. Lov | w Ch 2402 MHz, Mid Ch                                                                                                                                                              | 2442 MHz, High ( | Ch 2480 MHz |                         | _                     |  |  |  |  |  |  |  |
| Deviations:         | None                  |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |
| Comments:           |                       | e EUT operates at 93.8% duty cycle. A duty cycle correction factor was added to the AVG measurements, this factor is calculated using 10*log(1/0.938) = 0.3 dB. Partial Enclosure. |                  |             |                         |                       |  |  |  |  |  |  |  |
| Test Specifications |                       |                                                                                                                                                                                    | Test M           | ethod       |                         |                       |  |  |  |  |  |  |  |
|                     | •                     |                                                                                                                                                                                    |                  |             |                         |                       |  |  |  |  |  |  |  |

FCC 15.247:2020

ANSI C63.10:2013



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna<br>Height<br>(meters) | Azimuth (degrees) | Duty Cycle<br>Correction<br>Factor<br>(dB) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                  |
|---------------|---------------------|----------------|-------------------------------|-------------------|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|---------------------------|
| 4804.100      | 55.8                | -4.4           | 3.3                           | 157.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 51.7                 | 54.0                    | -2.3                         | Low Ch, BLE, EUT On Side  |
| 120.024       | 40.9                | -2.8           | 1.5                           | 102.0             | 0.0                                        | 0.0                             | Horz                            | QP       | 0.0                            | 38.1                 | 43.5                    | -5.4                         | BLE, Low Ch, EUT On Side  |
| 613.020       | 27.6                | 12.9           | 2.8                           | 233.0             | 0.0                                        | 0.0                             | Horz                            | QP       | 0.0                            | 40.5                 | 46.0                    | -5.5                         | BLE, Low Ch, EUT On Side  |
| 4884.008      | 50.7                | -3.9           | 1.6                           | 149.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 47.1                 | 54.0                    | -6.9                         | Mid Ch, BLE, EUT On Side  |
| 4804.083      | 50.1                | -4.4           | 1.5                           | 341.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 46.0                 | 54.0                    | -8.0                         | Low Ch, BLE, EUT Vert     |
| 191.755       | 34.9                | 0.5            | 2.8                           | 235.0             | 0.0                                        | 0.0                             | Horz                            | QP       | 0.0                            | 35.4                 | 43.5                    | -8.1                         | BLE, Low Ch, EUT On Side  |
| 4804.075      | 49.5                | -4.4           | 1.4                           | 52.0              | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 45.4                 | 54.0                    | -8.6                         | Low Ch, BLE, EUT On Side  |
| 4804.150      | 49.2                | -4.4           | 1.5                           | 331.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 45.1                 | 54.0                    | -8.9                         | Low Ch, BLE, EUT Horz     |
| 4960.000      | 47.6                | -3.7           | 1.5                           | 343.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 44.2                 | 54.0                    | -9.8                         | High Ch, BLE, EUT Vert    |
| 4960.083      | 47.3                | -3.7           | 1.5                           | 334.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 43.9                 | 54.0                    | -10.1                        | High Ch, BLE, EUT On Side |
| 4803.958      | 47.9                | -4.4           | 1.5                           | 153.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 43.8                 | 54.0                    | -10.2                        | Low Ch, BLE, EUT Vert     |
| 4884.000      | 47.4                | -3.9           | 1.5                           | 360.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 43.8                 | 54.0                    | -10.2                        | Mid Ch, BLE, EUT Vert     |
| 263.949       | 31.8                | 3.4            | 1.0                           | 47.0              | 0.0                                        | 0.0                             | Horz                            | QP       | 0.0                            | 35.2                 | 46.0                    | -10.8                        | BLE, Low Ch, EUT On Side  |
| 7440.317      | 35.2                | 5.8            | 1.5                           | 215.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 41.3                 | 54.0                    | -12.7                        | High Ch, BLE, EUT Vert    |
| 7439.083      | 35.2                | 5.8            | 1.5                           | 158.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 41.3                 | 54.0                    | -12.7                        | High Ch, BLE, EUT On Side |
| 7326.933      | 35.4                | 5.5            | 1.5                           | 42.0              | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 41.2                 | 54.0                    | -12.8                        | Mid Ch, BLE, EUT On Side  |
| 7326.950      | 35.4                | 5.5            | 1.5                           | 196.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 41.2                 | 54.0                    | -12.8                        | Mid Ch, BLE, EUT Vert     |
| 4804.033      | 45.2                | -4.4           | 1.8                           | 246.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 41.1                 | 54.0                    | -12.9                        | Low Ch, BLE, EUT Horz     |
| 4804.000      | 64.3                | -4.4           | 3.3                           | 157.0             | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 59.9                 | 74.0                    | -14.1                        | Low Ch, BLE, EUT On Side  |
| 12008.930     | 41.6                | -4.0           | 3.1                           | 196.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 37.9                 | 54.0                    | -16.1                        | BLE, Low Ch, EUT On Side  |
| 19217.590     | 39.4                | -2.4           | 1.3                           | 342.0             | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 37.3                 | 54.0                    | -16.7                        | BLE, Low Ch, EUT Vert     |
| 19218.230     | 39.3                | -2.4           | 1.3                           | 225.0             | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 37.2                 | 54.0                    | -16.8                        | BLE, Low Ch, EUT On Side  |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna<br>Height<br>(meters) | Azimuth<br>(degrees) | Duty Cycle<br>Correction<br>Factor<br>(dB) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                  |
|---------------|---------------------|----------------|-------------------------------|----------------------|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|---------------------------|
| 12209.010     | 39.5                | -2.9           | 3.7                           | 202.0                | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 36.9                 | 54.0                    | -17.1                        | BLE, Mid Ch, EUT On Side  |
| 4804.242      | 60.2                | -4.4           | 1.4                           | 52.0                 | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 55.8                 | 74.0                    | -18.2                        | Low Ch, BLE, EUT On Side  |
| 12398.950     | 38.5                | -3.2           | 4.0                           | 208.0                | 0.3                                        | 0.0                             | Horz                            | AV       | 0.0                            | 35.6                 | 54.0                    | -18.4                        | BLE, High Ch, EUT On Side |
| 4804.075      | 59.2                | -4.4           | 1.5                           | 331.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 54.8                 | 74.0                    | -19.2                        | Low Ch, BLE, EUT Horz     |
| 4804.208      | 58.8                | -4.4           | 1.5                           | 341.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 54.4                 | 74.0                    | -19.6                        | Low Ch, BLE, EUT Vert     |
| 4883.842      | 58.1                | -3.9           | 1.6                           | 149.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 54.2                 | 74.0                    | -19.8                        | Mid Ch, BLE, EUT On Side  |
| 4804.200      | 57.9                | -4.4           | 1.5                           | 153.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 53.5                 | 74.0                    | -20.5                        | Low Ch, BLE, EUT Vert     |
| 7441.142      | 47.4                | 5.8            | 1.5                           | 215.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 53.2                 | 74.0                    | -20.8                        | High Ch, BLE, EUT Vert    |
| 7327.958      | 46.8                | 5.5            | 1.5                           | 196.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 52.3                 | 74.0                    | -21.7                        | Mid Ch, BLE, EUT Vert     |
| 7437.875      | 46.5                | 5.8            | 1.5                           | 158.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 52.3                 | 74.0                    | -21.7                        | High Ch, BLE, EUT On Side |
| 12009.000     | 35.9                | -4.0           | 1.3                           | 26.0                 | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 32.2                 | 54.0                    | -21.8                        | BLE, Low Ch, EUT Vert     |
| 7325.967      | 46.5                | 5.5            | 1.5                           | 42.0                 | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 52.0                 | 74.0                    | -22.0                        | Mid Ch, BLE, EUT On Side  |
| 4883.792      | 55.9                | -3.9           | 1.5                           | 360.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 52.0                 | 74.0                    | -22.0                        | Mid Ch, BLE, EUT Vert     |
| 12211.300     | 33.8                | -2.9           | 3.9                           | 335.0                | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 31.2                 | 54.0                    | -22.8                        | BLE, Mid Ch, EUT Vert     |
| 4960.083      | 54.8                | -3.7           | 1.5                           | 343.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 51.1                 | 74.0                    | -22.9                        | High Ch, BLE, EUT Vert    |
| 4959.850      | 54.8                | -3.7           | 1.5                           | 334.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 51.1                 | 74.0                    | -22.9                        | High Ch, BLE, EUT On Side |
| 4804.083      | 55.1                | -4.4           | 1.8                           | 246.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 50.7                 | 74.0                    | -23.3                        | Low Ch, BLE, EUT Horz     |
| 12398.880     | 33.2                | -3.2           | 1.0                           | 303.0                | 0.3                                        | 0.0                             | Vert                            | AV       | 0.0                            | 30.3                 | 54.0                    | -23.7                        | BLE, High Ch, EUT Vert    |
| 19215.690     | 51.4                | -2.4           | 1.3                           | 225.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 49.0                 | 74.0                    | -25.0                        | BLE, Low Ch, EUT On Side  |
| 19215.420     | 51.0                | -2.4           | 1.3                           | 342.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 48.6                 | 74.0                    | -25.4                        | BLE, Low Ch, EUT Vert     |
| 12011.070     | 49.7                | -4.1           | 3.1                           | 196.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 45.6                 | 74.0                    | -28.4                        | BLE, Low Ch, EUT On Side  |
| 12211.580     | 47.8                | -2.9           | 3.7                           | 202.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 44.9                 | 74.0                    | -29.1                        | BLE, Mid Ch, EUT On Side  |
| 12399.010     | 47.4                | -3.2           | 4.0                           | 208.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 44.2                 | 74.0                    | -29.8                        | BLE, High Ch, EUT On Side |
| 12211.580     | 45.0                | -2.9           | 3.9                           | 335.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.1                 | 74.0                    | -31.9                        | BLE, Mid Ch, EUT Vert     |
| 12398.910     | 45.2                | -3.2           | 1.0                           | 303.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.0                 | 74.0                    | -32.0                        | BLE, High Ch, EUT Vert    |
| 12008.890     | 46.0                | -4.0           | 1.3                           | 26.0                 | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.0                 | 74.0                    | -32.0                        | BLE, Low Ch, EUT Vert     |



|                      |              |              |                |                |                          |             |                         |              |              | EmiR5 2019.08.15.1 | Р            | SA-ESCI 2020.04.03.0 |
|----------------------|--------------|--------------|----------------|----------------|--------------------------|-------------|-------------------------|--------------|--------------|--------------------|--------------|----------------------|
| Wo                   | ork Order:   |              | 810638         |                | Date:                    | 2020-       |                         |              | 11           | ,                  | -            |                      |
|                      | Project:     |              | one            |                | nperature:               |             | 2 °C                    |              | 21           | $\epsilon \in$     | 7-           | -                    |
|                      | Job Site:    |              | C10            |                | Humidity:                |             | % RH                    |              |              |                    |              |                      |
| Serial               | Number:      |              | IG-1           | Barome         | tric Pres.:              | 1010        | mbar                    |              | Tested by:   | Mark Bayta         | ın           |                      |
| 0                    |              | Radius T°    |                |                |                          |             |                         |              |              |                    |              |                      |
|                      | iguration:   |              | arnaration     |                |                          |             |                         |              |              |                    |              |                      |
|                      | ttendees:    |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              | ria FTDI USB   | Coblo          |                          |             |                         |              |              |                    |              |                      |
|                      |              | Transmitti   | ng BLE. Low    | Ch 2402        | MUz                      |             |                         |              |              |                    |              |                      |
| Operati              | ing Mode:    | TTATISTIILLI | ilg BLE. LOW   | CII 2402 I     | IVITIZ                   |             |                         |              |              |                    |              |                      |
| _                    |              | None         |                |                |                          |             |                         |              |              |                    |              |                      |
| De                   | eviations:   |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              | The EUT of   | operates at 9  | 3.8% dutv      | cvcle. A du              | tv cvcle co | rection fac             | ctor was add | ded to the A | VG measur          | ements, th   | nis factor           |
| Co                   | omments:     |              | lated using 1  |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              | J              | ٥,             | ,                        |             |                         |              |              |                    |              |                      |
| Test Speci           | fications    |              |                |                |                          |             | Test Meth               | nod          |              |                    |              |                      |
| FCC 15.24            |              |              |                |                |                          |             | ANSI C63                |              |              |                    |              |                      |
| 100 13.24            | 1.2020       |              |                |                |                          |             | AIVOI COO               | . 10.2013    |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| Run#                 | 26           | Test Di      | stance (m)     | 3              | Antenna                  | Height(s)   |                         | 1 to 4(m)    |              | Results            | Р            | ass                  |
|                      |              |              | ` ' '          |                |                          |             |                         | ` '          |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 80                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 70                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| , ,                  |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 60                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 50                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         | ¥            |              |                    |              |                      |
| 40                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| .0                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 30 +                 |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 00                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 20 —                 |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 10                   |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| -                    |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              |                      |
| 0 +                  | <u> </u>     |              |                |                |                          |             |                         |              |              |                    |              | 40000                |
| 1000                 | )            |              |                |                |                          |             |                         |              |              |                    |              | 10000                |
|                      |              |              |                |                |                          | MHz         |                         |              |              | ■ PK               | ◆ AV         | <ul><li>QP</li></ul> |
|                      |              |              |                |                |                          |             |                         |              |              |                    |              | *-                   |
|                      |              |              |                |                | Duty Cycle<br>Correction | External    | Polarity/<br>Transducer |              | Distance     |                    |              | Compared to          |
| Freq                 | Amplitude    | Factor       | Antenna Height | Azimuth        | Factor                   | Attenuation | Туре                    | Detector     | Adjustment   | Adjusted           | Spec. Limit  | Spec.                |
| (MHz)                | (dBuV)       | (dB)         | (meters)       | (degrees)      | (dB)                     | (dB)        |                         |              | (dB)         | (dBuV/m)           | (dBuV/m)     | (dB)                 |
| 4803.967             | 55.7         | -4.7         | 1.4            | 351.0          | 0.3                      | 0.0         | Vert                    | AV           | 0.0          | 51.3               | 54.0         | -2.7                 |
| 4804.000             | 52.0         | -4.7<br>-4.7 | 2.7            | 346.0          | 0.3                      | 0.0         | Horz                    | AV           | 0.0          | 47.6               | 54.0         | -2. <i>1</i><br>-6.4 |
| 4804.075             | 51.6         | -4.7         | 3.7            | 223.0          | 0.3                      | 0.0         | Vert                    | AV           | 0.0          | 47.2               | 54.0         | -6.8                 |
| 4803.875             | 51.0         | -4.7         | 1.5            | 17.0           | 0.3                      | 0.0         | Horz                    | AV           | 0.0          | 46.6               | 54.0         | -7.4                 |
| 4803.925<br>4803.875 | 49.3<br>47.6 | -4.7<br>-4.7 | 1.7<br>1.5     | 137.0<br>204.0 | 0.3<br>0.3               | 0.0<br>0.0  | Vert<br>Horz            | AV<br>AV     | 0.0<br>0.0   | 44.9<br>43.2       | 54.0<br>54.0 | -9.1<br>-10.8        |
| 4803.875             | 59.8         | -4.7<br>-4.7 | 1.5            | 351.0          | 0.3                      | 0.0         | Vert                    | PK           | 0.0          | 43.2<br>55.1       | 74.0         | -10.8                |
| 4804.525             | 58.5         | -4.7         | 1.5            | 204.0          | 0.0                      | 0.0         | Horz                    | PK           | 0.0          | 53.8               | 74.0         | -20.2                |
| 4803.517             | 57.7         | -4.7         | 2.7            | 346.0          | 0.0                      | 0.0         | Horz                    | PK           | 0.0          | 53.0               | 74.0         | -21.0                |
| 4803.692             | 57.3         | -4.7         | 3.7            | 223.0          | 0.0                      | 0.0         | Vert                    | PK           | 0.0          | 52.6               | 74.0         | -21.4                |
| 4804.642             | 56.6<br>55.4 | -4.7<br>-4.7 | 1.5<br>1.7     | 17.0<br>137.0  | 0.0<br>0.0               | 0.0<br>0.0  | Horz<br>Vert            | PK<br>PK     | 0.0<br>0.0   | 51.9<br>50.7       | 74.0<br>74.0 | -22.1<br>-23.3       |
| 4803.458             |              |              | 1.7            | 137.0          |                          |             |                         |              |              |                    |              |                      |



PSA-ESCI 2020.04.03.0

QP

■ PK ◆ AV

EmiR5 2019.08.15.1

|                  |          |             |           |         |          |            | _       |         |        |         |        |          |           |       | EmiR5 201 | 9.08.15.1 |       | PSA       | ESCI 2020.04 |
|------------------|----------|-------------|-----------|---------|----------|------------|---------|---------|--------|---------|--------|----------|-----------|-------|-----------|-----------|-------|-----------|--------------|
|                  | Order:   |             | 10638     |         |          |            | Date:   | 20      | 20-05  | -26     |        |          |           |       |           | 5         |       |           |              |
|                  | Project: |             | ne        |         | Те       | mpera      |         |         | 21.7°  |         |        |          | 2         |       | 5         |           |       |           |              |
|                  | ob Site: |             | C10       |         |          |            | idity:  |         | 9.4% I |         |        |          | _         |       |           |           |       |           |              |
| Serial N         |          |             | G-1       |         | Barom    | etric I    | Pres.:  | 10      | 004 m  | bar     |        |          | Teste     | d by: | Nolar     | De F      | Ramos | 3         |              |
| 0                |          | Radius T°   |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| Configi          | uration: | 1           |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          | Masimo C    |           | on      |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| Atte             | endees:  | Nghi Nguy   | en        | 100.0   |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          | 3.3 VDC v   | ia FIDIT  | USB C   | able     |            | 11:1-0  |         | NAL I  |         |        |          |           |       |           |           |       |           |              |
| Operating        | g Mode:  | Transmittir | ig BLE.   | LOW C   | n 2402   | : IVIHZ,   | High C  | n 2480  | IVIHZ  |         |        |          |           |       |           |           |       |           |              |
|                  |          | Mono        |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| Dev              | iations: | None        |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          | The EUT o   | norotoo   | ot 02 9 | 00/ dut  | 1. 0. (ol. | 2 A dus | v ovolo | oorro  | otion f | ootor  | woo od   | dod to    | tho A | /C m      | 00011     | omont | to this   | footor       |
| Con              |          | was calcul  |           |         |          |            |         |         |        |         |        |          |           | the A | vG III    | easui     | emen  | 15, 11118 | actor        |
| COII             | mients.  | was caicul  | ateu uSII | ng 10"  | iog( i/0 | .930) :    | = U.3 a | o. ban  | u Eug  | e. Par  | udi Eľ | iciosure | <b>5.</b> |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         | _      |         |        |          |           |       |           |           |       |           |              |
| est Specific     |          |             |           |         |          |            |         |         |        | est Me  |        |          |           |       |           |           |       |           |              |
| C 15.247:2       | 2020     |             |           |         |          |            |         |         | Al     | NSI C   | 33.10: | 2013     |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            | _       |         | , ,    |         |        |          |           | -     | _         |           |       |           |              |
| Run#             | 17       | Test Dis    | stance (  | m)      | 3        | An         | itenna  | Height  | (S)    |         | 1      | to 4(m)  |           |       | Kes       | sults     |       | Pas       | SS           |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| 80               |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| - 1              |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| _                |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | ⊢         | _     |           | _            |
| 70               |          |             |           |         |          | _          |         |         |        |         |        |          |           |       |           | -         | _     |           | _            |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | L.        | .     |           |              |
| 60               | 1        |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           | •     |           |              |
|                  |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| <b>5</b> 0       |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | T         |       |           | 7            |
| 5U <del> </del>  | -        |             |           |         |          |            |         |         |        |         |        |          |           |       |           | 1.        |       |           |              |
| E                |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| E .              |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| ۳/۸ng<br>40      |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| W//ngp           |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| ₩/ <b>\ngp</b>   |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>W//Nab</b> 40 |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>ш//ngp</b>    |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>40</b>        |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>u//\ngp</b>   |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>40</b>        |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| 30 — 20 —        |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           | •         |       |           |              |
| <b>30</b> −−−    |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| 30               |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| 30               |          |             |           |         |          |            |         |         |        |         |        |          |           |       |           |           |       |           |              |
| 30 — 20 —        |          | 240         |           |         | 2420     | 0          |         | 24      | 10     |         |        | 2460     |           |       | 24        | 90        |       |           | 2500         |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Duty Cycle<br>Correction<br>Factor<br>(dB) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                  |
|---------------|---------------------|----------------|----------------------------|----------------------|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|---------------------------|
| 2484.047      | 40.6                | -11.5          | 1.7                        | 219.0                | 0.3                                        | 20.0                            | Horz                            | AV       | 0.0                            | 49.4                 | 54.0                    | -4.6                         | BLE, High Ch, EUT Vert    |
| 2484.640      | 40.6                | -11.5          | 1.5                        | 351.0                | 0.3                                        | 20.0                            | Vert                            | AV       | 0.0                            | 49.4                 | 54.0                    | -4.6                         | BLE, High Ch, EUT Vert    |
| 2484.357      | 40.5                | -11.5          | 1.5                        | 94.0                 | 0.3                                        | 20.0                            | Horz                            | AV       | 0.0                            | 49.3                 | 54.0                    | -4.7                         | BLE, High Ch, EUT On Side |
| 2484.457      | 40.5                | -11.5          | 3.5                        | 282.0                | 0.3                                        | 20.0                            | Vert                            | AV       | 0.0                            | 49.3                 | 54.0                    | -4.7                         | BLE, High Ch, EUT On Side |
| 2484.643      | 40.5                | -11.5          | 1.5                        | 47.0                 | 0.3                                        | 20.0                            | Horz                            | AV       | 0.0                            | 49.3                 | 54.0                    | -4.7                         | BLE, High Ch, EUT Horz    |
| 2484.577      | 40.5                | -11.5          | 3.5                        | 11.0                 | 0.3                                        | 20.0                            | Vert                            | AV       | 0.0                            | 49.3                 | 54.0                    | -4.7                         | BLE, High Ch, EUT Horz    |
| 2389.300      | 40.6                | -11.7          | 1.5                        | 123.0                | 0.3                                        | 20.0                            | Horz                            | AV       | 0.0                            | 49.2                 | 54.0                    | -4.8                         | EUT, Low Ch, EUT Vert     |
| 2388.543      | 40.6                | -11.7          | 1.5                        | 209.0                | 0.3                                        | 20.0                            | Vert                            | AV       | 0.0                            | 49.2                 | 54.0                    | -4.8                         | EUT, Low Ch, EUT Vert     |
| 2485.487      | 52.2                | -11.5          | 1.7                        | 219.0                | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.7                 | 74.0                    | -13.3                        | BLE, High Ch, EUT Vert    |
| 2483.923      | 52.0                | -11.5          | 3.5                        | 282.0                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.5                 | 74.0                    | -13.5                        | BLE, High Ch, EUT On Side |
| 2484.643      | 52.0                | -11.5          | 1.5                        | 47.0                 | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.5                 | 74.0                    | -13.5                        | BLE, High Ch, EUT Horz    |
| 2389.667      | 52.2                | -11.7          | 1.5                        | 123.0                | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.5                 | 74.0                    | -13.5                        | EUT, Low Ch, EUT Vert     |
| 2389.497      | 52.2                | -11.7          | 1.5                        | 209.0                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.5                 | 74.0                    | -13.5                        | EUT, Low Ch, EUT Vert     |
| 2484.820      | 51.8                | -11.5          | 1.5                        | 351.0                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.3                 | 74.0                    | -13.7                        | BLE, High Ch, EUT Vert    |
| 2485.303      | 51.8                | -11.5          | 1.5                        | 94.0                 | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.3                 | 74.0                    | -13.7                        | BLE, High Ch, EUT On Side |
| 2484.220      | 51.6                | -11.5          | 3.5                        | 11.0                 | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.1                 | 74.0                    | -13.9                        | BLE, High Ch, EUT Horz    |

MHz



|                      |                      |                |                |                |                          |              |                         |             |              | EmiR5 2019.08.15.1 | PS           | SA-ESCI 2020.04.03.0 |
|----------------------|----------------------|----------------|----------------|----------------|--------------------------|--------------|-------------------------|-------------|--------------|--------------------|--------------|----------------------|
| Wo                   | rk Order:            | MAS            | SI0638         |                | Date:                    |              | 08-25                   |             |              |                    |              |                      |
|                      | Project:             |                | one            |                | nperature:               |              | 2 °C                    |             | 4            |                    | 3/-          |                      |
|                      | Job Site:<br>Number: |                | C10<br>NG-1    |                | Humidity:<br>tric Pres.: |              | % RH<br>mbar            |             | Tested by:   |                    | 0000         |                      |
| Serial               |                      | Radius T°      |                | Daronne        | tille Fres.:             | 1010         | Праг                    |             | rested by:   | IVIAIK Dayla       | an           |                      |
|                      | guration:            | 1              |                |                |                          |              |                         |             |              |                    |              |                      |
| C                    | ustomer:             | Masimo C       | Corporation    |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      | Nghi Nguy      |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                | /ia FTDI USE   |                | V41.1-                   |              |                         |             |              |                    |              |                      |
| •                    | ng Mode:             | None           | ing BLE. Lov   | V Cn 2402 i    | VITZ                     |              |                         |             |              |                    |              |                      |
| De                   | eviations:           |                | operates at 9  | 93.8% dutv     | cvcle. A du              | ıtv cycle co | rrection fac            | tor was add | ded to the A | VG measu           | rements, th  | nis factor           |
| Co                   | mments:              |                | lated using 1  |                |                          |              |                         |             |              |                    | ,            |                      |
| Test Speci           | fications            |                |                |                |                          |              | Test Meth               | od          |              |                    |              |                      |
| FCC 15.247           |                      |                |                |                |                          |              | ANSI C63.               | 10:2013     |              |                    |              |                      |
| D #1                 | 27                   | Took Di        | internal (m)   | 3              | Antonna                  | . Hai ahtta  |                         | 1 to 1(m)   |              | Doguito            | I n          |                      |
| Run #                | 27                   | lest D         | istance (m)    | 3              | Antenna                  | Height(s)    |                         | 1 to 4(m)   |              | Results            | l Pa         | ass                  |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 80                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 70                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 60                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 60                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 50                   | •                    |                |                |                |                          |              |                         |             |              | •                  | •            |                      |
| 40                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 30                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 30                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 20                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 10                   |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
|                      |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 0 —                  |                      |                |                |                |                          |              |                         |             |              |                    |              |                      |
| 2380                 |                      | 2400           | 0              | 2420           |                          | 2440         |                         | 2460        |              | 2480               |              | 2500                 |
|                      |                      |                |                |                |                          | MHz          |                         |             |              | ■ DV               | A A1/        | • OB                 |
|                      |                      |                |                |                |                          |              |                         |             |              | ■ PK               | ◆ AV         | • QP                 |
|                      |                      |                |                |                | Duty Cycle<br>Correction | External     | Polarity/<br>Transducer |             | Distance     |                    |              | Compared to          |
| Freq                 | Amplitude            | Factor         | Antenna Height | Azimuth        | Factor                   | Attenuation  | Type                    | Detector    | Adjustment   | Adjusted           | Spec. Limit  | Spec.                |
| (MHz)                | (dBuV)               | (dB)           | (meters)       | (degrees)      | (dB)                     | (dB)         |                         |             | (dB)         | (dBuV/m)           | (dBuV/m)     | (dB)                 |
| 2483.530             | 40.3                 | -11.8          | 1.5            | 211.0          | 0.3                      | 20.0         | Horz                    | AV          | 0.0          | 48.8               | 54.0         | -5.2                 |
| 2485.463             | 40.3                 | -11.8          | 1.5            | 262.0          | 0.3                      | 20.0         | Vert                    | AV          | 0.0          | 48.8               | 54.0         | -5.2                 |
| 2388.730             | 40.4                 | -12.0          | 1.5            | 237.0          | 0.3                      | 20.0         | Vert                    | AV          | 0.0          | 48.7               | 54.0         | -5.3                 |
| 2388.887<br>2389.510 | 40.4<br>40.4         | -12.0<br>-12.0 | 1.5<br>1.5     | 227.0<br>326.0 | 0.3<br>0.3               | 20.0<br>20.0 | Horz<br>Vert            | AV<br>AV    | 0.0<br>0.0   | 48.7<br>48.7       | 54.0<br>54.0 | -5.3<br>-5.3         |
| 2389.547             | 40.4                 | -12.0          | 1.4            | 266.0          | 0.3                      | 20.0         | Vert                    | AV          | 0.0          | 48.7               | 54.0         | -5.3                 |
| 2389.253             | 40.3                 | -12.0          | 1.5            | 198.0          | 0.3                      | 20.0         | Horz                    | AV          | 0.0          | 48.6               | 54.0         | -5.4                 |
| 2389.707             | 40.3                 | -12.0          | 1.5            | 337.0          | 0.3                      | 20.0         | Horz                    | AV          | 0.0          | 48.6               | 54.0         | -5.4                 |
| 2388.523<br>2484.357 | 52.8<br>52.2         | -12.0<br>-11.8 | 1.5<br>1.5     | 198.0<br>262.0 | 0.0<br>0.0               | 20.0<br>20.0 | Horz<br>Vert            | PK<br>PK    | 0.0<br>0.0   | 60.8<br>60.4       | 74.0<br>74.0 | -13.2<br>-13.6       |
| 2388.603             | 52.2                 | -11.0          | 1.5            | 327.0          | 0.0                      | 20.0         | Vert                    | PK          | 0.0          | 60.4               | 74.0         | -13.0                |
| 2389.847             | 52.1                 | -12.0          | 1.4            | 266.0          | 0.0                      | 20.0         | Vert                    | PK          | 0.0          | 60.1               | 74.0         | -13.9                |
| 2388.883             | 52.0                 | -12.0          | 1.5            | 237.0          | 0.0                      | 20.0         | Vert                    | PK          | 0.0          | 60.0               | 74.0         | -14.0                |
| 2483.770             | 51.5                 | -11.8          | 1.5            | 211.0          | 0.0                      | 20.0         | Horz                    | PK          | 0.0          | 59.7               | 74.0         | -14.3                |



XMit 2020.03.25.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

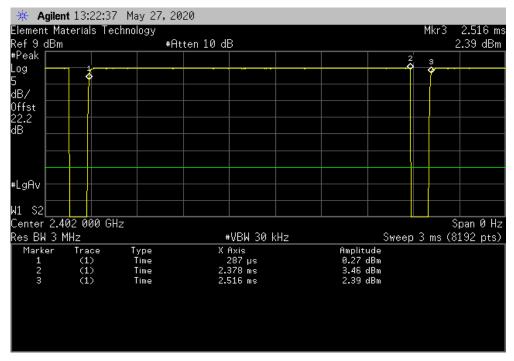
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

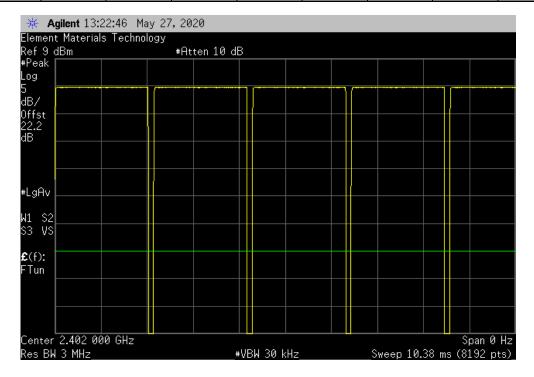
The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

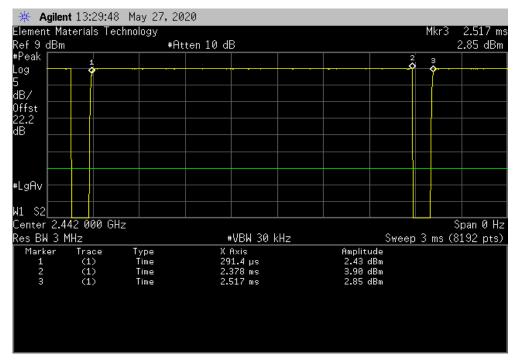
The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.


The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

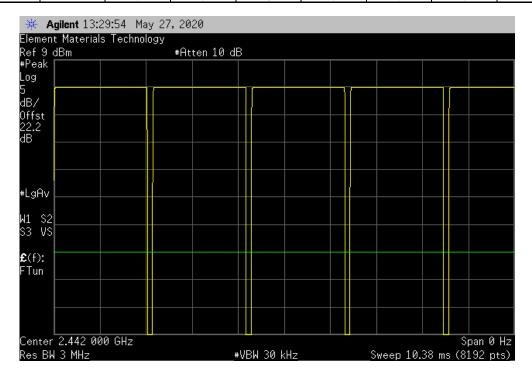
If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.



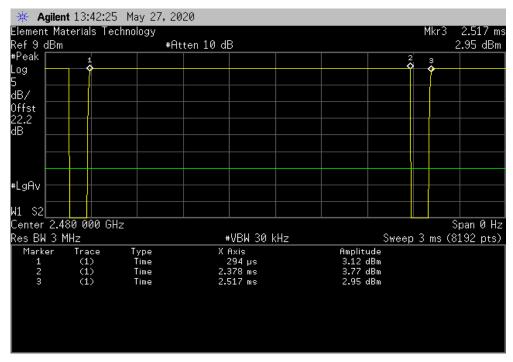

|                     |                           |                               |     |                        |          |           |                   | TbtTx 2019.08.30.0 | XMit 2020.0 |
|---------------------|---------------------------|-------------------------------|-----|------------------------|----------|-----------|-------------------|--------------------|-------------|
| EUT:                | Radius T°                 |                               |     |                        |          |           | Work Order:       | MASI0638           |             |
| Serial Number:      | ENG-2                     |                               |     |                        |          |           |                   | 27-May-20          |             |
| Customer:           | Masimo Corporation        |                               |     |                        |          |           | Temperature:      | 25.6 °C            |             |
|                     | Nghi Nguyen               |                               |     |                        |          |           | Humidity:         |                    |             |
| Project:            |                           |                               |     |                        |          |           | Barometric Pres.: |                    |             |
|                     | Mark Baytan               |                               | Pow | er: 3.3 VDC via FTDI U | SB Cable |           | Job Site:         | OC13               |             |
| EST SPECIFICAT      | IONS                      |                               |     | Test Method            |          |           |                   |                    |             |
| CC 15.247:2020      |                           |                               |     | ANSI C63.10:2013       |          |           |                   |                    |             |
|                     |                           | ·                             |     |                        |          |           |                   |                    |             |
| COMMENTS            |                           | <u> </u>                      |     |                        |          |           |                   |                    |             |
| Reference level off | set: DC Block + 20dB Atte | enuator + RF Cable = 22.17 dB |     |                        |          |           |                   |                    |             |
|                     |                           |                               |     |                        |          |           |                   |                    |             |
|                     |                           |                               |     |                        |          |           |                   |                    |             |
| DEVIATIONS FROM     | M TEST STANDARD           |                               |     |                        |          |           |                   |                    |             |
| None                |                           |                               |     |                        |          |           |                   |                    |             |
|                     |                           |                               | 11. |                        |          |           |                   |                    |             |
| Configuration #     | 2                         |                               | ML. | 0,1-                   |          |           |                   |                    |             |
|                     |                           | Signature                     |     |                        |          |           |                   |                    |             |
|                     |                           |                               |     |                        |          | Number of | Value             | Limit              |             |
|                     |                           |                               |     | Pulse Width            | Period   | Pulses    | (%)               | (%)                | Results     |
|                     | Low Channel, 2402 MHz     |                               |     | 2.091 ms               | 2.229 ms | 1         | 93.8              | N/A                | N/A         |
|                     | Low Channel, 2402 MHz     |                               |     | N/A                    | N/A      | 5         | N/A               | N/A                | N/A         |
|                     | Mid Channel, 2442 MHz     |                               |     | 2.087 ms               | 2.225 ms | 1         | 93.8              | N/A                | N/A         |
|                     | Mid Channel, 2442 MHz     |                               |     | N/A                    | N/A      | 5         | N/A               | N/A                | N/A         |
|                     | High Channel, 2480 MHz    |                               |     | 2.084 ms               | 2.223 ms | 1         | 93.8              | N/A                | N/A         |
| 3LE/GFSK 1 Mbps     | High Channel, 2480 MHz    |                               |     | N/A                    | N/A      | 5         | N/A               | N/A                | N/A         |



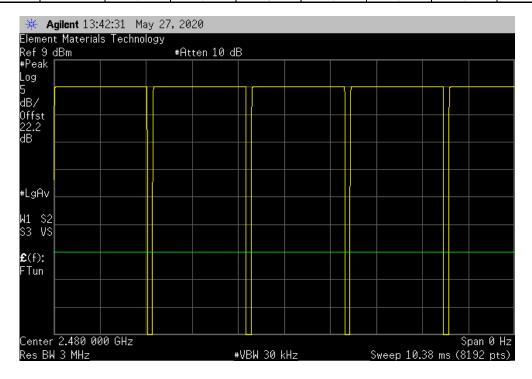




|                                 |             | BLE/GFSK 1 | Mbps Low Chann | nel, 2402 MHz |     |         |  |  |
|---------------------------------|-------------|------------|----------------|---------------|-----|---------|--|--|
| Number of Value Limit           |             |            |                |               |     |         |  |  |
|                                 | Pulse Width | Period     | Pulses         | (%)           | (%) | Results |  |  |
| N/A   N/A   5   N/A   N/A   N/A |             |            |                |               |     |         |  |  |









|  |             | BLE/GFSK 1 | Mbps Mid Chann | nel, 2442 MHz |       |         |
|--|-------------|------------|----------------|---------------|-------|---------|
|  |             |            | Number of      | Value         | Limit |         |
|  | Pulse Width | Period     | Pulses         | (%)           | (%)   | Results |
|  | N/A         | N/A        | 5              | N/A           | N/A   | N/A     |







|   |                 | BLE/GFSK 1 | Mbps High Chanı | nel, 2480 MHz |       |         |
|---|-----------------|------------|-----------------|---------------|-------|---------|
|   |                 |            | Number of       | Value         | Limit |         |
|   | <br>Pulse Width | Period     | Pulses          | (%)           | (%)   | Results |
| 1 | N/A             | N/A        | 5               | N/A           | N/A   | N/A     |





XMit 2020.03.25

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

|          | Description              | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|----------|--------------------------|--------------------|-----------------------|-----|-----------|-----------|
| <u> </u> | Generator - Signal       | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
|          | Cable                    | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
|          | Attenuator               | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
|          | Block - DC               | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analy    | yzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

The EUT was set to the channels and modes listed in the datasheet.

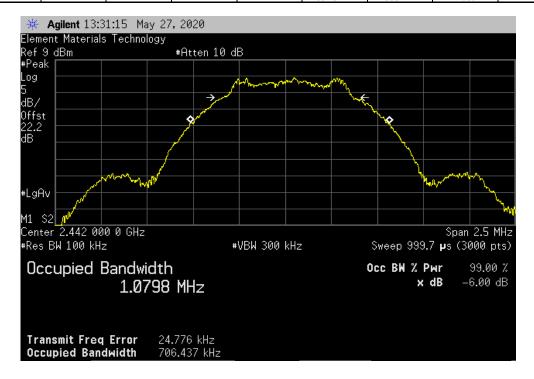
The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.



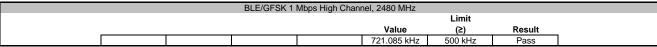
TbtTx 2019.08.30.0 EUT: Radius T°
Serial Number: ENG-2
Customer: Masimo Corporation Work Order: MASI0638 Date: 27-May-20
Temperature: 25.6 °C
Humidity: 43.7% RH
Barometric Pres.: 1014 mbar
Job Site: OC13 Attendees: Nghi Nguyen
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Power: 3.3 VDC via FTDI USB Cable Test Method FCC 15.247:2020 ANSI C63.10:2013 COMMENTS Reference level offset: DC Block + 20dB Attenuator + RF Cable = 22.17 dB DEVIATIONS FROM TEST STANDARD None Configuration # Signature Limit Value (≥) Result BLE/GFSK 1 Mbps Low Channel, 2402 MHz BLE/GFSK 1 Mbps Mid Channel, 2442 MHz BLE/GFSK 1 Mbps High Channel, 2480 MHz 723.863 kHz 706.437 kHz 500 kHz 500 kHz Pass Pass 721.085 kHz Pass

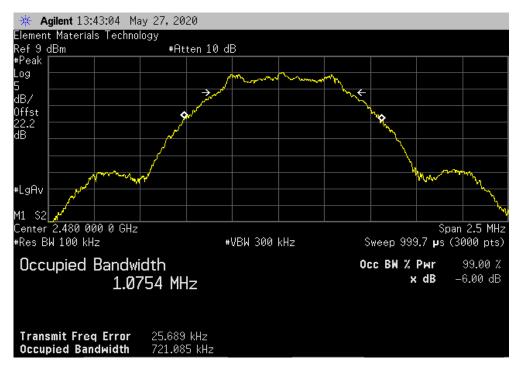


BLE/GFSK 1 Mbps Low Channel, 2402 MHz


Limit

Value (2) Result


723.863 kHz 500 kHz Pass




|   |  | BLE/GFSK 1 | Mbps Mid Chann | nel, 2442 MHz |         |        |   |
|---|--|------------|----------------|---------------|---------|--------|---|
|   |  |            |                |               | Limit   |        |   |
|   |  |            |                | Value         | (≥)     | Result |   |
| l |  |            |                | 706.437 kHz   | 500 kHz | Pass   | 1 |











XMit 2020.03.25.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

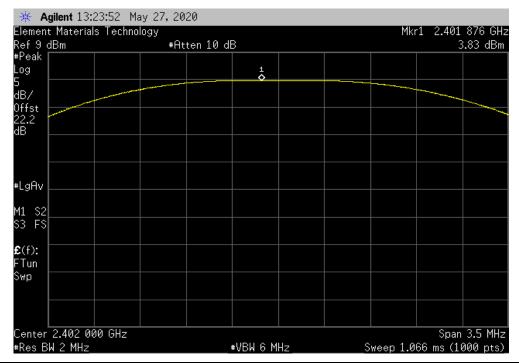
#### **TEST DESCRIPTION**

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

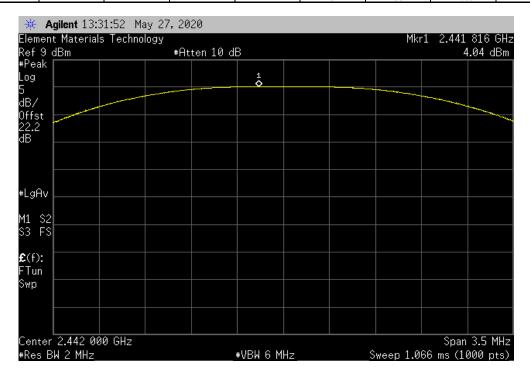
Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.



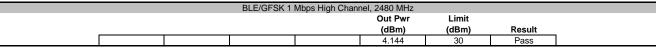

|                        |                             |                            |        |                            |                   | TbtTx 2019.08.30.0 | XMit 2020.03.25.0 |
|------------------------|-----------------------------|----------------------------|--------|----------------------------|-------------------|--------------------|-------------------|
| EUT:                   | Radius T°                   |                            |        |                            | Work Order:       | MASI0638           |                   |
| Serial Number:         | ENG-2                       |                            |        |                            | Date:             | 27-May-20          |                   |
| Customer:              | Masimo Corporation          |                            |        |                            | Temperature:      | 25.6 °C            |                   |
| Attendees:             | Nghi Nguyen                 |                            |        |                            | Humidity:         | 43.7% RH           |                   |
| Project:               | None                        |                            |        |                            | Barometric Pres.: | 1014 mbar          |                   |
| Tested by:             | Mark Baytan                 |                            | Power: | 3.3 VDC via FTDI USB Cable | Job Site:         | OC13               |                   |
| TEST SPECIFICATI       | ONS                         |                            |        | Test Method                |                   |                    |                   |
| FCC 15.247:2020        |                             |                            |        | ANSI C63.10:2013           |                   |                    |                   |
|                        |                             |                            |        |                            |                   |                    |                   |
| COMMENTS               |                             |                            | •      |                            |                   |                    |                   |
| Reference level off    | set: DC Block + 20dB Attenu | ator + RF Cable = 22.17 dB |        |                            |                   |                    |                   |
|                        |                             |                            |        |                            |                   |                    |                   |
|                        |                             |                            |        |                            |                   |                    |                   |
| <b>DEVIATIONS FROM</b> | 1 TEST STANDARD             |                            |        |                            |                   |                    |                   |
| None                   |                             |                            |        |                            |                   |                    |                   |
|                        |                             |                            | 11     |                            |                   |                    |                   |
| Configuration #        | 2                           |                            | MAKE   | 54-                        |                   |                    |                   |
| _                      |                             | Signature                  |        | 1.                         |                   |                    |                   |
|                        | •                           |                            |        |                            | Out Pwr           | Limit              |                   |
|                        |                             |                            |        |                            | (dBm)             | (dBm)              | Result            |
| BLE/GFSK 1 Mbps I      | ow Channel, 2402 MHz        |                            |        |                            | 3.833             | 30                 | Pass              |
|                        | Mid Channel, 2442 MHz       |                            |        |                            | 4.041             | 30                 | Pass              |
|                        | High Channel, 2480 MHz      |                            |        |                            | 4.144             | 30                 | Pass              |
|                        |                             |                            |        |                            |                   |                    |                   |

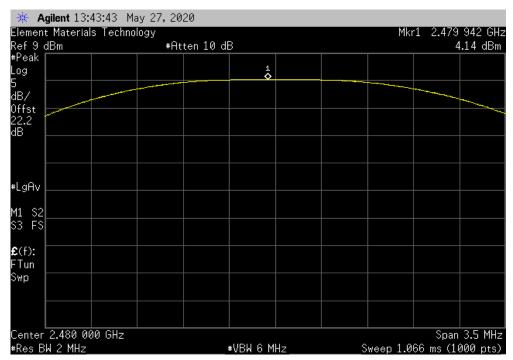



BLE/GFSK 1 Mbps Low Channel, 2402 MHz

Out Pwr Limit
(dBm) (dBm) Result

3.833 30 Pass





|  | BLE/GFSK 1 | Mbps Mid Chann | el, 2442 MHz |       |        |
|--|------------|----------------|--------------|-------|--------|
|  |            |                | Out Pwr      | Limit |        |
|  |            |                | (dBm)        | (dBm) | Result |
|  |            |                | 4.041        | 30    | Pass   |





BLE/GFSK 1 Mbps High Channel, 2480 MHz
Out Pwr Limit







XMit 2020.03.25.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

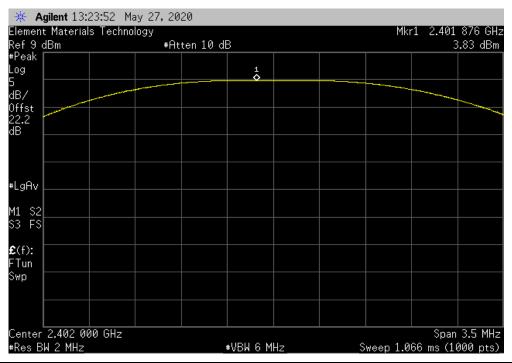
The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

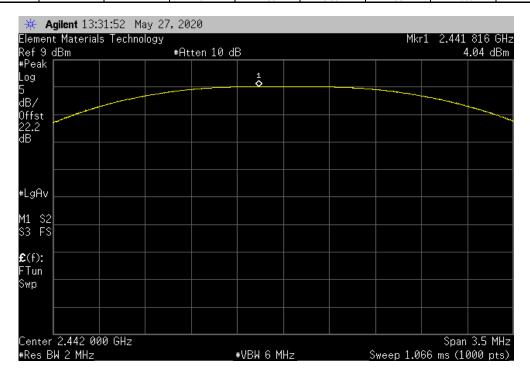
The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)




|                 |                        |                                  |                    |                       |                |            |                   | IDHX 2019.08.30.0 | XMit 2020.03.25.0 |
|-----------------|------------------------|----------------------------------|--------------------|-----------------------|----------------|------------|-------------------|-------------------|-------------------|
| EUT:            | Radius T°              |                                  |                    |                       |                |            | Work Order:       | MASI0638          |                   |
| Serial Number:  | ENG-2                  |                                  |                    |                       |                |            | Date:             | 27-May-20         |                   |
| Customer:       | Masimo Corporation     |                                  |                    |                       |                |            | Temperature:      | 25.6 °C           |                   |
| Attendees:      | Nghi Nguyen            |                                  |                    |                       |                |            | Humidity:         | 43.7% RH          |                   |
| Project:        | None                   |                                  |                    |                       |                |            | Barometric Pres.: | 1014 mbar         |                   |
| Tested by:      | Mark Baytan            |                                  | Power:             | 3.3 VDC via FTDI US   | B Cable        |            | Job Site:         | OC13              |                   |
| TEST SPECIFICAT | IONS                   |                                  |                    | Test Method           |                |            |                   |                   |                   |
| FCC 15.247:2020 |                        |                                  |                    | ANSI C63.10:2013      |                |            |                   |                   |                   |
|                 |                        |                                  |                    |                       |                |            |                   |                   |                   |
| COMMENTS        |                        |                                  |                    |                       |                |            |                   |                   |                   |
|                 | M TEST STANDARD        | or + RF Cable = 22.17 dB. Antenr | ia gain provided b | y the cheff (determin | eu unuer MASIC | ,040j.     |                   |                   |                   |
| None            |                        |                                  |                    |                       |                |            |                   |                   |                   |
| Configuration # | 2                      | Signature                        | 446                | 3,+-                  |                |            |                   |                   |                   |
|                 |                        |                                  |                    |                       | Out Pwr        | Antenna    | EIRP              | EIRP Limit        |                   |
|                 |                        |                                  |                    |                       | (dBm)          | Gain (dBi) | (dBm)             | (dBm)             | Result            |
| BLE/GFSK 1 Mbps | Low Channel, 2402 MHz  |                                  |                    |                       | 3.833          | 1.99       | 5.823             | 36                | Pass              |
| BLE/GFSK 1 Mbps | Mid Channel, 2442 MHz  |                                  |                    |                       | 4.041          | 1.99       | 6.031             | 36                | Pass              |
| BLE/GFSK 1 Mbps | High Channel, 2480 MHz |                                  |                    |                       | 4.144          | 1.99       | 6.134             | 36                | Pass              |

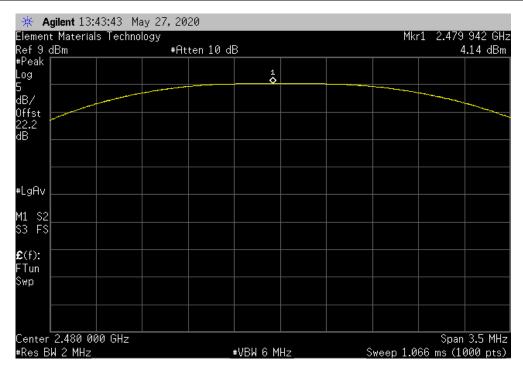



BLE/GFSK 1 Mbps Low Channel, 2402 MHz

Out Pwr Antenna EIRP EIRP Limit
(dBm) Gain (dBi) (dBm) (dBm) Result

3.833 1.99 5.823 36 Pass




|   | BLE/GFSK 1 Mbps Mid Channel, 2442 MHz |  |         |            |       |            |        |  |  |  |
|---|---------------------------------------|--|---------|------------|-------|------------|--------|--|--|--|
|   |                                       |  | Out Pwr | Antenna    | EIRP  | EIRP Limit |        |  |  |  |
|   |                                       |  | (dBm)   | Gain (dBi) | (dBm) | (dBm)      | Result |  |  |  |
| Г |                                       |  | 4.041   |            |       |            |        |  |  |  |





ThrTx 2019 08 30 0 XMir 2020 03 25 0

| BLE/GFSK 1 Mbps High Channel, 2480 MHz |  |  |         |            |       |            |        |  |  |  |
|----------------------------------------|--|--|---------|------------|-------|------------|--------|--|--|--|
|                                        |  |  | Out Pwr | Antenna    | EIRP  | EIRP Limit |        |  |  |  |
|                                        |  |  | (dBm)   | Gain (dBi) | (dBm) | (dBm)      | Result |  |  |  |
|                                        |  |  | 4.144   | 1.99       | 6.134 | 36         | Pass   |  |  |  |



## **POWER SPECTRAL DENSITY**



XMit 2020.03.25.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

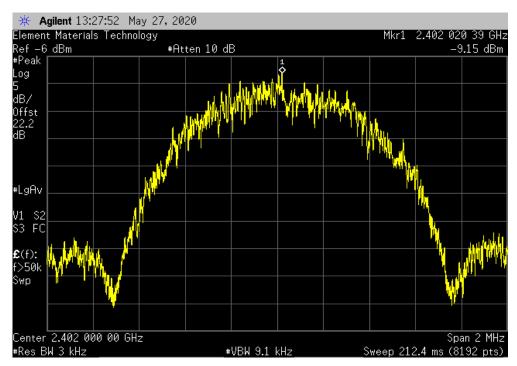
Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

# **POWER SPECTRAL DENSITY**

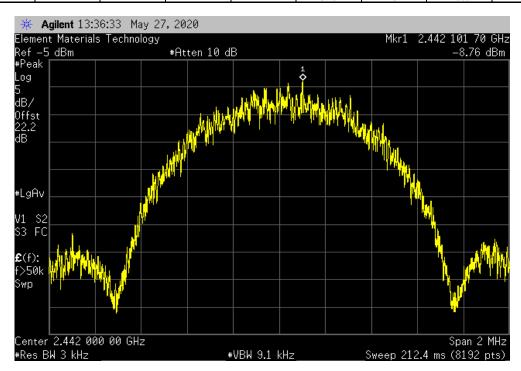


EUT: Radius T°
Serial Number: ENG-2
Customer: Masimo Corporation
Attendees: Nghi Nguyen
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: MASI0638
Date: 27-May-20
Temperature: 25.6 °C Humidity: 43.7% RH
Barometric Pres.: 1014 mbar Power: 3.3 VDC via FTDI USB Cable Test Method Job Site: OC13 FCC 15.247:2020 ANSI C63.10:2013 COMMENTS Reference level offset: DC Block + 20dB Attenuator + RF Cable = 22.17 dB DEVIATIONS FROM TEST STANDARD 1467+ Configuration # 2 Signature Value dBm/3kHz Limit < dBm/3kHz Results BLE/GFSK 1 Mbps Low Channel, 2402 MHz Pass BLE/GFSK 1 Mbps Mid Channel, 2442 MHz BLE/GFSK 1 Mbps High Channel, 2480 MHz Pass Pass -8.761 8 -8.059

# **POWER SPECTRAL DENSITY**




BLE/GFSK 1 Mbps Low Channel, 2402 MHz


Value Limit

dBm/3kHz < dBm/3kHz Results

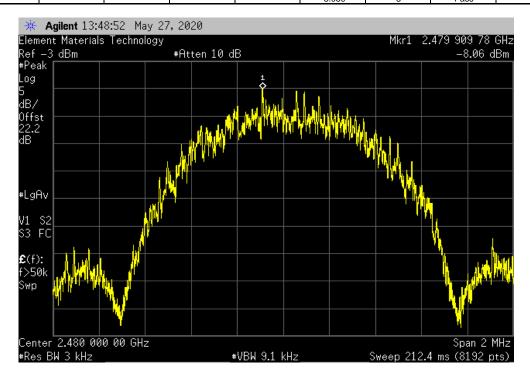
-9.151 8 Pass



| BLE/GFSK 1 Mbps Mid Channel, 2442 MHz |  |  |  |          |            |         |
|---------------------------------------|--|--|--|----------|------------|---------|
|                                       |  |  |  | Value    | Limit      |         |
|                                       |  |  |  | dBm/3kHz | < dBm/3kHz | Results |
|                                       |  |  |  | -8.761   | 8          | Pass    |



# **POWER SPECTRAL DENSITY**




BLE/GFSK 1 Mbps High Channel, 2480 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

-8.059 8 Pass



# **BAND EDGE COMPLIANCE**



XMit 2020.03.25.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

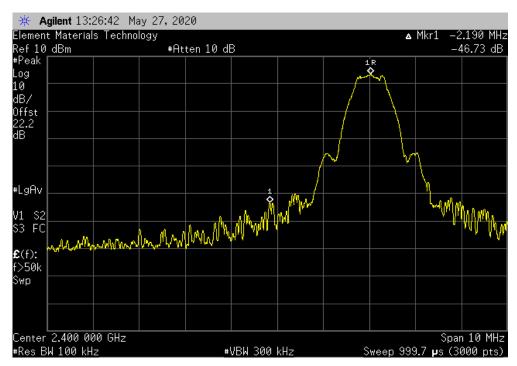
The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

# **BAND EDGE COMPLIANCE**



EUT: Radius T°
Serial Number: ENG-2
Customer: Masimo Corporation
Attendees: Nghi Nguyen
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: MASI0638
Date: 27-May-20
Temperature: 25.6 °C
Humidity: 43.7% RH
Barometric Press.: 1014 mbar Power: 3.3 VDC via FTDI USB Cable Test Method Job Site: OC13 FCC 15.247:2020 ANSI C63.10:2013 COMMENTS Reference level offset: DC Block + 20dB Attenuator + RF Cable = 22.17 dB DEVIATIONS FROM TEST STANDARD 1467+ Configuration # 2 Signature Value (dBc) Limit ≤ (dBc) Result BLE/GFSK 1 Mbps Low Channel, 2402 MHz -46.73 -54.5 BLE/GFSK 1 Mbps High Channel, 2480 MHz Pass -20


## **BAND EDGE COMPLIANCE**



BLE/GFSK 1 Mbps Low Channel, 2402 MHz

Value Limit
(dBc) ≤ (dBc) Result

-46.73 -20 Pass



| BLE/GFSK 1 Mbps High Channel, 2480 MHz |  |  |  |       |         |        |
|----------------------------------------|--|--|--|-------|---------|--------|
| Value Limit                            |  |  |  | Limit |         |        |
|                                        |  |  |  | (dBc) | ≤ (dBc) | Result |
|                                        |  |  |  | -54.5 | -20     | Pass   |





XMit 2020.03.25

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

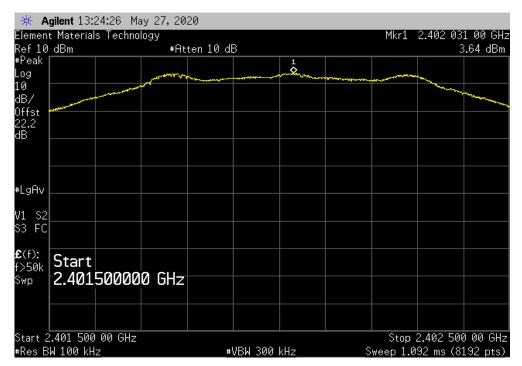
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Agilent            | E8257D                | TGU | 15-Feb-18 | 15-Feb-21 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | OCA | 4-May-20  | 4-May-21  |
| Attenuator                   | Fairview Microwave | SA18E-20              | TKS | 22-Jan-20 | 22-Jan-21 |
| Block - DC                   | Aeroflex           | INMET 8535            | AMO | 14-Feb-20 | 14-Feb-21 |
| Analyzer - Spectrum Analyzer | Agilent            | E4446A                | AAY | 16-Dec-19 | 16-Dec-20 |

#### **TEST DESCRIPTION**

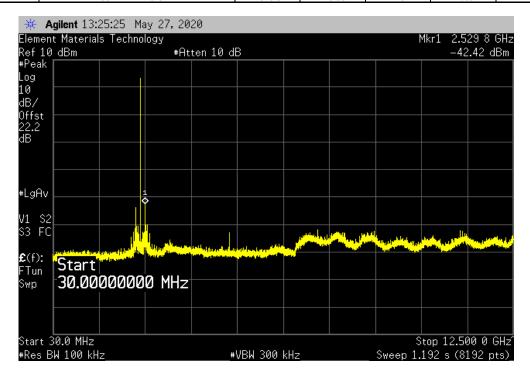
The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |            |                   | TbtTx 2019.08.30.0 | XMit 2020.0  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|-------------------|--------------------|--------------|
| EUT: Radius T°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |            | Work Order:       | MASI0638           |              |
| Serial Number: ENG-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |            | Date:             | 27-May-20          |              |
| Customer: Masimo Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |            | Temperature:      | 25.6 °C            |              |
| Attendees: Nghi Nguyen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |            | Humidity:         | 43.7% RH           |              |
| Project: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |            | Barometric Pres.: | 1014 mbar          |              |
| Tested by: Mark Baytan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Power: 3.3 VDC via FTDI USB Cable      |            | Job Site:         | OC13               |              |
| ST SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test Method                            |            |                   |                    |              |
| CC 15.247:2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANSI C63.10:2013                       |            |                   |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |            |                   |                    |              |
| OMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |            |                   |                    |              |
| eference level offset: DC Block + 20dB Attenuator + RF Cable = 22.17 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | ·          | <u> </u>          |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |            |                   |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |            |                   |                    |              |
| EVIATIONS FROM TEST STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |            |                   |                    |              |
| one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |            |                   |                    |              |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , _                                    |            |                   |                    |              |
| onfiguration # 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + 6,+-                                 |            |                   |                    |              |
| Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |            |                   |                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                              | Measured   | Max Value         | Limit              |              |
| E/OFOV AND A DOLLAR DATE OF THE PARTY OF THE | Range                                  | Freq (MHz) | (dBc)             | ≤ (dBc)            | Result       |
| E/GFSK 1 Mbps Low Channel, 2402 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fundamental                            | 2402.03    | N/A               | N/A                | N/A          |
| .E/GFSK 1 Mbps Low Channel, 2402 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 MHz - 12.5 GHz                      | 2529.8     | -46.06            | -20                | Pass         |
| E/GFSK 1 Mbps Low Channel, 2402 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.5 GHz - 25 GHz                      | 24664.3    | -50.49            | -20                | Pass         |
| E/GFSK 1 Mbps Mid Channel, 2442 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fundamental                            | 2442.03    | N/A               | N/A                | N/A          |
| E/GFSK 1 Mbps Mid Channel, 2442 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | 2569.4     | -45.45            | -20                |              |
| E/GFSK 1 Mbps Mid Channel, 2442 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 MHz - 12.5 GHz                      |            |                   |                    | Pass         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz | 24777.2    | -50.91            | -20                | Pass<br>Pass |
| .E/GFSK 1 Mbps High Channel, 2480 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |            | -50.91<br>N/A     | -20<br>N/A         |              |
| LE/GFSK 1 Mbps High Channel, 2480 MHz<br>LE/GFSK 1 Mbps High Channel, 2480 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.5 GHz - 25 GHz                      | 24777.2    |                   |                    | Pass         |




 BLE/GFSK 1 Mbps Low Channel, 2402 MHz


 Frequency
 Measured
 Max Value
 Limit

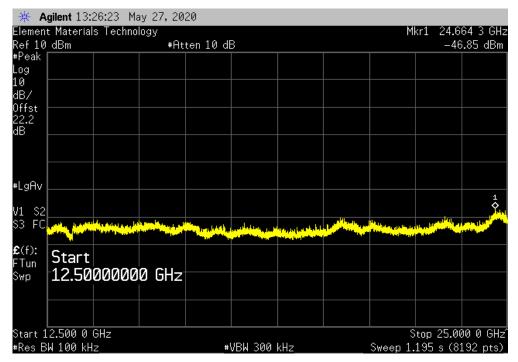
 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 Fundamental
 2402.03
 N/A
 N/A
 N/A

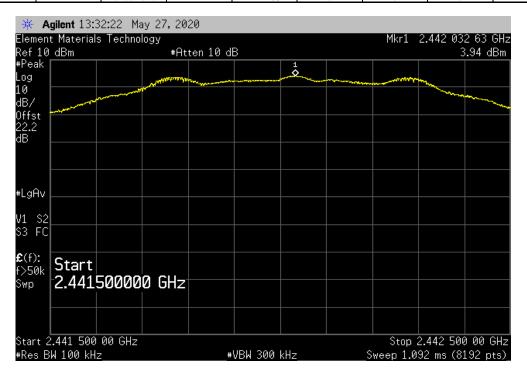


|   | BLE/GFSK 1 Mbps Low Channel, 2402 MHz |            |           |         |        |  |  |
|---|---------------------------------------|------------|-----------|---------|--------|--|--|
|   | Frequency                             | Measured   | Max Value | Limit   |        |  |  |
|   | Range                                 | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |  |  |
| , | 30 MHz - 12.5 GHz                     | 2529.8     | -46.06    | -20     | Pass   |  |  |






 BLE/GFSK 1 Mbps Low Channel, 2402 MHz


 Frequency
 Measured
 Max Value
 Limit

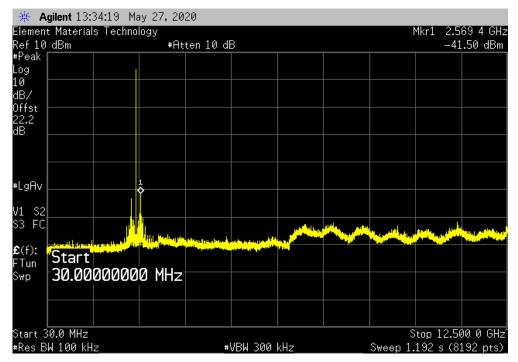
 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 12.5 GHz - 25 GHz
 24664.3
 -50.49
 -20
 Pass

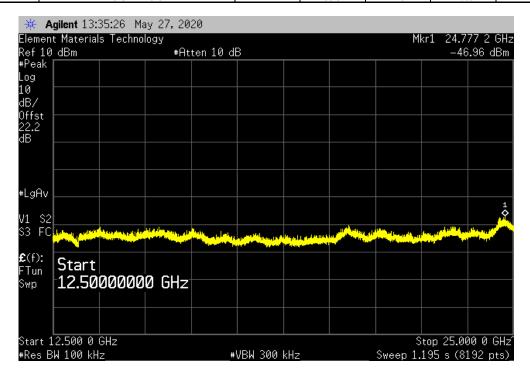


| BLE/GF      | SK 1 Mbps Mid Chann | el, 2442 MHz |         |        |
|-------------|---------------------|--------------|---------|--------|
| Frequency   | Measured            | Max Value    | Limit   |        |
| Range       | Freq (MHz)          | (dBc)        | ≤ (dBc) | Result |
| Fundamental | 2442.03             | N/A          | N/A     | N/A    |






 BLE/GFSK 1 Mbps Mid Channel, 2442 MHz


 Frequency
 Measured
 Max Value
 Limit

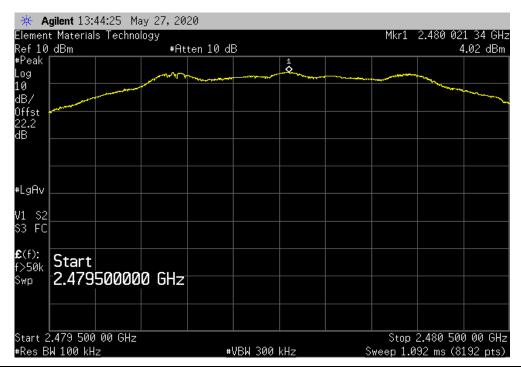
 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 30 MHz - 12.5 GHz
 2569.4
 -45.45
 -20
 Pass

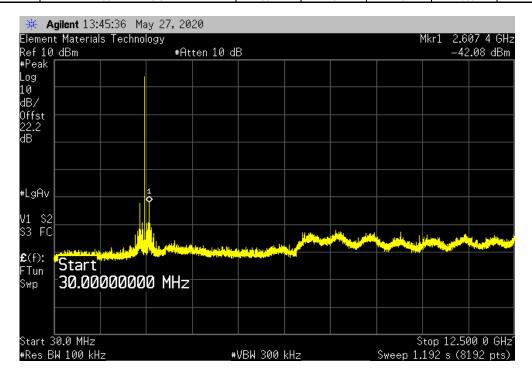


|      | BLE/GFSK 1 Mbps Mid Channel, 2442 MHz |            |           |         |        |  |
|------|---------------------------------------|------------|-----------|---------|--------|--|
|      | Frequency                             | Measured   | Max Value | Limit   |        |  |
|      | Range                                 | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |  |
| 12.5 | GHz - 25 GHz                          | 24777.2    | -50.91    | -20     | Pass   |  |





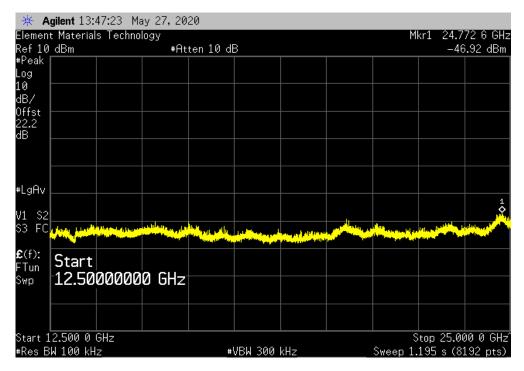

 BLE/GFSK 1 Mbps High Channel, 2480 MHz


 Frequency
 Measured
 Max Value
 Limit

 Range
 Freq (MHz)
 (dBc)
 ≤ (dBc)
 Result

 Fundamental
 2480.02
 N/A
 N/A
 N/A




|                   | BLE/GFSK 1 Mbps High Channel, 2480 MHz |           |         |        |  |  |  |
|-------------------|----------------------------------------|-----------|---------|--------|--|--|--|
| Frequency         | Measured                               | Max Value | Limit   |        |  |  |  |
| Range             | Freq (MHz)                             | (dBc)     | ≤ (dBc) | Result |  |  |  |
| 30 MHz - 12.5 GHz | z 2607.4                               | -46.1     | -20     | Pass   |  |  |  |





ThrTx 2019 08 30 0 XMir 2020 03 25 0

| BLE/GFSK 1 Mbps High Channel, 2480 MHz |            |           |         |        |
|----------------------------------------|------------|-----------|---------|--------|
| Frequency                              | Measured   | Max Value | Limit   |        |
| Range                                  | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |
| 12.5 GHz - 25 GHz                      | 24772.6    | -50.94    | -20     | Pass   |

