

Masimo Corporation Radius-7 FCC 15.247:2014

Report #: MASI0214 Rev. 1

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC - (888) 364-2378 - www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: June 18, 2014 Masimo Corporation Model: Radius-7

Emissions

Test Description	Specification	Test Method	Pass/Fail
Duty Cycle	FCC 15.247:2014	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.247:2014	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2014	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2014	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2014	ANSI C63.10:2009	Pass
Band Edge Compliance Hopping Frequency	FCC 15.247:2014	ANSI C63.10:2009	Pass
Channel Separation	FCC 15.247:2014	ANSI C63.10:2009	Pass
Number of Hopping Channels	FCC 15.247:2014	ANSI C63.10:2009	Pass
Dwell Time	FCC 15.247:2014	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2014	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		
01	Corrected mistake on configurations page. Changed to no ferrite use.	7-15-14	8

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

FACILITIES

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600
		VCCI		
A-0108	A-0029		A-0109	A-0110
		Industry Canada		
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834F-1
	•	NVLAP		·
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Masimo Corporation
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Michael Clark
Model:	Radius-7
First Date of Test:	June 13, 2014
Last Date of Test:	June 18, 2014
Receipt Date of Samples:	June 13, 2014
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Wearable Pulse Oximeter using a Bluetooth radio that operates only at the Bluetooth basic data rates. It does not utilize the EDR modes.

Testing Objective:

To demonstrate compliance to FCC Part 15.247 requirements.

CONFIGURATIONS

Configuration MASI0214-4

Software/Firmware Running during test	
Description	Version
IB_BLUETOOTH_TST.bts	0000.1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Wearable Pulse Oximeter	Masimo Corporation	Radius-7 Patient Module	Al000012
Battery	Masimo Corporation	Radius-7 Battery Module	AB000001

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
M-LNCS Sensor Cable	Yes	1.00m	No	Pulse Oximeter	Pulse/O2 Simulator
DC Cable	Yes	1.70m	Yes	Laptop	AC/DC Power Supply
AC Cable	No	1.60m	No	AC/DC Power Supply	AC Mains
USB Cable	No	1.0m	No	Wearable Pulse Oximeter	Laptop
PA = Cab	ole is permane	ntly attached to the de	vice. Shieldin	g and/or presence of ferrite may b	e unknown.

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
			Tested as	No EMI suppression	EUT remained at
1	6/13/2014	Dwell Time	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Number of	Tested as	No EMI suppression	EUT remained at
2	6/13/2014	Hopping	delivered to	devices were added or	Northwest EMC
		Frequencies	Test Station.	modified during this test.	following the test.
		Channel	Tested as	No EMI suppression	EUT remained at
3	6/13/2014	Separation	delivered to	devices were added or	Northwest EMC
		Separation	Test Station.	modified during this test.	following the test.
		Bandedge	Tested as	No EMI suppression	EUT remained at
4	6/13/2014	Compliance -	delivered to	devices were added or	Northwest EMC
		Hopping	Test Station.	modified during this test.	following the test.
		Bandedge	Tested as	No EMI suppression	EUT remained at
5	6/13/2014	Compliance	delivered to	devices were added or	Northwest EMC
		Compliance	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
6	6/13/2014	Conducted	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Output	Tested as	No EMI suppression	EUT remained at
7	6/13/2014	Power	delivered to	devices were added or	Northwest EMC
		TOWCI	Test Station.	modified during this test.	following the test.
			Tested as	No EMI suppression	EUT remained at
8	6/13/2014	Duty Cycle	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Occupied	Tested as	No EMI suppression	EUT remained at
9	6/13/2014	Bandwidth	delivered to	devices were added or	Northwest EMC
			Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
10	6/18/2014	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

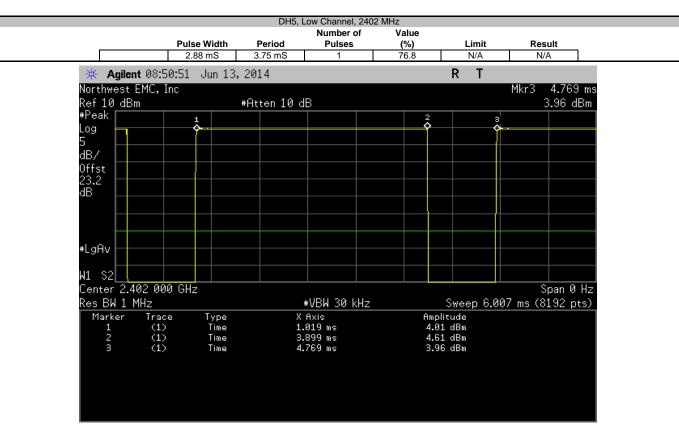
TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

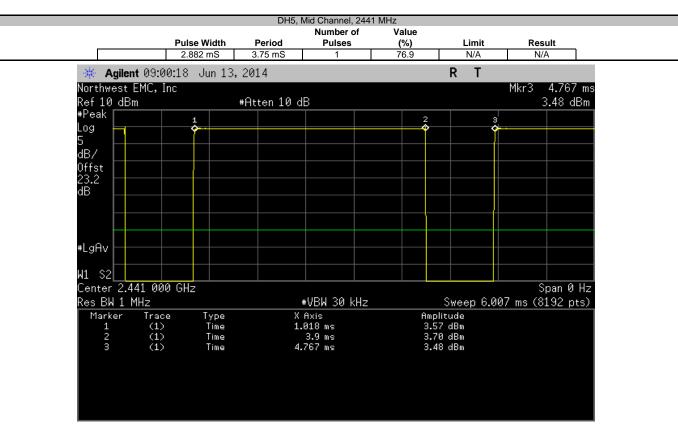
TEST DESCRIPTION

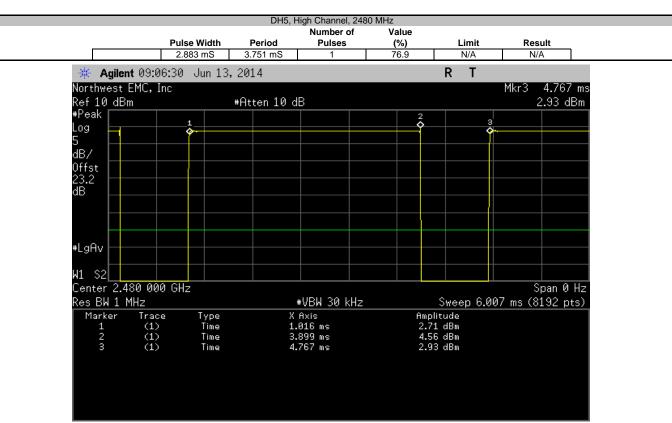
The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

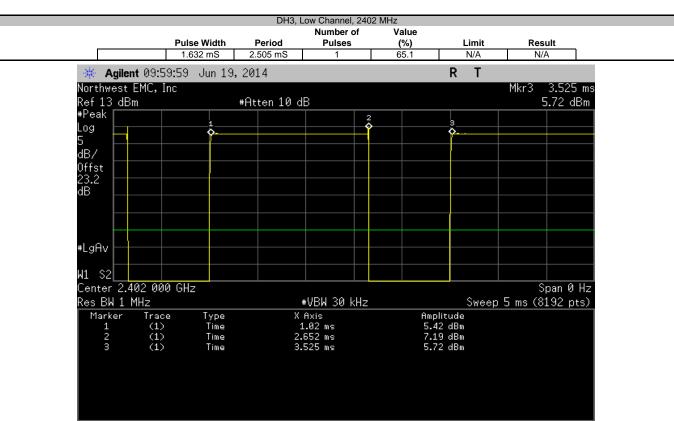
The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used.

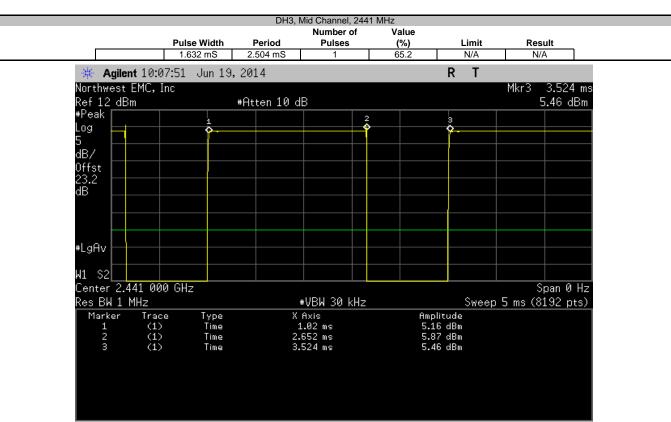

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

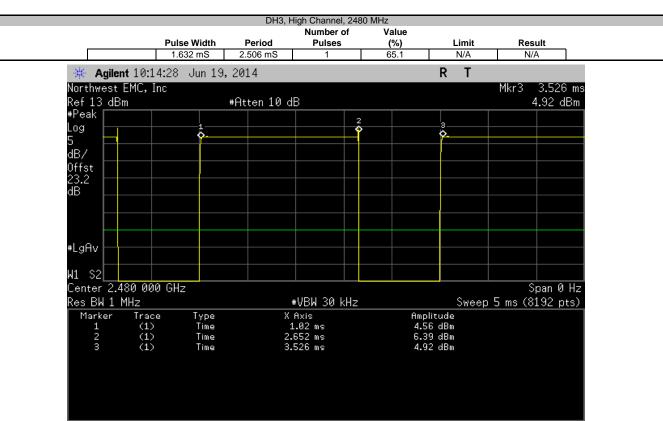
If the transmit duty cycle < 98 percent, burst gating was used during some of the other tests in this report to only measure during the burst duration.

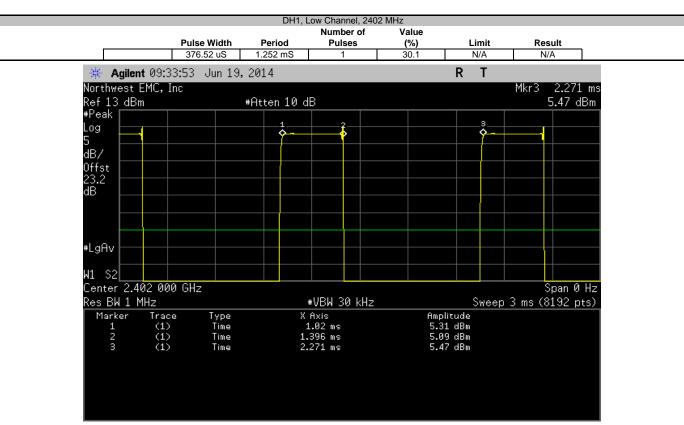

LUI	Radius-7				Work Order:		
Serial Number	: AI000012				Date:	06/13/14	
Customer	: Masimo				Temperature:	23.9 C°C	
Attendees	: Michael Clark				Humidity:	48%	
Project	: None				Barometric Pres.:	1015	
	: Adam Bruno & Johnny Candelas	Power: Battery			Job Site:	OC13	
TEST SPECIFICAT	TIONS	Test Method					
CC 15.247:2014		ANSI C63.10:2009					
COMMENTS							
	tenuator (20.5dB) + coax cable (1.74dB) + client provided patcl	h cable (1.0dB) = 23.24dB total offset					
Jsing Power Setti	ng 14						
	M TEST STANDARD						
None							
Configuration #	4	for d. Com					
configuration #	4 Signature	for the second					
	Signature	9		Number of	Value		
		Pulse Width	Period	Pulses	(%)	Limit	Resul
DH5		i disc matri	T Chida	1 01303	(70)	Linix	Resu
/10	Low Channel 0, 2402 MHz	2.88 mS	3.75 mS	1	76.8	N/A	N/A
	Low Channel 0, 2402 MHz	N/A	N/A	5	N/A	N/A	N/A
	Mid Channel 39, 2441 MHz						
		2.882 mS	3.75 mS	1	76.9	N/A	N/A
	Mid Channel 39, 2441 MHz	2.882 mS N/A	3.75 mS N/A	1 5	76.9 N/A	N/A N/A	N/A
				1 5 1			
	Mid Channel 39, 2441 MHz	N/A	N/A	1 5 1 5	N/A	N/A	N/A N/A
ОНЗ	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	N/A 2.883 mS	N/A 3.751 mS	1	N/A 76.9	N/A N/A	N/A N/A N/A
DH3	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	N/A 2.883 mS	N/A 3.751 mS	1	N/A 76.9	N/A N/A	N/A N/A N/A N/A
DH3	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz	N/A 2.883 mS N/A	N/A 3.751 mS N/A	1 5	N/A 76.9 N/A	N/A N/A N/A	N/A N/A N/A
DH3	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS	1 5 1	N/A 76.9 N/A 65.1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
DH3	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A	1 5 1	N/A 76.9 N/A 65.1 N/A 65.2 N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
DH3	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 1.632 mS	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS	1 5 1 5 1 5 1	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A	1 5 1 5 1	N/A 76.9 N/A 65.1 N/A 65.2 N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 1.632 mS N/A	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A	1 5 1 5 1 5 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 1.632 mS N/A 376.52 uS	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A 1.252 mS	1 5 1 5 1 5 1 5 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A 65.1 N/A 30.1	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 78, 2480 MHz Low Channel 0, 2402 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 1.632 mS N/A 376.52 uS N/A	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A 1.252 mS N/A	1 5 1 5 1 5 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A 30.1 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 376.52 uS N/A 376.52 uS N/A 375.487 uS	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A 1.252 mS N/A 1.25 mS	1 5 1 5 1 5 1 5 7 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A 30.1 N/A 30	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 78, 2480 MHz Low Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 1.632 mS N/A 376.52 uS N/A 375.487 uS N/A	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A 1.252 mS N/A	1 5 1 5 1 5 1 5 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A 30.1 N/A 30 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
DH3 DH1	Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	N/A 2.883 mS N/A 1.632 mS N/A 1.632 mS N/A 376.52 uS N/A 376.52 uS N/A 375.487 uS	N/A 3.751 mS N/A 2.505 mS N/A 2.504 mS N/A 2.506 mS N/A 1.252 mS N/A 1.25 mS	1 5 1 5 1 5 1 5 7 1 5	N/A 76.9 N/A 65.1 N/A 65.2 N/A 65.1 N/A 30.1 N/A 30	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

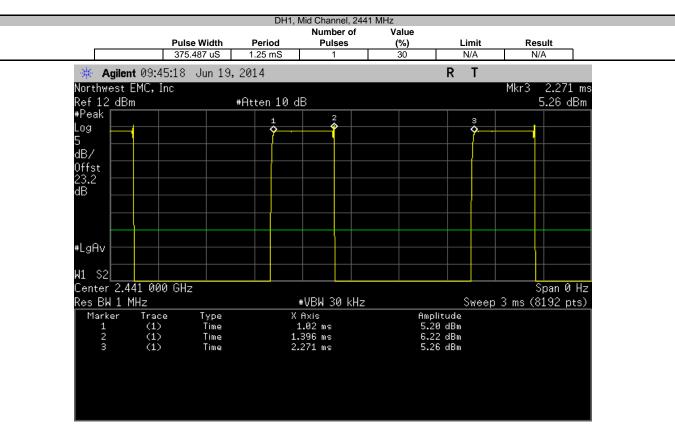

Pulse Width N/A :51:21 Jun 13 Inc	Period N/A 2014	Pulses 5	(%) N/A	Limit N/A	Result
	2014			N/A	N/A
Inc	, COIH			RT	
INC					
	#Atten 10	dB			1
<u>س ا رسا</u>		1 1		r	
					Span 0 H:
	00 GHz	00 GHz	00 GHzVBW 30 kHz_		

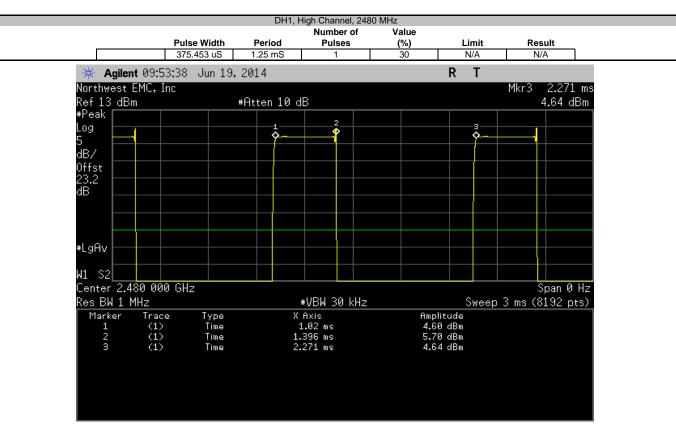

		DH5,	Mid Channel, 24 Number of	41 MHz Value		
	Pulse Width	Period	Pulses	(%)	Limit	Result
	N/A	N/A	5	Ň/Á	N/A	N/A
🔆 Agilent 09:0	0:40 Jun 13,	, 2014			RT	
Northwest EMC, I	nc					
Ref 10 dBm		#Atten 10 d	dΒ			
#Peak						
Log						
5 r dB/	[1			
Offet						
Offst 23.2 dB						
dB						
			╂───├─			
#LgAv						
111 00						
W1 S2 S3 VS				<mark> </mark>		
33 8 3						
£ (f):				<u> </u>		
FTun						
Center 2.441 00	0 GHz					Span 0 H
Res BW 1 MHz			_ #VBW 30 kH:	2		3 ms (8192 pts


		DH5, F	ligh Channel, 24 Number of	80 MHz Value		
	Pulse Width	Period	Pulses	(%)	Limit	Result
	N/A	N/A	5	N/A	N/A	N/A
🔆 Agilent 09:0)8:57 Jun 13,	2014			RT	
Northwest EMC,						
Ref 10 dBm		#Atten 10 d	В			
#Peak						
Log						
5					r	
UD7 Affet						
0ffst 23.2 dB						
dB						
#LgAv						
W1 S2						
W1 S2 S3 VS						
£ (f):						
FTun						
Center 2.480 00	0 GHZ				Sur. 10.03	Span 0 Hz
Res BW 1 MHz			⊭VBW 30 kHz			3 ms (8192 pts)


		DH3, Lov	w Channel, 2402			
	Pulse Width	Period	Number of Pulses	Value (%)	Limit	Result
	N/A	N/A	5	N/A	N/A	N/A
🔆 Agilent 10:0	00:27 Jun 19,	, 2014			RT	
Northwest EMC,						
Ref 13 dBm		#Atten 10 dB				
#Peak						
Log						
5			,			~
dB/						
Offst 23.2 dB						
dB						
			_			
#LgAv						
LI1 62						
W1 S2 S3 VS						
£ (f):						
FTun						
Center 2.402 00	W GHz				o 11-17	Span 0 H
Res BW 1 MHz		#\	'BW 30 kHz_		Sweep 11.4/	'ms (8192 pts


		DH3, I	Mid Channel, 2441			
	Pulse Width	Period	Number of Pulses	Value	Limit	Booult
	N/A	N/A	5	(%) N/A	N/A	Result N/A
Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			<u> </u>	1473		
🔆 Agilent 10		,2014			RT	
Northwest EMC,	, Inc		р			
Ref 12 dBm #Peak		#Atten 10 d	В			
Log						
5	+- (
dB/				-1 í		
Offst						
0ffst 23.2 dB						
dB						
#LgAv						
u1 so						
W1 S2 S3 VS						
•••						
£ (f):						
FTun						
Center 2.441 0)00 GHz					Span 0 Hz
Res BW 1 MHz_			∎VBW 30 kHz_			⁷ ms (8192 pts)


		DH3, Hi	igh Channel, 248			
	Pulse Width	Period	Number of Pulses	Value (%)	Limit	Result
	N/A	N/A	5	N/A	N/A	N/A
💥 Agilent 10	:14:55 Jun 19	, 2014			RT	·
Northwest EMC,						
Ref 13 dBm		#Atten 10 dE	3			
#Peak						
Log						
5 dB/						
ab/						
0ffst 23.2 dB						
dB						
ulO						
#LgAv						
W1 S2						
W1 S2 S3 VS						
£ (f):						
FTun						
Center 2.480 0	100 C∐→					 Span 0 Hz
Res BW 1 MHz			VBW 30 kHz_		Sween 11.47	зрап е н2 ′ms (8192 pts)

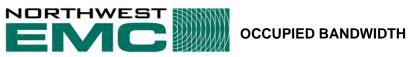

		DH1, L	ow Channel, 240			
	Pulse Width	Period	Number of Pulses	Value (%)	Limit	Result
	N/A	N/A	5	(%) N/A	N/A	N/A
🔆 Agilent 09	:35:38 Jun 19,	2014			RT	
Northwest EMC,						
Ref 13 dBm		#Atten 10 d	В			
#Peak						
Log						
5 dB/ /		-	,	~		
ab/ Affet						
0ffst 23.2 dB						
dB						
#LgAv						
111 00						
W1 S2 S3 VS	<u> </u>					
00 00						
£ (f):						
FTun						
Center 2.402 0	100 GHz					Span 0 H
Res BW 1 MHz_		+	⊧VBW 30 kHz		Sweep 6.00	7 ms (8192 pts)

		DH1, M	lid Channel, 244			
	Dula - Midd	Berlad	Number of	Value		Desult
	Pulse Width N/A	Period N/A	Pulses 5	(%) N/A	Limit N/A	Result N/A
🔆 Agilent 09:4			-		RT	1 ···· 1
Northwest EMC,						
Ref 12 dBm		#Atten 10 dE	3			
#Peak Log						
5	· · · ·		·	~	_ <mark> </mark>	~
dB/						
Uffst						
Offst 23.2 dB						
#LgAv					_	
111 60						
W1 S2 S3 VS					-	
£ (f):						
FTun						
Center 2.441 00	00 GHz					Span 0 Hz
Res BW 1 MHz_		#	VBW 30 kHz_		_>Weep 6.00	7 ms (8192 pts)

		DH1, F	ligh Channel, 248 Number of	Value		
	Pulse Width	Period	Pulses	(%)	Limit	Result
	N/A	N/A	5	N/A	N/A	N/A
🔆 Agilent 09:	54:07 Jun 19	,2014			RT	
Northwest EMC,	Inc					
Ref 13 dBm		#Atten 10 d	В			
#Peak						
Log						
5 dB/						
ab/						
0ffst 23.2 dB						
dB						
					_	_
#LgAv					-	
111 00				- I (
W1 S2 S3 VS						
00 00						
£(f):						
FTun						
Center 2.480 0	00 GHz					Span 0 Hz
Res BW 1 MHz_			#VBW 30 kHz_		_Sweep 6.00	07 ms (8192 pts)

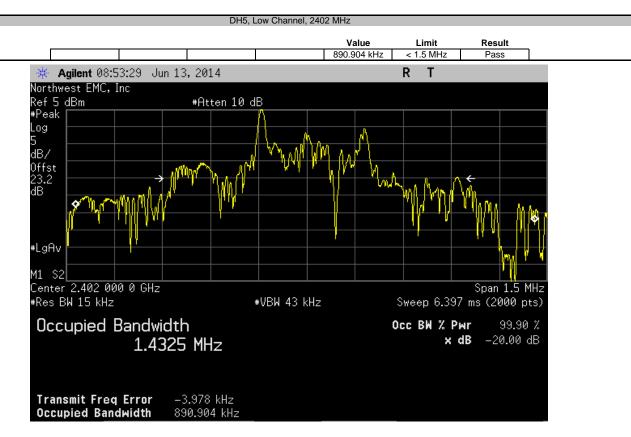
EMC

OCCUPIED BANDWIDTH


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

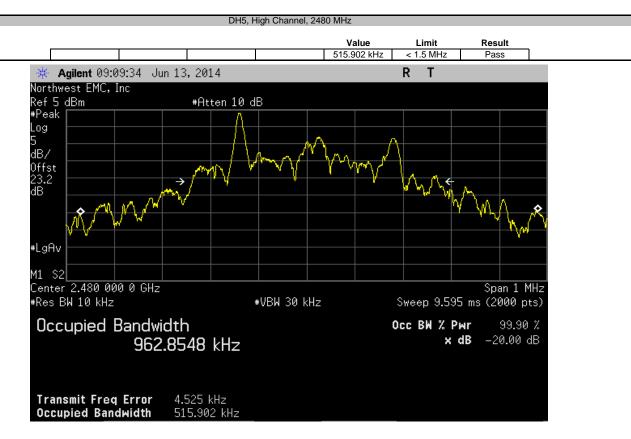
TEST EQUIPMENT

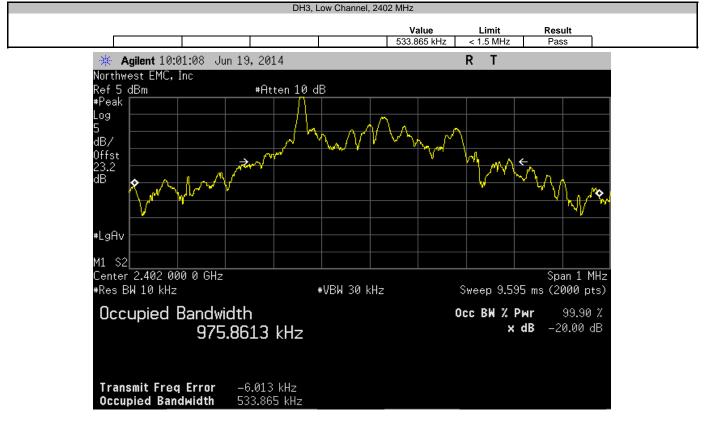
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

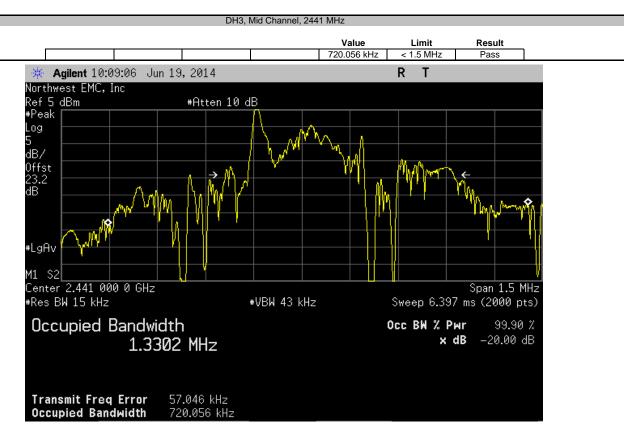

TEST DESCRIPTION

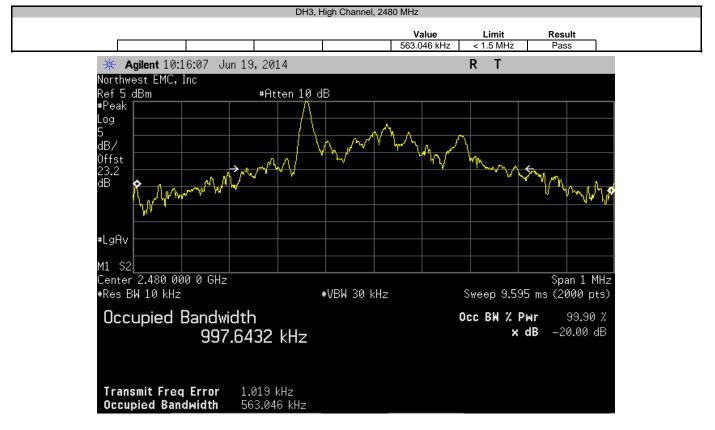
The occupied bandwidth was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode.

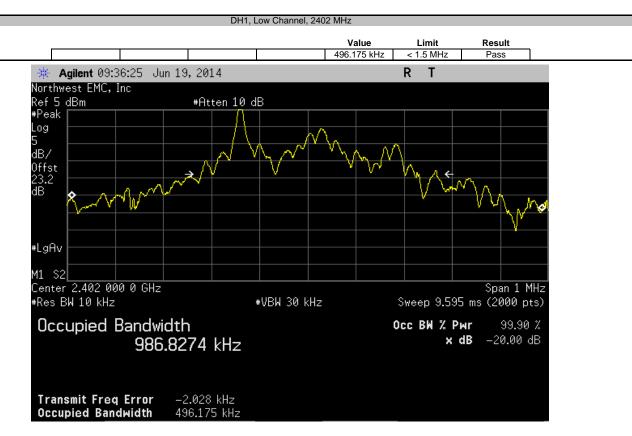
EUT:	Radius-7			Work Order	: MASI0214	
Serial Number:	: AI000012				: 06/13/14	
Customer:	: Masimo			Temperature	: 23.9 C°C	
Attendees	: Michael Clark			Humidity	: 48%	
Project:				Barometric Pres	: 1015	
	: Adam Bruno & Johnny Candelas	Power:	Battery	Job Site	: OC13	
TEST SPECIFICAT	TONS		Test Method			
FCC 15.247:2014			ANSI C63.10:2009			
COMMENTS						
DC Block/20dB Att	tenuator (20.5dB) + coax cable (1.74dB) + client provided pat	ch cable (1.0dB) = 23.	24dB total offset			
Using Power Settin		. ,				
•						
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	4	for d.	litter			
	Signature	0				
				Value	Limit	Result
DH5						
	Low Channel 0, 2402 MHz			890.904 kHz	< 1.5 MHz	Pass
	Mid Channel 39, 2441 MHz			537.788 kHz	< 1.5 MHz	Pass
	High Channel 78, 2480 MHz			515.902 kHz	< 1.5 MHz	Pass
DH3						
	Low Channel 0, 2402 MHz			533.865 kHz	< 1.5 MHz	Pass
	Mid Channel 39, 2441 MHz			720.056 kHz	< 1.5 MHz	Pass
	High Channel 78, 2480 MHz			563.046 kHz	< 1.5 MHz	Pass
DH1					< 1.5 MHz	Pass
DH1	High Channel 78, 2480 MHz Low Channel 0, 2402 MHz			563.046 kHz 496.175 kHz	< 1.5 MHz < 1.5 MHz	Pass Pass
DH1						

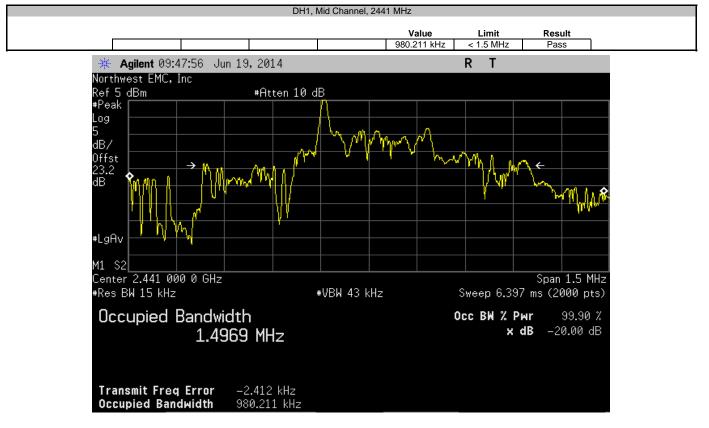


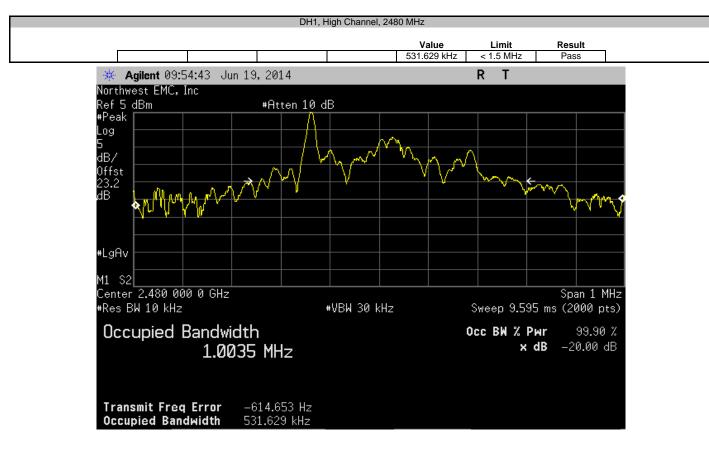



XMit 2014.02.07 PsaTx 14.04.29.1









OCCUPIED BANDWIDTH

XMit 2014.02.07 PsaTx 14.04.29.1

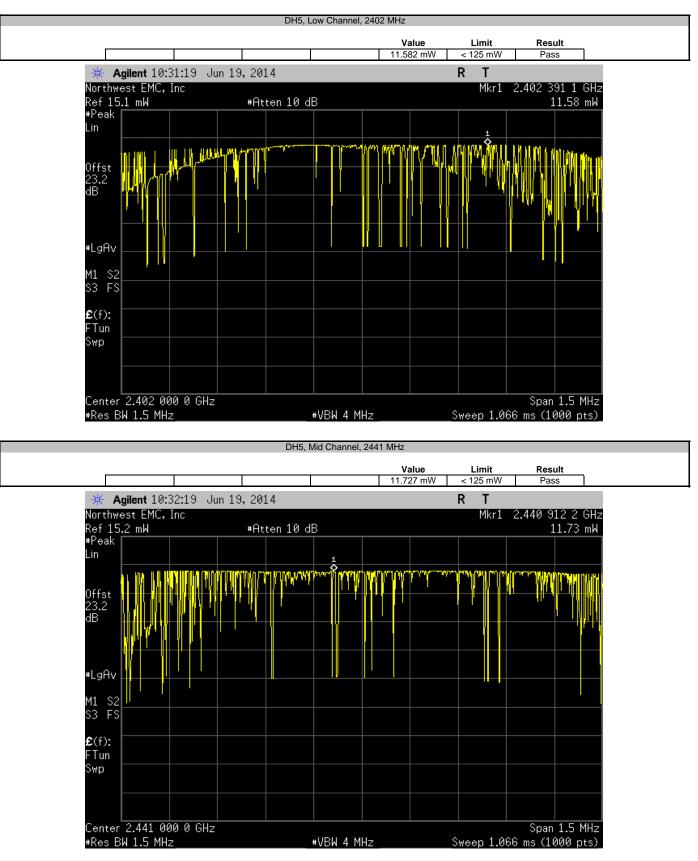
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

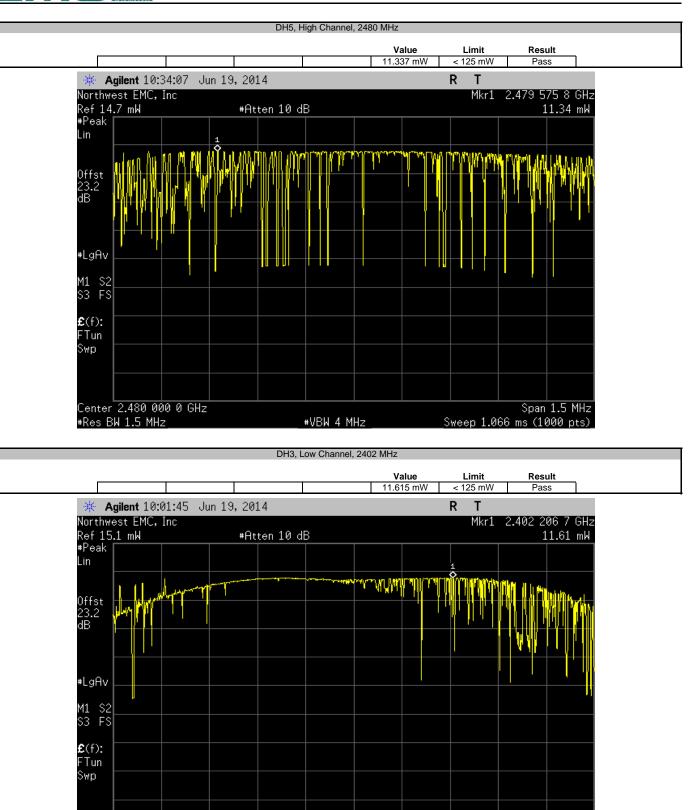
TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +27dBm.

EUT.	Radius-7						
Serial Number:					 Work Order:	06/13/14	
Customer:					Temperature:		
	Michael Clark				Humidity:		
Project:					 Barometric Pres.:		
	Adam Bruno & Johnny Car	delas	Power	Battery	Job Site:		
EST SPECIFICAT			10401	Test Method	000 0110.	10010	
CC 15.247:2014				ANSI C63.10:2009			
00 10.247.2014				,			
COMMENTS							
	enuator (20.5dB) + coax cab	le (1.74dB) + client provided patch	h cable (1.0dB) = 23.	24dB total offset			
Jsing Power Settin		,,					
EVIATIONS FROM	M TEST STANDARD						
None							
	4	Signature	fr d.	litter			
		Signature	for d.	lither	Value	Limit	Result
onfiguration #	4	Signature	for d.	litter			Result
onfiguration #	4 Low Channel 0, 2402 MHz	Signature	fe d.	lather	11.582 mW	< 125 mW	Pass
onfiguration #	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	Signature	fe d.	lithen	11.582 mW 11.727 mW	< 125 mW < 125 mW	Pass Pass
onfiguration #	4 Low Channel 0, 2402 MHz	Signature	Je d.	litter	11.582 mW	< 125 mW	Pass
Configuration #	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	Signature	fr d.	lather	11.582 mW 11.727 mW 11.337 mW	< 125 mW < 125 mW < 125 mW	Pass Pass Pass
onfiguration #	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	Signature	fu d.	lither	11.582 mW 11.727 mW 11.337 mW 11.615 mW	< 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass
onfiguration #	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	Signature	fe d.	litter	11.582 mW 11.727 mW 11.337 mW 11.615 mW 11.779 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass
H3	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	Signature	fe d.	læ	11.582 mW 11.727 mW 11.337 mW 11.615 mW	< 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass
H3	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	Signature	fr d.	lither	11.582 mW 11.727 mW 11.337 mW 11.615 mW 11.779 mW 11.363 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass Pass
lone Configuration # DH5 DH3 DH1	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	Signature	fe d.	litter	11.582 mW 11.727 mW 11.337 mW 11.615 mW 11.779 mW 11.363 mW 11.660 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass Pass
H3	4 Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	Signature	Je d.	later	11.582 mW 11.727 mW 11.337 mW 11.615 mW 11.779 mW 11.363 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass Pass

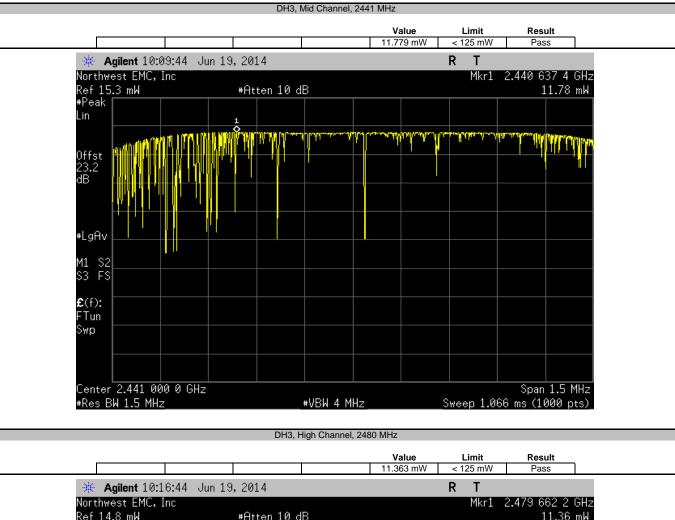
OUTPUT POWER

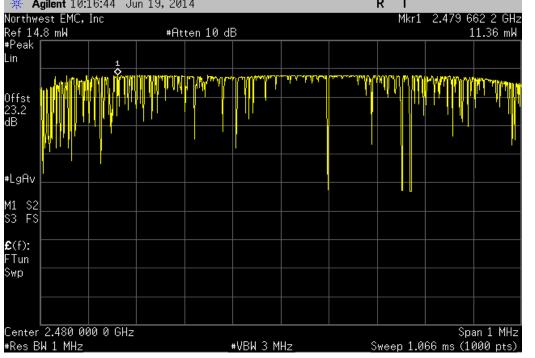


Center 2.402 000 0 GHz #Res BW 1 MHz

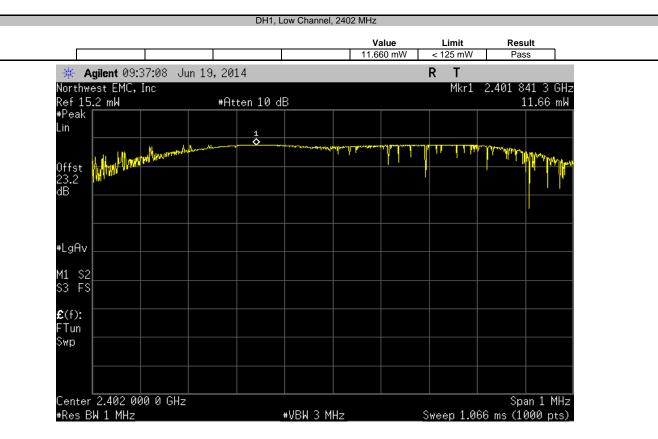
OUTPUT POWER

Span 1 MHz

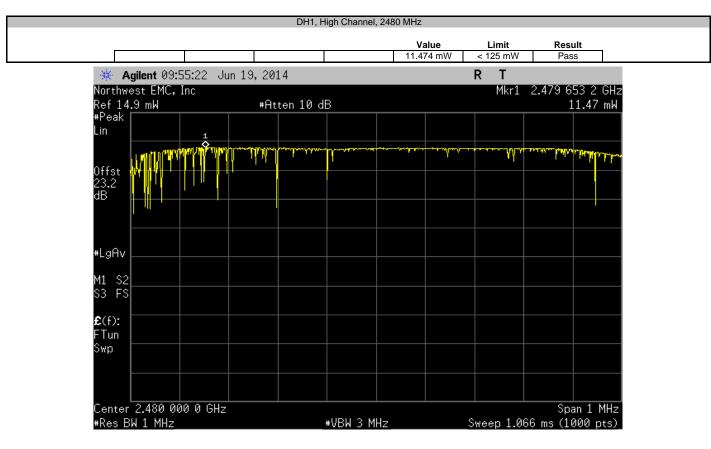

Sweep 1.066 ms (1000 pts)



#VBW 3 MHz



OUTPUT POWER



	DH1, Mid Channel, 2	441 MHz	
		Value Limit	Result
		11.877 mW < 125 mW	Pass
🔆 🔆 Agilent 09:48:40 Ju	n 19, 2014	RT	
Northwest EMC, Inc		Mkr1	2.440 720 7 GHz
Ref 15.4 mW #Peak	#Atten 10 dB		11.88 mW
Lin	1		
	When he black has seen as a second		and a second and the second and the second as a
Offst 23.2 dB			
#LgAv			
M1 S2			
M1 \$2 \$3 F\$			
£(f):			
FTun			
Swp			
Center 2.441 000 0 GHz			Span 2 MHz
#Res BW 2 MHz	#VBW 6 MH:	zSweep 1.00	66 ms (1000 pts)_

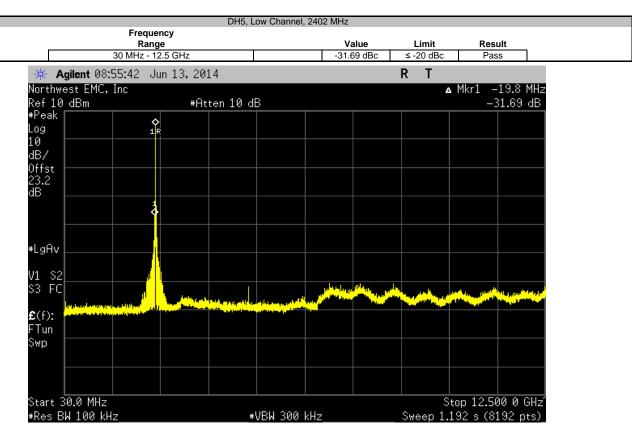
OUTPUT POWER

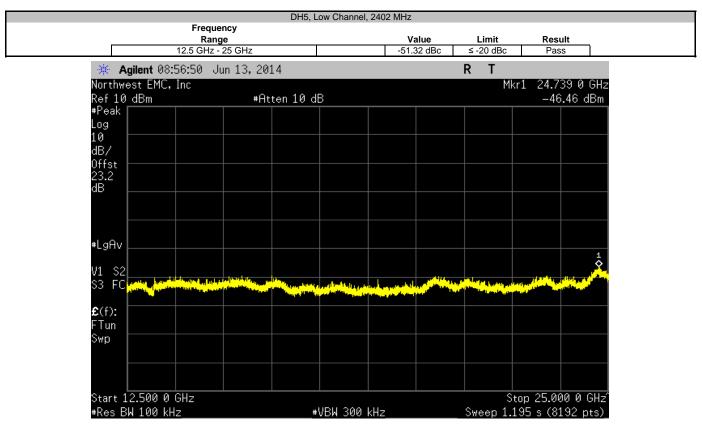
SPURIOUS CONDUCTED EMISSIONS

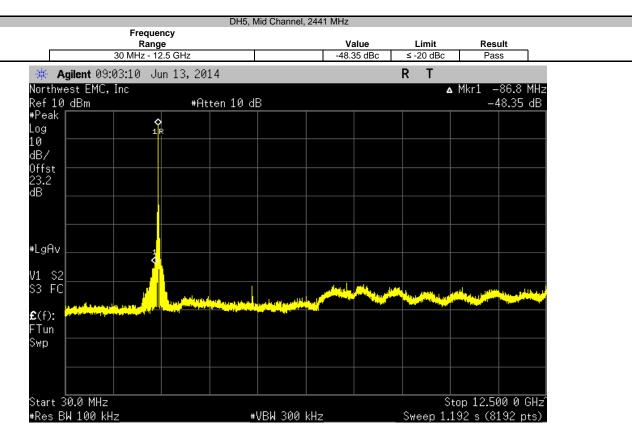
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

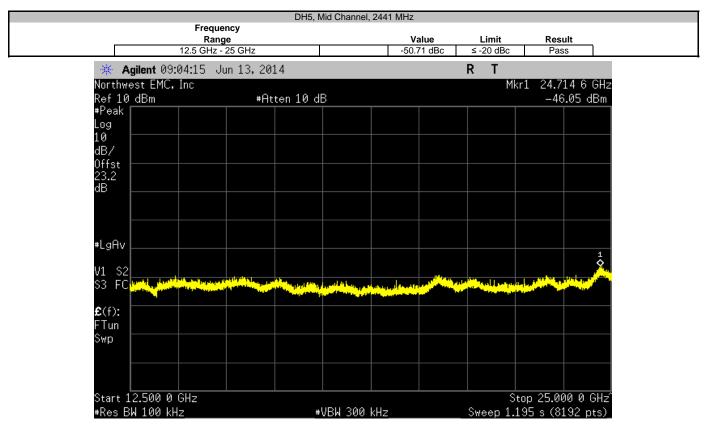
TEST EQUIPMENT

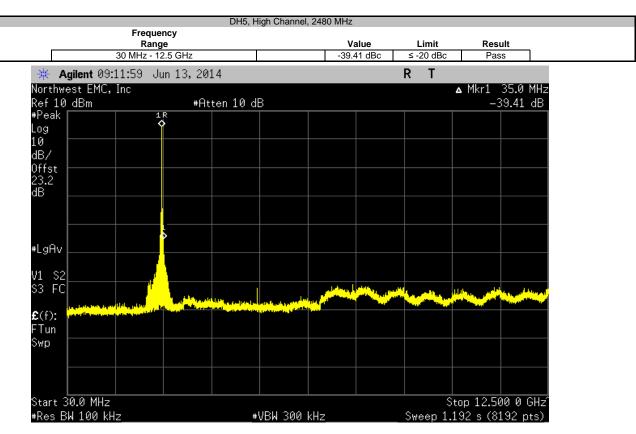
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

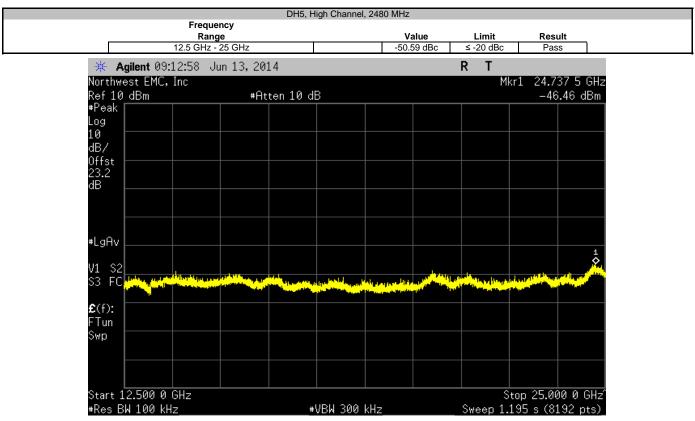

TEST DESCRIPTION

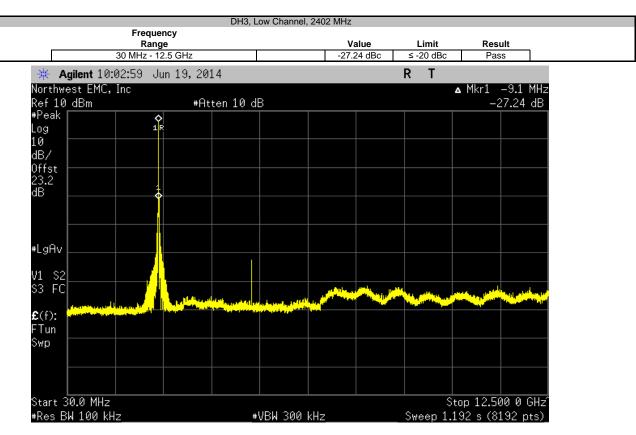

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

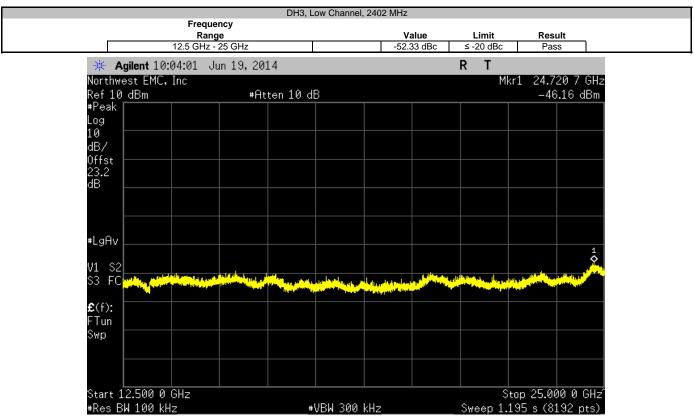

	Radius-7		Work Order:		
Serial Number	: AI000012			06/13/14	
Customer: Masimo			Temperature:	23.9 C°C	
Attendees	: Michael Clark		Humidity:	48%	
Project	: None		Barometric Pres.:	1015	
Tested by: Adam Bruno & Johnny Candelas Power: Battery			Job Site:	OC13	
EST SPECIFICAT	TIONS	Test Method			
CC 15.247:2014		ANSI C63.10:2009			
OMMENTS					
C Block/20dB At	tenuator (20.5dB) + coax cable (1.74dB) + client provided pat	ch cable (1.0dB) = 23.24dB total offset			
Ising Power Setti	ng 14				
	M TEST STANDARD				
lone					
		for d. lother			
Configuration #	4	fer a. com			
	Signature	0			
		Frequency			-
		Range	Value	Limit	Resu
DH5	Leve Observation 0400 Mills	30 MHz - 12.5 GHz	-31.69 dBc	≤ -20 dBc	Pass
	Low Channel 0, 2402 MHz				
	Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-51.32 dBc -48.35 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
		30 MHZ - 12.5 GHZ		≤ -20 abc	Pass
		10 E CUI= 0E CUI=	E0 74 dDe	< 00 dDa	Deee
	Mid Channel 39, 2441 MHz	12.5 GHz - 25 GHz	-50.71 dBc	≤ -20 dBc	Pass
	High Channel 78, 2480 MHz	30 MHz - 12.5 GHz	-39.41 dBc	≤ -20 dBc	Pass
143					
DH3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
H3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-39.41 dBc -50.59 dBc -27.24 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
DH3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
DH3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass
DH3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.64 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass
H3	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-33.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.64 dBc -28.55 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.64 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.64 dBc -28.55 dBc -51.47 dBc	≤ -20 dBc ≤ -20 dBc	Pass
	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-33.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.44 dBc -28.55 dBc -51.47 dBc -30.60 dBc	 -20 dBc 	Pass Pass Pass Pass Pass Pass Pass Pass
	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -62.33 dBc -46.61 dBc -52.64 dBc -52.64 dBc -51.47 dBc -30.60 dBc -52.46 dBc	 < -20 dBc 	Pass Pass Pass Pass Pass Pass Pass Pass
DH3 DH1	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz High Channel 39, 2441 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -52.33 dBc -46.61 dBc -52.64 dBc -28.55 dBc -51.47 dBc -30.60 dBc -52.46 dBc -45.94 dBc	 < -20 dBc 	Pass Pass Pass Pass Pass Pass Pass Pass
	High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz Mid Channel 39, 2441 MHz Mid Channel 39, 2441 MHz High Channel 78, 2480 MHz High Channel 78, 2480 MHz Low Channel 0, 2402 MHz Low Channel 0, 2402 MHz	30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-39.41 dBc -50.59 dBc -27.24 dBc -62.33 dBc -46.61 dBc -52.64 dBc -52.64 dBc -51.47 dBc -30.60 dBc -52.46 dBc	 < -20 dBc 	Pass Pass Pass Pass Pass Pass Pass Pass

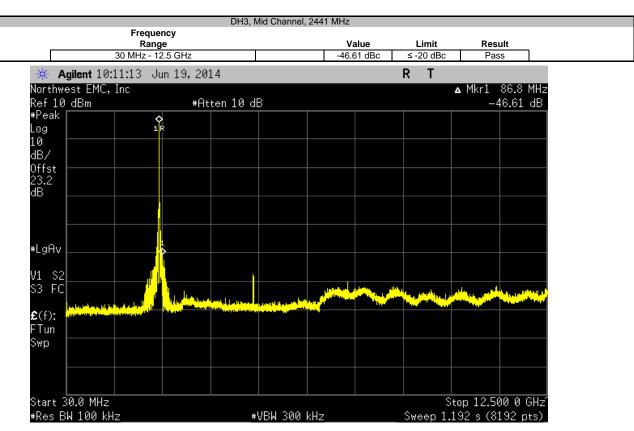


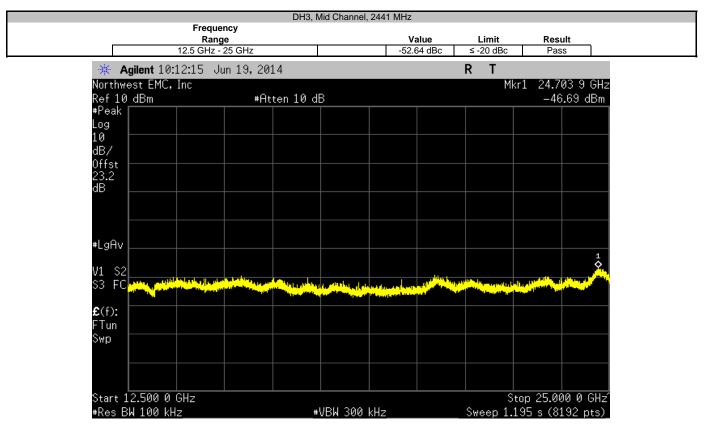


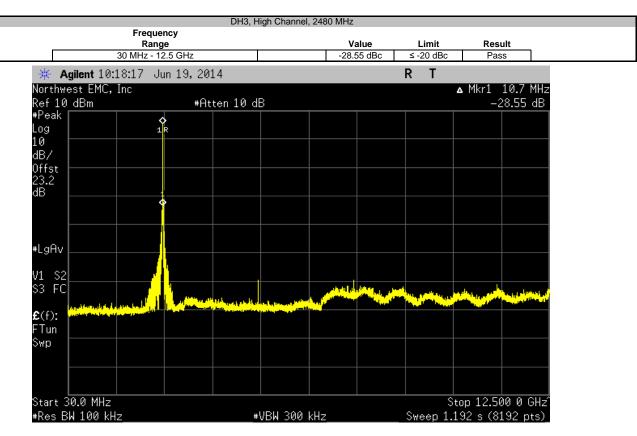


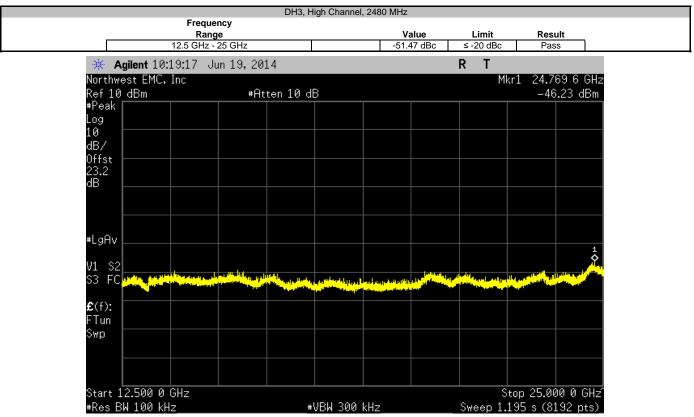


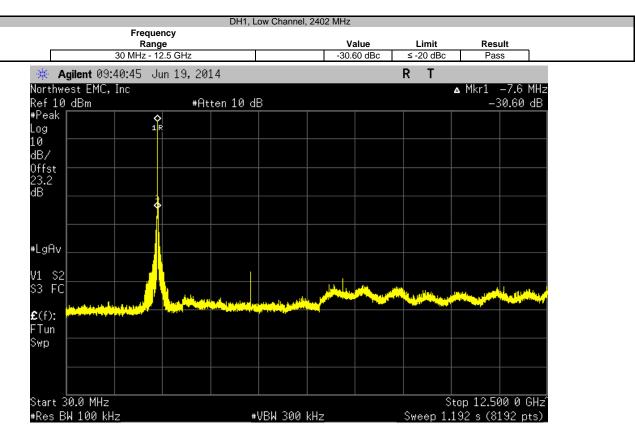


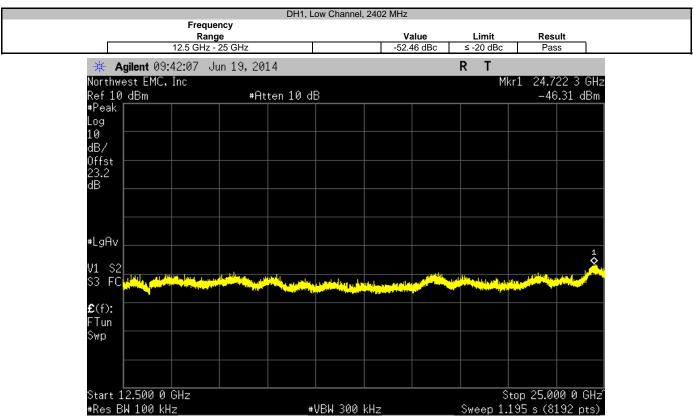


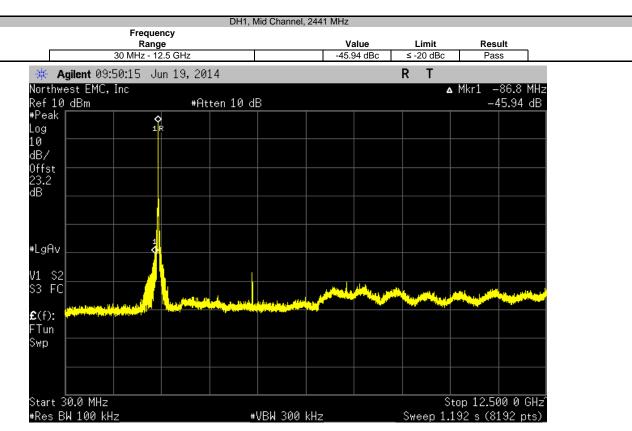


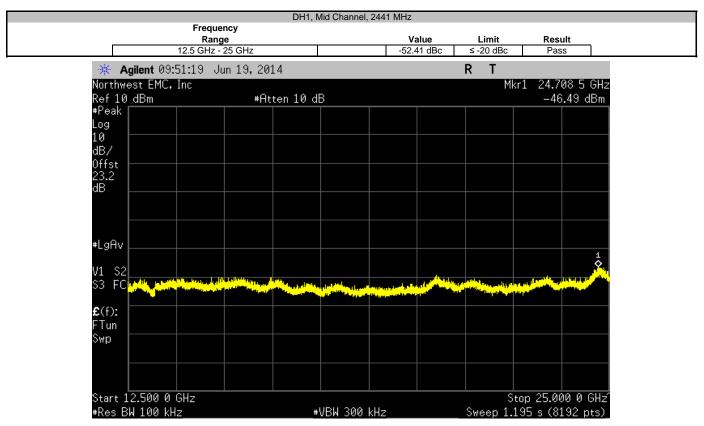


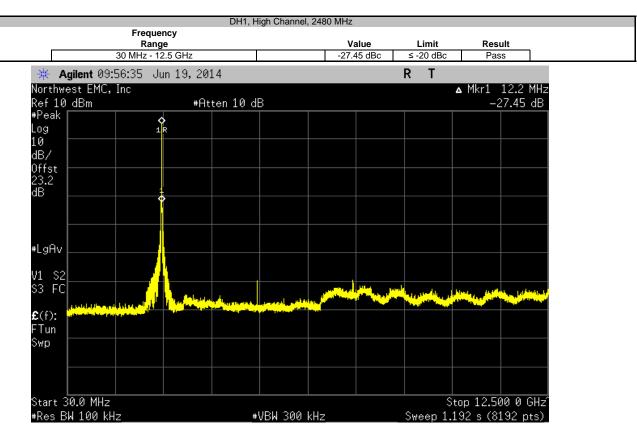


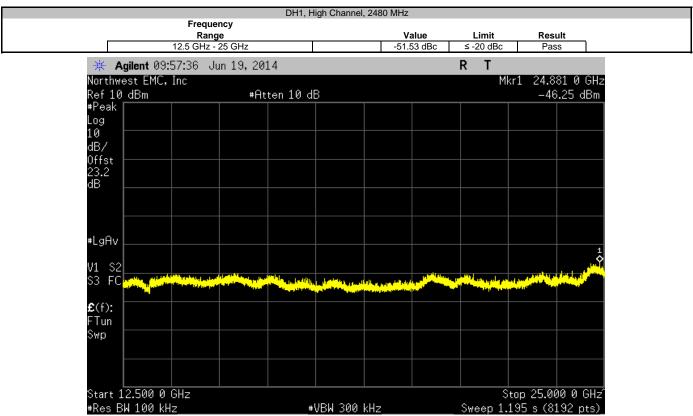












EMC

BANDEDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

The spectrum was scanned below the lower band edge and above the higher band edge.

High Channel, 2480 MHz

Low Channel, 2402 MHz High Channel, 2480 MHz

Low Channel, 2402 MHz High Channel, 2480 MHz

DH3

DH1

BANDEDGE COMPLIANCE

EUT: Radi	ius-7				Wo	rk Order	r: MASI0214	
Serial Number: Al00							e: 06/13/14	
Customer: Masi					Terr		e: 23.9 C°C	
Attendees: Mich	nael Clark					Humidity	/: 48%	
Project: None	e				Barome	tric Pres.	.: 1015	
	m Bruno & Johnny C	andelas	Power:	Battery		Job Site	a: OC13	
EST SPECIFICATIONS				Test Method				
CC 15.247:2014				ANSI C63.10:2009				
OMMENTS								
sing Power Setting 14	. ,	able (1.74dB) + client provided patcl	n cable (1.0dB) = 23.	24dB total offset				
EVIATIONS FROM TES	ST STANDARD							
one								
onfiguration #	4	Signature	for d.	later				
					Va	lue	Limit	Result
H5								
Low	Channel 2402 MHz				-23 2	9 dBc	< -20 dBc	Pass

XMit 2014.02.07 PsaTx 14.04.29.1

Pass

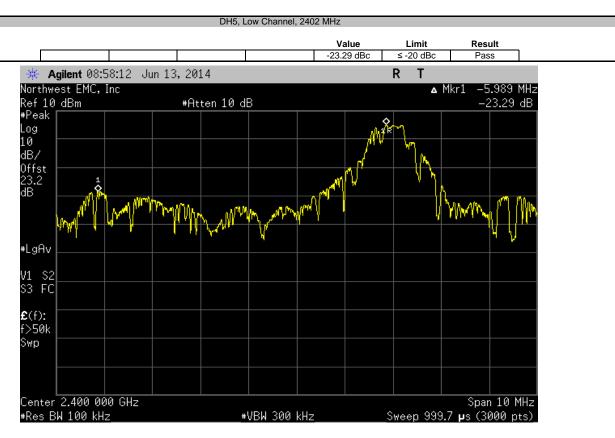
Pass

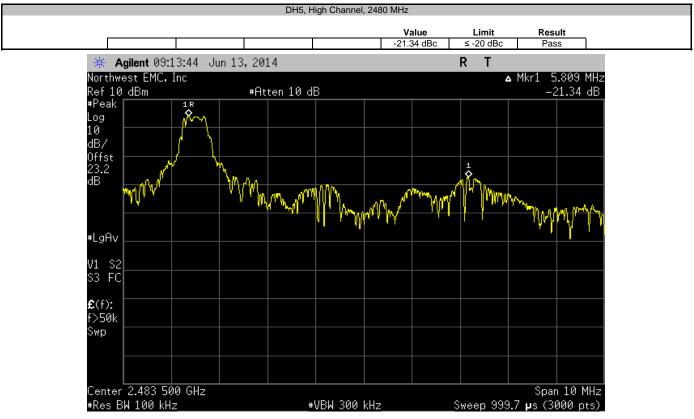
Pass

Pass Pass

-21.34 dBc

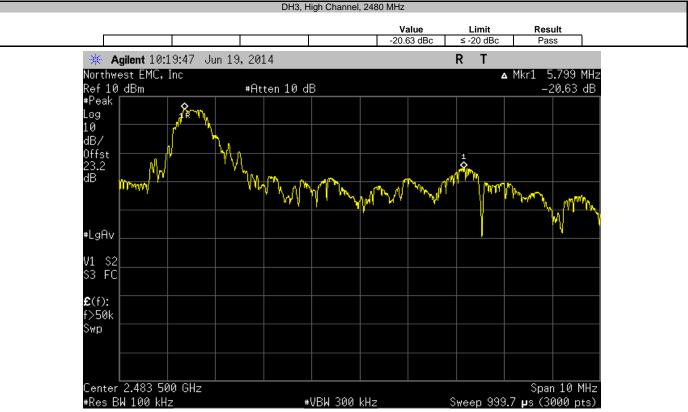
-25.65 dBc


-20.63 dBc


-25.56 dBc -20.54 dBc ≤ -20 dBc

≤ -20 dBc ≤ -20 dBc

≤ -20 dBc ≤ -20 dBc

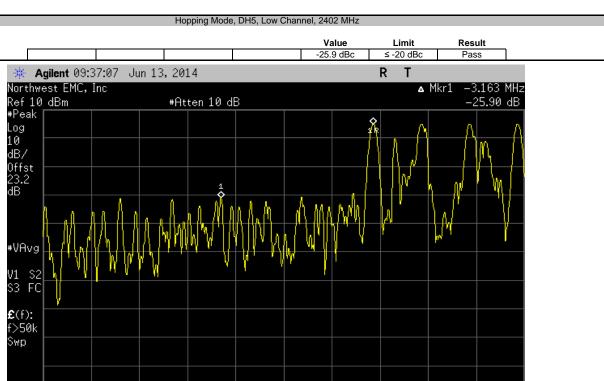


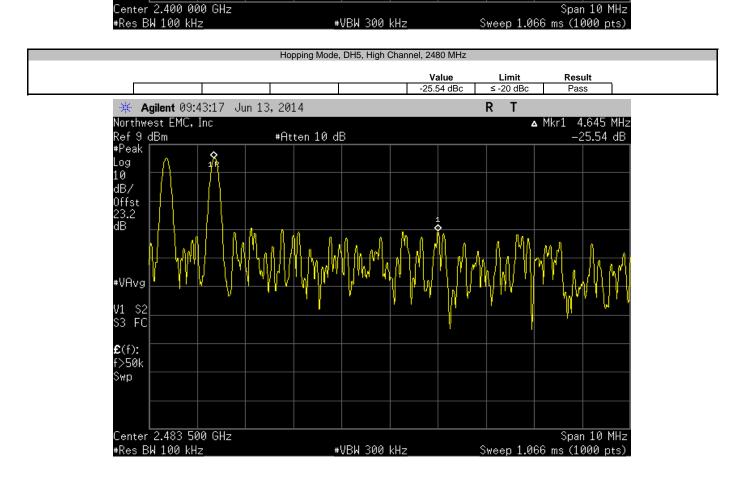
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

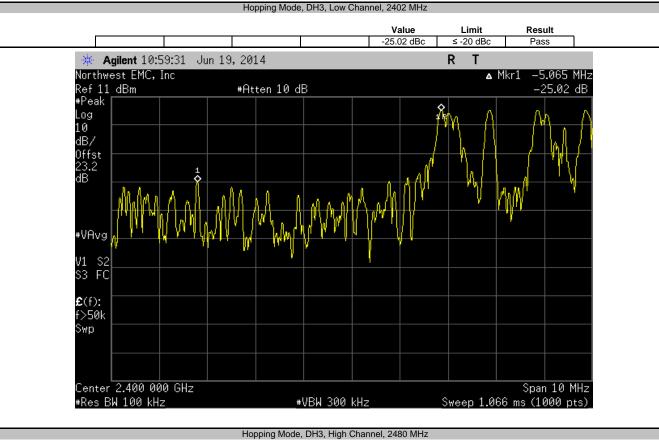
TEST EQUIPMENT

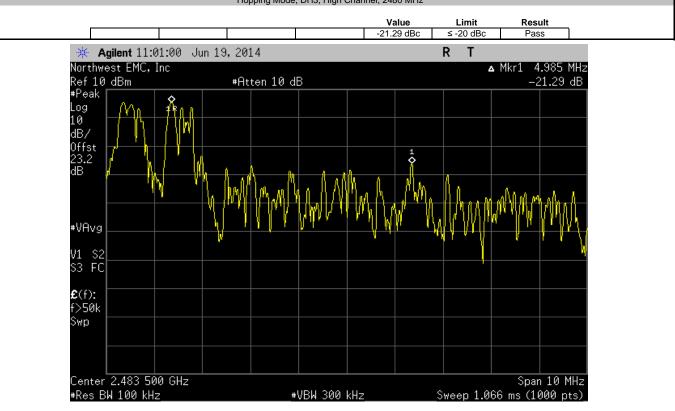
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

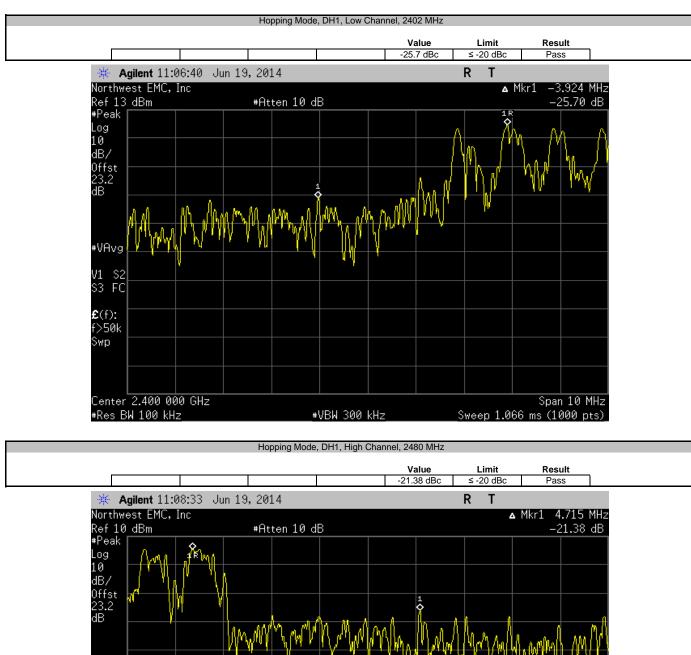
TEST DESCRIPTION


The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudorandom hopping sequence. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.


The spectrum was scanned below the lower band edge and above the higher band edge.


	Radius-7				Work Order:		
Serial Number						06/13/14	
	r: Masimo				Temperature:		
Attendees	s: Michael Clark				Humidity:	48%	
Project	t: None				Barometric Pres.:	1015	
	: Adam Bruno & Johnny C	andelas	Power: Bat	ery	Job Site:	OC13	
TEST SPECIFICA	TIONS		Tes	t Method			
FCC 15.247:2014			ANS	SI C63.10:2009			
COMMENTS							
DC Block/20dB At	ttenuator (20.5dB) + coax ca	able (1.74dB) + client provided pat	tch cable (1.0dB) = 23.24dB	total offset			
Using Power Setti	ing 14	. ,	. ,				
	5						
DEVIATIONS FRO	M TEST STANDARD						
None							
Configuration #	4	Signature	for die	1 min			
					Value	Limit	Result
Hopping Mode					Value	Limit	Result
Hopping Mode	DH5				Value	Limit	Result
Hopping Mode	Low Channel				-25.9 dBc	≤ -20 dBc	Pass
Hopping Mode	Low Channel High Channel						
Hopping Mode	Low Channel				-25.9 dBc	≤ -20 dBc	Pass
Hopping Mode	Low Channel High Channel DH3 Low Channel	l, 2480 MHz , 2402 MHz			-25.9 dBc -25.54 dBc -25.02 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
Hopping Mode	Low Channel High Channel DH3 Low Channel High Channel	l, 2480 MHz , 2402 MHz			-25.9 dBc -25.54 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
Hopping Mode	Low Channel High Channel DH3 Low Channel High Channel DH1	, 2480 MHz , 2402 MHz I, 2480 MHz			-25.9 dBc -25.54 dBc -25.02 dBc -21.29 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
Hopping Mode	Low Channel High Channel DH3 Low Channel High Channel	, 2480 MHz , 2402 MHz I, 2480 MHz , 2402 MHz			-25.9 dBc -25.54 dBc -25.02 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass





EMC

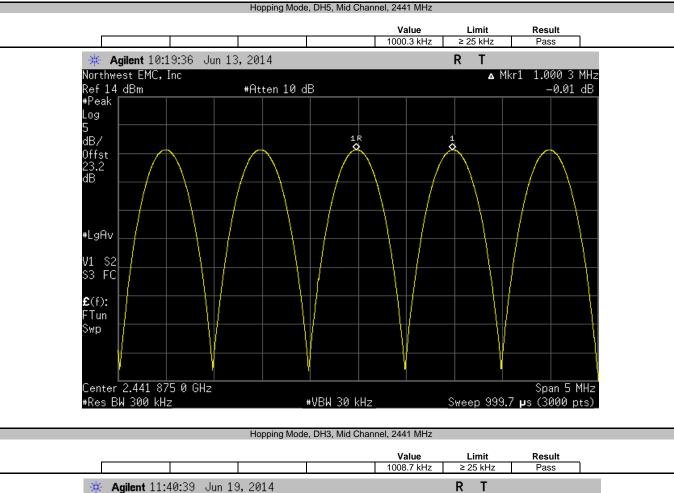
CHANNEL SEPARATION

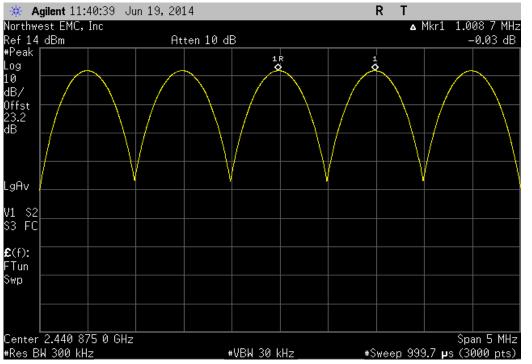
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

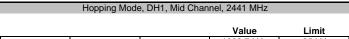
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

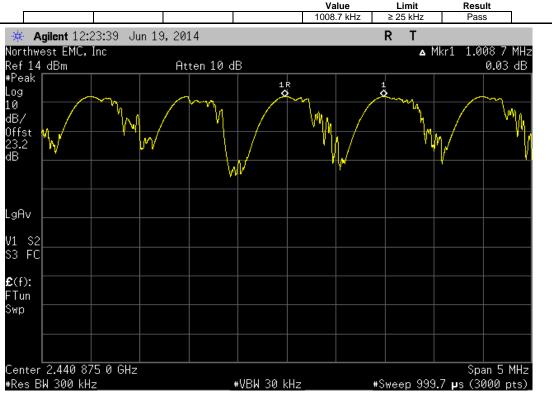
TEST DESCRIPTION


The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.



	: Radius-7	Work Order: M		
Serial Numbe		Date: 06		
	: Masimo	Temperature: 23		
	: Michael Clark	Humidity: 48		
	: None	Barometric Pres.: 10		
	: Adam Bruno & Johnny Candelas Power: Battery	Job Site: O	C13	
TEST SPECIFICA				
FCC 15.247:2014	ANSI C63.10:2009			
COMMENTS				
DC Block/20dB A	tenuator (20.5dB) + coax cable (1.74dB) + client provided patch cable (1.0dB) = 23.24dB total offset			
Using Power Set	ng 14			
	M TEST STANDARD			
None				
Configuration #	4 Signature			
		Value	Limit	Result
Hopping Mode				
	DH5			
	Mid Channel, 2441 MHz	1000.3 kHz	≥ 25 kHz	Pass
	DH3			
	Mid Channel, 2441 MHz	1008.7 kHz	≥ 25 kHz	Pass
	DH1			
	Mid Channel, 2441 MHz	1008.7 kHz	≥ 25 kHz	Pass





CHANNEL SEPARATION

XMit 2014.02.07 PsaTx 14.04.29.1

NUMBER OF HOPPING FREQUENCIES

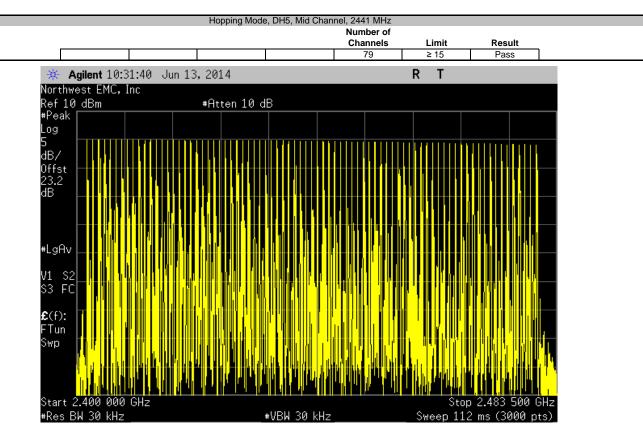
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

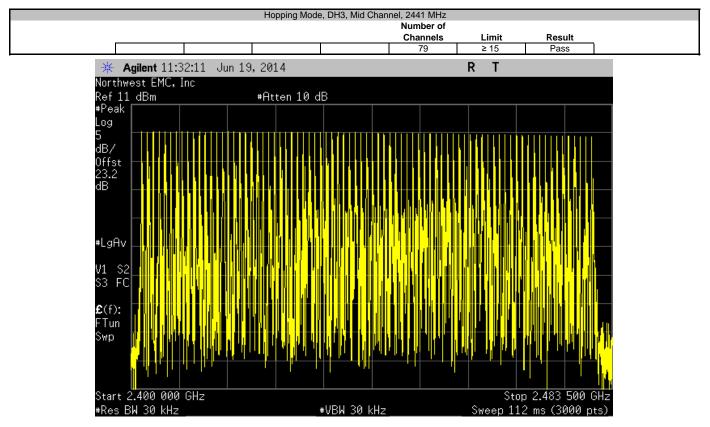
TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.




NORTHWEST NUMBER OF HOPPING FREQUENCIES

	Radius-7					Work Order		
Serial Number							06/13/14	
Customer	: Masimo					Temperature	23.9 C°C	
Attendees	: Michael Clark					Humidity		
Project	None				Ba	rometric Pres.	1015	
	: Adam Bruno & Johnny C	Candelas	Power:	Battery		Job Site	OC13	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.247:2014				ANSI C63.10:2009				
COMMENTS				•				
DC Block/20dB At	tenuator (20.5dB) + coax c	able (1.74dB) + client provided p	patch cable (1.0dB) = 23.2	24dB total offset				
Using Power Setti			, , , , ,					
	5							
DEVIATIONS FRO	M TEST STANDARD							
None								
			1 1					
Configuration #	4		for d.	Cha				
-		Signature	D					
		• • • •				Number of		
						Channels	Limit	Result
Hopping Mode								
	DH5							
	Mid Channel	, 2441 MHz				79	≥ 15	Pass
	DH3							
	Mid Channel	, 2441 MHz				79	≥ 15	Pass
	DH1							
	Mid Channel	, 2441 MHz				79	≥ 15	Pass

NUMBER OF HOPPING FREQUENCIES

XMit 2014.02.07 PsaTx 14.04.29.1

NUMBER OF HOPPING FREQUENCIES

Hopping Mode, DH1, Mid Channel, 2441 MHz Number of Channels Limit Result 79 ≥ 15 Pass Agilent 11:28:32 Jun 19, 2014 R Т ☀ Northwest EMC, Inc Ref 11 dBm #Peak #Atten 10 dB Log 5 dB/ 0ffst 23.2 dB #LgAv V1 S3 S2 FC **£**(f): FTun Swp Start 2.400 000 GHz #Res BW 30 kHz Stop 2.483 500 GHz ₩VBW 30 kHz Sweep 112 ms (3000 pts)_

XMit 2014.02.07 PsaTx 14.04.29.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo.)
Attenuator, 6dB	S.M. Electronics	18N-06	AWN	2/3/2014	12
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
OC13 Cables	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	4/28/2014	12
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

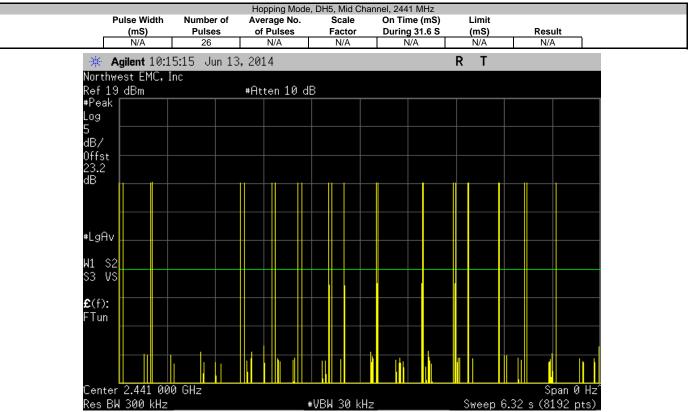
TEST DESCRIPTION

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

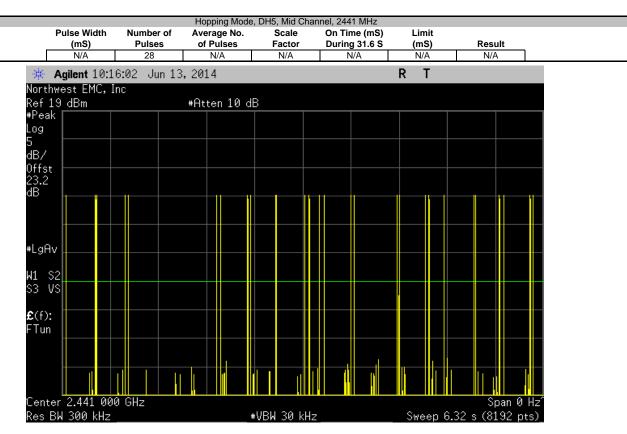
The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400mS = 31.6 Sec.

On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

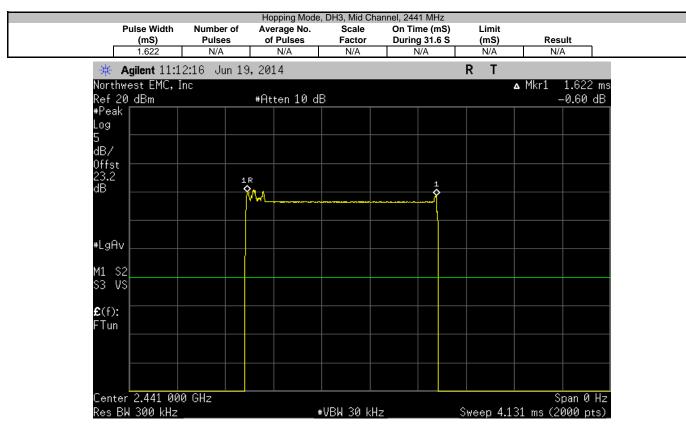
>Average Number of Pulses is based on 4 samples.

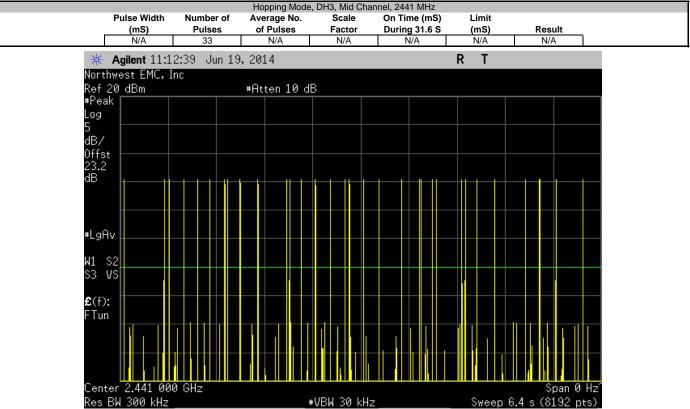

Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

	: Radius-7						Work Order:	MASI0214		
Serial Number	: AI000012						Date:	06/13/14		
Customer	: Masimo					Temperature: 23.9 C°C				
Attendees	: Michael Clark					Humidity: 48%				
Project	.: None						Barometric Pres.:	1015		
Tested by	: Adam Bruno & Johnny C	andelas	Power	: Battery			Job Site:	OC13		
ST SPECIFICAT	TIONS			Test Method						
CC 15.247:2014				ANSI C63.10:2009						
OMMENTS										
Block/20dB At	tenuator (20.5dB) + coax c	able (1.74dB) + client provid	ed patch cable (1.0dB) = 23	.24dB total offset						
ing Power Setti	ng 14									
	M TEST STANDARD									
ne										
		1		1 Cala						
onfiguration #	4	1	The second	allen						
		Signature	0				/			
			Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit		
			(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Resul	
opping Mode	DH5									
	Mid Channel,	0444 MUL	2.867	N/A	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,		2.867 N/A	26	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	
	Mid Channel.		N/A N/A	15	N/A	N/A	N/A N/A	N/A	N/A	
	Mid Channel,		N/A N/A	22	N/A	N/A	N/A N/A	N/A	N/A	
	Mid Channel,		N/A	28	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,		2.867	N/A	22.75	5	326.12	400	Pass	
	DH3	, 2441 10112	2.007	19/75	22.15	5	520.12	400	1 433	
	Mid Channel,	2441 MHz	1.622	N/A	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,		N/A	33	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,		N/A	37	N/A	N/A	N/A	N/A	N/A	
	Mid Channel.		N/A	31	N/A	N/A	N/A	N/A	N/A	
	Mid Channel		N/A	33	N/A	N/A	N/A	N/A	N/A	
	Mid Channel.		1.622	N/A	33.5	5	271.69	400	Pass	
	DH1	Í.				-				
	Mid Channel	, 2441 MHz	0.359	N/A	N/A	N/A	N/A	N/A	N/A	
	wid Channel,			64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,	, 2441 MHz	N/A	04						
			N/A N/A	64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel,	, 2441 MHz			N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
	Mid Channel, Mid Channel,	, 2441 MHz , 2441 MHz	N/A	64						

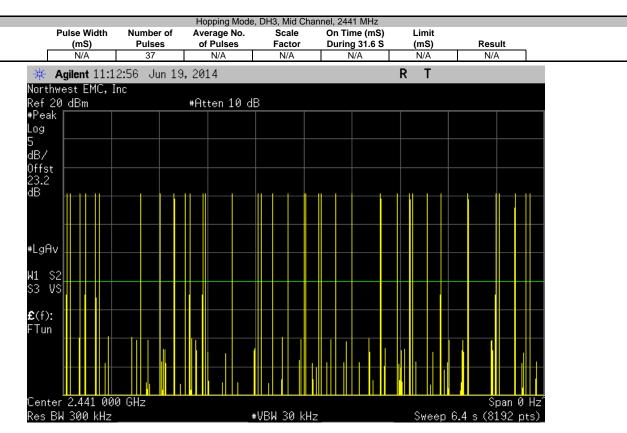


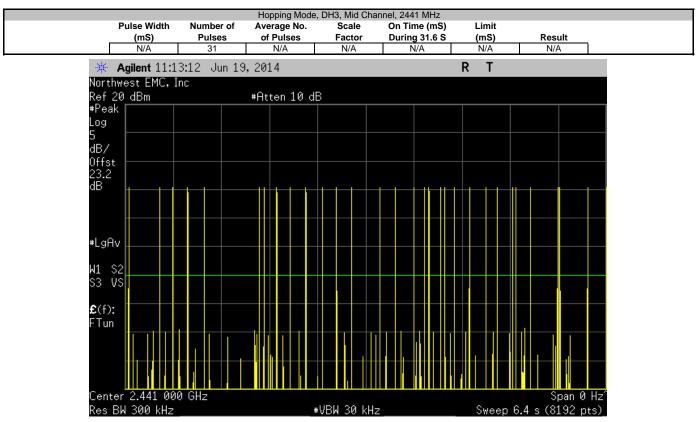
Pulse Width Number of Average No. Scale On Time (mS) Limit (mS) Pulses of Pulses Factor During 31.6 S (mS) Result N/A 22 N/A N/A N/A N/A N/A	
N/A 22 N/A N/A N/A N/A N/A	
🗰 Agilent 10:15:47 Jun 13, 2014 🛛 🛛 🥂 R 🗖	
Northwest EMC, Inc Ref 19 dBm #Atten 10 dB	
#Peak	
Log 5 5	
Offst 23.2 dB	
#LgAv	
W1 S2 AND A	
S3 VS	
£ (f):	
FTun	
	1
Center 2.441 000 GHz Span 0 Res BW 300 kHz #VBW 30 kHz Sweep 6.32 s (8192 p	Hzî

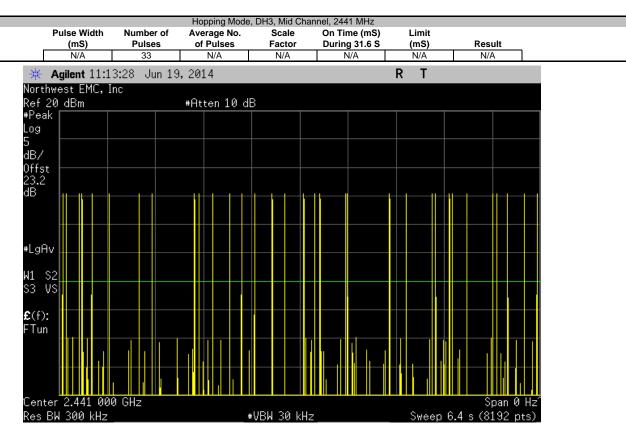


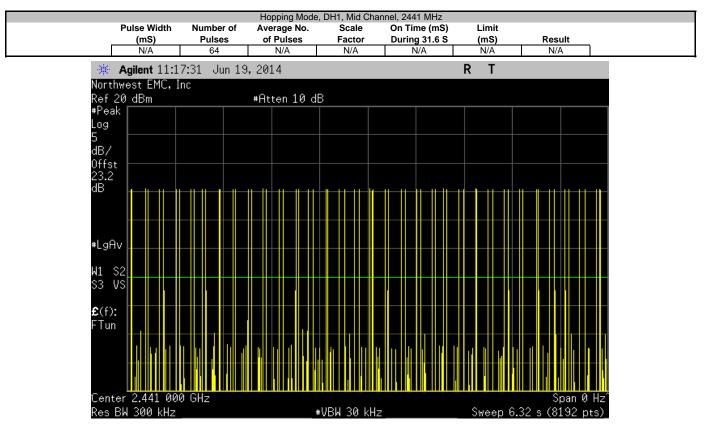

Hopping Mode, DH5, Mid Channel, 2441 MHz								
	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit		
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result	
	2.867	N/A	22.75	5	326.12	400	Pass	

Calculation Only


No Screen Capture Required






Hopping Mode, DH3, Mid Channel, 2441 MHz										
	Pulse Width	Number of	Average No.	Limit						
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
	1.622	N/A	33.5	5	271.69	400	Pass			

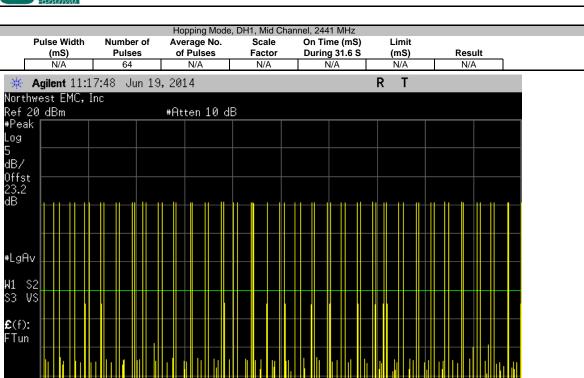
Calculation Only

No Screen Capture Required

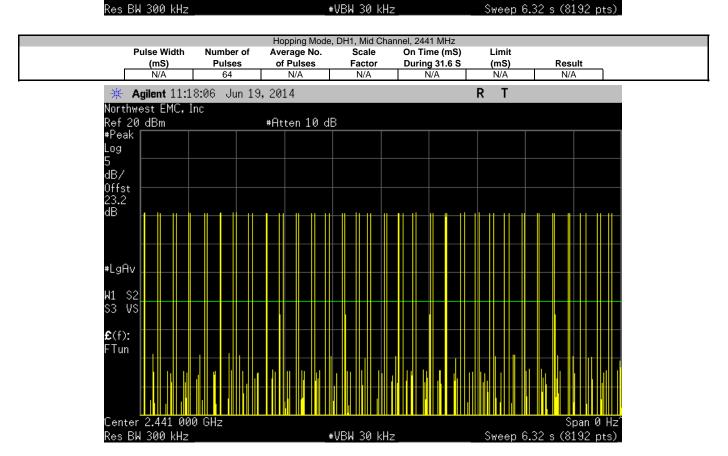
			Hopping Mode	e, DH1, Mid Chan	nel, 2441 MHz			
	Pulse Width Number of		Average No.	Scale	On Time (mS)	Limit (mS)		
г	(mS) 0.359	Pulses N/A			Factor During 31.6 S		Result	
			N/A N/A		N/A	N/A	N/A	
莱	Agilent 11:1	7:03 Jun 19	,2014			RT		
	west EMC, I	Inc				Δ	Mkr1 359 µ	
Ref 2	20 dBm		#Atten 10 d	IB			0.30 dB	
#Peal	<							
Log								
5								
dB/								
Offst 23.2 dB						1		
dB				1R		\$		
				(V	m	4		
						_ `		
#LgA	v							
M1 S	52							
S3 N	's I							
A (D)								
£ (f):								
FTun						_		
						_		
Cont	er 2.441 00						 Span 0 Hz	
		U GHZ				Succes 1 00		
Kes I	3W 300 kHz			⊭VBW 30 kHz		_эмеер 1.33	9 ms (2000 pts)	

⋇

5 dB/ Offst 23.2 dB

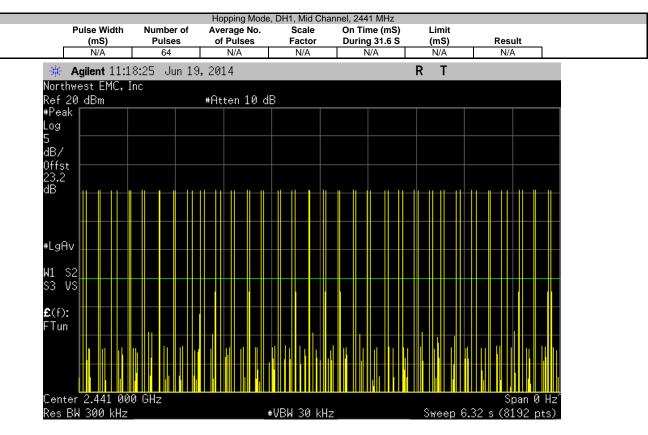

#LgAv

₩1 S3 S2 VS


£(f): FTun

Center 2.441 000 GHz

DWELL TIME



Span 0 Hz

Hopping Mode, DH1, Mid Channel, 2441 MHz											
	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit					
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result				
	0.359	N/A	64	5	114.88	400	Pass				

Calculation Only

No Screen Capture Required

ENC

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

TX Mode, Ch 0 - 2402 MHz, 39 - 2441 MHz, & 78 - 2480MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

MASI0214 - 4

FREQUENCY RANGE INVESTIGATED

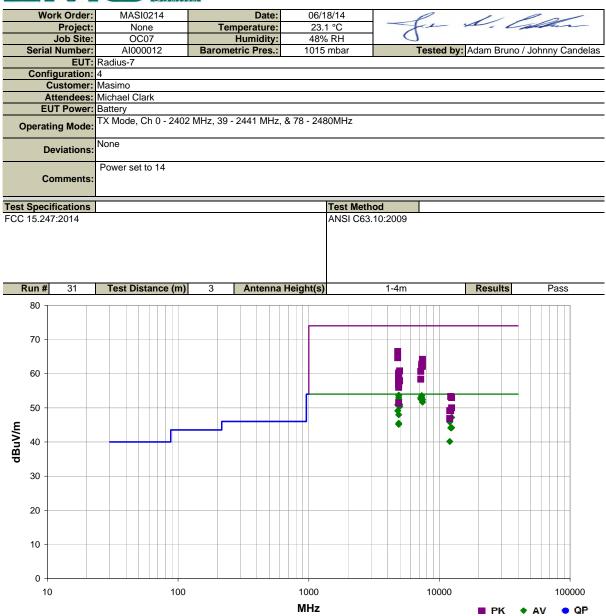
Start Frequency 30 MHz

Stop Frequency 26 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT


Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFC	11/27/2012	24 mo
Attenuator, 20db, 'SMA'	Weinschel Corp	4H-20	AWB	4/28/2014	12 mo
HP Filter	Micro-Tronics	HPM50111	HGC	11/27/2012	36 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	2/6/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	1/10/2014	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC07 Cables	ESM Cable Corp.	8-18GHz cables	OCY	3/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	10/24/2013	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	10/24/2013	12 mo
Antenna, Horn	ETS	3160-07	AHX	NCR	0 mo
OC07 Cables	ESM Cable Corp.	1-8GHz cables	OCX	3/27/2014	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	10/24/2013	12 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AIR	6/4/2014	24 mo
OC07 Cables	ESM Cable Corp.	30-1GHz cables	OCW	4/17/2014	12 mo
Pre-Amplifier	Miteq	AM-1402	AOZ	1/13/2014	12 mo
Antenna, Biconilog	EMCO	3142	AXA	11/25/2013	24 mo
Spectrum Analyzer	Agilent	N9010A	AFJ	7/10/2013	24 mo

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4881.725	50.5	3.2	1.5	157.0	3.0	0.0	Vert	AV	0.0	53.7	54.0	-0.3	EUT Vert, Ch 39, DH5
4881.717	50.5	3.2	1.2	202.0	3.0	0.0	Horz	AV	0.0	53.7	54.0	-0.3	EUT Vert, Ch 39, DH5
7322.583	43.3	10.3	1.2	29.0	3.0	0.0	Horz	AV	0.0	53.6	54.0	-0.4	EUT Vert, Ch 39, DH5
4881.750	49.9	3.2	1.2	221.0	3.0	0.0	Horz	AV	0.0	53.1	54.0	-0.9	EUT Vert, Ch 39, DH3
7208.592	43.1	9.9	1.2	243.0	3.0	0.0	Vert	AV	0.0	53.0	54.0	-1.0	EUT Vert, Ch 0, DH5
7322.583	42.7	10.3	1.2	244.0	3.0	0.0	Vert	AV	0.0	53.0	54.0	-1.0	EUT Vert, Ch 39, DH5
7208.567	42.7	9.9	1.2	44.0	3.0	0.0	Horz	AV	0.0	52.6	54.0	-1.4	EUT Vert, Ch 0, DH5
4881.700	49.3	3.2	1.2	337.0	3.0	0.0	Horz	AV	0.0	52.5	54.0	-1.5	EUT Horiz, Ch 39, DH5
7439.567	42.0	10.4	1.2	246.0	3.0	0.0	Vert	AV	0.0	52.4	54.0	-1.6	EUT Vert, Ch 78, DH5
4881.733	49.2	3.2	1.2	184.0	3.0	0.0	Horz	AV	0.0	52.4	54.0	-1.6	EUT on Side, Ch 39, DH5
7439.567	41.3	10.4	1.2	264.0	3.0	0.0	Horz	AV	0.0	51.7	54.0	-2.3	EUT Vert, Ch 78, DH5
4881.700	48.0	3.2	1.5	240.0	3.0	0.0	Vert	AV	0.0	51.2	54.0	-2.8	EUT on Side, Ch 39, DH5
4959.708	47.7	3.3	1.3	162.0	3.0	0.0	Vert	AV	0.0	51.0	54.0	-3.0	EUT Vert, Ch 78, DH5
4881.708	47.8	3.2	1.2	167.0	3.0	0.0	Vert	AV	0.0	51.0	54.0	-3.0	EUT Vert, Ch 39, DH3
4805.742	47.7	3.1	1.2	217.0	3.0	0.0	Horz	AV	0.0	50.8	54.0	-3.2	EUT Vert, Ch 0, DH5
4959.717	47.1	3.3	1.2	204.0	3.0	0.0	Horz	AV	0.0	50.4	54.0	-3.6	EUT Vert, Ch 78, DH5
4805.742	46.0	3.1	1.4	212.0	3.0	0.0	Vert	AV	0.0	49.1	54.0	-4.9	EUT Vert, Ch 0, DH5
12204.270	56.8	-7.7	1.2	228.0	3.0	0.0	Vert	AV	0.0	49.1	54.0	-4.9	EUT Vert, Ch 39, DH5
4881.792	44.8	3.2	1.2	194.0	3.0	0.0	Horz	AV	0.0	48.0	54.0	-6.0	EUT Vert, Ch 39, DH1
12399.280	54.6	-7.4	1.2	219.0	3.0	0.0	Vert	AV	0.0	47.2	54.0	-6.8	EUT Vert, Ch 78, DH5
4804.508	63.3	3.1	1.2	217.0	3.0	0.0	Horz	PK	0.0	66.4	74.0	-7.6	EUT Vert, Ch 0, DH5
12014.250	53.8	-8.0	1.2	246.0	3.0	0.0	Vert	AV	0.0	45.8	54.0	-8.2	EUT Vert, Ch 0, DH5

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4881.825	42.3	3.2	1.2	164.0	3.0	0.0	Vert	AV	0.0	45.5	54.0	-8.5	EUT Vert, Ch 39, DH1
4881.675	42.0	3.2	1.2	329.0	3.0	0.0	Vert	AV	0.0	45.2	54.0	-8.8	EUT Horiz, Ch 39, DH5
4804.417	61.5	3.1	1.4	212.0	3.0	0.0	Vert	PK	0.0	64.6	74.0	-9.4	EUT Vert, Ch 0, DH5
12399.280	51.6	-7.4	1.2	290.0	3.0	0.0	Horz	AV	0.0	44.2	54.0	-9.8	EUT Vert, Ch 78, DH5
7439.333	53.8	10.4	1.2	246.0	3.0	0.0	Vert	PK	0.0	64.2	74.0	-9.8	EUT Vert, Ch 78, DH5
12204.290	51.8	-7.7	1.2	291.0	3.0	0.0	Horz	AV	0.0	44.1	54.0	-9.9	EUT Vert, Ch 39, DH5
7323.425	52.5	10.3	1.2	29.0	3.0	0.0	Horz	PK	0.0	62.8	74.0	-11.2	EUT Vert, Ch 39, DH5
7439.058	51.8	10.4	1.2	264.0	3.0	0.0	Horz	PK	0.0	62.2	74.0	-11.8	EUT Vert, Ch 78, DH5
7322.625	51.8	10.3	1.2	244.0	3.0	0.0	Vert	PK	0.0	62.1	74.0	-11.9	EUT Vert, Ch 39, DH5
4959.650	57.5	3.3	1.2	204.0	3.0	0.0	Horz	PK	0.0	60.8	74.0	-13.2	EUT Vert, Ch 78, DH5
7208.617	50.8	9.9	1.2	44.0	3.0	0.0	Horz	PK	0.0	60.7	74.0	-13.3	EUT Vert, Ch 0, DH5
4881.692	57.0	3.2	1.5	157.0	3.0	0.0	Vert	PK	0.0	60.2	74.0	-13.8	EUT Vert, Ch 39, DH5
12014.280	48.1	-8.0	1.2	203.0	3.0	0.0	Horz	AV	0.0	40.1	54.0	-13.9	EUT Vert, Ch 0, DH5
4881.717	56.7	3.2	1.2	202.0	3.0	0.0	Horz	PK	0.0	59.9	74.0	-14.1	EUT Vert, Ch 39, DH5
4881.633	56.4	3.2	1.2	221.0	3.0	0.0	Horz	PK	0.0	59.6	74.0	-14.4	EUT Vert, Ch 39, DH3
7208.600	48.5	9.9	1.2	243.0	3.0	0.0	Vert	PK	0.0	58.4	74.0	-15.6	EUT Vert, Ch 0, DH5
4882.025	55.0	3.2	1.2	337.0	3.0	0.0	Horz	PK	0.0	58.2	74.0	-15.8	EUT Horiz, Ch 39, DH5
4881.592	54.9	3.2	1.2	194.0	3.0	0.0	Horz	PK	0.0	58.1	74.0	-15.9	EUT Vert, Ch 39, DH1
4882.417	54.8	3.2	1.2	184.0	3.0	0.0	Horz	PK	0.0	58.0	74.0	-16.0	EUT on Side, Ch 39, DH5
4960.358	54.6	3.3	1.3	162.0	3.0	0.0	Vert	PK	0.0	57.9	74.0	-16.1	EUT Vert, Ch 78, DH5
4881.642	53.7	3.2	1.5	240.0	3.0	0.0	Vert	PK	0.0	56.9	74.0	-17.1	EUT on Side, Ch 39, DH5
4881.783	53.5	3.2	1.2	167.0	3.0	0.0	Vert	PK	0.0	56.7	74.0	-17.3	EUT Vert, Ch 39, DH3
4881.658	52.8	3.2	1.2	164.0	3.0	0.0	Vert	PK	0.0	56.0	74.0	-18.0	EUT Vert, Ch 39, DH1
12204.060	61.0	-7.7	1.2	228.0	3.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	EUT Vert, Ch 39, DH5
12398.460	60.4	-7.4	1.2	219.0	3.0	0.0	Vert	PK	0.0	53.0	74.0	-21.0	EUT Vert, Ch 78, DH5
4881.758	48.2	3.2	1.2	329.0	3.0	0.0	Vert	PK	0.0	51.4	74.0	-22.6	EUT Horiz, Ch 39, DH5
12399.010	57.4	-7.4	1.2	290.0	3.0	0.0	Horz	PK	0.0	50.0	74.0	-24.0	EUT Vert, Ch 78, DH5
12009.500	57.1	-8.0	1.2	246.0	3.0	0.0	Vert	PK	0.0	49.1	74.0	-24.9	EUT Vert, Ch 0, DH5
12204.210	56.8	-7.7	1.2	291.0	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	EUT Vert, Ch 39, DH5
12011.120	54.8	-8.0	1.2	203.0	3.0	0.0	Horz	PK	0.0	46.8	74.0	-27.2	EUT Vert, Ch 0, DH5