

Masimo Corporation

Radical 7 FCC 15.247:2013 FCC 15.207:2013

Report #: MASI0142

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC - (888) 364-2378 - www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: April 19, 2013 Masimo Corporation Model: Radical 7

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Duty Cycle	FCC 15.247:2013	ANSI C63.10:2009	Pass
Dwell Time	FCC 15.247:2013	ANSI C63.10:2009	Pass
Number of Hopping Frequencies	FCC 15.247:2013	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.247:2013	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2013	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2013	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2013	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2013	ANSI C63.10:2009	Pass
Band Edge Compliance- Hopping Mode	FCC 15.247:2013	ANSI C63.10:2009	Pass
AC Powerline Conducted Emissions	FCC 15.207:2013	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

-

Approved By:

famitly P. Of

Tim Oshea, Lab Manager

NVLAP Lab Code: 200676-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618 Phone: (503) 844-4066 Fax: 5

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

LOCATIONS

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600
		VCCI		
A-0108	A-0029		A-0109	A-0110
Industry Canada				
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1
NVLAP				
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Masimo Corporation
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Michael Clark
Model:	Radical 7
First Date of Test:	April 15, 2013
Last Date of Test:	April 19, 2013
Receipt Date of Samples:	April 15, 2013
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

A noninvasive monitoring platform enabling the assessment of multiple blood constituents and physiologic parameters that previously required invasive or complicated procedures. Standard wireless connectivity is provided from the integrated Bluetooth® technology in the handheld device.

Testing Objective:

To demonstrate compliance to FCC 15.247 requirements.

CONFIGURATIONS

Configuration MASI0142-1

Software/Firmware Running during test		
Description	Version	
Tera Term	4.73	
(Linux) Base	E 0.0.1.6	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Radical 7	Masimo Corporation	Radical 7	113874

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Remote Laptop	Hewlett Packard	Compaq 6515b	CNU7300W4L	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.8m	No	Radical 7	AC Mains
USB Cable	No	1.8m	No	Radical 7	Remote Laptop
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATIONS

Configuration MASI0142-2

Software/Firmware Running during test		
Description	Version	
Tera Term	4.73	
(Linux) Base	E 0.0.1.6	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Radical 7	Masimo Corporation	Radical 7	113874

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Remote Laptop	Hewlett Packard	Compaq 6515b	CNU7300W4L	
Rainbow Patient Sensor	Masimo Corporation	DCI - DC12	9J042	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.8m	No	Radical 7	AC Mains
USB Cable	No	1.8m	No	Radical 7	Remote Laptop
Rainbow Patient	No	2.5m	No	Radical 7	Rainbow Patient
Sensor Cable	INU	5.50			Sensor
RS-232 Cable	No	1.8m	Yes	Radical 7	Unterminated
DB-15 Cable	No	1.5m	Yes	Radical 7	Unterminated
SatShare Cable	No	1.0m	Yes	Radical 7	Unterminated
PA = Cal	ole is permane	ntly attached to the de	vice. Shieldin	g and/or presence of ferrit	e may be unknown.

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT	
1	4/15/2013	Spurious Radiated	Tested as delivered to	No EMI suppression devices were added or	EUT remained at Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
_			Tested as	No EMI suppression	EUT remained at	
2	4/15/2013	Duty Cycle	delivered to	devices were added or	Northwest EMC	
		Number of	Test Station.		FUT remained at	
З	1/15/2013		delivered to	devices were added or	Northwest EMC	
5	4/13/2013	Frequencies	Test Station.	modified during this test.	following the test.	
		Occurring	Tested as	No EMI suppression	EUT remained at	
4	4/15/2013	Occupied	delivered to	devices were added or	Northwest EMC	
		Danuwiutn	Test Station.	modified during this test.	following the test.	
			Tested as	No EMI suppression	EUT remained at	
5	4/15/2013	Dwell Time	delivered to	devices were added or	Northwest EMC	
			Test Station.	modified during this test.	following the test.	
•	4/45/0040	Band Edge	Tested as	No EMI suppression	EUT remained at	
6	4/15/2013	Compliance	delivered to	devices were added or	Northwest EMC	
		Conducted	Test Station.	modified during this test.	following the test.	
		Emissions	Tested as	No EMI suppression	EUT remained at	
7	4/19/2013	from Digital	delivered to	devices were added or	Northwest EMC	
		Potion	Test Station.	modified during this test.	following the test.	
		Spurious	Tested as	No EMI suppression	EUT remained at	
8	4/19/2013	Conducted	delivered to	devices were added or	Northwest EMC	
		Emissions	Test Station.	modified during this test.	following the test.	
		Band Edge	Tested as	No EMI suppression	EUT remained at	
9	4/19/2013	Compliance-	delivered to	devices were added or	Northwest EMC	
		Mode	Test Station.	modified during this test.	following the test.	
			Tested as	No EMI suppression		
10	4/19/2013	Output	delivered to	devices were added or	Scheduled testing	
		Fower	Test Station.	modified during this test.	was completed.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating was used during some of the other tests in the this report to only measure during the burst duration.

EUT:	Radical 7						Work Order	: MASI0142	
Serial Number:	113874						Date	: 04/19/13	
Customer:	Masimo Corporation						Temperature	: 23.1°C	
Attendees:	None						Humidity	: 24%	
Project:	None						Barometric Pres.	: 1016	
Tested by:	Jaemi Suh		Power:	110VAC/60Hz			Job Site	: OC10	
TEST SPECIFICAT	IONS			Test Method					
FCC 15.207:2013				ANSI C63.10:2009					
COMMENTS									
DH5 Mode only.									
-									
DEVIATIONS FROM	M TEST STANDARD								
None									
				C-					
Configuration #	1		Carton)					
		Signature	10						
						Number of	Value		
				Pulse Width	Period	Pulses	(%)	Limit	Result
DH5, GFSK									
	Low Channel, 2402 MHz			2.888 mS	3.749 mS	1	77	N/A	N/A
	Low Channel, 2402 MHz			N/A	N/A	5	N/A	N/A	N/A
	Mid Channel, 2440 MHz			2.888 mS	3.749 mS	1	77	N/A	N/A
	Mid Channel, 2440 MHz			N/A	N/A	5	N/A	N/A	N/A
	High Channel, 2480 MHz			2.882 mS	3.749 mS	1	76.9	N/A	N/A
	High Channel, 2480 MHz			N/A	N/A	5	N/A	N/A	N/A

DH5 GESK Low Channel								
		5110,	Number of	Value				
	Pulse Width	Period	Pulses	(%)	Limit	Result		
	N/A	N/A	5	N/Á	N/A	N/A		
🔆 🔆 Agilent 14:	:23:54 Apr 9,20	13			RT			
Northwest EMC,	Inc							
Ref —2 dBm	#{	Atten 10 dB	;					
#Peak								
Log								
5		•••••						
dB/								
Offst 🕂 🚽 🚽								
22.1								
dB		H						
#LgAv								
W1 S2								
S3 VS								
£(f):								
FTun								
Contor 2 402 0	00 CU-7					Spap Ø	U -	
Res RU 1 MU-	00-0112	#1	บคม วด เม∍		Sueen 1	ס ווסק 17 ms (50,000 pt	-07	
Kes DM I MHZ_		#1	VON DU KHZ			n ma (Jeee h	.57_	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Attenuator 20 dB, SMA M/F 26GHz S.M. Electronics		SA26B-20	AUY	8/2/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12

TEST DESCRIPTION

The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400mS = 31.6 Sec.

On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

>Average Number of Pulses is based on 4 samples.

Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

	-									
EUT	Radical 7						Work Order: M	ASI0142		
Serial Number	r: 113874					Date: 04/19/13				
Customer	r: Masimo Corporation						Temperature: 24	4.5°C		
Attendees	S: None						Humidity: 23	3%		
Project	t: None						Barometric Pres.: 10	013		
Tested by	/: Jaemi Suh		Power:	110VAC/60Hz			Job Site: O	C10		
TEST SPECIFICAT	ONS Test Method									
FCC 15.247:2013	ANSI C63.10:2009									
									-	
COMMENTS										
RADC7A. All cable	es attached.									
DEVIATIONS FRO	M TEST STANDARD									
None										
				C-						
Configuration #	1		Carbo.)						
		Signature								
			Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit		
			(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result	
Hopping Mode										
	DH5, GFSK									
	Mid Channel, 2441 M	IHz	0.174	N/A	N/A	N/A	N/A	N/A	N/A	
	Mid Channel, 2441 MHz N/A			64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel, 2441 MHz N/A			64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel, 2441 MHz N/A			64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel, 2441 M	IHz	N/A	64	N/A	N/A	N/A	N/A	N/A	
	Mid Channel 2441 M	IH7	0 174	N/A	64	5	55.68	400	Pass	
	1110 Onaniol, 2441 W		0+		.		00.00			

Hopping Mode, DH5, GFSK, Mid Channel, 2441 MHz							
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit		
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result	
0.174	N/A	64	5	55.68	400	Pass	

Calculation Only

No Screen Capture Required

Number of Hopping Frequencies

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

EMC Number of Hopping Frequencies

			-							
EUT:	Radical 7	Work Order:	MASI0142							
Serial Number:	113874	Date:	04/19/13							
Customer:	Masimo Corporation	Temperature:	24.4°C							
Attendees:	None	Humidity:	21%							
Project:	None	Barometric Pres.:	1012							
Tested by:	Jaemi Suh Power: 110VAC/60Hz	Job Site:	OC10							
TEST SPECIFICATI	DNS Test Method									
FCC 15.247:2013	ECC 15 247:2013 ANSI C63 10:2009									
COMMENTS										
DH5										
DEVIATIONS FROM	TEST STANDARD									
None										
None	1 0-									
Configuration #	and the second s									
configuration #	Signatura									
	Signature	Number of								
		Number of	Lineit	Deput						
		Channels	Limit	Result						
Hopping Mode										
	DH5, GF5K									
	Mid Channel, 2441 MHz	79	≥ 15	Pass						

Number of Hopping Frequencies

ENC

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The EUT was set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate listed in the datasheet.

EUT	Radical 7				Work Order	MASI0142	
Serial Number	r: 113874				Date	04/19/13	
Customer	: Masimo Corporation				Temperature	21.7°C	
Attendees	s: None				Humidity	24%	
Project	t: None				Barometric Pres.	1014	
Tested by	/: Jaemi Suh		Power:	110VAC/60Hz	Job Site	OC10	
TEST SPECIFICAT	TIONS			Test Method			
FCC 15.247:2013				ANSI C63.10:2009			
COMMENTS							
DH5 Mode.							
DEVIATIONS FRO	OM TEST STANDARD						
None							
Configuration #	1	Signature	fer.	52			
					Value	Limit	Result
DH5, GFSK							
	Low Channel				931.712 kHz	< 1.5 MHz	Pass
	Mid Channel				935.846 kHz	< 1.5 MHz	Pass
	High Channel				926.756 kHz	< 1.5 MHz	Pass

Occupied Bandwidth

XMit 2013.02.28 PsaTx 2013.01.10

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Method Option 1 found in KDB 558074 DTS D01 Measurement Section 8.1.1 was used because the RBW on the analyzer was greater than the Emission Bandwidth of the radio.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

EUT	Radical 7			Work Order:	MASI0142	
Serial Number	: 113874			Date:	04/19/13	
Customer	: Masimo Corporation			Temperature:	21.7°C	
Attendees	None			Humidity:	24%	
Project	: None			Barometric Pres.:	1014	
Tested by	: Jaemi Suh		Power: 110VAC/60Hz	Job Site:	OC10	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.247:2013			ANSI C63.10:2009			
COMMENTS						
DH5 Mode.						
DEVIATIONS FRO	M TEST STANDARD					
None						
Configuration #	1	Signature	from Ste			
				Value	Limit	Result
DH5, GFSK						
	Low Channel			214.19 uW	< 125 mW	Pass
	Mid Channel			291.676 uW	< 125 mW	Pass
	High Channel			222.536 uW	< 125 mW	Pass

Output Power

285 A	glient 14.	27:40 Hp	л э, дөг.	2				r i		
Northwe	est EMC,	Inc						Mkr1	2.440 93	12 9 GHz
Ref 35	6.1 µ W		#At	ten 10 df	3				29	1.68 µ W
#Peak ∣										
Lin										
				s. the Maria	marchenter	Patrick and March	Mitta Jasebah			
01104			MAR AN ANALY	alah ang sa sa sa		COLUMN TRACT	a construction of the second	TWO WAY AND HEA	lik Los a	
22.1 dB	WWW MAR	A WARD							Markin (Markin)	Mar Marken
u.e	JW T.									and the first of the second
₩LġĦv										
M1 S2										
S3 FS										
£ (f):										
FTun										
Swp										
Center	2.441 00	00 0 GHz							Spa	an 2 MHz
#Res B	W 2 MHz_			4	ŧVBW 6 M	Hz	S	weep 1.0	66 ms (10	000 pts)_

Output Power

ENC

Band Edge Compliance-Hopping Mode

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudorandom hopping sequence. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

Band Edge Compliance- Hopping Mode

Band Edge Compliance- Hopping Mode									
EUT	Radical 7	Work Order:	MASI0142						
Serial Number	: 113874	Date:	04/19/13						
Customer	: Masimo Corporation	Temperature:	21.7°C						
Attendees	: None	Humidity:	24%						
Project	: None	Barometric Pres.:	1014						
Tested by	: Jaemi Suh Power: 110VAC/60Hz	Job Site:	OC10						
TEST SPECIFICA	IIONS Test Method								
FCC 15.247:2013	ANSI C63.10:2009								
0.01115150									
DEVIATIONS FRO None Configuration #	1 Signature								
		Value	Limit	Result					
Hopping Mode	DH5. GESK								
	Low Channel, 2402 MHz	-52.38 dBc	≤ -20 dBc	Pass					
	High Channel, 2480 MHz	-52.14 dBc	≤ -20 dBc	Pass					
	2DH5, pi/4-DQPSK								
	Low Channel, 2402 MHz	-50.06 dBc	≤ -20 dBc	Pass					
	High Channel, 2480 MHz	-49.21 dBc	≤ -20 dBc	Pass					
	3DH5, 8-DPSK								
	Low Channel, 2402 MHz	-54.02 dBc	≤ -20 dBc	Pass					
	High Channel, 2480 MHz	-49.4 dBc	≤ -20 dBc	Pass					

ENC

Band Edge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Power Sensor	Agilent	E4412A	SQE	4/11/2012	24
Power Meter	Hewlett Packard	E4418A	SPA	4/11/2012	24
Signal Generator	Agilent	E8257D	TGU	2/1/2012	36
Spectrum Analyzer	Agilent	E4446A	AAY	2/22/2013	24

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

The spectrum was scanned below the lower band edge and above the higher band edge.

-			
EUT	Radical 7	Work Order: MASI0142	
Serial Number	113874	Date: 04/19/13	
Customer	Masimo Corporation	Temperature: 21.7°C	
Attendees	None	Humidity: 24%	
Project	None	Barometric Pres.: 1014	
Tested by	Jaemi Suh Power: 110VAC/60Hz	Job Site: OC10	
TEST SPECIFICA	IONS Test Method		
FCC 15.247:2013	ANSI C63.10:2009		
COMMENTS			
DH5 Mode.			
DEVIATIONS FRO	M TEST STANDARD		
None			
None	1 02-		
Configuration #	the second secon		
ooninguration #	Signature		
	Signature		
		Value	Bocult
		value Lillit	Result
DH5, GFSK	Law Observed	F0 F4 JD- < 00 JD-	Dere
	Low Channel	-52.51 dBc ≤ -20 dBc	Pass
	High Channel	-52.64 dBc ≤ -20 dBc	Pass

Spurious Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Miteq	DCB4000	AMD	6/25/2012	12
Agilent	E4412A	SQE	4/11/2012	24
Hewlett Packard	E4418A	SPA	4/11/2012	24
Agilent	E8257D	TGU	2/1/2012	36
Agilent	E4446A	AAY	2/22/2013	24
	Manufacturer S.M. Electronics Miteq Agilent Hewlett Packard Agilent Agilent	ManufacturerModelS.M. ElectronicsSA26B-20MiteqDCB4000AgilentE4412AHewlett PackardE4418AAgilentE8257DAgilentE4446A	ManufacturerModelIDS.M. ElectronicsSA26B-20AUYMiteqDCB4000AMDAgilentE4412ASQEHewlett PackardE4418ASPAAgilentE8257DTGUAgilentE4446AAAY	ManufacturerModelIDLast Cal.S.M. ElectronicsSA26B-20AUY8/2/2012MiteqDCB4000AMD6/25/2012AgilentE4412ASQE4/11/2012Hewlett PackardE4418ASPA4/11/2012AgilentE8257DTGU2/1/2012AgilentE4446AAAY2/22/2013

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

ENCSpurious Conducted Emissions

EU	T: Radical 7			Work Order:	MASI0142				
Serial Numbe	er: 113874			Date:	04/19/13				
Custome	r: Masimo Corporation			Temperature:	21.7°C				
Attendee	s: None			Humidity:	24%				
Projec	t: None			Barometric Pres.:	: 1014				
Tested by: Jaemi Suh Power: 110VAC/60Hz Job Site: OC10									
TEST SPECIFICA	TIONS		Test Method						
FCC 15.247:2013			ANSI C63.10:2009						
COMMENTS									
DH5 Mode.									
DEVIATIONS FRO	OM TEST STANDARD								
None									
			10						
Configuration #	1		gan Ja						
U U		Signature	10						
			Frequency						
			Range	Value	Limit	Result			
DH5, GFSK									
	Low Channel, 2402 MHz		30 MHz - 12.5 GHz	-20.68 dBc	≤ -20 dBc	Pass			
	Low Channel, 2402 MHz		12.5 GHz - 25 GHz	-53.01 dBc	≤ -20 dBc	Pass			
	Mid Channel, 2441 MHz		30 MHz - 12.5 GHz	-20.86 dBc	≤ -20 dBc	Pass			
	Mid Channel, 2441 MHz		12.5 GHz - 25 GHz	-53.01 dBc	≤ -20 dBc	Pass			
	High Channel 2480 MHz		30 MHz - 12 5 GHz	-20.28 dBc	< -20 dBc	Pass			
	High Channel 2480 MHz		12 5 GHz - 25 GHz	-20.20 dBc	< -20 dBc	Pass			
						100			

					DH5	, GFSK, Mid	Channel					
			Freque	ncy			M	عايية	l imit		Posult	
			12.5 GHz - 2	z5 GHz			-53.	01 dBc	≤ -20 dBo	;	Pass	٦
*	Aa	ilent 14:	29:54 Ap	or 9,201	3				RT			
Nor	thwe	st EMC,	Inc	,	-					Mkr1	24.980 2	GHz
Ref	10	dBm		#At	ten 10 d	В					-53.01	dBm
#Pe	ak [
Log												
AD VD	,											
UD7	s+ -											
Ž2.	1											
dB	-											
#1.01	۵ I											
#L9												
91	s2											1
\$3	FC	يعر الدير	an accedition						lat at mate		المتعالمين محرور والمرا	
												الدرية هاد
£(f): r											
Flu	in											
эwр	'											
Sta	r+ 12	>500 O	GHz							Ston	25 AAA A	GHZ
#Re	s BW	100 kH	z		#	VBW 300	kHz		Sweep 1	1.195	s (8192)	ots)

				DH5,	GFSK, High	Channel					
		Frequer	ncy e			Va	alue	Limit	Res	ult	
		12.5 GHz - 2	25 GHz			-53.0	04 dBc	≤ -20 dBc	Pas	S	
*	Agilent 14:	39:23 Ap	or 9,201:	3				RT			
Nor	thwest EMC,	Inc						M	kr1 24.2	09 5 GHz	2
Ref	10 dBm		#At	ten 10 di	В				-53	3.04 dBm	1
#Pe	ак										
10											
dB≁	/										
0ff:	st										
dB	<u> </u>										
م الد	<u></u>										
#L9											
V1	S2									1	
\$3	FC PL, P	and the search of the second					يار استرابي	الملاطنة ويتطعه والمراد	المراجل المحادث		l.
c (5	All and the second	a de la constante de la constan						and the second second second	All and the second second	and the second	
E CT). In										
Swp	, – – – – – – – – – – – – – – – – – – –										
Sta "Do	rt 12.500 0	GHZ			UDU 200			Success 1	top 25.00	10 0 GHz	1
#Ke	S DW IUU KH	12		#	ଏଠ୍ୟ ୨୦୦	кпи		Sweep I.	195 5 (8.	ras brs)	1

SPURIOUS RADIATED EMISSIONS

data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification

MODES OF OPERATION

Transmitting in Bluetooth Mode, DH5. Low Channel 2402 MHz, Mid Channel 2441 MHz, High Channel 2480 MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

limit.

CONFIGURATIONS INVESTIGATED

MASI0142 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/27/2012	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/27/2012	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/21/2012	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/21/2012	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	8-18GHz RE Cables	000	10/10/2012	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/7/2012	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	36 mo
High Pass Filter	Micro-Tronics	HPM50111	HFM	4/2/2012	24 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/7/2012	12 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	10/10/2012	12 mo
Antenna, Biconilog	EMCO	3142	AXB	6/14/2012	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/7/2012	12 mo
Spectrum Analyzer	Agilent	E4440A	AFG	5/16/2012	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity. Only one mode of modulation was available on this unit, DH5.

Spurious Radiated Emissions

	Work Orde	: MASI0142		Date:	04/15/13		1 -	\sim
	Projec	t: None	Temp	erature:	21.6 °C		1	
	Job Site	: OC11	Н	umidity:	41.5% RH	\sim		
	Serial Number	: 113874	Barometri	ic Pres.:	1016 mbar	Test	ed by: Jaemi Suh	
	EUT	: Radical 7						
	Configuration	1: 1						
	Custome	Masimo Corporatio	ו					
	Attendees	: None						
	EUT Power	: 110VAC/60Hz						
c	Operating Mode	Transmitting in Blue	etooth Mode. DH	15 Mode Only.				
	Deviations	None						
	Comments	RADC7A. All cables	attached.					
Test	Specifications	:			Test Met	hod		
FCC	15 247.2013				ANSI C63	3 10.2009		
		Test Distance (A		4.4	Desutta	Deep
r	Run # 2	Test Distance (I	n) 3	Antenna Heig	nt(s)	1-4m	Results	Pass
	80							-
	70							
	60							
E	50				•	•		
dBuV/r	40	[•	•	
•	30					•		
	20						•	
	10							
	0							
	10	10	0	1 N	000 IHz	10	000 PK	100000 • AV • QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.500	24.0	2.1	1.0	268.0	3.0	20.0	Vert	AV	0.0	46.1	54.0	-7.9	High Ch. 2480, X-Axis
2483.500	24.0	2.1	2.5	276.0	3.0	20.0	Horz	AV	0.0	46.1	54.0	-7.9	High Ch. 2480, X-Axis
2483.500	24.0	2.1	1.0	284.0	3.0	20.0	Vert	AV	0.0	46.1	54.0	-7.9	High Ch. 2480, Y-Axis
2483.500	24.0	2.1	1.0	128.0	3.0	20.0	Horz	AV	0.0	46.1	54.0	-7.9	High Ch. 2480, Y-Axis
2483.500	24.0	2.1	1.0	31.0	3.0	20.0	Vert	AV	0.0	46.1	54.0	-7.9	High ch. 2480, Z-Axis
2483.500	24.0	2.1	1.0	334.0	3.0	20.0	Horz	AV	0.0	46.1	54.0	-7.9	High ch. 2480, Z-Axis
2483.500	38.4	2.1	2.5	276.0	3.0	20.0	Horz	PK	0.0	60.5	74.0	-13.5	High Ch. 2480, X-Axis
2483.500	38.2	2.1	1.0	284.0	3.0	20.0	Vert	PK	0.0	60.3	74.0	-13.7	High Ch. 2480, Y-Axis
2483.500	37.7	2.1	1.0	268.0	3.0	20.0	Vert	PK	0.0	59.8	74.0	-14.2	High Ch. 2480, X-Axis
2483.500	37.7	2.1	1.0	31.0	3.0	20.0	Vert	PK	0.0	59.8	74.0	-14.2	High ch. 2480, Z-Axis
2483.500	37.6	2.1	1.0	334.0	3.0	20.0	Horz	PK	0.0	59.7	74.0	-14.3	High ch. 2480, Z-Axis
2483.500	37.5	2.1	1.0	128.0	3.0	20.0	Horz	PK	0.0	59.6	74.0	-14.4	High Ch. 2480, Y-Axis
7320.020	23.0	15.9	1.0	272.0	3.0	0.0	Vert	AV	0.0	38.9	54.0	-15.1	Mid Ch. 2441, X-Axis
7319.987	23.0	15.9	2.4	28.0	3.0	0.0	Horz	AV	0.0	38.9	54.0	-15.1	Mid Ch. 2441, X-Axis
7438.800	22.6	16.0	1.0	253.0	3.0	0.0	Vert	AV	0.0	38.6	54.0	-15.4	High Ch. 2480, X-Axis
7438.220	22.6	16.0	2.7	29.0	3.0	0.0	Horz	AV	0.0	38.6	54.0	-15.4	High Ch. 2480, X-Axis
7438.933	37.6	16.0	2.7	29.0	3.0	0.0	Horz	PK	0.0	53.6	74.0	-20.4	High Ch. 2480, X-Axis
4803.920	22.6	10.2	1.0	82.0	3.0	0.0	Vert	AV	0.0	32.8	54.0	-21.2	Low Ch. 2402, X-Axis

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4960.020	22.2	10.6	1.0	253.0	3.0	0.0	Horz	AV	0.0	32.8	54.0	-21.2	High Ch. 2480, X-Axis
4879.653	22.4	10.4	1.0	75.0	3.0	0.0	Horz	AV	0.0	32.8	54.0	-21.2	Mid Ch. 2441, X-Axis
4878.347	22.4	10.4	2.7	307.0	3.0	0.0	Vert	AV	0.0	32.8	54.0	-21.2	Mid Ch. 2441, X-Axis
7319.880	36.9	15.9	2.4	28.0	3.0	0.0	Horz	PK	0.0	52.8	74.0	-21.2	Mid Ch. 2441, X-Axis
4959.607	22.0	10.6	3.3	29.0	3.0	0.0	Vert	AV	0.0	32.6	54.0	-21.4	High Ch. 2480, X-Axis
7438.300	36.6	16.0	1.0	253.0	3.0	0.0	Vert	PK	0.0	52.6	74.0	-21.4	High Ch. 2480, X-Axis
4805.620	22.3	10.3	2.8	62.0	3.0	0.0	Horz	AV	0.0	32.6	54.0	-21.4	Low Ch. 2402, X-Axis
7321.127	36.3	15.9	1.0	272.0	3.0	0.0	Vert	PK	0.0	52.2	74.0	-21.8	Mid Ch. 2441, X-Axis
4961.220	36.3	10.6	1.0	253.0	3.0	0.0	Horz	PK	0.0	46.9	74.0	-27.1	High Ch. 2480, X-Axis
4960.113	36.1	10.6	3.3	29.0	3.0	0.0	Vert	PK	0.0	46.7	74.0	-27.3	High Ch. 2480, X-Axis
4880.820	36.3	10.4	1.0	75.0	3.0	0.0	Horz	PK	0.0	46.7	74.0	-27.3	Mid Ch. 2441, X-Axis
4803.713	36.3	10.2	1.0	82.0	3.0	0.0	Vert	PK	0.0	46.5	74.0	-27.5	Low Ch. 2402, X-Axis
4878.087	36.0	10.4	2.7	307.0	3.0	0.0	Vert	PK	0.0	46.4	74.0	-27.6	Mid Ch. 2441, X-Axis
4803.833	36.1	10.2	2.8	62.0	3.0	0.0	Horz	PK	0.0	46.3	74.0	-27.7	Low Ch. 2402, X-Axis
12199.850	33.6	-9.0	1.0	280.0	3.0	0.0	Vert	AV	0.0	24.6	54.0	-29.4	Mid Ch. 2441, X-Axis
12200.580	33.5	-9.0	1.0	259.0	3.0	0.0	Horz	AV	0.0	24.5	54.0	-29.5	Mid Ch. 2441, X-Axis
12008.070	33.5	-9.2	1.0	345.0	3.0	0.0	Vert	AV	0.0	24.3	54.0	-29.7	Low Ch. 2402, X-Axis
12008.050	33.3	-9.2	1.0	359.0	3.0	0.0	Horz	AV	0.0	24.1	54.0	-29.9	Low Ch. 2402, X-Axis
12399.810	32.6	-8.8	1.0	136.0	3.0	0.0	Vert	AV	0.0	23.8	54.0	-30.2	High Ch. 2480, X-Axis
12399.910	32.5	-8.8	1.5	209.0	3.0	0.0	Horz	AV	0.0	23.7	54.0	-30.3	High Ch. 2480, X-Axis
12199.110	48.0	-9.0	1.0	280.0	3.0	0.0	Vert	PK	0.0	39.0	74.0	-35.0	Mid Ch. 2441, X-Axis
12199.630	47.3	-9.0	1.0	259.0	3.0	0.0	Horz	PK	0.0	38.3	74.0	-35.7	Mid Ch. 2441, X-Axis
12011.520	47.4	-9.2	1.0	345.0	3.0	0.0	Vert	PK	0.0	38.2	74.0	-35.8	Low Ch. 2402, X-Axis
12398.530	46.7	-8.8	1.0	136.0	3.0	0.0	Vert	PK	0.0	37.9	74.0	-36.1	High Ch. 2480, X-Axis
12008.990	46.7	-9.2	1.0	359.0	3.0	0.0	Horz	PK	0.0	37.5	74.0	-36.5	Low Ch. 2402, X-Axis
12397.620	45.9	-8.8	1.5	209.0	3.0	0.0	Horz	PK	0.0	37.1	74.0	-36.9	High Ch. 2480, X-Axis

MODES OF OPERATION

Transmitting in Bluetooth Mode. High Channel, 2480 MHz, DH5	
Transmitting in Bluetooth Mode. Mid Channel, 2440 MHz, DH5	
Transmitting in Bluetooth Mode. Low Channel, 2402, DH5	

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MASI0142 - 1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-24-BNC	LIA	6/4/2012	12 mo
Attenuator	Pasternack	6N10W-20	AWC	2/28/2013	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HFP	3/1/2012	24 mo
OC06 Cables	N/A	Telecom Cables	OCP	4/5/2013	12 mo
Receiver	Rohde & Schwarz	ESCI	ARF	4/26/2012	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the bandwidths and detectors specified. No video filter was used.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

147.		NA 0104 40	Dete	04/45/40			
WC	ork Order:	MASI0142	Date:	04/15/13	Clace		
	Project:	None	Temperature:	21.2 °C	1		
	Job Site:	0012	Humidity:	47.5% RH			
Seria	Number:	113874	Barometric Pres.:	1016 mbar	lested by:	Jaemi Suh	
0	EUT:						
Conf	iguration:	1 Maaima Camaanatian					
	Justomer:	Masimo Corporation					
A	IT Doword						
EU	JT Power:	TIUVAC/60HZ	oth Mada Law Channa	0400 DUE			
Operati	ing Mode:	I ransmitting in Blueto	oth Mode. Low Channe	I, 2402, DH5			
D	eviations:	None					
Co	omments:	RADC7A. All cables a	ttached.				
Test Speci	ifications			Test Metho	d		
FCC 15.20	7:2013			ANSI C63.4	2009		
Run #	3	Line:	High Line	Ext. Attenuation:	20	Results	Pass
100	Deal						
90 90 70 60 Angp 50 40		Data - vs - Quasi Pe	ak Limit	P 100 90 80 70 60 50 40	eak Data - vs - Ave	rage Limit	

50					+	+		+				_		+	+					+	-	
40								+						_	1	L						
30	4.	M	W	W			Ļ		with	J h	ni)	¢	ą		ļ	7					-	
20					_			+						_	+					_		
10					_	-								+	+					-	_	
0								4								L					Ц	
0.	1						1	1.	0						1	10	0.0			1	00.0	C
										Μ	Hz	2										

	Peak	Data - vs -	Quasi Peak	Limit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
9.020	19.4	20.5	39.9	60.0	-20.1
9.640	19.0	20.5	39.5	60.0	-20.5
1.600	15.2	20.1	35.3	56.0	-20.7
10.340	18.7	20.6	39.3	60.0	-20.7
9.970	18.2	20.5	38.7	60.0	-21.3
10.650	18.1	20.6	38.7	60.0	-21.3
9.360	18.0	20.5	38.5	60.0	-21.5
9.900	17.9	20.5	38.4	60.0	-21.6
1.664	14.1	20.1	34.2	56.0	-21.8
9.240	17.7	20.5	38.2	60.0	-21.8
11.990	17.4	20.7	38.1	60.0	-21.9
9.860	17.6	20.5	38.1	60.0	-21.9
11.700	17.4	20.7	38.1	60.0	-21.9
1.448	13.8	20.1	33.9	56.0	-22.1
11.180	17.2	20.6	37.8	60.0	-22.2
9.450	17.3	20.5	37.8	60.0	-22.2
12.820	16.9	20.8	37.7	60.0	-22.3
11.020	17.1	20.6	37.7	60.0	-22.3
11.110	17.0	20.6	37.6	60.0	-22.4
9.150	17.1	20.5	37.6	60.0	-22.4

	Pea	k Data - vs	- Average I	Limit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
9.020	19.4	20.5	39.9	50.0	-10.1
9.640	19.0	20.5	39.5	50.0	-10.5
1.600	15.2	20.1	35.3	46.0	-10.7
10.340	18.7	20.6	39.3	50.0	-10.7
9.970	18.2	20.5	38.7	50.0	-11.3
10.650	18.1	20.6	38.7	50.0	-11.3
9.360	18.0	20.5	38.5	50.0	-11.5
9.900	17.9	20.5	38.4	50.0	-11.6
1.664	14.1	20.1	34.2	46.0	-11.8
9.240	17.7	20.5	38.2	50.0	-11.8
11.990	17.4	20.7	38.1	50.0	-11.9
9.860	17.6	20.5	38.1	50.0	-11.9
11.700	17.4	20.7	38.1	50.0	-11.9
1.448	13.8	20.1	33.9	46.0	-12.1
11.180	17.2	20.6	37.8	50.0	-12.2
9.450	17.3	20.5	37.8	50.0	-12.2
12.820	16.9	20.8	37.7	50.0	-12.3
11.020	17.1	20.6	37.7	50.0	-12.3
11.110	17.0	20.6	37.6	50.0	-12.4
9.150	17.1	20.5	37.6	50.0	-12.4

	Worl	k Order:	MASI0142	Date:	04/15/13		a f	
		Project:	None	Temperature:	21.2 °C			
	J	ob Site:	OC12	Humidity:	47.5% RH	- <		
	Serial N	Number:	113874	Barometric Pres.:	1016 mbar	Tested	by: Jaemi Suh	
		EUT:	Radical 7					
	Config	uration:	1					
	Cu	stomer:	Masimo Corporation					
	Att	endees:	None					
	EUT	Power:	110VAC/60Hz					
			Transmitting in Blueto	oth Mode Low Channe	2402 DH5			
C	peratin	g Mode:			., 2102, 2110			
			None					
	Dev	viations:						
			RADC7A, All cables a	attached.				
	Con	nments:						
Teet	Creatifi	antiona			Test Mat	had		
Test	Specini							
FUU	15.207.	2013			ANSI CO.	5.4.2009		
								5
F	Run #	4	Line:	Neutral	Ext. Attenuation	: 20	Results	Pass
F	Run #	4	Line:	Neutral	Ext. Attenuation	: 20	Results	Pass
F	Run #	4	Line:	Neutral	Ext. Attenuation	20	Results	Pass
F	Run #	4 Peal	Line:	Neutral	Ext. Attenuation	20 Posk Data - vs	Results	Pass
F	Run #	4 Peal	Line: (Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - A	Results	Pass
F	100	4 Peal	Line: < Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results	Pass
F	100 90	4 Peal	Line: (Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results	Pass
F	100 90	4 Peal	Line: (Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - A	Results	Pass
F	100 90 80	4 Peal	Line: c Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results	Pass
F	100 90 80 70	4 Peal	Line: c Data - vs - Quasi Pe	Neutral	Ext. Attenuation	20 Peak Data - vs - A	Results Average Limit	Pass
	100 90 80 70	4 Peal	Line:	Neutral	Ext. Attenuation 100 90 80 70	20 Peak Data - vs - A	Results Average Limit	Pass
	100 90 80 70 60	4 Peal	Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
	100 90 80 70 60	4 Peal	Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
dBuV	100 90 80 70 60 50	4 Peal	Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
dBuV	100 90 80 70 60 50 40	4 Peal	Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
dBuV	100 90 80 70 60 50 40	4 Peal	Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
dBuV	100		Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass
dBuV	100 90 80 70 60 50 40 30		Line:	Neutral	Ext. Attenuation	20 Peak Data - vs - /	Results Average Limit	Pass

10

100.0

0

1.0

0.1		1.0	MHz	10.0	104
	Peak	Data - vs -	Quasi Peał	< Limit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
10.640	20.0	20.6	40.6	60.0	-19.4
10.450	18.8	20.6	39.4	60.0	-20.6
9.020	18.8	20.5	39.3	60.0	-20.7
10.280	18.5	20.6	39.1	60.0	-20.9
9.250	18.5	20.5	39.0	60.0	-21.0
10.040	18.4	20.5	38.9	60.0	-21.1
1.584	14.8	20.1	34.9	56.0	-21.1
9.950	18.1	20.5	38.6	60.0	-21.4
10.540	18.0	20.6	38.0	60.0	-21.4
9.000	10.0	20.3	30.3	60.0	-21.5
12.470	17.0	20.7	30.3	60.0	-21.5
12.470	17.7	20.0	30.5	60.0	-21.5
1 699	1/./	20.7	34.2	56.0	-21.0
10.260	17.5	20.1	34.2	50.0	-21.0
11.450	17.5	20.0	38.1	60.0	-21.9
10.950	17.4	20.6	38.0	60.0	-22.0
9 360	17.5	20.5	38.0	60.0	-22.0
10 210	17.4	20.6	38.0	60.0	-22.0
12 860	16.7	20.8	37.5	60.0	-22.5
.2.000		20.0	00	00.0	

1.0

10.0

10

0

Peak Data - vs - Average Limit											
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)						
10.640	20.0	20.6	40.6	50.0	-9.4						
10.450	18.8	20.6	39.4	50.0	-10.6						
9.020	18.8	20.5	39.3	50.0	-10.7						
10.280	18.5	20.6	39.1	50.0	-10.9						
9.250	18.5	20.5	39.0	50.0	-11.0						
10.040	18.4	20.5	38.9	50.0	-11.1						
1.584	14.8	20.1	34.9	46.0	-11.1						
9.950	18.1	20.5	38.6	50.0	-11.4						
10.540	18.0	20.6	38.6	50.0	-11.4						
9.650	18.0	20.5	38.5	50.0	-11.5						
11.660	17.8	20.7	38.5	50.0	-11.5						
12.470	17.7	20.8	38.5	50.0	-11.5						
11.970	17.7	20.7	38.4	50.0	-11.6						
1.688	14.1	20.1	34.2	46.0	-11.8						
10.360	17.5	20.6	38.1	50.0	-11.9						
11.450	17.4	20.7	38.1	50.0	-11.9						
10.950	17.4	20.6	38.0	50.0	-12.0						
9.360	17.5	20.5	38.0	50.0	-12.0						
10.210	17.4	20.6	38.0	50.0	-12.0						
12.860	16.7	20.8	37.5	50.0	-12.5						

10.0

MHz

100.0

Wo	ork Order:	MASI0142	Date:	04/15/13	1/20	F						
	Project:	None	Temperature:	21.2 °C		-)						
	Job Site:	OC12	Humidity:	47.5% RH								
Serial	Number:	113874	Barometric Pres.:	1016 mbar	Tested by:	Jaemi Suh						
	EUT:	Radical 7										
Confi	iguration:	1										
C	Sustomer:	Masimo Corporation										
A	ttendees:	None										
EU	JT Power:	110VAC/60Hz										
Operati	ing Mode:	Transmitting in Blueto	ooth Mode. Mid Channel	, 2440 MHz, DH5								
De	eviations:	None										
Co	RADC7A. All cables attached. Comments:											
Test Speci	ifications			Test Metho	d							
FCC 15.20	7:2013	-		ANSI C63.4	:2009							
Run #	5	Line:	High Line				_					
				Ext. Attenuation:	20	Results	Pass					
100	Peal	c Data - vs - Quasi Pe	eak Limit	Ext. Attenuation:	Peak Data - vs - Ave	Results	Pass					
100 90 80 70 60 50 40	Peal	k Data - vs - Quasi Pe		Ext. Attenuation:	Peak Data - vs - Ave	Results	Pass					

40					+	$\left \right $	+-			-	\square	+	+	h	4		-	+	+	+	
30	W	4	4			d	ķ	with.	huk	-		N	ľ			1		+		-	
20					+		_					_		+				+			
10					_									_							
0																					
0.	.1						1	.0						10).0				1	100	0.0
	MHz																				

	Peak Data - vs - Quasi Peak Limit												
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)								
10.900	19.3	20.6	39.9	60.0	-20.1								
8.990	19.2	20.5	39.7	60.0	-20.3								
9.020	19.1	20.5	39.6	60.0	-20.4								
9.100	19.0	20.5	39.5	60.0	-20.5								
1.464	15.0	20.1	35.1	56.0	-20.9								
1.560	15.0	20.1	35.1	56.0	-20.9								
10.300	18.3	20.6	38.9	60.0	-21.1								
11.060	18.1	20.6	38.7	60.0	-21.3								
9.390	18.1	20.5	38.6	60.0	-21.4								
10.560	18.0	20.6	38.6	60.0	-21.4								
11.110	17.8	20.6	38.4	60.0	-21.6								
10.100	17.7	20.6	38.3	60.0	-21.7								
10.240	17.4	20.6	38.0	60.0	-22.0								
8.890	17.4	20.5	37.9	60.0	-22.1								
10.530	17.3	20.6	37.9	60.0	-22.1								
10.200	17.3	20.6	37.9	60.0	-22.1								
10.450	17.2	20.6	37.8	60.0	-22.2								
10.500	17.1	20.6	37.7	60.0	-22.3								
1.680	13.5	20.1	33.6	56.0	-22.4								
11.510	16.9	20.7	37.6	60.0	-22.4								

	Peak Data - vs - Average Limit												
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)								
10.900	19.3	20.6	39.9	50.0	-10.1								
8.990	19.2	20.5	39.7	50.0	-10.3								
9.020	19.1	20.5	39.6	50.0	-10.4								
9.100	19.0	20.5	39.5	50.0	-10.5								
1.464	15.0	20.1	35.1	46.0	-10.9								
1.560	15.0	20.1	35.1	46.0	-10.9								
10.300	18.3	20.6	38.9	50.0	-11.1								
11.060	18.1	20.6	38.7	50.0	-11.3								
9.390	18.1	20.5	38.6	50.0	-11.4								
10.560	18.0	20.6	38.6	50.0	-11.4								
11.110	17.8	20.6	38.4	50.0	-11.6								
10.100	17.7	20.6	38.3	50.0	-11.7								
10.240	17.4	20.6	38.0	50.0	-12.0								
8.890	17.4	20.5	37.9	50.0	-12.1								
10.530	17.3	20.6	37.9	50.0	-12.1								
10.200	17.3	20.6	37.9	50.0	-12.1								
10.450	17.2	20.6	37.8	50.0	-12.2								
10.500	17.1	20.6	37.7	50.0	-12.3								
1.680	13.5	20.1	33.6	46.0	-12.4								
11.510	16.9	20.7	37.6	50.0	-12.4								

Wo	ork Order:	MASI0142	Date:	04/15/13	1							
	Project:	None	Temperature:	21.2 °C	1							
	Job Site:	OC12	Humidity:	47.5% RH								
Serial	Number:	113874	Barometric Pres.:	1016 mbar	Tested by:	Jaemi Suh						
	EUT:	Radical 7										
Confi	guration:	1										
С	sustomer:	Masimo Corporation										
A	ttendees:	None										
EU	JT Power:	110VAC/60Hz										
Operati	Operating Mode: Transmitting in Bluetooth Mode. Mid Channel, 2440 MHz, DH5											
Deviations: None												
Co	Comments:											
Test Speci	fications			Test Metho	d							
ECC 15 201	7.2013			ANSI C63 A	.2009							
Run #	6	Line:	Neutral	Ext. Attenuation:	20	Results	Pass					
100 90 80 70 60	Peak	C Data - vs - Quasi Pe	ak Limit		Peak Data - vs - Ave	rage Limit						
1 8 ⁵⁰ 40												

0	.1						1.	0						10	.0						10	0.0
0																						
													11									
10					_							_	11	-								
20					+		1				-	+	\parallel	+				-	_		╫	
30	۳V	W	-	W	W		N	ALL IN					T		- 146						Ħ	
40		. ^												ľ							T	1
50																						
60		\geq			+		-											-	_	_		
70					+		ľ						Ħ	t							Ħ	1
	 70 60 50 40 30 20 10 	70 60 50 40 30 20	70 60 50 40 30 20 10		70 60 50 40 30 20 10	70 60 50 40 30 20 10	70 60 50 40 30 20 10	70 60 50 40 30 20 10	70 60 50 40 30 71 10													

100 —		
100		
90		
80		
70		
60		
50		
40		
30	Manhand Mitter and	
20		
10		
0		
0.1	1.0 10.0 10	0.0
	MHz	

	Peak Data - vs - Quasi Peak Limit											
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)							
1.576	15.5	20.1	35.6	56.0	-20.4							
10.090	18.9	20.6	39.5	60.0	-20.6							
9.130	18.9	20.5	39.4	60.0	-20.6							
9.020	18.8	20.5	39.3	60.0	-20.7							
10.300	18.7	20.6	39.3	60.0	-20.7							
10.200	18.6	20.6	39.2	60.0	-20.8							
9.400	18.5	20.5	39.0	60.0	-21.0							
10.390	18.2	20.6	38.8	60.0	-21.2							
10.500	18.1	20.6	38.7	60.0	-21.3							
9.290	18.1	20.5	38.6	60.0	-21.4							
11.110	17.8	20.6	38.4	60.0	-21.6							
9.910	17.9	20.5	38.4	60.0	-21.6							
10.930	17.7	20.6	38.3	60.0	-21.7							
10.750	17.7	20.6	38.3	60.0	-21.7							
10.980	17.5	20.6	38.1	60.0	-21.9							
10.160	17.5	20.6	38.1	60.0	-21.9							
11.310	17.4	20.7	38.1	60.0	-21.9							
9.090	17.5	20.5	38.0	60.0	-22.0							
1.656	13.7	20.1	33.8	56.0	-22.2							
9.800	17.3	20.5	37.8	60.0	-22.2							

Peak Data - vs - Average Limit												
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)							
1.576	15.5	20.1	35.6	46.0	-10.4							
10.090	18.9	20.6	39.5	50.0	-10.6							
9.130	18.9	20.5	39.4	50.0	-10.6							
9.020	18.8	20.5	39.3	50.0	-10.7							
10.300	18.7	20.6	39.3	50.0	-10.7							
10.200	18.6	20.6	39.2	50.0	-10.8							
9.400	18.5	20.5	39.0	50.0	-11.0							
10.390	18.2	20.6	38.8	50.0	-11.2							
10.500	18.1	20.6	38.7	50.0	-11.3							
9.290	18.1	20.5	38.6	50.0	-11.4							
11.110	17.8	20.6	38.4	50.0	-11.6							
9.910	17.9	20.5	38.4	50.0	-11.6							
10.930	17.7	20.6	38.3	50.0	-11.7							
10.750	17.7	20.6	38.3	50.0	-11.7							
10.980	17.5	20.6	38.1	50.0	-11.9							
10.160	17.5	20.6	38.1	50.0	-11.9							
11.310	17.4	20.7	38.1	50.0	-11.9							
9.090	17.5	20.5	38.0	50.0	-12.0							
1.656	13.7	20.1	33.8	46.0	-12.2							
9.800	17.3	20.5	37.8	50.0	-12.2							

Wor	k Order:	MASI0142	Date:	04/15/13							
	Project:	None	Temperature:	21.2 °C)					
	Job Site:	OC12	Humidity:	47.5% RH							
Serial	Number:	113874	Barometric Pres.:	1016 mbar	Tested by	: Jaemi Suh					
	EUT:	Radical 7									
Config	guration:	1									
Cı	ustomer:	Masimo Corporation									
At	tendees:	None									
EU	T Power:	110VAC/60Hz									
Operatir	ng Mode:	Transmitting in Blueto	oth Mode. High Channe	el, 2480 MHz, DH5							
De	viations:	None									
Comments: RADC7A. All cables attached.											
Test Specif	ications			Test Met	hod						
FCC 15 207	2013			ANSI C63	3 4.2009						
Run #	7	Line:	High Line	Ext. Attenuation	20	Results	Pass				
100	Peak	c Data - vs - Quasi Pe	ak Limit	100	Peak Data - vs - Av	erage Limit					
90				90							
80				80							
70				70							
60				60							
>				> " \							
n 50				ng 50							
D				D							
-0											
30	whythe			30							
20				20							
10		+++++		10	+ + + + + + + + + + - + - + - + - + - +						

0

1.0

100.0

	Peak	Data - vs -	Quasi Peał	< Limit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
9.020	18.9	20.5	39.4	60.0	-20.6
1.536	15.2	20.1	35.3	56.0	-20.7
10.290	18.7	20.6	39.3	60.0	-20.7
11.100	17.8	20.6	38.4	60.0	-21.6
1.432	14.3	20.1	34.4	56.0	-21.6
9.390	17.9	20.5	38.4	60.0	-21.6
10.090	17.8	20.6	38.4	60.0	-21.7
11.350	17.5	20.7	38.2	60.0	-21.8
11.570	17.4	20.7	38.1	60.0	-21.9
10.910	17.2	20.6	37.8	60.0	-22.2
10.620	17.1	20.6	37.7	60.0	-22.3
11.470	17.0	20.7	37.7	60.0	-22.3
1.712	13.5	20.1	33.6	56.0	-22.4
9.090	17.1	20.5	37.6	60.0	-22.4
9.600	17.1	20.5	37.6	60.0	-22.4
9.720	17.1	20.5	37.6	60.0	-22.4
10.210	17.0	20.6	37.6	60.0	-22.4
10.770	16.9	20.6	37.5	60.0	-22.5
1.304	13.4	20.1	33.5	56.0	-22.5
9,900	16.6	20.5	37.1	60.0	-22.9

1.0

MHz

10.0

0

Peak Data - vs - Average Limit										
	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
Ĩ	9.020	18.9	20.5	39.4	50.0	-10.6				
	1.536	15.2	20.1	35.3	46.0	-10.7				
	10.290	18.7	20.6	39.3	50.0	-10.7				
	11.100	17.8	20.6	38.4	50.0 -11.6					
	1.432	1.432 14.3		34.4	46.0	-11.6				
	9.390	17.9	20.5	38.4	50.0	-11.6				
	10.090	17.8	20.6	38.4 38.2	50.0 50.0	-11.7				
	11.350	17.5	20.7			-11.8				
	11.570	17.4	20.7	38.1	50.0	-11.9				
	10.910	17.2	20.6	37.8	50.0	-12.2				
	10.620	17.1	20.6	37.7	50.0	-12.3				
	11.470	17.0	20.7	37.7	50.0	-12.3				
	1.712	13.5	20.1	33.6	46.0	-12.4				
	9.090	17.1	20.5	37.6	50.0	-12.4				
	9.600	17.1	20.5	37.6	50.0	-12.4				
	9.720	17.1	20.5	37.6	50.0	-12.4				
	10.210	17.0	20.6	37.6	50.0	-12.4				
	10.770	16.9	20.6	37.5	50.0	-12.5				
	1.304	13.4	20.1	33.5	46.0	-12.5				
	9.900	16.6	20.5	37.1	50.0	-12.9				

10.0

MHz

100.0

10/0		NAA 0104 40	Dete	04/45/40										
**0	ork Order:	MASI0142	Date:	04/15/13	6									
	Project:	None	Temperature:	21.2 °C										
	Job Site:	OC12	Humidity:	hidity: 47.5% RH										
Serial	Number:	113874	3/4 Barometric Pres.: 1016 mbar lested by: Jaemi Suh											
	EUT:	Radical 7												
Confi	iguration:	1												
C	Sustomer:	Masimo Corporation												
A	ttendees:	None												
EU	JT Power:	: 110VAC/60Hz												
Operati	ing Mode:	Transmitting in Blueto	oth Mode. High Channe	el, 2480 MHz, DH5										
De	eviations:	None												
Co	omments:	RADC7A. All cables a	ttached.											
Test Speci	ifications			Test Metho	d									
Run #	8	Line:	Neutral	Ext. Attenuation:	20	Results	Pass							
Run #	Peal	Line:	Neutral	Ext. Attenuation:	20 Peak Data - 1	Results vs - Average Limit	Pass							
Run #	8 Peal	Line:	Neutral	Ext. Attenuation:	20 Peak Data - v	Results /s - Average Limit	Pass							

0 0.	.1					1	.0						10	0.0			10	+ 10.0
10						+					+							
20											+							
30		γA	ha		H	Ņ	M	1	hqi	N		Y						
40				_							+		J	K.		-		
50																		
60											-					-		
70				_							+					_		

Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	djusted Spec. Limit (dBuV) (dBuV)						
9.020	19.4	20.5	39.9	60.0	-20.1					
9.810	19.2	20.5	39.7	60.0	-20.3					
1.464	15.4	20.1	35.5	56.0	-20.5					
10.280	18.7	20.6	39.3	60.0	-20.7					
1.568	15.1	20.1	35.2	56.0	-20.8					
11.060	18.4	20.6	39.0	60.0	-21.0					
10.090	18.4	20.6	39.0	60.0	-21.1					
9.290	18.1	20.5	38.6	60.0	-21.4					
9.490	17.8	20.5	38.3	60.0	-21.7					
10.690	17.6	20.6	38.2	60.0	-21.8					
10.490	17.4	20.6	38.0	60.0	-22.0					
10.010	17.4	20.5	37.9	60.0	-22.1					
9.090	17.4	20.5	37.9	60.0	-22.1					
11.300	17.1	20.7	37.8	60.0	-22.2					
10.990	17.1	20.6	37.7	60.0	-22.3					
9.380	17.2	20.5	37.7	60.0	-22.3					
10.850	17.0	20.6	37.6	60.0	-22.4					
10.610	17.0	20.6	37.6	60.0	-22.4					
10.200	17.0	20.6	37.6	60.0	-22.4					
11.480	16.9	20.7	37.6	60.0	-22.4					

Peak Data - vs - Average Limit										
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)					
9.020	19.4	20.5	39.9	50.0	-10.1					
9.810	19.2	20.5	39.7	50.0	-10.3					
1.464	15.4	20.1	35.5	46.0	-10.5					
10.280	18.7	20.6	39.3	50.0	-10.7					
1.568	15.1	20.1	35.2	46.0 -10						
11.060	18.4	20.6	39.0	50.0	-11.0					
10.090	18.4	20.6	39.0	50.0	-11.1					
9.290	18.1	20.5	38.6	50.0	-11.4					
9.490	17.8	20.5	38.3	50.0	-11.7					
10.690	17.6	20.6	38.2	50.0	-11.8					
10.490	17.4	20.6	38.0	50.0	-12.0					
10.010	17.4	20.5	37.9	50.0	-12.1					
9.090	17.4	20.5	37.9	50.0	-12.1					
11.300	17.1	20.7	37.8	50.0	-12.2					
10.990	17.1	20.6	37.7	50.0	-12.3					
9.380	17.2	20.5	37.7	50.0	-12.3					
10.850	17.0	20.6	37.6	50.0	-12.4					
10.610	17.0	20.6	37.6	50.0	-12.4					
10.200	17.0	20.6	37.6	50.0	-12.4					
11.480	16.9	20.7	37.6	50.0	-12.4					