

CERTIFICATION TEST REPORT

Report Number.: 12229692-E1V2

Applicant: MASIMO CORPORATION

52 Discovery

Irvine, CA 92618-1604 USA

Model: Radical-7

FCC ID : VKF-RAD7B

IC: 7362A-RAD7B

EUT Description: Pulse CO-Oximeter

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue:

February 28, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	08/16/18	Initial Issue	
V2	02/28/18	Added Below 30MHz data at Section 9.2	K.Kedida

TABLE OF CONTENTS

REF	PORT REVISION HISTORY	2
TAB	BLE OF CONTENTS	3
1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
	CALIBRATION AND UNCERTAINTY	
	.1. MEASURING INSTRUMENT CALIBRATION	
	.2. SAMPLE CALCULATION	
	.3. MEASUREMENT UNCERTAINTY	
	EQUIPMENT UNDER TEST	
	.1. EUT DESCRIPTION	
_	.2. MAXIMUM OUTPUT POWER	
_	.3. DESCRIPTION OF AVAILABLE ANTENNAS	
	.4. SOFTWARE AND FIRMWARE	
	.5. WORST-CASE CONFIGURATION AND MODE	
5.	6. DESCRIPTION OF TEST SETUP	10
6.	TEST AND MEASUREMENT EQUIPMENT	14
7.	MEASUREMENT METHODS	15
8.	ANTENNA PORT TEST RESULTS	16
8.	.1. ON TIME AND DUTY CYCLE	16
8.	.2. 20 dB AND 99% BANDWIDTH	17
	8.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
8.	.3. HOPPING FREQUENCY SEPARATION	
0.	8.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	21
	8.3.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION	
8.	.4. NUMBER OF HOPPING CHANNELS	23
	8.4.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION	
8.	.5. AVERAGE TIME OF OCCUPANCY	
	8.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
Q	6. OUTPUT POWER	
Ο.		

FCC ID: VKF-RAD7B	IC: 7362A-RAD7B
8.6.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
8.7. AVERAGE POWER	35
8.7.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
8.7.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION .	35
8.8. CONDUCTED SPURIOUS EMISSIONS	36
8.8.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	37
8.8.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION .	39
9. RADIATED TEST RESULTS	
9.1. TRANSMITTER ABOVE 1 GHz	
9.1.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
9.1.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION.	
9.2. WORST-CASE BELOW 30 MHz	62
9.3. Worst Case Below 1 GHz	63
9.4. Worst Case 18-26 GHz	65
10. AC POWER LINE CONDUCTED EMISSIONS	67
10.1.1. AC Power Line Norm	68
11. SETUP PHOTOS	70

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MASIMO CORPORATION

52 Discovery

Irvine, CA 92618-1604 USA

EUT DESCRIPTION: Pulse CO-Oximeter

MODEL: Radical-7

SERIAL NUMBER: 1000117295 (Radiated) & 1000117068 (Conducted)

DATE TESTED: April 23 – July 3, 2018

APPLICABLE STANDARDS

STANDARD
TEST RESULTS

CFR 47 Part 15 Subpart C
Complies

ISED RSS-247 Issue 2
Complies

ISED RSS-GEN Issue 5
Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For

UL Verification Services Inc. By:

Reviewed By:

Dan Coronia CONSUMER TECHNOLOGY DIVISION Operations Leader UL Verification Services Inc.

Kiya Kedidas
CONSUMER TECHNOLOGY DIVISION
Project Engineer
UL Verification Services Inc.

Page 5 of 73

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and at 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd.
□ Chamber A (ISED:2324B-1)	☐ Chamber D (ISED:22541-1)	□ Chamber K (ISED: 2324A-1)
□ Chamber B (ISED:2324B-2)	☐ Chamber E (ISED:22541-2)	□ Chamber L (ISED: 2324A-3)
☐ Chamber C (ISED:2324B-3)	☐ Chamber F (ISED:22541-3)	
	☐ Chamber G (ISED:22541-4)	
	☐ Chamber H (ISED:22541-5)	

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through C are covered under ISED company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under ISED company address code 22541 with site numbers 22541 -1 through 22541-5, respectively. Chambers K and L are covered under ISED company address code 2324A with site numbers 2324A-1 and 2324A-3, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a pulse CO-Oximeter.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	9.22	8.36
2402 - 2480	Enhanced 8PSK	7.07	5.09

Note: GFSK, DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on these modes to showing compliance.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an Ethertronics (P/N- 18046) with gain as specified in table below:

Frequency	Peak Gain
2.390-2.490GHz	2dB
5.150-5.350GHz	5dB
5.35-5.90GHz	6dB

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was the following: iMX: E0847, MCU: 1064, MX: 7e23, WiFi: 7.45.100.7, Bluetooth:003.001.025.0143.0000.

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Worst-case data rates as provided by the client were:

GFSK mode: DH5 8PSK mode: 3-DH5

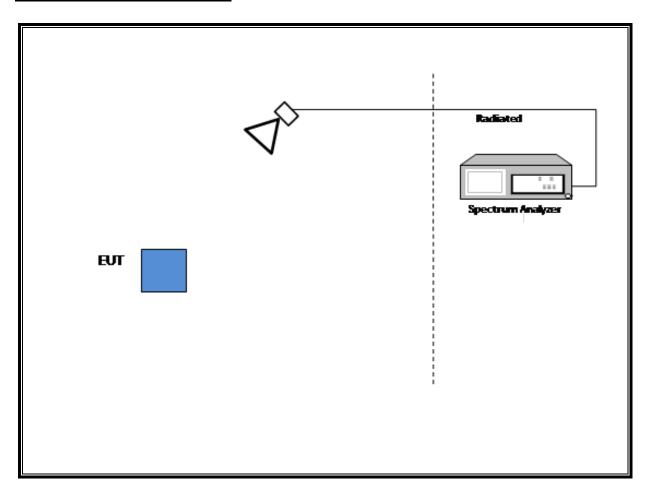
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Charging Base	Masimo	RDS-1	291175	N/A		
Debug Board	Masimo	82444 REV A	1447700018	N/A		
Laptop	Lenovo	T460	PC0C3DUA	N/A		
AC Adaptor	Lenovo	ADLX65NCCZA	11S45N0263ZS9957G6W	N/A		

I/O CABLES

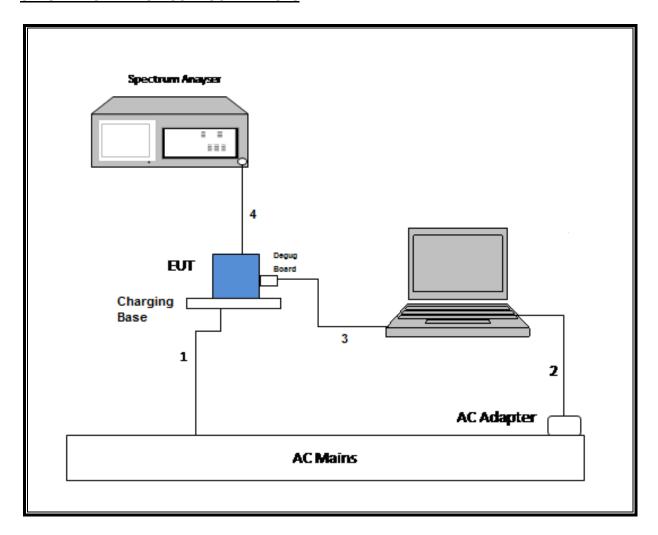
	I/O Cable List							
Cable Port # of identical Connector Cable Type Cable Remarks								
No		ports	Туре		Length (m)			
1	AC	1	AC	AC	0.3			
2	AC	1	AC	AC	0.8			
3	USB	1	USB	unshielded	1.0			
4	Antenna	1	RF	Shielded	0.5	To spectrum Analyzer		

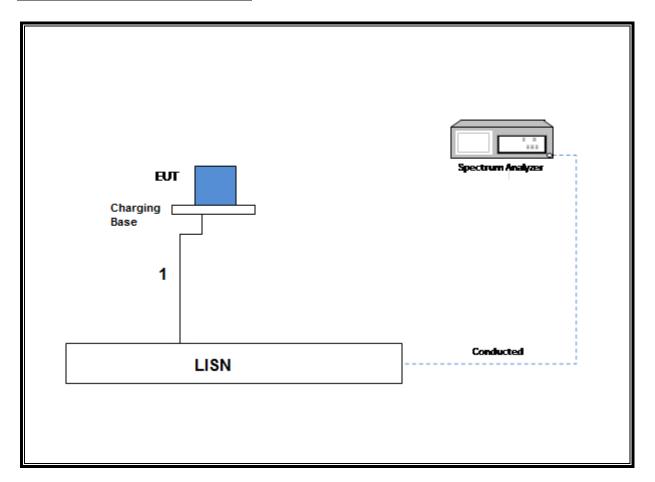

TEST SETUP

For conducted and AC Line tests: the EUT was docked on the charging base and connected to a host laptop via an USB cable, and a debug board for parameter setting purpose such as channel, output power...etc.

For radiated tests: All support equipment (charging base, host laptop, USB cable, and debug board) were removed after the EUT programmed.

The EUT was operated as stand-alone unit by 3.7VDC battery pack.


The test software exercises the radio.


DATE: 2/28/2019

IC: 7362A-RAD7B

SETUP DIAGRAM FOR CONDUCTED TESTS

SETUP DIAGRAM FOR AC LC TESTS

DATE: 2/28/2019

IC: 7362A-RAD7B

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	ID Num	Cal Due		
Amplifier	Hewlet Packard	8447D	T64	06/25/2019		
Amplifier, 9KHz to 1GHz, 32dB	Sonoma Instrument	310	PRE0180089	06/21/2019		
Antenna, Broadband Hybrid, 30MHz to 2000MHz	Sunol Sciences Corp.	JB3	T407	05/10/2019		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T344	04/30/2019		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T4294	04/30/2019		
Amplifier, 1 to 18GHz, 35dB	AMPLICAL	AMP1G18-35	T1569	06/03/2019		
RF Amplifier	MITEQ	AFS42-00101800-25-S- 42	T1568	06/21/2019		
Amplifier, 1 to 7.0GHz, 20.0dB Gain minimum, 6dB NF	AMPLICAL	AMP1G7-20-27	T1563	06/03/2019		
Amplifier 1-8GHz 30dB gain	L3 Narda	AMF-4D-01000800-30- 29P	167495	06/22/2019		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179522	05/11/2019		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	PRE0179367	04/25/2019		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T1113	12/21/2018		
Spectrum Analyzer, PSA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T146	07/18/2018		
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1271	07/17/2018		
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1225	04/10/2019		
Filter, HPF 3.0GHz	MICRO-TRONICS	HPM17543	T1013	06/21/2019		
Filter, HPF 3.0GHz	MICRO-TRONICS	HPM17543	T894	06/03/2019		
Antenna, Active Loop 9kHz- 30MHz	Com-Power Corp.	AL-130R	T1866	10/10/2018		
18 - 26.5 GHz Horn Antenna	Seavey Division	MWH-1826/B	T89	01/18/2019		
Pre-Amp 1-26.5 GHz	Agilent	8449B T404		03/09/2019		
EMI Reciever	Rohde & Schwarz	ESR	T1436	02/21/2019		
L.I.S.N.	FCC INC.	FCC LISN 50/250	T24	03/06/2019		
Thermometer - Digital	Control Company	14-650-118	PRE0177862	02/22/2019		

Test Software List					
Description Manufacturer Model Version					
Radiated Software	UL	UL EMC	Ver 9.5, June 22, 2018		
Antenna Port Software	UL	UL RF	Ver 8.4, June 12, 2018		

Page 14 of 73

7. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

Carrier Frequency Separation: ANSI C63.10-2013 Section 7.8.2

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

Radiated Spurious Emissions 30-1000MHz: ANSI C63.10-2013 Section 6.3 and 6.5

Radiated Spurious Emissions above 1GHz: ANSI C63.10-2013 Section 6.3 and 6.6

Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

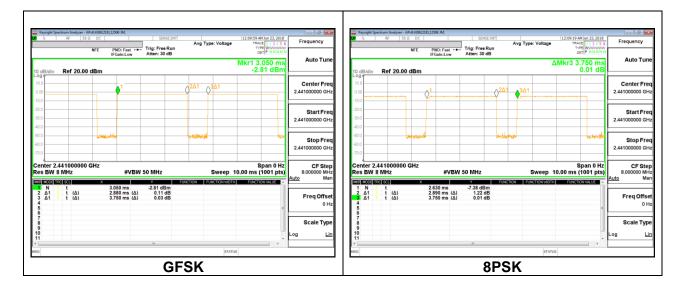
AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2.

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

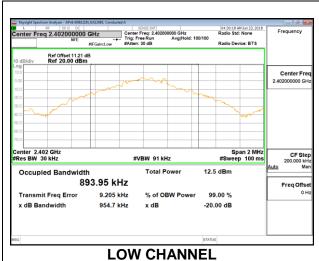
Mode	ON Time Period		Duty Cycle	Duty	Duty Cycle	1/T
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
GFSK	2.88	3.75	0.768	76.8%	1.15	0.347
8PSK	2.89	3.75	0.771	77.1%	1.13	0.346

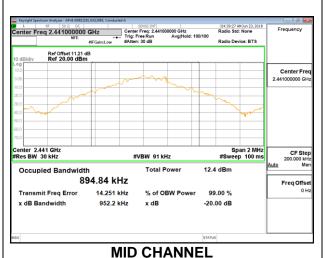
DUTY CYCLE PLOTS

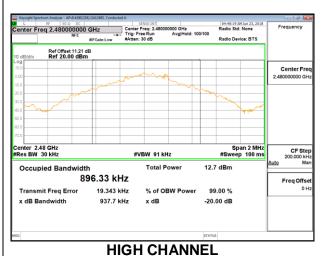
8.2. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

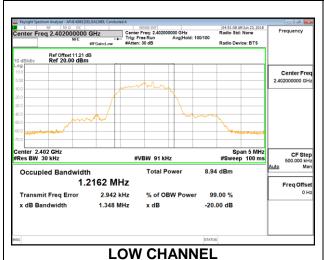

TEST PROCEDURE

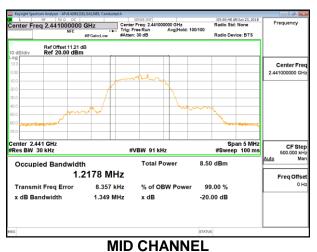

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

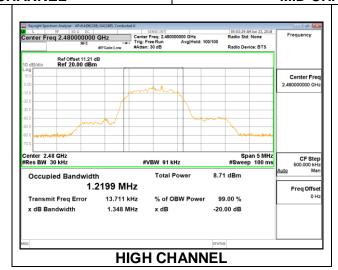

RESULTS

8.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	0.955	0.894
Mid	2441	0.952	0.895
High	2480	0.938	0.896







8.2.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

Channel	Frequency	20dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	2402	1.348	1.216
Mid	2441	1.349	1.218
High	2480	1.348	1.220

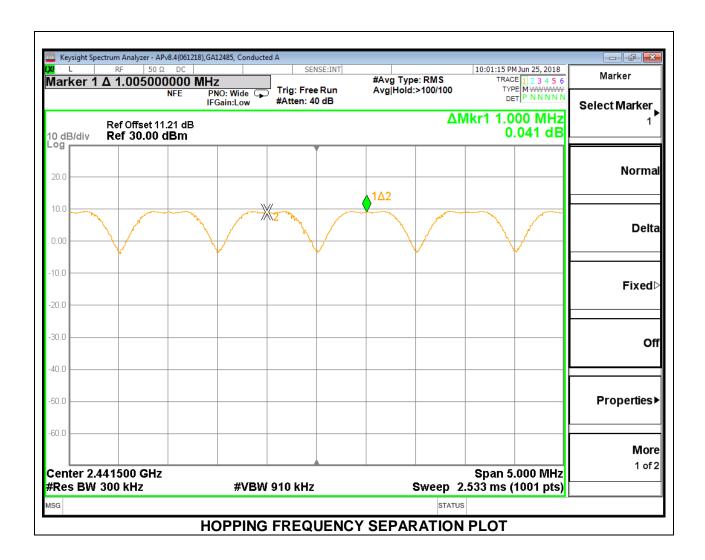
8.3. HOPPING FREQUENCY SEPARATION

LIMITS

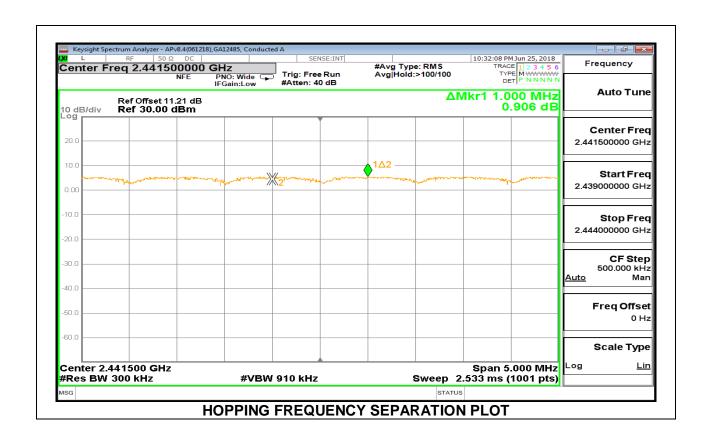
FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

8.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

8.3.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

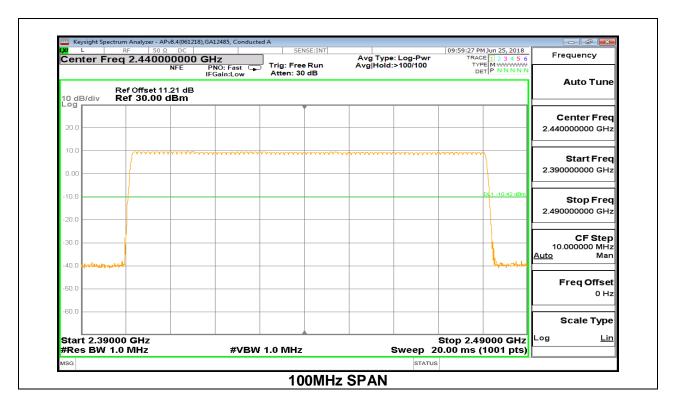
8.4. NUMBER OF HOPPING CHANNELS

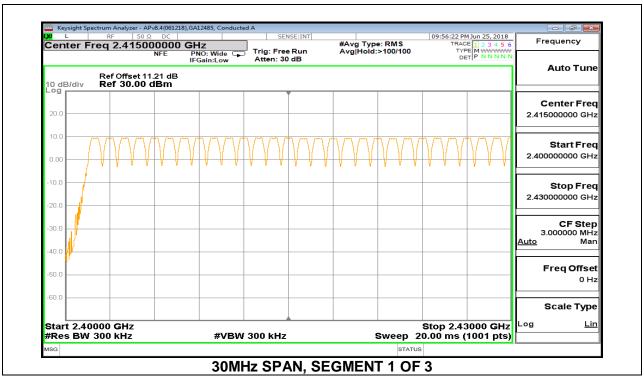
LIMITS

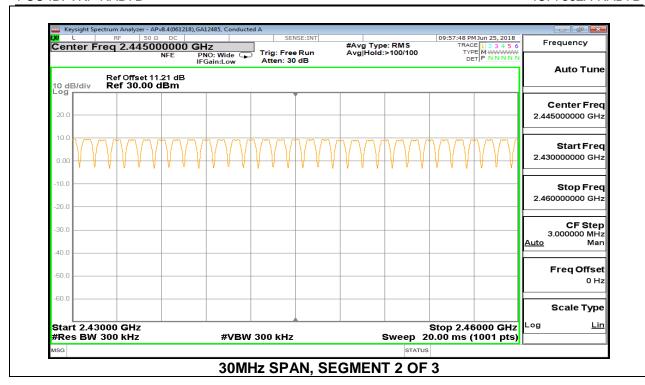
FCC §15.247 (a) (1) (iii)

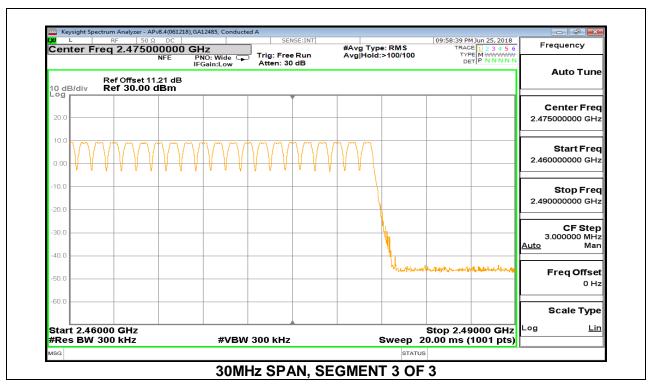
RSS-247 (5.1) (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

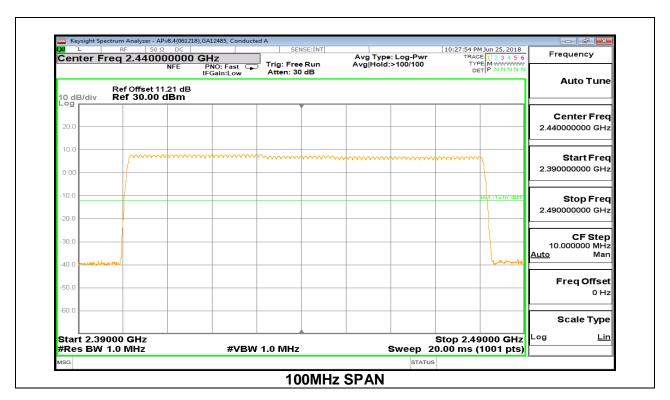

TEST PROCEDURE

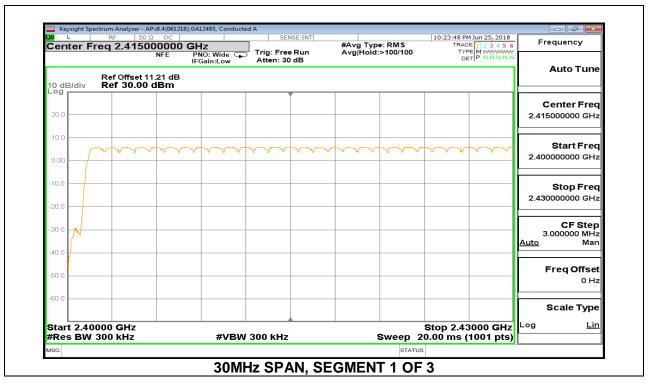

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

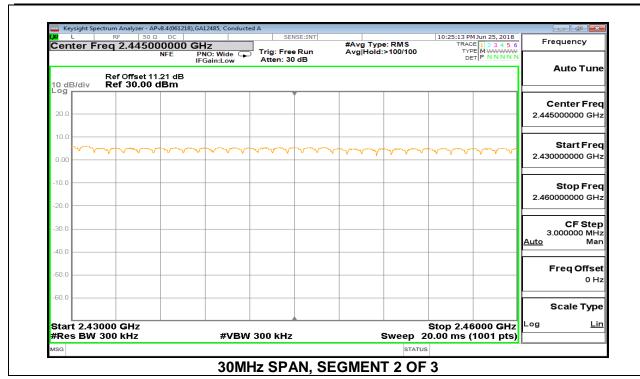

RESULTS


Normal Mode: 79 Channels Observed

8.4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION







8.4.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

8.5. AVERAGE TIME OF OCCUPANCY

LIMITS

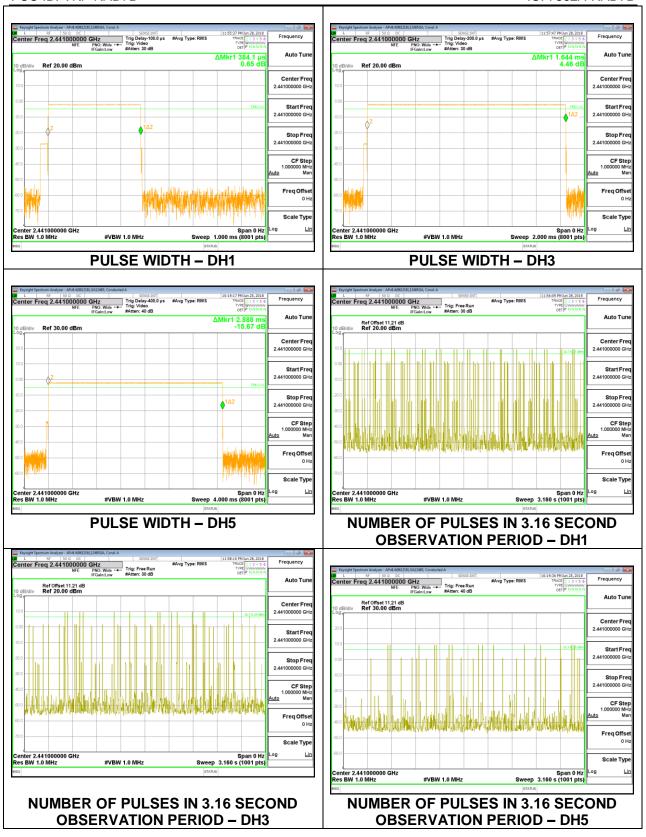
FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

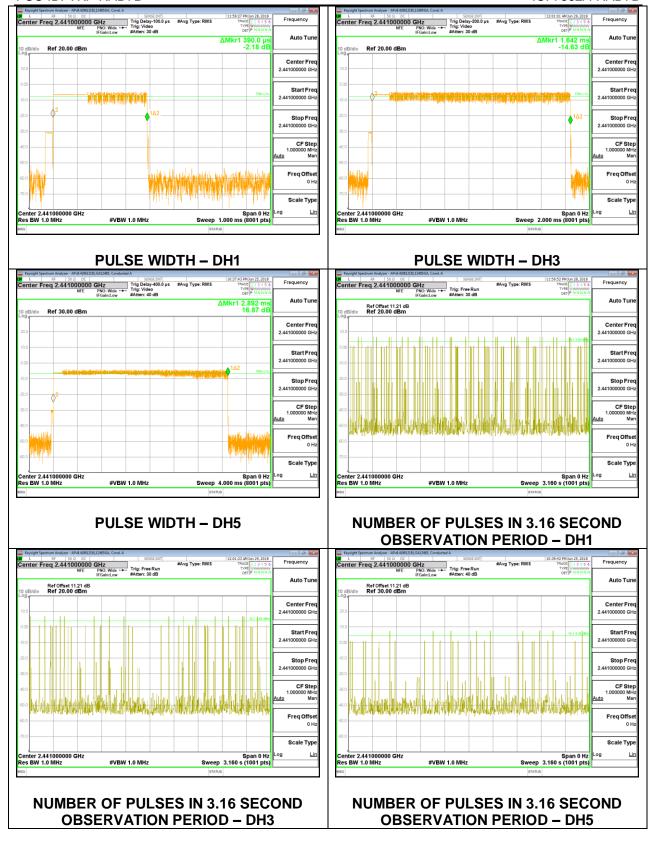
The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.


The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

RESULTS

8.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION


DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)
GFSK Norma	l Mode				
DH1	0.3841	32	0.1229	0.4	-0.2771
DH3	1.6440	15	0.2466	0.4	-0.1534
DH5	2.8880	9	0.2599	0.4	-0.1401
DH Packet	Pulse Width (sec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)
GFSK AFH Mode					
DH1	0.384	8	0.03073	0.4	-0.3693
DH3	1.644	3.75	0.06165	0.4	-0.3384
DH5	2.888	2.25	0.06498	0.4	-0.3350

8.5.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width (msec)	Pulses in 3.16 seconds	of Occupancy (sec)	(sec)	(sec)
8PSK Normal	8PSK Normal Mode				
DH1	0.390	30	0.1170	0.4	-0.2830
DH3	1.642	15	0.2463	0.4	-0.1537
DH5	2.892	9	0.2603	0.4	-0.1397

Note: for AFH(8PSK) mode, please refer to the results of AFH(GFSK) mode; the channel selection and hopping rate are the same for both EDR and Basic Rate operation, data for Basic Rate in section 8.5.1 demonstrates compliance with channel occupancy when AFH is employed.

8.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

RSS-247 (5.4) (b)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.21 dB (including 10 dB pad and 1.21 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

8.6.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Tested By:	16080 ZS
Date:	6/19/2018

Channel	Frequency	Output Power	Limit	Margin
	(2.2.1.)			(15)
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	9.22	30	-20.78
Middle	2441	8.87	30	-21.13
High	2480	8.84	30	-21.16

8.6.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

Tested By:	16080 ZS
Date:	6/19/2018

Channel	Frequency Output Power		Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	7.07	21	-13.93
Middle	2441	6.49	21	-14.51
High	2480	6.19	21	-14.81

8.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.21 dB (including 10 dB pad and 1.21 dB cable) was entered as an offset in the power meter to allow for a gated peak reading of power.

RESULTS

8.7.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Tested By:	16080 ZS
Date	6/19/2018

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	9.07
Middle	2441	8.73
High	2480	8.69

8.7.2. BLUETOOTH ENCHANCED DATA RATE 8PSK MODULATION

Tested By:	16080 ZS
Date	6/19/2018

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	4.49
Middle	2441	3.87
High	2480	3.48