

Masimo Corporation EMMA BT

FCC 15.207:2016 FCC 15.247:2016 Bluetooth Low Energy Radio

Report # MASI0321.1 Rev 01

R NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

CERTIFICATE OF TEST

Last Date of Test: June 24, 2016 Masimo Corporation Model: EMMA BT

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.207:2016	ANSI C63.10:2013, KDB 558074
FCC 15.247:2016	ANSI 003.10.2013, KDB 556074

Results

Method Clause	Test Description	Applied Results Comments		Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
01	Corrected Method Clause	5/25/17	2

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

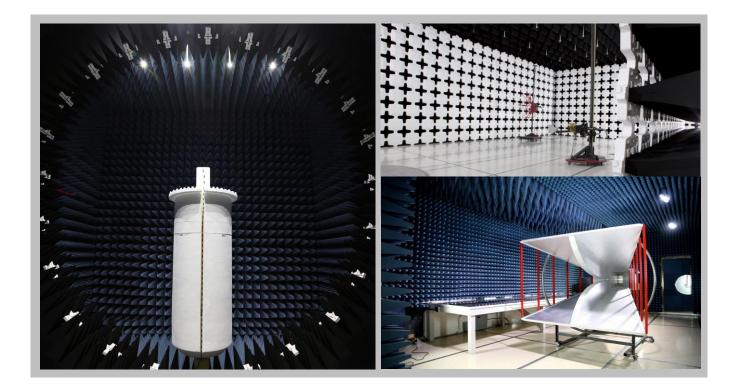
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

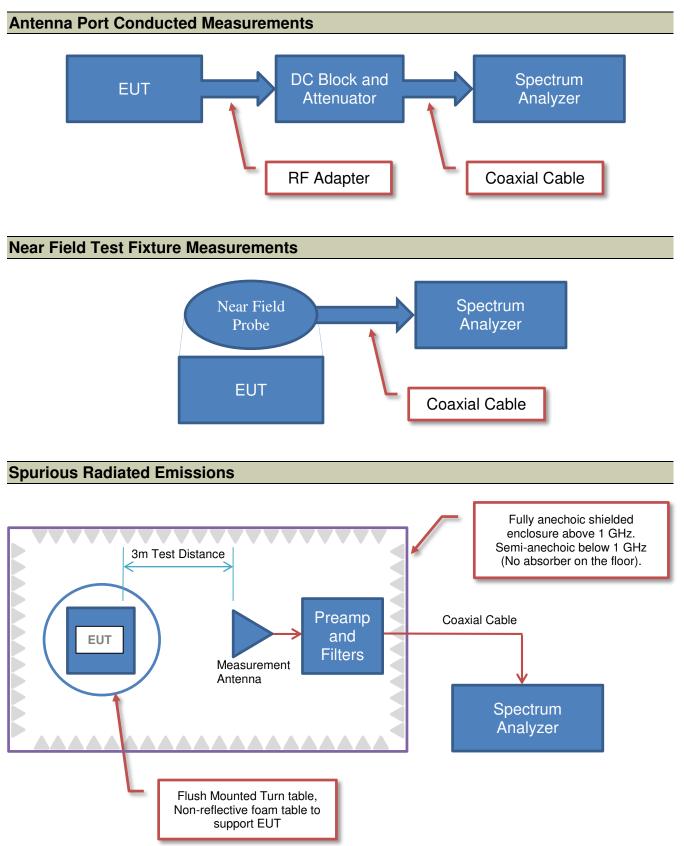
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES



California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
		NV	LAP		
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0
	Industry Canada				
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
		BS	МІ		
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VC	CI		
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

Test Setup Block Diagrams

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Masimo Corporation
Address:	40 Parker
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Michael Clark
Model:	EMMA BT
First Date of Test:	June 22, 2016
Last Date of Test:	June 24, 2016
Receipt Date of Samples:	June 17, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

EMMA measures, displays and monitors carbon dioxide partial pressure and respiratory rate during anesthesia, recovery and respiratory care.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

CONFIGURATIONS

Configuration MASI0321-1

Software/Firmware Running during test			
Description	Version		
EMMA SW	4.2.4.6		

E	UT			
D	escription	Manufacturer	Model/Part Number	Serial Number
E	mergency Capnography with Bluetooth LE	Masimo Corporation	EMMA BT	300012

Configuration MASI0321-2

Software/Firmware Running during test			
Description	Version		
EMMA SW	4.2.4.6		

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Emergency Capnography with Bluetooth LE	Masimo Corporation	EMMA BT	300007		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	6/22/2016	Band Edge Compliance	Tested as delivered to	No EMI suppression devices were added or	EUT remained at Northwest EMC
			Test Station.	modified during this test.	following the test. EUT remained at
2	6/22/2016	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Northwest EMC following the test.
3	6/22/2016	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	6/22/2016	Receiver Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	6/22/2016	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	6/22/2016	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	6/24/2016	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED **EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting BT LE: Low Ch 0 (2402MHz), Mid Ch 19 (2440MHz), High Ch 39 (2480MHz) Transmitting BT LE: Low Ch 0 (2402MHz), High Ch 39 (2480MHz)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED MASI0321 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	26000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

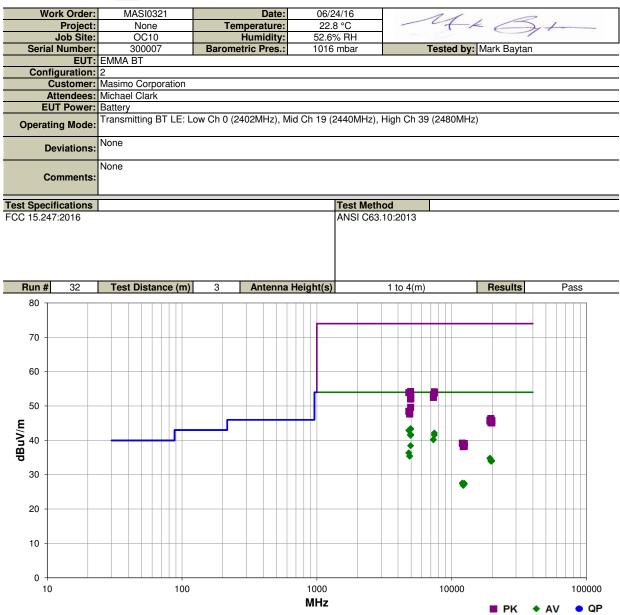
Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - Low Pass	Micro-Tronics	LPM50004	LFC	11/3/2015	12 mo
Attenuator	Coaxicom	66702 3910AF-20	TKH	3/3/2016	12 mo
Cable	Northwest EMC	8-18GHz RE Cables	000	8/26/2015	12 mo
Cable	Northwest EMC	18-26GHz RE Cables	OCK	1/6/2016	12 mo
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	8/26/2015	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	3/3/2016	12 mo
Cable	ESM Cable Corp.	KMKM-72	OC1	1/6/2016	12 mo
Filter - High Pass	Micro-Tronics	HPM50111	HFM	2/9/2016	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	10/6/2014	24 mo
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVQ	1/6/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	8/26/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1064-9079	AOO	3/3/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	1/6/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	8/31/2015	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	8/31/2015	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-10	AIX	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AHT	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHR	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHN	NCR	0 mo
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	2/9/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



SPURIOUS RADIATED EMISSIONS

W	ork Order:	MAS	610321		Date:	06/2	24/16	1					1
	Project:		one	Ter	nperature:		8 °C	/	U-	k E	5.		
	Job Site:		C10		Humidity:		% RH		1		11		
Seria	al Number:		0007	Barome	etric Pres.:		mbar		Tested by:	Mark Bayt	an		_
		EMMA BT											-
	figuration:												-
		Masimo C Michael Cl											_
	UT Power:		lark										_
			ng BT LE: Lo	ow Ch 0 (2	402MHz). F	liah Ch 39	(2480MHz	<u>(</u>)					-
Operat	ting Mode:				,, .		(-/					
D	Deviations:	None											_
		None											_
C	comments:	None											
•	•												
Test Spec	ifications						Test Met	hod					
FCC 15.24								3.10:2013					-
Run #	29	Test Di	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
	25	TCSUDA	Stance (III)	0	Antenna	neight(3)		1 to +(iii)		nesuits	1	455	-
80													
-													
70 -													
60 -													
50 -													
ш/ л 40 -													
1 40													
Eb													
30 -													
					* *								
20													
10 -													
10													
0 +													
100	00											10000	
						MHz				PK	♦ AV	QP	
							Polarity/						
From	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External	Transducer	Detector	Distance	Adjusted	Spec. Limit	Compared to	
Freq (MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	(dBuV/m)	(dBuV/m)	Spec. (dB)	
	05.0	17	10	000.0	0.0	0.0	1.1	A\/	0.0	07.0	E4.0	00.4	Comments
2483.590 2483.647	25.9 25.8	1.7 1.7	1.0 1.0	360.0 283.0	3.0 3.0	0.0 0.0	Horz Vert	AV AV	0.0 0.0	27.6 27.5	54.0 54.0	-26.4 -26.5	High Ch, EUT Horz High Ch, EUT Horz
2484.473	25.7	1.7	1.0	153.0	3.0	0.0	Vert	AV	0.0	27.4	54.0	-26.6	High Ch, EUT Vert
2483.733	25.7	1.7	1.9	170.0	3.0	0.0	Horz	AV AV	0.0	27.4	54.0	-26.6	High Ch, EUT on Side
2483.577 2485.273	25.7 25.6	1.7 1.7	1.0 1.0	293.0 86.0	3.0 3.0	0.0 0.0	Horz Vert	AV AV	0.0 0.0	27.4 27.3	54.0 54.0	-26.6 -26.7	High Ch, EUT Vert High Ch, EUT on Side
2390.000	25.7	1.4	1.0	159.0	3.0	0.0	Vert	AV	0.0	27.1	54.0	-26.9	Low Ch, EUT Horz
2388.700	25.7	1.4	1.0	85.0	3.0	0.0	Horz	AV	0.0	27.1	54.0	-26.9	Low Ch, EUT Horz
2483.693 2483.630	40.9 39.7	1.7 1.7	1.0 1.0	360.0 283.0	3.0 3.0	0.0 0.0	Horz Vert	PK PK	0.0 0.0	42.6 41.4	74.0 74.0	-31.4 -32.6	High Ch, EUT Horz High Ch, EUT Horz
2484.433	39.6	1.7	1.0	86.0	3.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	High Ch, EUT on Side
2483.830	39.6	1.7	1.0	153.0	3.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	High Ch, EUT Vert
2388.633 2484.163	39.8 39.4	1.4 1.7	1.0 1.9	85.0 170.0	3.0 3.0	0.0 0.0	Horz Horz	PK PK	0.0 0.0	41.2 41.1	74.0 74.0	-32.8 -32.9	Low Ch, EUT Horz High Ch, EUT on Side
2484.003	39.4	1.7	1.0	293.0	3.0	0.0	Horz	PK	0.0	41.1	74.0	-32.9	High Ch, EUT Vert
2388.327	39.0	1.4	1.0	159.0	3.0	0.0	Vert	PK	0.0	40.4	74.0	-33.6	Low Ch, EUT Horz

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
4050.0/5				100.0						40.4		10.0	Comments
4959.910	32.6	10.8	2.2	130.0	3.0	0.0	Horz	AV	0.0	43.4	54.0	-10.6	High Ch, EUT Horz
4959.885	32.4	10.8	3.4	225.0	3.0	0.0	Horz	AV	0.0	43.2	54.0	-10.8	High Ch, EUT Vert
4804.000	32.5	10.4	2.3	135.0	3.0	0.0	Horz	AV	0.0	42.9	54.0	-11.1	Low Ch, EUT Horz
7439.485	25.7	16.4	1.0	25.0	3.0	0.0	Horz	AV	0.0	42.1	54.0	-11.9	High Ch, EUT Horz
4959.890	30.9	10.8	3.3	294.0	3.0	0.0	Vert	AV	0.0	41.7	54.0	-12.3	High Ch, EUT on Side
4959.880	30.8	10.8	1.0	154.0	3.0	0.0	Vert	AV	0.0	41.6	54.0	-12.4	High Ch, EUT Vert
7439.435	25.1	16.4	1.4	287.0	3.0	0.0	Vert	AV	0.0	41.5	54.0	-12.5	High Ch, EUT on Side
4959.860	30.6	10.8	2.4	179.0	3.0	0.0	Vert	AV	0.0	41.4	54.0	-12.6	High Ch, EUT Horz
7318.935	24.0	16.2	2.3	215.0	3.0	0.0	Horz	AV	0.0	40.2	54.0	-13.8	Mid Ch, EUT Horz
7318.645	24.0	16.2	1.0	137.0	3.0	0.0	Vert	AV	0.0	40.2	54.0	-13.8	Mid Ch, EUT on Side
4959.860	27.6	10.8	1.2	20.0	3.0	0.0	Horz	AV	0.0	38.4	54.0	-15.6	High Ch, EUT on Side
4803.885	26.0	10.4	1.0	93.0	3.0	0.0	Vert	AV	0.0	36.4	54.0	-17.6	Low Ch, EUT on Side
4881.470	24.8	10.7	1.0	157.0	3.0	0.0	Vert	AV	0.0	35.5	54.0	-18.5	Mid Ch, EUT on Side
4881.345	24.7	10.7	1.0	318.0	3.0	0.0	Horz	AV	0.0	35.4	54.0	-18.6	Mid Ch, EUT Horz
19214.440	40.3	-5.5	1.3	278.0	3.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	Low Ch, EUT Horz
19213.630	40.2	-5.5	1.3	100.0	3.0	0.0	Vert	AV	0.0	34.7	54.0	-19.3	Low Ch, EUT on Side
4959.680	43.4	10.8	2.2	130.0	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	High Ch, EUT Horz
7439.320	37.7	16.4	1.0	25.0	3.0	0.0	Horz	PK	0.0	54.1	74.0	-19.9	High Ch, EUT Horz
19837.720	39.5	-5.4	1.3	272.0	3.0	0.0	Horz	AV	0.0	34.1	54.0	-19.9	High Ch, EUT Horz
19520.530	39.6	-5.6	1.3	343.0	3.0	0.0	Vert	AV	0.0	34.0	54.0	-20.0	Mid Ch, EUT on Side
19838.440	39.4	-5.4	1.3	327.0	3.0	0.0	Vert	AV	0.0	34.0	54.0	-20.0	High Ch, EUT on Side
19518.240	39.6	-5.6	1.3	71.0	3.0	0.0	Horz	AV	0.0	34.0	54.0	-20.0	Mid Ch, EUT Horz
													, -

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4804.430	43.5	10.4	2.4	135.0	3.0	0.0	Horz	PK	0.0	53.9	74.0	-20.1	Low Ch, EUT Horz
7440.370	37.3	16.4	1.4	287.0	3.0	0.0	Vert	PK	0.0	53.7	74.0	-20.3	High Ch, EUT on Side
7319.995	37.1	16.2	2.3	215.0	3.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	Mid Ch, EUT Horz
4959.655	42.4	10.8	3.4	225.0	3.0	0.0	Horz	PK	0.0	53.2	74.0	-20.8	High Ch, EUT Vert
7319.980	36.3	16.2	1.0	137.0	3.0	0.0	Vert	PK	0.0	52.5	74.0	-21.5	Mid Ch, EUT on Side
4960.610	41.3	10.8	2.4	179.0	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9	High Ch, EUT Horz
4960.445	41.3	10.8	1.0	154.0	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9	High Ch, EUT Vert
4959.530	41.2	10.8	3.3	294.0	3.0	0.0	Vert	PK	0.0	52.0	74.0	-22.0	High Ch, EUT on Side
4959.180	38.8	10.8	1.2	20.0	3.0	0.0	Horz	PK	0.0	49.6	74.0	-24.4	High Ch, EUT on Side
4804.435	38.1	10.4	1.0	93.0	3.0	0.0	Vert	PK	0.0	48.5	74.0	-25.5	Low Ch, EUT on Side
4881.400	37.2	10.7	1.0	157.0	3.0	0.0	Vert	PK	0.0	47.9	74.0	-26.1	Mid Ch, EUT on Side
4879.735	37.0	10.7	1.0	318.0	3.0	0.0	Horz	PK	0.0	47.7	74.0	-26.3	Mid Ch, EUT Horz
12008.050	35.9	-8.3	1.0	342.0	3.0	0.0	Vert	AV	0.0	27.6	54.0	-26.4	Low Ch, EUT on Side
12398.600	35.2	-7.7	1.0	220.0	3.0	0.0	Vert	AV	0.0	27.5	54.0	-26.5	High Ch, EUT on Side
12007.580	35.8	-8.3	1.0	210.0	3.0	0.0	Horz	AV	0.0	27.5	54.0	-26.5	Low Ch, EUT Horz
12397.580	35.1	-7.7	1.0	271.0	3.0	0.0	Horz	AV	0.0	27.4	54.0	-26.6	High Ch, EUT Horz
12198.390	35.0	-8.0	1.0	18.0	3.0	0.0	Vert	AV	0.0	27.0	54.0	-27.0	Mid Ch, EUT on Side
12198.030	34.9	-8.0	1.0	284.0	3.0	0.0	Horz	AV	0.0	26.9	54.0	-27.1	Mid Ch, EUT Horz
19522.100	52.0	-5.6	1.3	71.0	3.0	0.0	Horz	PK	0.0	46.4	74.0	-27.6	Mid Ch, EUT Horz
19213.930	51.4	-5.5	1.3	100.0	3.0	0.0	Vert	PK	0.0	45.9	74.0	-28.1	Low Ch, EUT on Side
19841.890	51.2	-5.4	1.3	272.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	High Ch, EUT Horz
19214.120	51.1	-5.5	1.3	278.0	3.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	Low Ch, EUT Horz
19517.580	50.8	-5.6	1.3	343.0	3.0	0.0	Vert	PK	0.0	45.2	74.0	-28.8	Mid Ch, EUT on Side
19841.340	50.5	-5.4	1.3	327.0	3.0	0.0	Vert	PK	0.0	45.1	74.0	-28.9	High Ch, EUT on Side
12008.860	47.5	-8.3	1.0	342.0	3.0	0.0	Vert	PK	0.0	39.2	74.0	-34.8	Low Ch, EUT on Side
12007.820	47.5	-8.3	1.0	210.0	3.0	0.0	Horz	PK	0.0	39.2	74.0	-34.8	Low Ch, EUT Horz
12399.830	46.8	-7.7	1.0	220.0	3.0	0.0	Vert	PK	0.0	39.1	74.0	-34.9	High Ch, EUT on Side
12398.260	46.0	-7.7	1.0	271.0	3.0	0.0	Horz	PK	0.0	38.3	74.0	-35.7	High Ch, EUT Horz
12198.840	46.3	-8.0	1.0	18.0	3.0	0.0	Vert	PK	0.0	38.3	74.0	-35.7	Mid Ch, EUT on Side
12198.060	46.2	-8.0	1.0	284.0	3.0	0.0	Horz	PK	0.0	38.2	74.0	-35.8	Mid Ch, EUT Horz

Cal. Due

2/5/2018

4/4/2017

4/4/2017

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

ID

TGU

TKS

AMO

Last Cal.

2/5/2015

4/4/2016

4/4/2016

TEST EQUIPMENT Description Manufacturer Model Generator - Signal Agilent E8257D Attenuator Fairview Microwave SA18E-10 Block - DC Aeroflex INMET 8535

		SCA1814-0101-			
Cable	Fairview Microwave	120	OCZ	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

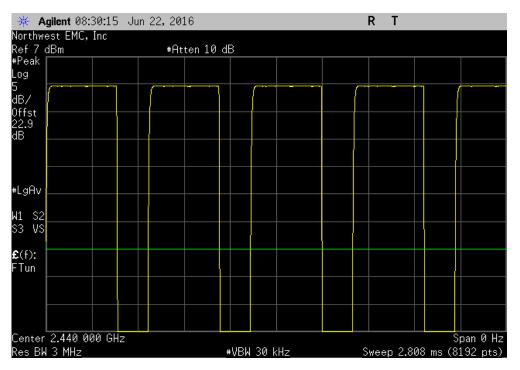
The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

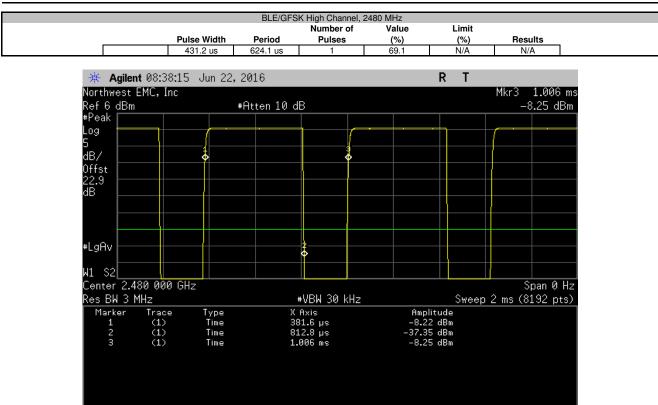
If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.



EUT: EN	IMA BT					Work Order:	MASI0321	
Serial Number: 300	0012					Date:	06/22/16	
Customer: Ma	simo Corporation					Temperature:	22.5 °C	
Attendees: Mid	chael Clark					Humidity:	48.2% RH	
Project: No	ne					Barometric Pres.:	1017 mbar	
Tested by: Ma	ark Baytan		Power: +3.0VDC			Job Site:	OC13	
EST SPECIFICATION	S		Test Meth	od				
CC 15.247:2016			ANSI C63.	10:2013				
COMMENTS								
C Block/20dB Attenu	ator + coax cable + client	provided patch cable = 2	2 85dB total offset					
	-							
DEVIATIONS FROM TE	EST STANDARD	·						
DEVIATIONS FROM TE	EST STANDARD							
lone	EST STANDARD		14481					
lone	EST STANDARD	Signature	14-k G+					
	EST STANDARD	Signature	14+ G+		Number of	Value	Limit	
lone	EST STANDARD	Signature			Number of Pulses	Value (%)	Limit (%)	Results
None Configuration #	1	Signature		Vidth Period				Results N/A
Configuration #	1 sl, 2402 MHz	Signature	Pulse V	Vidth Period		(%)	(%)	
Ione Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe	1 91, 2402 MHz 91, 2402 MHz	Signature	Pulse V 430.9	Vidth Period 9 us 623.1 us A N/A		(%) 69.2	(%) N/A	N/A
lone	1 al, 2402 MHz al, 2402 MHz 1, 2440 MHz	Signature	Pulse V 430.9 N//	Vidth Period 0 us 623.1 us A N/A 2 us 624.1 us		(%) 69.2 N/A	(%) N/A N/A	N/A N/A
None Configuration # BLE/GFSK Low Channe BLE/GFSK Low Channe BLE/GFSK Mid Channel	1 sl, 2402 MHz sl, 2402 MHz I, 2440 MHz J, 2440 MHz	Signature	Pulse V 430.9 /// 431.2	Vidth Period 0 us 623.1 us A N/A 2 us 624.1 us A N/A		(%) 69.2 N/A 69.1	(%) N/A N/A N/A	N/A N/A N/A

		BLE/GFS	SK Low Channel, 2 Number of	402 MHz Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	430.9 us	623.1 us	1	69.2	N/A	N/A
🔆 Agilent 08:	19:33 Jun 22,	2016			RT	
Northwest EMC,	Inc					Mkr3 1.005 ms
Ref 7 dBm		#Atten 10 d	₿			-8.13 dBm
#Peak						
Log				· · · · · · · · · · · · · · · · · · ·		(
5	4		3			
dB/ Offst	<u> </u>					
22.9						
22.9 dB						
#LgAv			2 0			
			•			
W1 S2						
Center 2.402 00	00 GHZ				6	Span 0 Hz
Res BW 3 MHz Marker Trad	T		#VBW 30 kHz Axis	<u> </u>	აweep itude	2 ms (8192 pts)
1 (1)			пяіs 82.4 µs	-7.98		
2 (1)) Time	8	13.3 µs	-37.70	∂dBm	
3 (1)) Time	1	.005 ms	-8.13	3 dBm	


		BLE/GFS	K Low Channel, 2	2402 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A



#Peak Log 5 dB/ 0ffst 22.9 dB			222, 61	SK Mid Channel, 24 Number of	Value	Limit		_
Agilent 08:29:52 Jun 22, 2016 R T Northwest EMC, Inc Mkr3 1.005 ms Ref 7 dBm #Atten 10 dB *Peak -8.11 dBm dB/ -8.11 dBm Jffst -8.11 dBm 22.9 -8.11 dBm dB -8.11 dBm *LgAv -8.11 dBm *LgAv -8.11 dBm *LgAv -8.11 dBm Marker -8.11 dBm *VBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type				Pulses				
Northwest EMC, Inc Ref 7 dBm #Atten 10 dB -8.11 dBm *Peak Log 5 dB/ Dffst 22.9 dB #LgAv All S2 Center 2.440 000 GHz Res BW 3 MHz #VBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type X Axis Amplitude		431.2 us	624.1 us	1	69.1	N/A	N/A	
Ref 7 dBm #Atten 10 dB -8.11 dBm #Peak	🔆 Agilent 08:	29:52 Jun 22,	2016			RT		
Ref 7 dBm #Atten 10 dB -8.11 dBm #Peak	Northwest EMC,	Inc					Mkr3 1.005	ms
Log 5 dB/ Dffst 22.9 dB +LgAv +LgAv H1 S2 Center 2.440 000 GHz Res BW 3 MHz WBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type X Axis Axis Axis Amplitude	Ref 7 dBm		#Atten 10 d	₿			-8.11 dE	Зm
5 dB/ Dffst 22.9 dB +LgAv +LgAv H1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude	#Peak							
HLGAV HL	Log			· · · ·			1	
Offst 22.9 dB description #LgAv description #UBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type X Axis Amplitude	5							
22.9 dB #LgAv								
#LgAv #LgAv #LgAv A1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude	22 9							
#LgAv #LgAv #LgAv A1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude	dB							
M1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude								
M1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude								
M1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude								
M1 S2 Center 2.440 000 GHz Res BW 3 MHz Marker Trace Type X Axis Amplitude	#LgAv							
Center 2.440 000 GHz Span 0 Hz Res BW 3 MHz #VBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type X Axis Amplitude	Ŭ							
Res BW 3 MHz #VBW 30 kHz Sweep 2 ms (8192 pts) Marker Trace Type X Axis Amplitude	W1 S2							
Marker Trace Type X Axis Amplitude		00 GHz						
	Res BW 3 MHz			#VBW 30 kHz		Sweep	2 ms (8192 pt	s)
1 (1) Time 381.4 μs -8.12 dBm 2 (1) Time 812.6 μs -38.11 dBm 3 (1) Time 1.005 ms -8.11 dBm								
3 (1) Time 1.005 ms -8.11 dBm	1 (1) 2 (1)							
	3 (1							

		BLE/GFS	SK Mid Channel, 2	2442 MHz			
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	_
	N/A	N/A	5	N/A	N/A	N/A	

		BLE/GFS	K High Channel,	2480 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	N/A	N/A	5	N/A	N/A	N/A

orthwest EMC,	Inc							
ef 6 dBm		#At	ten 10 🛛	dB		 		
Peak Jg								
3/								
ifst 2.9 3					[
§								
.gAv								
. \$2								
3 VS								
(f):								
「un								
enter 2.480 00	10 GHz							Span 0 H

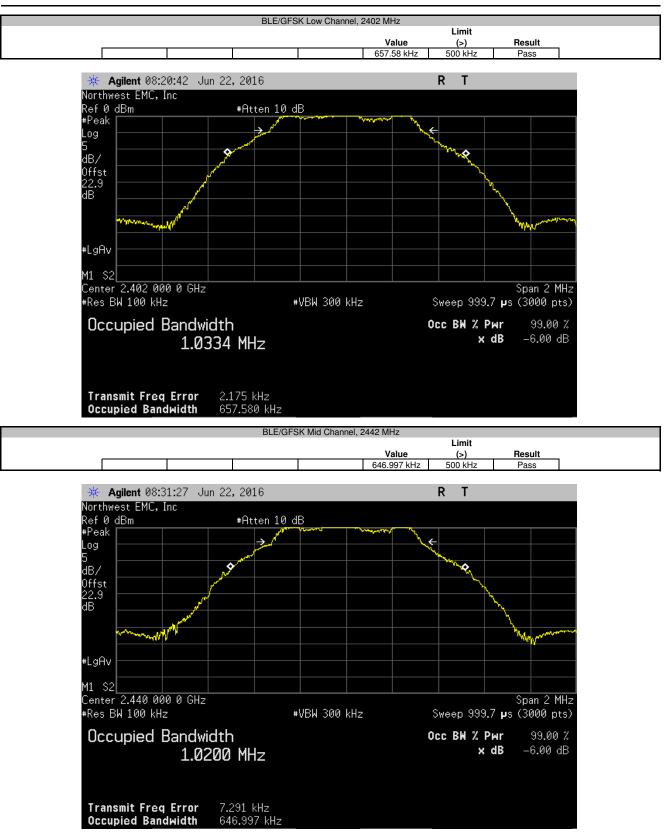
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

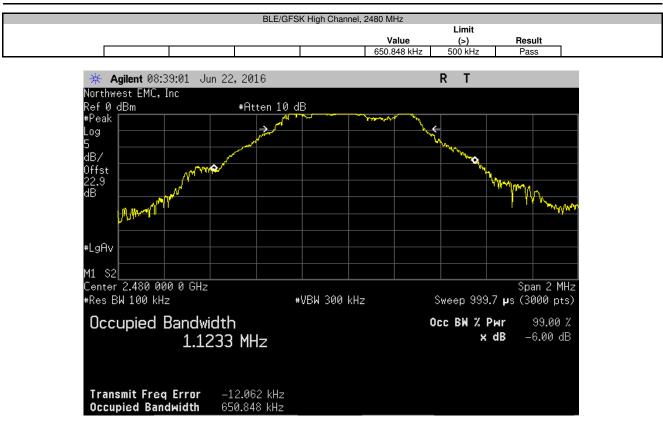
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18E-10	TKS	4/4/2016	4/4/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.


EUT: EMMA BT		Work Order:	MASI0321	
Serial Number: 300012		Date:	06/22/16	
Customer: Masimo Corporation		Temperature:	22.5 °C	
Attendees: Michael Clark			48.2% RH	
Project: None		Barometric Pres.:		
Tested by: Mark Baytan	Power: +3.0VDC	Job Site:	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
DC Block/20dB Attenuator + coax cable + client provided patch cable = 22.85dB to	otal offset			
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 1 Signature	1+ Gt-			
			Limit	
		Value	(>)	Result
BLE/GFSK Low Channel, 2402 MHz		657.58 kHz	500 kHz	Pass
BLE/GFSK Mid Channel, 2440 MHz		646.997 kHz	500 kHz	Pass
BLE/GFSK High Channel, 2480 MHz		650.848 kHz	500 kHz	Pass

Report No. MASI0321.1 Rev 01 EAR-Controlled Data

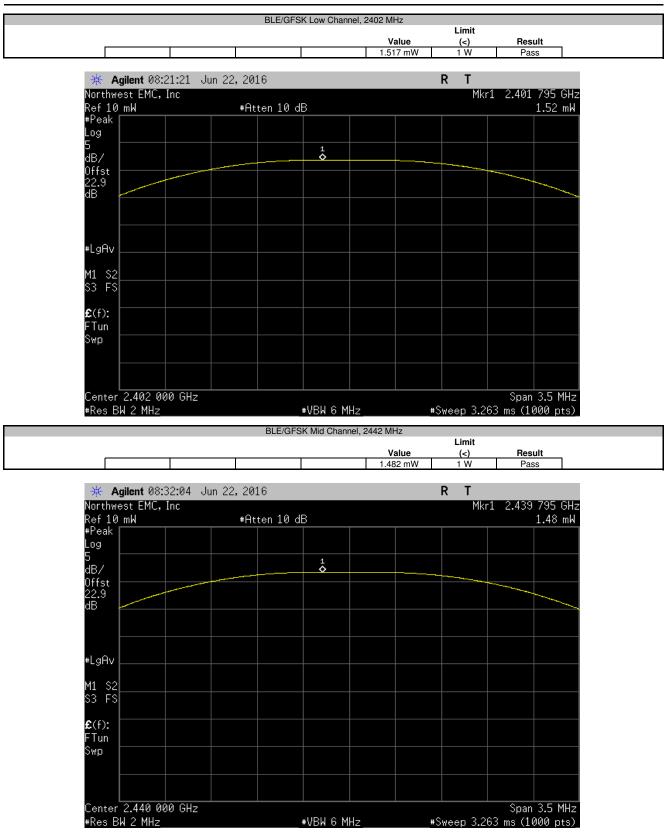
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016
		SCA1814-0101-			
Cable	Fairview Microwave	120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18E-10	TKS	4/4/2016	4/4/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

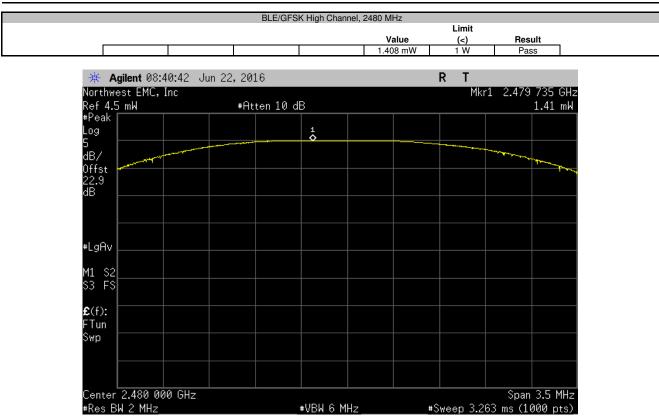
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.


The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.



EUT. EN						
EUI: EN	IMA BT			Work Order:	MASI0321	
Serial Number: 30	0012			Date:	06/22/16	
Customer: Ma	simo Corporation			Temperature:	22.5 °C	
Attendees: Mi	chael Clark			Humidity:	48.2% RH	
Project: No	ne			Barometric Pres.:	1017 mbar	
Tested by: Ma	ark Baytan		Power: +3.0VDC	Job Site:	OC13	
TEST SPECIFICATION	S		Test Method			
FCC 15.247:2016			ANSI C63.10:2013			
COMMENTS			•			
DC Block/20dB Attenu	ator + coax cable + client p	provided patch cable = 22.85dB to	otal offset			
DEVIATIONS FROM T	EST STANDARD					
DEVIATIONS FROM T	EST STANDARD					
	EST STANDARD	Signature	4+ G+-			
None	EST STANDARD	Signature	14-1 Gyt-		Limit	
None	EST STANDARD	Signature	Ut + Gt-	Value	Limit (s)	Besult
None Configuration #	1	Signature	14+ G+-	Value 1.517 mW	(<)	Result Pass
None Configuration # BLE/GFSK Low Channe	1 sl, 2402 MHz	Signature	14-k 67+	1.517 mW	(<) 1 W	Pass
None Configuration #	1 51, 2402 MHz 1, 2440 MHz	Signature	Ut & Gt-		(<)	

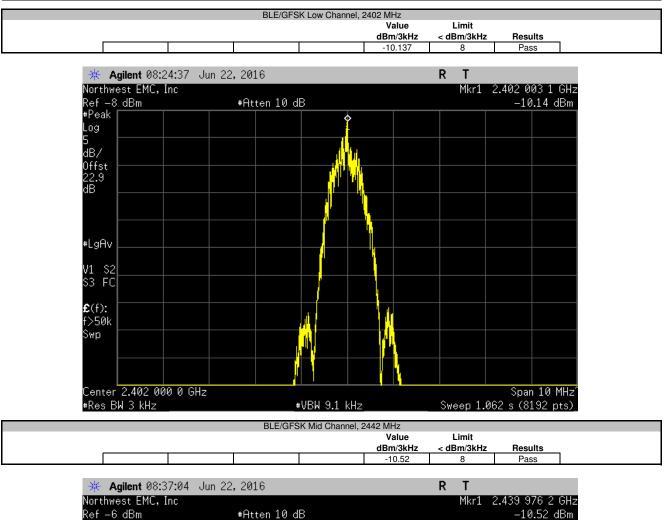
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

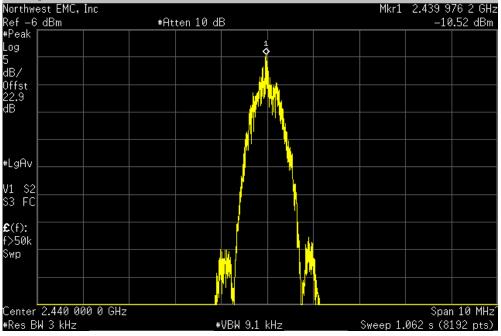
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-10	TKS	4/4/2016	4/4/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

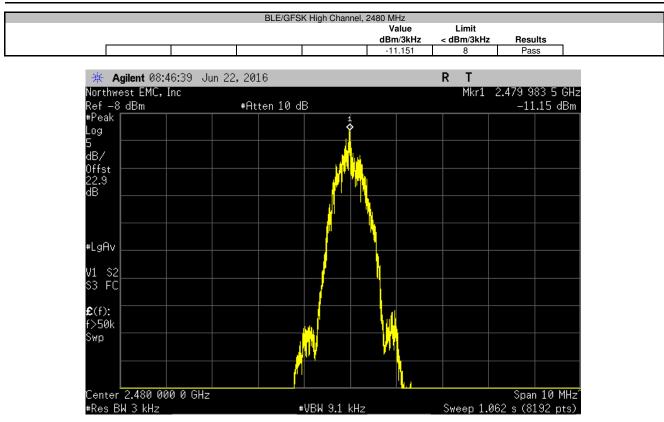
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.


Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.



EUT: EMMA BT		Work Order:		
Serial Number: 300012		Date:	06/22/16	
Customer: Masimo Corporation		Temperature:	22.5 °C	
Attendees: Michael Clark		Humidity:	48.2% RH	
Project: None		Barometric Pres.:	1017 mbar	
Tested by: Mark Baytan	Power: +3.0VDC	Job Site:	OC13	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2016	ANSI C63.10:2013			
COMMENTS				
DC Block/20dB Attenuator + coax cable + client provided patch cable = 22.85dB to DEVIATIONS FROM TEST STANDARD	offset			
None				
Configuration # 1 Signature	14 Byt			
		Value dBm/3kHz	Limit < dBm/3kHz	Results
BLE/GFSK Low Channel, 2402 MHz		-10.137	8	Pass
BLE/GFSK Mid Channel, 2440 MHz		-10.52	8	Pass
BLE/GFSK High Channel, 2480 MHz		-11.151		


Report No. MASI0321.1 Rev 01 EAR-Controlled Data

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

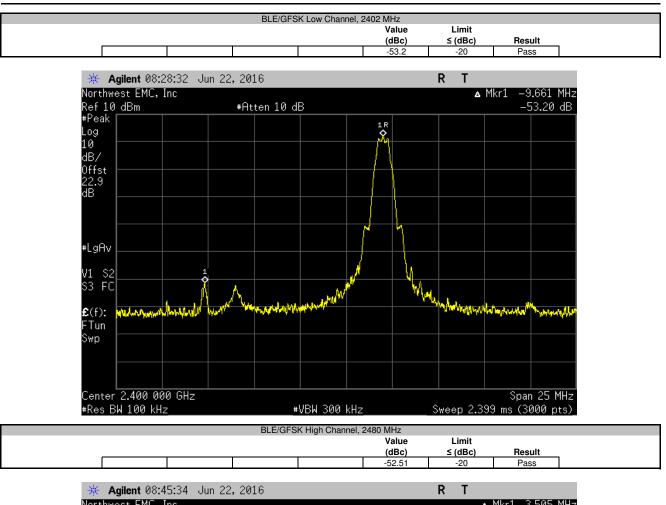
TEST EQUIPMENT

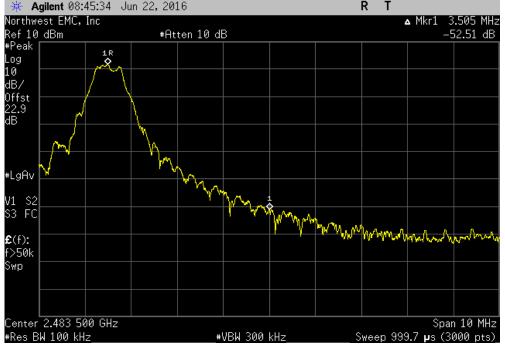
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016
		SCA1814-0101-			
Cable	Fairview Microwave	120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-10	TKS	4/4/2016	4/4/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


BAND EDGE COMPLIANCE



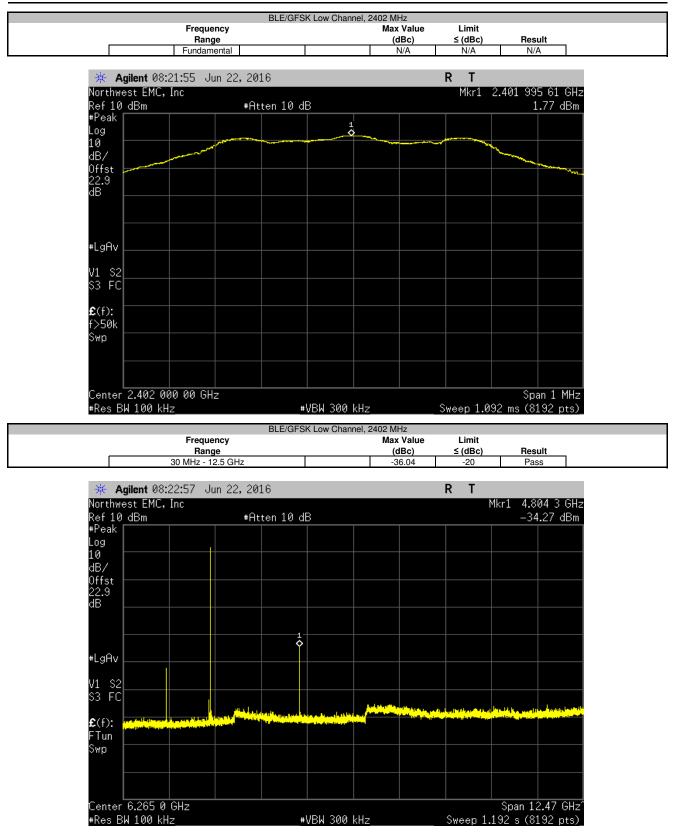
	Work Order:	MASI0321	
	Date:	06/22/16	
	Temperature:	22.5 °C	
	Humidity:	48.2% RH	
	Barometric Pres.:	1017 mbar	
Power: +3.0VDC	Job Site:	OC13	
Test Method			
ANSI C63.10:2013			
tal offset			
4+ G+-			
4-1 G1+-	Value	Limit	
4+ G+-	Value (dBc)	Limit ≤ (dBc)	Result
4+ G+-			Result Pass
	Test Method	Obte: Temperature: Humidity: Barometric Pres.: Power: +3.0VDC Job Site: Test Method ANSI C63.10:2013	Test Method ANSI C63.10:2013

BAND EDGE COMPLIANCE

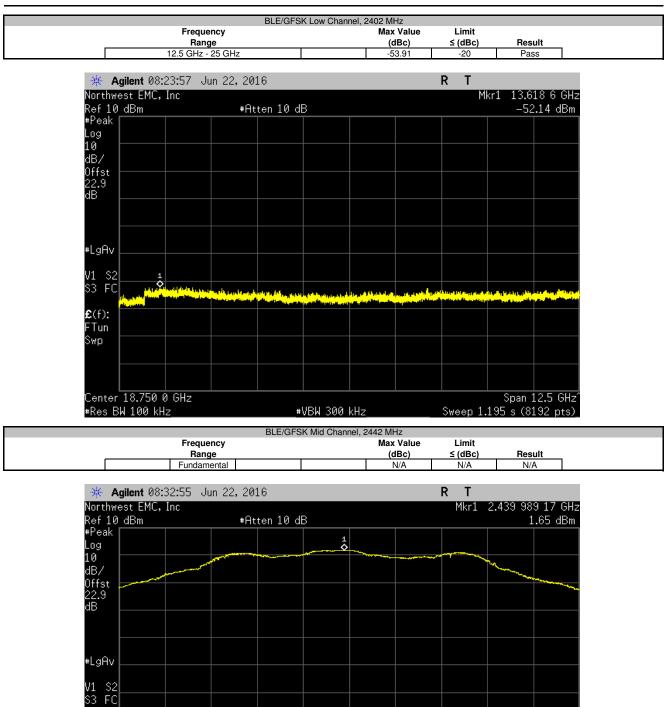
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	7/23/2015	7/23/2016
· · · ·		SCA1814-0101-			
Cable	Fairview Microwave	120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	4/4/2016	4/4/2017
Attenuator	Fairview Microwave	SA18E-10	TKS	4/4/2016	4/4/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018


TEST DESCRIPTION

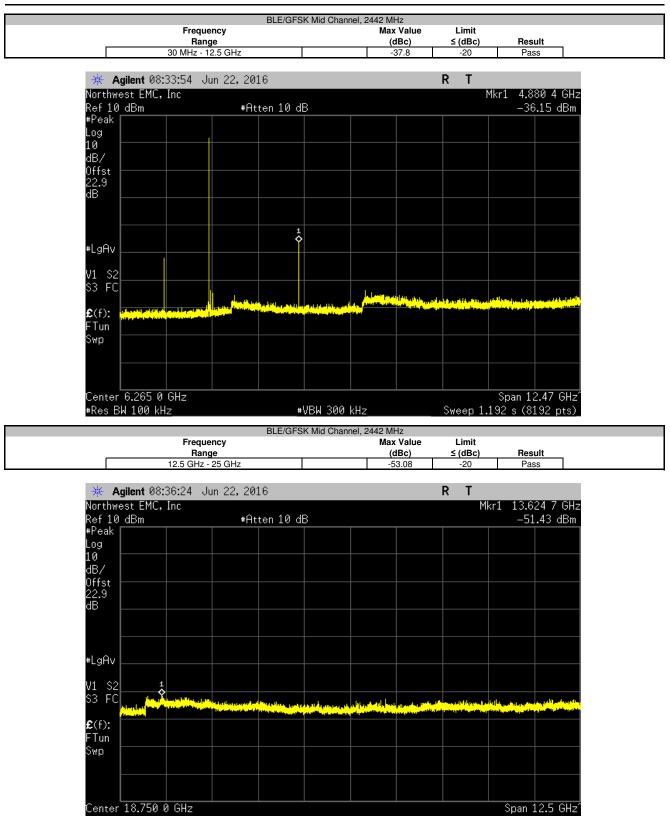
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



EUT: EM	IMA BT			Work Order:	MASI0321	
Serial Number: 300	0012			Date:	06/22/16	
Customer: Ma	simo Corporation			Temperature:	22.5 °C	
Attendees: Mic				Humidity:		
Project: No	ne			Barometric Pres.:	1017 mbar	
Tested by: Ma	ark Baytan		Power: +3.0VDC	Job Site:	OC13	
EST SPECIFICATIONS	S		Test Method			
CC 15.247:2016			ANSI C63.10:2013			
OMMENTS						
Block/20dB Attenua	ator + coax cable + client pr	ovided patch cable = 22.85dB tota	l offset			
	•	•				
EVIATIONS FROM TE	EST STANDARD					
EVIATIONS FROM TE	EST STANDARD					
EVIATIONS FROM TE	EST STANDARD					
lone	EST STANDARD		4+6+-			
	EST STANDARD	Signature	4+6+			
lone	EST STANDARD	Signature	HA 64	Max Value	Limit	
lone	EST STANDARD	Signature	· ·	Max Value (dBc)	Limit ≤ (dBc)	Result
lone	1	Signature	Frequency			Result N/A
one onfiguration # LE/GFSK Low Channe	1 sl, 2402 MHz	Signature	Frequency Range	(dBc)	≤ (dBc)	
configuration #	1 91, 2402 MHz 91, 2402 MHz	Signature	Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
ione configuration # ILE/GFSK Low Channe ILE/GFSK Low Channe	1 91, 2402 MHz 91, 2402 MHz 91, 2402 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -36.04	≤ (dBc) N/A -20	N/A Pass
Ione configuration # ILE/GFSK Low Channe ILE/GFSK Low Channe ILE/GFSK Low Channe	1 sl, 2402 MHz sl, 2402 MHz sl, 2402 MHz sl, 2402 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -36.04 -53.91	≤ (dBc) N/A -20 -20	N/A Pass Pass
Ione Configuration # LE/GFSK Low Channe LE/GFSK Low Channe LE/GFSK Low Channe LE/GFSK Mid Channel	1 al, 2402 MHz al, 2402 MHz al, 2402 MHz al, 2440 MHz b, 2440 MHz b, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -36.04 -53.91 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
one configuration # LE/GFSK Low Channe LE/GFSK Low Channe LE/GFSK Mid Channel LE/GFSK Mid Channel LE/GFSK Mid Channel	1 sl, 2402 MHz sl, 2402 MHz sl, 2402 MHz sl, 2404 MHz sl, 2440 MHz sl, 2440 MHz sl, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -36.04 -53.91 N/A -37.8	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
Ione Configuration # LE/GFSK Low Channe LE/GFSK Low Channe LE/GFSK Mid Channel LE/GFSK Mid Channel	1 sl, 2402 MHz sl, 2402 MHz sl, 2402 MHz sl, 2404 MHz sl, 2440 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -36.04 -53.91 N/A -37.8 -37.8 -53.08	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass

€(f): f>50k Swp

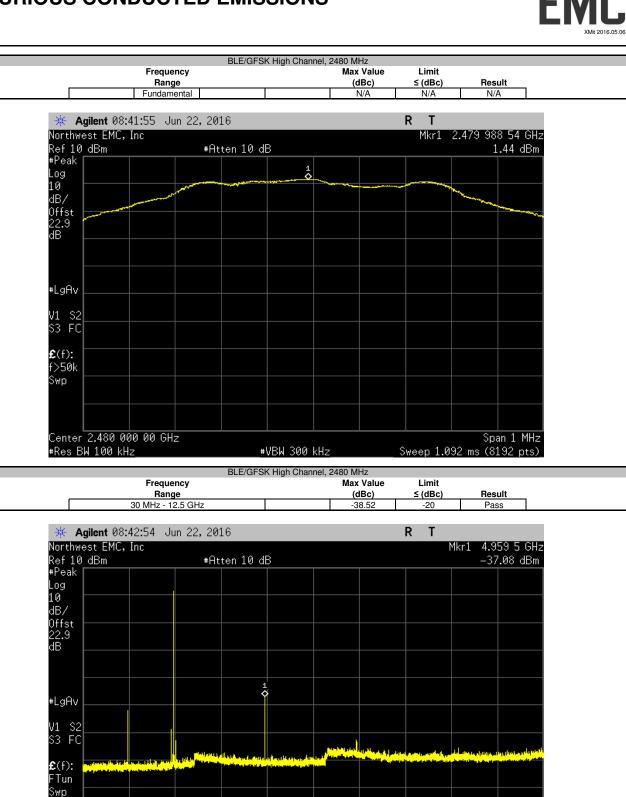
Center 2.440 000 00 GHz


#Res BW 100 kHz

#VBW 300 kHz

Span 1 MHz

Sweep 1.092 ms (8192 pts)



#Res BW 100 kHz

#VBW 300 kHz

Sweep 1.195 s (8192 pts)

NORTHWEST

			BLE/GFS	< High Chan					
		quency				Value	Limit ≤ (dBc)	_	
		lange Hz - 25 GHz				(dBc) -52.2		Result Pass	
	12.5 0	12 23 0112			``	52.2	-20	10	33
🔆 🔆 Ag	jilent 08:44:46	Jun 22, 20	16				RT		
Northwe	st EMC, Inc						М	kr1 13.7	'27 0 GHz
Ref 10	dBm	#At	ten 10 d:	В				-50	0.76 dBm
#Peak [
Log									
10 dB/									
0ffet									
Offst 22.9									
dB									
#LgAv									
V1 S2	1								
\$3 FC	مرور به المراجع المراجع								ابر ابر ا
									dette pri sette
£ (f):									
FTun									
Swp									
	18.750 0 GHz							Span	12.5 GHz
#Res B⊧	√100 kHz		#	VBW 300	kHz		Sweep 1.	.195 s (8	192 pts)_