

: 14500810H-A-R1 : 1 of 49

RADIO TEST REPORT

Test Report No.: 14500810H-A-R1

Customer	Hosiden Corporation
Description of EUT	Bluetooth Dual Module
Model Number of EUT	HRM1086
FCC ID	VIYHRM1086
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	November 7, 2022
Remarks	Bluetooth Low Energy part

Representative Test Engineer

Hiroyuki Furutaka Engineer

Approved By

Takumi Shimada Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14500810H-A

This report is a revised version of 14500810H-A. 14500810H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14500810H-A	October 26, 2022	-
(Original)			
1	14500810H-A-R1	November 7, 2022	Separated for configuration diagrams of Radiated
			emission test and Antenna Terminal Conducted tests
			of Clause 4.2

Test Report No.	: 14500810H-A-R1
Page	: 3 of 49

Reference: Abbreviations	(Including wor	rds undescribed in	this report)
---------------------------------	----------------	--------------------	--------------

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SA, S/A SG	Signal Generator
	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
Freq.			
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

: 14500810H-A-R1 : 4 of 49

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
Conducted Emission	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Conducted Emission	
Radiated Spurious Emission	47
Worst Case Position	
Antenna Terminal Conducted Tests	49

Test Report No.	: 14500810H-A-R1
Page	: 5 of 49

SECTION 1: Customer Information

Company Name	Hosiden Corporation
Address	4-33 Kitakyuhoji 1-Chome, Yao-city, Osaka 581-0071 Japan
Telephone Number	+81-72-924-1153
Contact Person	Tomoki Umeda

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Bluetooth Dual Module
Model Number	HRM1086
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 20, 2022
Test Date	September 29 to October 6, 2022

2.2 Product Description

General Specification

Rating	DC 3.7 V
Operating temperature	-30 deg. C to 85 deg. C

Radio Specification

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	0.9 dBi

Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Gain	0.9 dBi

* Bluetooth Low Energy and Bluetooth do not transmit simultaneously.

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-	FCC: Section 15.207	34.36 dB, 4.63600 MHz,	Complied	-
	2013		AV, Phase N	a)	
	6. Standard test methods ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01 15.247	FCC: Section 15.247(a)(2)	See data.	Complied b)	Conducted
	Meas Guidance v05r02			,	
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)		Complied c)	Conducted
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied d)	Conducted
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	1.8 dB 2483.5 MHz, AV, Vertical <2M-PHY>	Complied e), f)	Conducted (below 30 MHz)/ Radiated
Euges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10			(above 30 MHz) *1)
1 /	's EMI Work Procedures: V ns arise about test procedur		03591 and Work Instructions- ilso referred.	-ULID-003593.	
			d KDB 558074 D01 15.247 M	leas Guidance v	v05r02 8.5 and 8.6.
	IX 1 (data of Conducted En				
/	IX 1 (data of 6 dB Bandwid	1	indwidth)		
/	IX 1 (data of Maximum Pea	1			
	IX 1 (data of Power Density IX 1 (data of Conducted Sp				

e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test Report No.	: 14500810H-A-R1
Page	: 7 of 49

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB
	0.15 MHz to 30 MHz	3.3 dB

Measurement distance	Frequency range		Uncertainty (+/-)
3 m	9 kHz to 30 MHz		3.2 dB
10 m			3.0 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz	Horizontal	5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	5.0 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz	
	6 GHz to 18 GHz	6 GHz to 18 GHz	
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz	
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz	
10 m	1 GHz to 18 GHz	1 GHz to 18 GHz	

Radiated emission

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

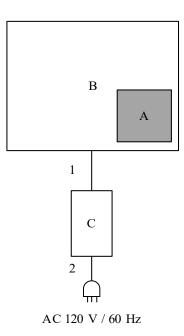
3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Mode Remarks*					
Bluetooth Low Energy (BT LE) 1M-PHY Uncoded PHY (1M-PHY) Maximum Packet Size, PRBS9					
Bluetooth Low F	Bluetooth Low Energy (BT LE) 2M-PHY Uncoded PHY (2M-PHY) Maximum Packet Size, PRBS9				
*Power of the EU	JT was set by the software as follows;				
Power Setting:	Atten: 0x00, Mag: 0xBE, Exp: 0x03				
Software: Blue Test3 Version: 3.3.12.1355 (Date: 2022.09 29, Storage location: Driven by connected PC)					
*This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.					


*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested frequency		
Conducted Emission,	Tx BT LE, 2M-PHY *1)	2480 MHz		
Radiated Spurious Emission (Below 1 GHz)				
99% Occupied Bandwidth,	Tx BT LE, 1M-PHY	2402 MHz		
6dB Bandwidth,	Tx BT LE, 2M-PHY	2440 MHz		
Maximum Peak Output Power,		2480 MHz		
Radiated Spurious Emission (Above 1 GHz),				
Conducted Spurious Emission,				
Power Density				
*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that				
had the highest power during the antenna terminal test, as preliminary testing indicated that changing the				
operating frequency had no significant impact of	on the emissions in those frequency l	bands.		

Test Report No.	
Page	

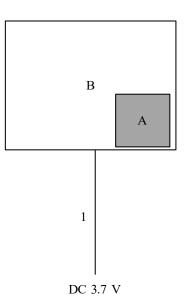
4.2 Configuration and Peripherals

[Conducted emission test]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

	the second s				
No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Bluetooth Dual Module	HRM1086	11	Hosiden Corporation	EUT
В	Evaluation Board	11	-	Hosiden Corporation	-
С	REGULATED DC	PMC35-2A	RM000298	KIKUSUI	-
	POWER SUPPLY			ELECTRONICS CORP.	


List of Cables Used

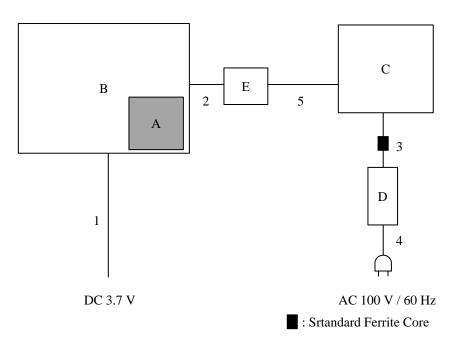
No.	Name	Length (m)	Shield		Shield Remarks		Remarks
			Cable	Connector			
1	DC Cable	0.1	Unshielded	Unshielded	-		
2	AC Cable	2.0	Unshielded	Unshielded	-		

 Test Report No.
 : 14500810H-A-R1

 Page
 : 11 of 49

[Radiated emission test]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Bluetooth Dual Module	HRM1086	11	Hosiden Corporation	EUT
В	Evaluation Board	11	-	Hosiden Corporation	-

List of Cables Used

No.	Name	Length (m)	Shield		Shield Remarks		Remarks
			Cable	Connector			
1	DC Cable	2.0	Unshielded	Unshielded	-		

[Antenna Terminal Conducted tests]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Deser	escription of EOT and Support Equipment						
No.	Item	Model number	Serial Number	Manufacturer	Remarks		
А	Bluetooth Dual	HRM1086	11	Hosiden Corporation	EUT		
	Module						
В	Evaluation Board	11	-	Hosiden Corporation	-		
С	Laptop PC	CF-MX4	5FKSA17992	Panasonic	-		
D	AC Adapter	CF-AA62J2C	62J2CM2152251438SB	Panasonic	-		
Е	Jig	DK-TRBI200	N176240	Qualcomm	-		

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-
2	Signal Cable	0.3	Unshielded	Unshielded	-
3	DC Cable	1.6	Unshielded	Unshielded	-
4	AC Cable	0.8	Unshielded	Unshielded	-
5	USB Cable	1.0	Shielded	Shielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

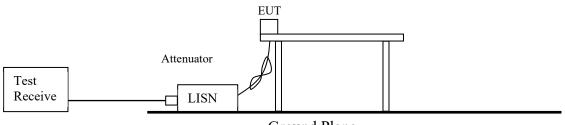
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 500hm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

Ground Plane

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

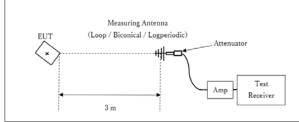
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Test Report No. Page	: 14500810H-A-R1 : 15 of 49

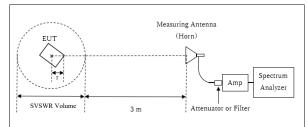
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	РК	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	
			Integration Method:	
			<u>11.13.3.4</u>	
			RBW: 100 kHz	
			VBW: 300 kHz	
			Span: 2 MHz	
			Band Power: 1 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside	
the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).	

*1) Average Power Measurement was performed based on ANSI C63.10-2013.

Test Distance: 3 m

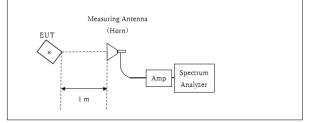

Figure 2: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

Distance Factor: 20 x log (3.95 m / 3.0 m) = 2.39 dB* Test Distance: (3 + SVSWR Volume / 2) - r = 3.95 m


SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.05 m

r : Radius of an outer periphery of EUT

× : Center of turn table

$10\ \text{GHz}$ to $26.5\ \text{GHz}$

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

SECTION 7: Antenna Terminal Conducted Tests

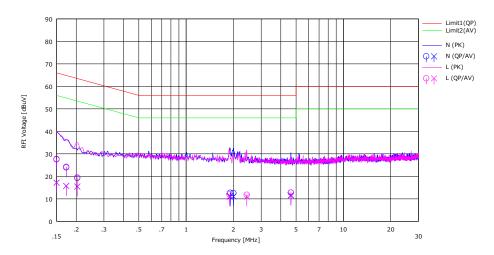
Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz (1M-PHY) 5 MHz (2M-PHY)	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious Emission *4) *5)	9kHz to 150kHz 150kHz to 30MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
 *2) Reference data *3) Section 11.10.2 M *4) In the frequency r Then, wide-band no (9 kHz - 150 kHz: R *5) The limits in CFR measurements are p using the free space 	plied as Worst-case measur fethod PKPSD (peak PSD) ange below 30MHz, RBW oise near the limit was chec RBW = 200 Hz, 150 kHz - 3 47, Part 15, Subpart C, par performed in terms of magn impedance of 377 Ohmes. t to 45.5 - 51.5 = -6.0 dBuA	of "ANSI C was narrowe ked separate 0 MHz: RB agraph 15.2 etic field str For exampl	ed to separate the ed to separate the edge, however the W = 9.1 kHz 09(a), are ident ength and conv e, the measurer	e noise was ical to thos erted to ele nent at freq	not detected as e in RSS-Gen s ctric field streng uency 9 kHz re	ection 8.9, Tab gth levels (as r sulted in a leve	ble 6, since the reported in the table) el of 45.5 dBuV/m,

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data	: APPENDIX
Test Result	: Pass


to 15.209(a) limit.

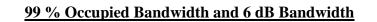
APPENDIX 1: Test Data

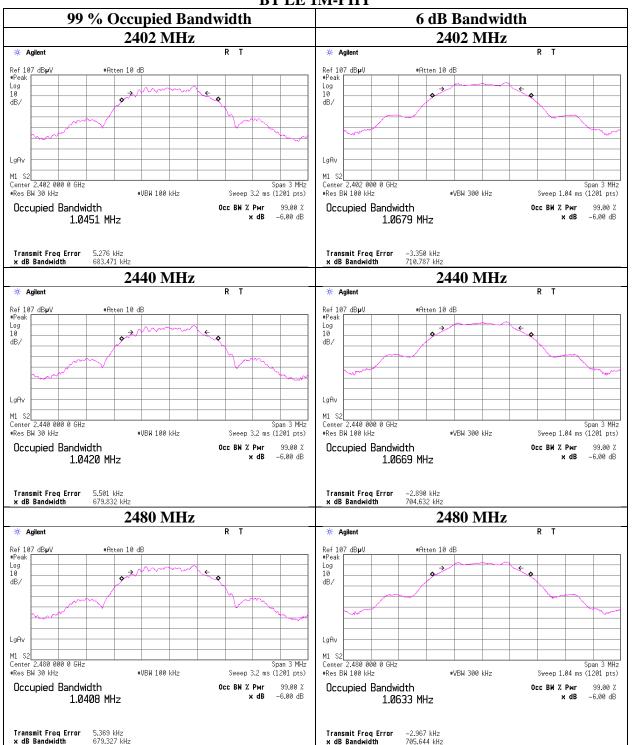
Conducted Emission

Test placeIse EMC Lab. No.4 Semi Anechoic ChamberDateOctober 6, 2022Temperature / Humidity24 deg. C / 44 % RHEngineerJunya OkunoModeTx BT LE 2M-PHY 2480 MHz

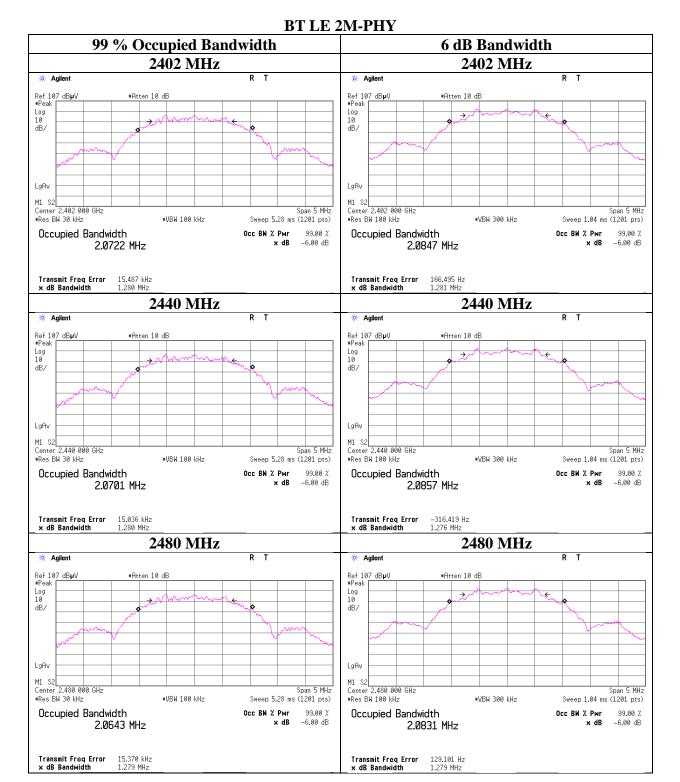
Limit : FCC_Part 15 Subpart C(15.207)

From		Reading		∐SN	LOSS	Res	ults	Lir	nit	Ma	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LUSS	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	14.40	4.00	0.05	13.11	27.56	17.16	66.00	56.00	38.44	38.84	Ν	
2	0.17295	10.80	2.60	0.05	13.11	23.96	15.76	64.82	54.82	40.86	39.06	Ν	
3	0.20312	6.10	2.30	0.05	13.12	19.27	15.47	63.48	53.48	44.21	38.01	Ν	
4	1.90783	-0.70	-2.30	0.09	13.26	12.65	11.05	56.00	46.00	43.35	34.95	Ν	
5	2.00000	-080	-2.30	0.09	13.27	12.56	11.06	56.00	46.00	43.44	34.94	Ν	
6	4.63600	-0.80	-1.90	0.13	13.41	12.74	11.64	56.00	46.00	43.26	34.36	Ν	
7	0.15000	14.60	4.10	0.02	13.11	27.73	17.23	66.00	56.00	38.27	38.77	L	
8	0.17295	11.10	2.60	0.02	13.11	24.23	15.73	64.82	54.82	40.59	39.09	L	
9	0.20312	6.30	2.30	0.03	13.12	19.45	15.45	63.48	53.48	44.03	38.03	L	
10	1.88626	-1.30	-2.30	0.07	13.26	12.03	11.03	56.00	46.00	43.97	34.97	L	
11	2.43115	-1.60	-2.40	0.07	13.30	11.77	10.97	56.00	46.00	44.23	35.03	L	
12	4.63600	-080	-2.10	0.11	13.41	12.72	11.42	56.00	46.00	43.28	34.58	L	


CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.


: 14500810H-A-R1 : 19 of 49

99 % Occupied Bandwidth and 6 dB Bandwidth


Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
1M-PHY	2402	1045.1	0.711	> 0.5000
	2440	1042.0	0.705	> 0.5000
	2480	1040.8	0.706	> 0.5000
2M-PHY	2402	2072.2	1.281	> 0.5000
	2440	2070.1	1.276	> 0.5000
	2480	2064.3	1.279	> 0.5000

BT LE 1M-PHY

99 % Occupied Bandwidth and 6 dB Bandwidth

: 14500810H-A-R1 : 22 of 49

Maximum Peak Output Power

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE

1M-PHY Conducted Power						e.i.r.p. for RSS-247								
Freq.	Reading	Cable	Atten.	Res	sult	Li	mit	Margin	Antenna	Re	sult	Liı	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-1.57	1.05	10.04	9.52	8.95	30.00	1000	20.48	0.90	10.42	11.02	36.02	4000	25.60
2440	-1.28	1.06	10.04	9.82	9.59	30.00	1000	20.18	0.90	10.72	11.80	36.02	4000	25.30
2480	-1.24	1.07	10.04	9.87	9.71	30.00	1000	20.13	0.90	10.77	11.94	36.02	4000	25.25

2M-PHY	ſ			Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Result Limit		Margin	Antenna	Result		Limit		Margin		
_	-	Loss	Loss					_	Gain					_
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-1.67	1.05	10.04	9.42	8.75	30.00	1000	20.58	0.90	10.32	10.76	36.02	4000	25.70
2440	-1.29	1.06	10.04	9.81	9.57	30.00	1000	20.19	0.90	10.71	11.78	36.02	4000	25.31
2480	-1.18	1.07	10.04	9.93	9.84	30.00	1000	20.07	0.90	10.83	12.11	36.02	4000	25.19

Sample Calculation: Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

: 14500810H-A-R1 : 23 of 49

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE

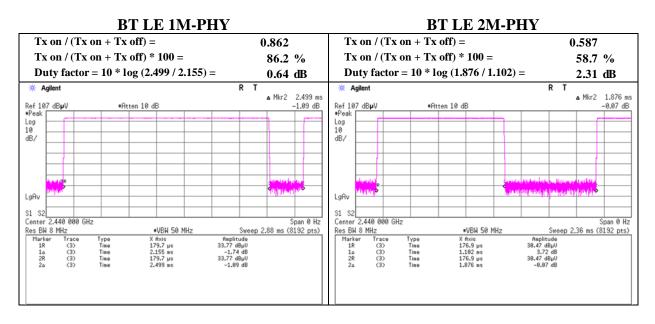
1M-PHY

Í	Freq.	Reading	Cable	Atten.	Result		Duty	Result	
			Loss	Loss	(Time average)		factor	(Burst power average)	
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2402	-2.39	1.05	10.04	8.70	7.41	0.64	9.34	8.59
	2440	-2.09	1.06	10.04	9.01	7.96	0.64	9.65	9.23
	2480	-2.04	1.07	10.04	9.07	8.07	0.64	9.71	9.35

2M-PHY

Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-4.22	1.05	10.04	6.87	4.86	2.31	9.18	8.28
2440	-3.81	1.06	10.04	7.29	5.36	2.31	9.60	9.12
2480	-3.70	1.07	10.04	7.41	5.51	2.31	9.72	9.38

Sample Calculation:


Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

: 14500810H-A-R1 : 24 of 49

Burst rate confirmation

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

: 14500810H-A-R1 : 25 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	September 29, 2022	October 2, 2022
Temperature / Humidity	21 deg. C / 63 % RH	23 deg. C / 58 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida
-	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx BT LE 1M-PHY 24	02 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	47.8	35.7	27.6	5.3	32.9	0.6	47.7	36.3	73.9	53.9	26.2	17.6	*1)
Hori.	4804.0	41.0	32.1	31.5	7.6	32.0	-	48.1	39.2	73.9	53.9	25.8	14.7	Floor noise
Hori.	7206.0	42.0	33.7	35.7	8.9	32.8	-	53.9	45.6	73.9	53.9	20.0	8.3	Floor noise
Hori.	9608.0	42.7	32.7	38.7	9.7	33.5	-	57.6	47.6	73.9	53.9	16.3	6.3	Floor noise
Vert.	2390.0	48.0	36.2	27.6	5.3	32.9	0.6	47.9	36.8	73.9	53.9	26.0	17.1	*1)
Vert.	4804.0	42.5	32.5	31.5	7.6	32.0	-	49.6	39.6	73.9	53.9	24.3	14.3	Floor noise
Vert.	7206.0	42.7	34.0	35.7	8.9	32.8	-	54.6	45.9	73.9	53.9	19.3	8.0	Floor noise
Vert.	9608.0	42.0	32.7	38.7	9.7	33.5	-	56.9	47.6	73.9	53.9	17.0	6.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

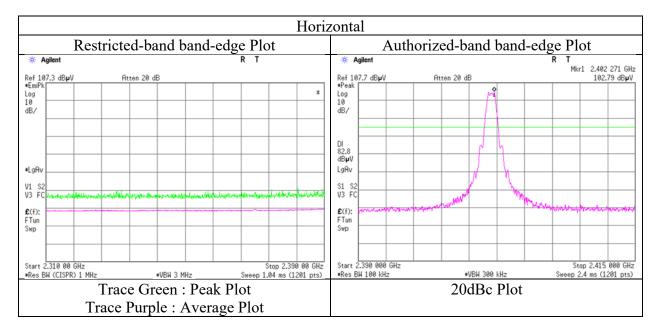
*1) Not Out of Band emission(Leakage Power)

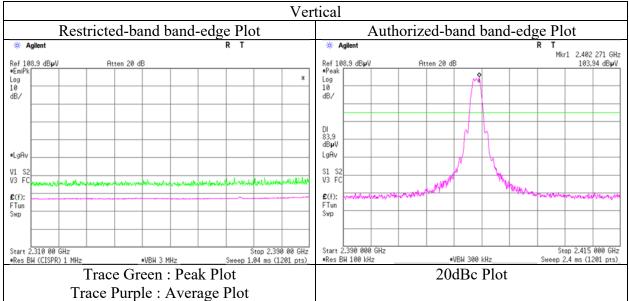
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	102.8	27.5	5.3	32.9	102.7	-	-	Carrier
Hori.	2400.0	49.8	27.5	5.3	32.9	49.7	82.7	33.0	
Vert.	2402.0	104.0	27.5	5.3	32.9	103.9	-	-	Carrier
Vert.	2400.0	51.1	27.5	5.3	32.9	51.0	83.9	32.9	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

1 GHz - 10 GHz


Distance factor:


20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

: 14500810H-A-R1 : 26 of 49

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	September 29, 2022
Temperature / Humidity	21 deg. C / 63 % RH
Engineer	Hiroyuki Furutaka
	(1 GHz - 10 GHz)
Mode	Tx BT LE 1M-PHY 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-A-R1 : 27 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	September 29, 2022	October 2, 2022
Temperature / Humidity	21 deg. C / 63 % RH	23 deg. C / 58 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx BT LE 1M-PHY 24	40 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	41.7	32.7	31.6	7.6	32.0	-	48.9	39.9	73.9	53.9	25.0	14.0	Floor noise
Hori.	7320.0	42.3	34.1	35.9	8.9	32.8	-	54.3	46.1	73.9	53.9	19.6	7.8	Floor noise
Hori.	9760.0	42.6	32.6	39.2	9.7	33.6	-	57.9	47.9	73.9	53.9	16.0	6.0	Floor noise
Vert.	4880.0	41.1	32.6	31.6	7.6	32.0	-	48.3	39.8	73.9	53.9	25.6	14.1	Floor noise
Vert.	7320.0	42.3	33.9	35.9	8.9	32.8	-	54.3	45.9	73.9	53.9	19.6	8.0	Floor noise
Vert.	9760.0	42.6	32.6	39.2	9.7	33.6	-	57.9	47.9	73.9	53.9	16.0	6.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-A-R1 : 28 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	September 29, 2022	October 2, 2022
Temperature / Humidity	21 deg. C / 63 % RH	23 deg. C / 58 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx BT LE 1M-PHY 24	80 MHz

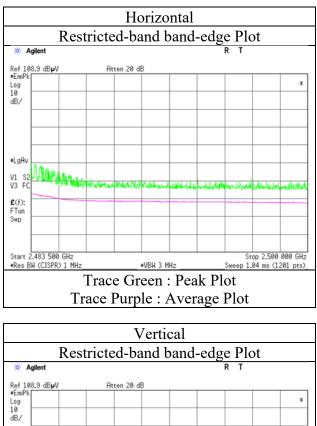
		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	59.8	43.4	27.4	5.3	32.9	0.6	59.7	43.9	73.9	53.9	14.2	10.0	*1)
Hori.	4960.0	40.8	32.6	31.7	7.6	31.9	-	48.2	40.0	73.9	53.9	25.8	14.0	Floor noise
Hori.	7440.0	42.3	34.4	36.1	9.0	32.9	-	54.5	46.6	73.9	53.9	19.4	7.3	Floor noise
Hori.	9920.0	41.4	32.6	39.1	9.8	33.7	-	56.6	47.8	73.9	53.9	17.3	6.1	Floor noise
Vert.	2483.5	59.6	45.0	27.4	5.3	32.9	0.6	59.5	45.5	73.9	53.9	14.4	8.4	*1)
Vert.	4960.0	42.1	35.7	31.7	7.6	31.9	-	49.5	43.1	73.9	53.9	24.5	10.9	Floor noise
Vert.	7440.0	42.8	34.7	36.1	9.0	32.9	-	55.0	46.9	73.9	53.9	18.9	7.0	Floor noise
Vert.	9920.0	41.5	32.6	39.1	9.8	33.7	-	56.7	47.8	73.9	53.9	17.2	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Cable + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Cable + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Cable +

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.


*1) Not Out of Band emission(Leakage Power)

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-A-R1 : 29 of 49

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateSeptember 29, 2022Temperature / Humidity21 deg. C / 63 % RHEngineerHiroyuki Furutaka
(1 GHz - 10 GHz)ModeTx BT LE 1M-PHY 2480 MHz

 Log
 10
 *

 10
 10
 *

 10
 10
 10

 4B/
 10
 10

 *LgAv
 *
 10

 V1
 52
 10

 V3
 FC
 10

 \$C(f):
 10
 10

 Start 2.483
 500 GHz
 *VBH 3 MHz

 Start 2.483
 500 GHz
 *VBH 3 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-A-R1 : 30 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	October 2, 2022	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx BT LE 2M-PHY 24	02 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	46.1	35.2	27.6	5.6	32.9	2.3	46.4	37.8	73.9	53.9	27.6	16.1	*1)
Hori.	4804.0	41.6	33.2	31.5	7.8	32.0	-	48.9	40.6	73.9	53.9	25.0	13.3	Floor noise
Hori.	7206.0	42.1	32.5	35.7	9.1	32.8	-	54.1	44.5	73.9	53.9	19.8	9.5	Floor noise
Hori.	9608.0	41.2	32.4	38.7	9.7	33.5	-	56.1	47.3	73.9	53.9	17.8	6.6	Floor noise
Vert.	2390.0	46.8	35.3	27.6	5.6	32.9	2.3	47.1	37.9	73.9	53.9	26.8	16.0	*1)
Vert.	4804.0	41.8	33.5	31.5	7.8	32.0	-	49.1	40.9	73.9	53.9	24.8	13.0	Floor noise
Vert.	7206.0	41.9	33.3	35.7	9.1	32.8	-	53.9	45.3	73.9	53.9	20.0	8.6	Floor noise
Vert.	9608.0	41.3	32.5	38.7	9.7	33.5	-	56.2	47.4	73.9	53.9	17.7	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

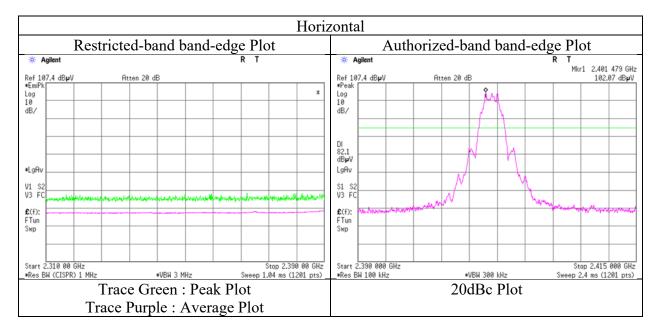
1 GHz - 10 GHz

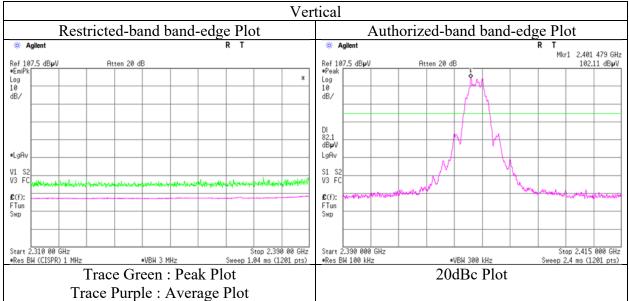
10 GHz - 40 GHz

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	102.1	27.5	5.6	32.9	102.3	-	-	Carrier
Hori.	2400.0	71.1	27.5	5.6	32.9	71.3	82.3	11.0	
Vert.	2402.0	102.1	27.5	5.6	32.9	102.4	-	-	Carrier
Vert.	2400.0	71.3	27.5	5.6	32.9	71.5	82.4	10.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor:


 $20\log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ $20\log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

: 14500810H-A-R1 : 31 of 49

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH
Engineer	Kiyoshiro Okazaki
	(1 GHz - 10 GHz)
Mode	Tx BT LE 2M-PHY 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-A-R1 : 32 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	October 2, 2022	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx BT LE 2M-PHY 24	40 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	39.8	33.1	31.6	7.8	32.0	-	47.2	40.6	73.9	53.9	26.7	13.4	Floor noise
Hori.	7320.0	41.7	33.2	35.9	9.1	32.8	-	53.8	45.4	73.9	53.9	20.1	8.5	Floor noise
Hori.	9760.0	41.6	32.3	39.2	9.7	33.6	-	56.8	47.6	73.9	53.9	17.1	6.3	Floor noise
Vert.	4880.0	41.2	33.2	31.6	7.8	32.0	-	48.7	40.6	73.9	53.9	25.2	13.3	Floor noise
Vert.	7320.0	41.5	33.3	35.9	9.1	32.8	-	53.6	45.4	73.9	53.9	20.3	8.5	Floor noise
Vert.	9760.0	41.3	32.2	39.2	9.7	33.6	-	56.5	47.4	73.9	53.9	17.4	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:

1 GHz - 10 GHz 10 GHz - 40 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-A-R1 : 33 of 49

Radiated Spurious Emission

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.3	No.4
Date	October 2, 2022	October 2, 2022	October 6, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH	24 deg. C / 44 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2M-PHY 24	80 MHz	

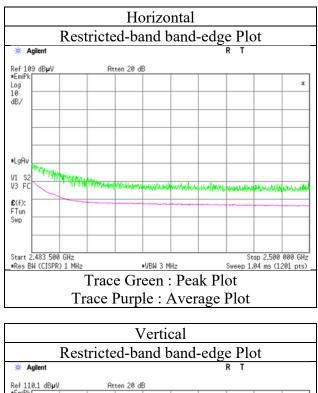
Polarity	Frequency	Reading (OP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
-			· /						· /		. ,		, í	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	40.2	21.5	-	14.7	7.2	32.1	-	11.2	-	40.0	-	28.8	-	
Hori.	59.8	21.4	-	7.8	7.4	32.1	-	4.6	-	40.0	-	35.5	-	
Hori.	130.3	20.8	-	13.8	8.1	32.0	-	10.7	-	43.5	-	32.9	-	
Hori.	234.0	33.7	-	11.5	8.9	32.0	-	22.1	-	46.0	-	23.9	-	
Hori.	266.0	34.0	-	12.4	9.2	32.0	-	23.6	-	46.0	-	22.5	-	
Hori.	500.0	20.6	-	17.6	10.7	32.3	-	16.7	-	46.0	-	29.3	-	
Hori.	2483.5	59.4	48.6	27.4	5.7	32.9	2.3	59.6	51.1	73.9	53.9	14.3	2.8	*1),*2)
Hori.	4960.0	41.2	33.3	31.7	7.8	31.9	-	48.8	40.9	73.9	53.9	25.1	13.0	Floor noise
Hori.	7440.0	41.4	33.5	36.1	9.1	32.9	-	53.7	45.8	73.9	53.9	20.2	8.1	Floor noise
Hori.	9920.0	40.9	32.2	39.1	9.8	33.7	-	56.1	47.4	73.9	53.9	17.8	6.5	Floor noise
Vert.	40.2	21.5	-	14.7	7.2	32.1	-	11.2	-	40.0	-	28.8	-	
Vert.	59.8	21.6	-	7.8	7.4	32.1	-	4.8	-	40.0	-	35.3	-	
Vert.	130.3	20.7	-	13.8	8.1	32.0	-	10.6	-	43.5	-	33.0	-	
Vert.	236.0	30.8	-	11.5	9.0	32.0	-	19.3	-	46.0	-	26.7	-	
Vert.	266.0	29.2	-	12.4	9.2	32.0	-	18.8	-	46.0	-	27.3	-	
Vert.	500.0	20.6	-	17.6	10.7	32.3	-	16.7	-	46.0	-	29.3	-	
Vert.	2483.5	60.0	49.6	27.4	5.7	32.9	2.3	60.2	52.1	73.9	53.9	13.7	1.8	*1),*2)
Vert.	4960.0	40.5	33.4	31.7	7.8	31.9	-	48.1	41.0	73.9	53.9	25.9	12.9	Floor noise
Vert.	7440.0	41.2	33.4	36.1	9.1	32.9	-	53.5	45.7	73.9	53.9	20.4	8.2	Floor noise
Vert.	9920.0	41.4	32.3	39.1	9.8	33.7	-	56.6	47.6	73.9	53.9	17.3	6.3	Floor noise

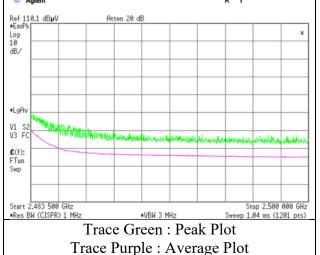
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor \ Attenuator + Filter + Distance \ factor \ Attenuator \ Attenua$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

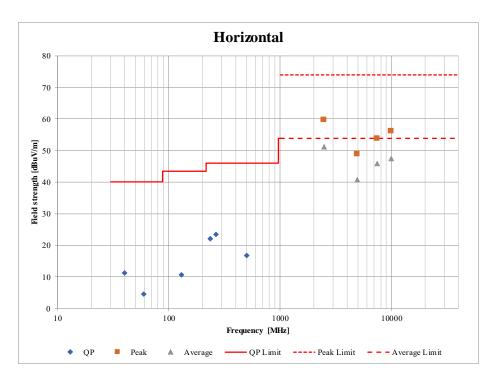

*1) Not Out of Band emission(Leakage Power)

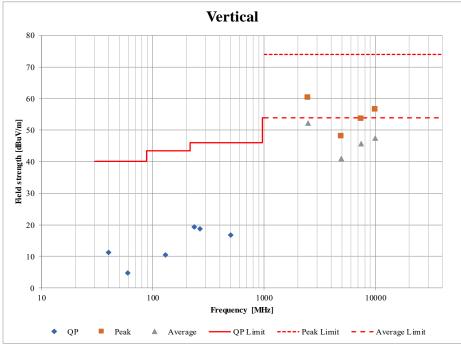

*2) Integration method (AV only)

: 14500810H-A-R1 : 34 of 49

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateOctober 2, 2022Temperature / Humidity22 deg. C / 55 % RHEngineerKiyoshiro Okazaki
(1 GHz - 10 GHz)ModeTx BT LE 2M-PHY 2480 MHz




* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.
 Test Report No.
 : 14500810H-A-R1

 Page
 : 35 of 49

<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.3	No.4
Date	October 2, 2022	October 2, 2022	October 6, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH	24 deg. C / 44 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2M-PHY 24	80 MHz	

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14500810H-A-R1 : 36 of 49

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 1M-PHY 2402 MHz

	9 kHz - 150 kH	Z		150 kHz - 30 MHz							
🔆 Agilent		RT	🔆 Agilent		R T						
Ref -50 dBm	■Atten 10 dB	Mkr1 14.99 kHz -100.60 dBm	Ref -50 dBm	#Atten 10 dB	Mkr1 175 kHz -88.20 dBm						
Peak Log			Peak Log								
10 dB/			10 dB/								
			1								
LgAv 5			LgAv	we we have been an	fighter pt the range man provides by provident or						
	Wedterstand when when a straight the providence of the straight the st	na vilkoli na vila konstruktoren vilan. Utali er e konst	S1 S2								
M3 FS		and the state of the	M3 FS								
£(f): f<50k			£(f): FTun								
FFT			Swp								
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MHz						
#Res BW 200 Hz	#VBW 620 Hz	Sweep 2.279 s (1201 pts)_	#Res BW 9.1 kHz	#VBW 27 kHz							

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
14.99	-100.6	0.00	9.8	2.0	1	-88.8	300	6.0	-27.5	44.0	71.5	
175.00	-88.2	0.01	9.8	2.0	1	-76.4	300	6.0	-15.1	22.7	37.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

: 14500810H-A-R1 : 37 of 49

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 1M-PHY 2440 MHz

	9 kHz - 150 kHz										150 kHz - 30 MHz										
₩ A	gilent							RΤ			¥ A	gilent							RΤ		
										10.41 kHz											175 kHz
Ref-5 Peak	0 dBm		#At	ten 10 d	B				-9	8.98 dBm	Ref-5 Peak	i0 dBm		#At	ten 10 d	B				-89	.79 dBm
Log											Log										
10											10	<u> </u>									
dB/											dB/										
												1									
												balance in									
LgAv											LgAv		a for the second se	and a subscription of the second	to high the these	nanditripada	AND WORK	ne that have been a second	www.hilletweeter	millionadion	linder and handling
	MANA	ال الس									LGHA										
\$1 \$2 M3 F\$		nami Mirin Markari	williamha	who who have	el finner have by	A WARD	1. Anthen	AN MARK	KallAli	A MARINA AND	S1 S2										
M3 FS					r - 1	[1	L L. U. M.	and the state of the state	M3 FS										
£ (f):											£(f):	<u> </u>									
f<50k											FTun										
FFT											Swp										
1										1											
Start 9	1.00 kHz								Stop 15	50.00 kHz	Stort 1	L 50 kHz								Stop 30	.000 MHz
	W 200 Hz				∎VBW 620	Hz		Sweep 2		201 pts)		ызы кни W 9.1 kH	7			#VBW 27	kHz	9	Sween 344	4.8 ms (1)	

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.41	-99.0	0.00	9.8	2.0	1	-87.1	300	6.0	-25.9	47.2	73.1	
175.00	-89.8	0.01	9.8	2.0	1	-78.0	300	6.0	-16.7	22.7	39.4	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N)$

N: Number of output

: 14500810H-A-R1 : 38 of 49

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 1M-PHY 2480 MHz

	9 kHz - 150 kHz										150 kHz - 30 MHz										
* A	gilent							RΤ			¥ #	gilent							RΤ		
Ref -5	ia dBm		# Q +	ten 10 d	R					9.24 kHz 9.81 dBm	Ref -5	ia dBm		# A +	ten 10 d	R					225 kHz .87 dBm
Peak											Peak										
Log 10											Log 10										
dB/											d₿/										
												•									
	1											hotherweight.	maker woman		-	humaling	Alexandre the she	nellescallides	Mahalumah	the work the way	HUNDER MILLION
LgAv ∢	Monthese					. 1					LgAv										<u> </u>
\$1 \$2 M3 FS	a condition	NAMARANIA	"Ariphap	Alfan Alalana	which why	hilling with a	happy hand	N. Andrewsky and	marker hade	and a low low low	S1 S2										
M3 F5					- "·			"		a contrata	M3 FS										
£ (f):											£ (f):										
f<50k FFT											FTun Swp										
										1											
Start S	1.00 kHz								Stop 15	50.00 kHz	Start :	L 50 kHz								Stop 30.	000 MHz
#Res B	W 200 Hz				∎VBW 620	Hz		Sweep 2		201 pts)_		W 9.1 kH	z			#VBW 27	kHz		Sweep 34	4.8 ms (12	

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.24	-99.8	0.00	9.8	2.0	1	-88.0	300	6.0	-26.7	48.2	74.9	
225.00	-89.9	0.01	9.8	2.0	1	-78.0	300	6.0	-16.8	20.5	37.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

: 14500810H-A-R1 : 39 of 49

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 2M-PHY 2402 MHz

			9	kHz	z - 14	50 k	Hz							15	0 kH	Iz -	30 N	ЛHz	2		
₩ A	gilent							RΤ			*	gilent							RΤ		
Ref -5	i0 dBm		#A1	ten 10 d	B					10.64 kHz 9.64 dBm	Ref -5			#At	:ten 10 c	B					448 kHz .61 dBm
Peak Log 10											Peak Log 10										
dB/											dB/										
												1									
LgAv	1										LgAv	Proposition	le churchen gelie	ulur, Hunger, and	the strate the state	holymous	shipping	h ili hismalusan	-adately-source	and the second	ndykologianne
\$1 \$2 M3 FS	<i>Antonia</i> Antonio	water land	Manuth	interferings	wheelph	poly. Marine	manun	ni, hilly and the	at a state of the	a way way	\$1 \$2 M3 FS										
£(f):						· ·			· ·		£(f):										
f<50k FFT											FTun Swp										
											0 np										
									0												
	0.00 kHz W 200 Hz				#VBW 620	Hz		Sweep 2		50.00 kHz .201 pts)_		150 kHz W 9.1 kH	z			#VBW 27	kHz		Sweep 34	Stop 30. 4.8 ms (12	000 MHz 201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.64	-99.6	0.00	9.8	2.0	1	-87.8	300	6.0	-26.5	47.0	73.5	
448.00	-90.6	0.01	9.8	2.0	1	-78.8	300	6.0	-17.5	14.5	32.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

: 14500810H-A-R1 : 40 of 49

Conducted Spurious Emission

Test place		Ise EMC Lab. No.8 Measurement Room
Date		October 3, 2022
Temperature	/ Humidity	23 deg. C / 51 % RH
Engineer		Hiroyuki Furutaka
Mode		Tx BT LE 2M-PHY 2440 MHz

			9	kHz	z - 1:	50 k	Hz							15	0 kF	Iz -	30 N	1Hz			
₩ A	\gilent							RΤ			₩ A	gilent							RΤ		
										14.40 kHz											175 kHz
Ref -5	50 dBm		#At	ten 10 d	B				-10	0.50 dBm	Ref -5	0 dBm		#At	ten 10 d	B				-89	.17 dBm
Peak Log											Peak Log										
10	<u> </u>										10										
dB/											dB/										
												b									
	1											add and the first of the first	A ANA ANA AND	when a half they	And the states	وراسة وواجا أياد		hillinghapple	UR MANA	maanmaahaaha	al material second
LgAv	M. Lat. h										LgAv							1			
\$1 \$2		rya Mani Ma	NAMAN	Whedright	and the state	MARMAN	hangituded	H. Hallah . h.	والمراعدا والع	A. Mahaka	S1 S2										
M3 FS	5						1 1 1 1 1	Manual .	a statute b	dida at Ba	M3 FS										
•(0)	L																				
£ (f): f<50k											£ (f): FTun										
FFT											Swp										
											1										
1											1										
	9.00 kHz							· ·		50.00 kHz		50 kHz								Stop 30.	
#Kes E	3W 200 Hz				∎VBW 620	HZ		Sweep 2.	.279 s (1	201 pts)_	#Kes b	W 9.1 kH	Z			∎VBW 27	KHZ		weep 34	4.8 ms (12	(01 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
14.40	-100.5	0.00	9.8	2.0	1	-88.7	300	6.0	-27.4	44.4	71.8	
175.00	-89.2	0.01	9.8	2.0	1	-77.3	300	6.0	-16.1	22.7	38.8	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

: 14500810H-A-R1 : 41 of 49

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE 2M-PHY 2480 MHz

			9	kHz	z - 15	50 k	Hz							15	0 kF	Iz -	30 N	/Hz			
₩ A	gilent							RΤ			₩ A	gilent							RΤ		
										10.76 kHz											200 kHz
Ref -5 Peak	i0 dBm		#At	ten 10 d	B				-9	9.72 dBm	Ref -5 Peak	0 dBm		#At	ten 10 d	B				-90	.76 dBm
Log											Log										
10											10	<u> </u>									
dB/											dB/										
											· ·						-				
	1											A Charles and	MANA ANA ANA	here have been been been been been been been be	menturnitie	Service Halling		HAL WHAT	de-maleer, him of	manuthe	minutur
LgAv	AL U. L		1								LgAv							-			
S1 S2		nth myperty	with with	h Martin	and Walde	have all a	manual	Hickory	a handredd	and in an	S1 S2										
M3 FS			1			14 C	and a to	Lid. Whith		and addressed	M3 FS										
• (0)											• • •										
€(f): f<50k											£ (f): FTun										
FFT											Swp	<u> </u>									
											1										
1											1										
	0.00 kHz							~ ~ ~		50.00 kHz		50 kHz									000 MHz
#Kes B	W 200 Hz				∎VBW 620	HZ		Sweep 2.	.279 s (1	201 pts)_	#Res E	W 9.1 kH	Z			∎VBW 27	kHz		Sweep 34	4.8 ms (12	201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.76	-99.7	0.00	9.8	2.0	1	-87.9	300	6.0	-26.6	46.9	73.5	
200.00	-90.8	0.01	9.8	2.0	1	-78.9	300	6.0	-17.7	21.5	39.2	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

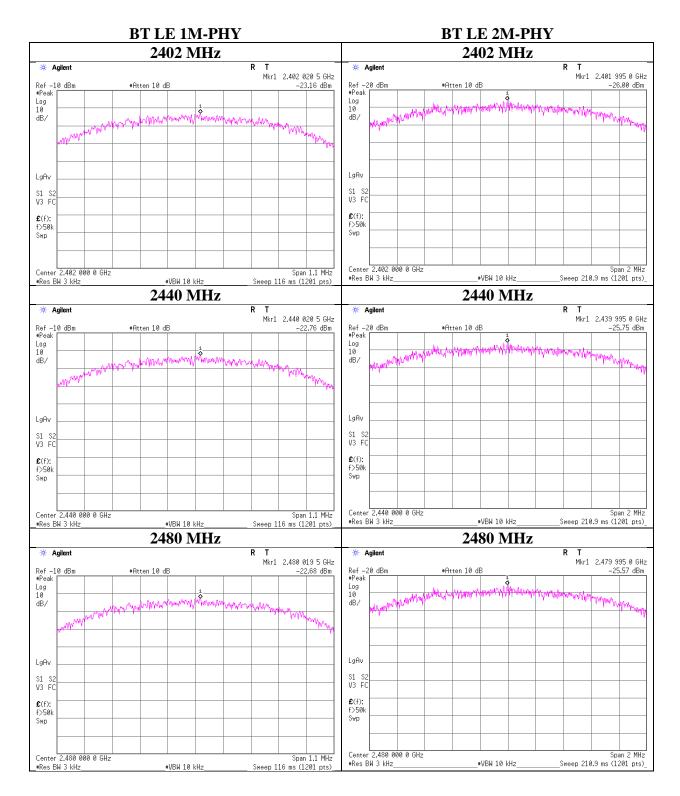
Power Density

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx BT LE

1M-PHY

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm / 3 kHz]	[dB]
2402	-23.16	1.97	16.16	-5.03	8.00	13.03
2440	-22.76	1.99	16.16	-4.61	8.00	12.61
2480	-22.68	1.99	16.16	-4.53	8.00	12.53

2M-PHY


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm / 3 kHz]	[dB]
2402	-26.00	1.97	16.16	-7.87	8.00	15.87
2440	-25.75	1.99	16.16	-7.60	8.00	15.60
2480	-25.57	1.99	16.16	-7.42	8.00	15.42

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss$

*The equipment and cables were not used for factor $0 \, dB$ of the data sheets.

Power Density

APPENDIX 2: Test Instruments

Test Equipment (1/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)		Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/17/2021	12
CE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/11/2022	12
CE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-729	07/28/2022	12
CE	MMM-10	141545	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201148	01/16/2022	12
CE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/10/2022	12
CE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	2513	05/14/2022	12
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)		Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/25/2022	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/15/2022	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/03/2021	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/09/2021	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	LA-17	160924	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	225	2021/11/13	12
RE	MMM-08	141532	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201197	01/16/2022	12
RE	MMM-10	141545	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	51201148	01/16/2022	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/10/2022	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/10/2022	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/17/2022	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/04/2022	12
RE	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	02/18/2022	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/07/2022	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12
AT	MAT-19	141172	Attenuator(6dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-106	-	12/08/2021	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/08/2021	12
AT	MCC-176	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S303	03/15/2022	12
AT	MCC-64	141327	Coaxial Cable	UL Japan	-	-	02/28/2022	12
AT	MMM-17	141557	DIGIITAL HiTESTER	HIOKI E.E. CORPORATION	3805	70900530	01/16/2022	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/05/2022	12
AT	MPSE-22	141842	Power sensor	Keysight Technologies Inc	N1923A	MY54070003	08/05/2022	12
AT	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	02/18/2022	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

CE: Conducted Emission RE: Radiated Emission AT: Antenna Terminal Conducted