

:14500810H-B-R1 : 1 of 54

RADIO TEST REPORT

Test Report No.: 14500810H-B-R1

Customer	Hosiden Corporation
Description of EUT	Bluetooth Dual Module
Model Number of EUT	HRM1086
FCC ID	VIYHRM1086
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	November 7, 2022
Remarks	Bluetooth (BR / EDR) parts

Approved By Representative Test Engineer 76. Funtaha Hiroyuki Furutaka Engineer Engineer

Takumi Shimada

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14500810H-B

This report is a revised version of 14500810H-B. 14500810H-B is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14500810H-B	October 26, 2022	-
(Original)			
1	14500810H-B-R1	November 7, 2022	Correction of Test Date due to retest of Clause 2.1;
			From September 26 to October 6, 2022
			To September 26 to November 2, 2022
1	14500810H-B-R1	November 7, 2022	Separated for configuration diagrams of Radiated
			emission test and Antenna Terminal Conducted tests
			of Clause 4.2
1	14500810H-B-R1	November 7, 2022	Replacement of the data due to retest of Conducted
			Spurious Emission test (page 41 to 46)
1	14500810H-B-R1	November 7, 2022	Replacement of the data due to retest of Conducted
			Emission Band Edge Compliace test (page 47 to 48)

Test Report No.	
Page	

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory	ICES	Interference-Causing Equipment Standard
AC	Accreditation	IEC	
	Alternating Current		International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference Innovation, Science and Economic Development
ANSI	American National Standards Institute	ISED	Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	VBW Vert.	Video Bandwidth Vertical
Hori.	Horizontal	WLAN	Wireless LAN
11011.	Honzofital	WLAIN	WIICIESS LAIN

CONTENTS

PAGE

~~~~		_
<b>SECTION 1:</b>	Customer Information	
<b>SECTION 2:</b>	Equipment Under Test (EUT)	5
<b>SECTION 3:</b>	Test Specification, Procedures & Results	6
<b>SECTION 4:</b>	Operation of EUT during testing	
<b>SECTION 5:</b>	Conducted Emission	
<b>SECTION 6:</b>	Radiated Spurious Emission	
<b>SECTION 7:</b>	Antenna Terminal Conducted Tests	
<b>APPENDIX 1</b>	: Test data	
Conduct	ed Emission	
20dB Ba	undwidth, 99%Occupied Bandwidth and Carrier Frequency Separation	
	of Hopping Frequency	
Dwell ti	me	24
Maximu	m Peak Output Power	27
Average	Output Power	
Radiated	1 Spurious Emission	
Conduct	ed Spurious Emission	41
Conduct	ed Emission Band Edge compliance	47
<b>APPENDIX 2</b>	: Test Instruments	49
<b>APPENDIX 3</b>	: Photographs of test setup	51
Conduct	ed Emission	
Radiated	l Spurious Emission	
Worst C	ase Position	53
Antenna	Terminal Conducted Tests	54

Test Report No.	
Page	

## **SECTION 1: Customer Information**

Company Name	Hosiden Corporation
Address	4-33 Kitakyuhoji 1-Chome, Yao-city, Osaka 581-0071 Japan
Telephone Number	+81-72-924-1153
Contact Person	Tomoki Umeda

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

## SECTION 2: Equipment Under Test (EUT)

## 2.1 Identification of EUT

Description	Bluetooth Dual Module
Model Number	HRM1086
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	September 20, 2022
Test Date	September 26 to November 2, 2022

#### 2.2 Product Description

#### **General Specification**

Rating	DC 3.7 V
Operating temperature	-30 deg. C to 85 deg. C

## **Radio Specification**

#### **Bluetooth (Low Energy)**

Diactooth (Lott Energy)	
Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	0.9 dBi

#### Bluetooth (BR / EDR)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	FHSS (GFSK, π/4 DQPSK, 8 DPSK)
Antenna Gain	0.9 dBi

* Bluetooth Low Energy and Bluetooth do not transmit simultaneously.

## SECTION 3: Test Specification, Procedures & Results

## 3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

## 3.2 **Procedures and Results**

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	33.63 dB,	Complied	-
Emission	6. Standard test methods		0.41576 MHz, AV,	a)	
			Phase N		
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
Carrier	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)	See data.	Complied	Conducted
Frequency	Meas Guidance v05r02			b)	
Separation	ISED: -	<b>ISED:</b> RSS-247 5.1 (b)			
20dB	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)		Complied	Conducted
Bandwidth	Meas Guidance v05r02			b)	
	ISED: -	<b>ISED:</b> RSS-247 5.1 (a)			
Number of	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)(iii)		Complied	Conducted
Hopping	Meas Guidance v05r02			c)	
Frequency	ISED: -	<b>ISED:</b> RSS-247 5.1 (d)			
Dwell time	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)(iii)	1	Complied	Conducted
	Meas Guidance v05r02			d)	
	ISED: -	<b>ISED:</b> RSS-247 5.1 (d)		-	
Maximum	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(b)(1)		Complied	Conducted
Peak	Meas Guidance v05r02			e)	
Output Power	ISED: RSS-Gen 6.12	<b>ISED:</b> RSS-247 5.4 (b)		·	
Spurious	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)	4.7 dB	Complied	Conducted/
Emission &	Meas Guidance v05r02		2483.5 MHz, AV, Vertical	f) / g)	Radiated
Band Edge	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	<dh5></dh5>	, 6,	(above 30 MHz)
Compliance		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			Í

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d).Radiated test was selected over 30 MHz based on section 15.247(d).

a) Refer to APPENDIX 1 (data of Conducted Emission)

b) Refer to APPENDIX 1 (data of 20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation)

c) Refer to APPENDIX 1 (data of Number of Hopping Frequency)

d) Refer to APPENDIX 1 (data of Dwell time)

e) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

f) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

g) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

## FCC Part 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

## FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

#### 3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

Test Report No.	: 14500810H-B-R1
Page	: 7 of 54

#### 3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Conducted emission						
Using Item	Frequency range	Uncertainty (+/-)				
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB				
	0.15 MHz to 30 MHz	3.3 dB				

#### **Radiated emission**

Measurement distance	Frequency range	Frequency range	
3 m	9 kHz to 30 MHz		3.2 dB
10 m			3.0 dB
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	5.0 dB
	200 MHz to 1000 MHz Horizontal		5.1 dB
		Vertical	6.2 dB
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB
		Vertical	4.8 dB
	200 MHz to 1000 MHz	Horizontal	5.0 dB
		Vertical	5.0 dB
3 m	1 GHz to 6 GHz		4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz	
	26.5 GHz to 40 GHz		5.4 dB
10 m	1 GHz to 18 GHz		5.4 dB

## Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

#### 3.5 Test Location

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

## 3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

UL Japan, Inc. Ise EMC Lab.

## SECTION 4: Operation of EUT during testing

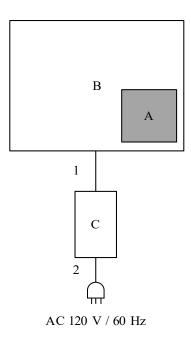
## 4.1 **Operating Mode(s)**

Mode		Remarks*				
Bluetooth (BT)		BR / EDR, Payload: PRBS9				
*EUT has the pov	ver settings by the software as follow	/s;				
Power Setting:	Atten: 0x00, Mag: 0xDA, Exp: 0x	x03 (for BR)				
	Atten: 0x00, Mag: 0x98, Exp: 0x0	03 (for EDR)				
Software:	Blue Test3 Version: 3.3.12.1355 (Date: 2022.09 26, Storage location)	on: Driven by connected PC)				
*This setting of so	*This setting of software is the worst case.					
Any conditions un	nder the normal use do not exceed the	e condition of setting.				
In addition, end u	sers cannot change the settings of the	e output power of the product.				

#### Details of Operating Mode(s)

Test Item	Mode	Hopping	<b>Tested Frequency</b>
Conducted Emission,	Tx 3DH5 *1)	Off	2441 MHz
Radiated Spurious Emission (Below 1 GHz)			
Radiated Spurious Emission (Above 1 GHz),	Tx DH5	Off	2402 MHz
Conducted Spurious Emission	Tx 3DH5		2441 MHz
			2480 MHz
Carrier Frequency Separation	Tx DH5	On	2402 MHz
	Tx 3DH5		2441 MHz
			2480 MHz
20dB Bandwidth	Tx DH5	Off	2402 MHz
	Tx 3DH5		2441 MHz
			2480 MHz
Number of Hopping Frequency	Tx DH5	On	-
	Tx 3DH5		
Dwell time	Tx DH1, DH3, DH5	On	-
	Tx 3DH1, 3DH3, 3DH5		
Maximum Peak Output Power	Tx DH5	Off	2402 MHz
	Tx 2DH5		2441 MHz
	Tx 3DH5		2480 MHz
Band Edge Compliance	Tx DH5	On	2402 MHz
(Conducted)	Tx 3DH5	Off	2480 MHz
99% Occupied Bandwidth	Tx DH5	On	2402 MHz
	Tx 3DH5	Off	2441 MHz
		UII	2480 MHz

*As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)


*2DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

*It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

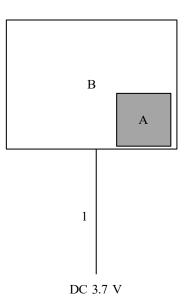
*1) Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

## 4.2 Configuration and Peripherals

[Conducted emission test]



* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


#### **Description of EUT and Support Equipment**

No.	Item	Model number	Serial Number	Manufacturer	Remarks		
А	Bluetooth Dual Module	HRM1086	11	Hosiden Corporation	EUT		
В	Evaluation Board	11	-	Hosiden Corporation	-		
С	REGULATED DC	PMC35-2A	RM000298	KIKUSUI	-		
	POWER SUPPLY			ELECTRONICS CORP.			

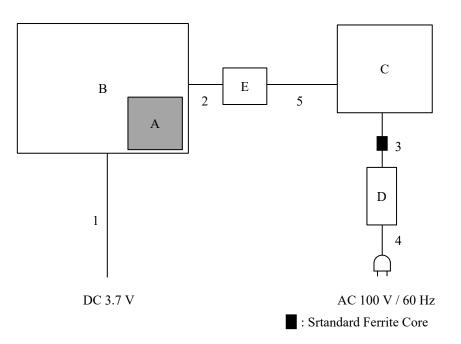
#### List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.1	Unshielded	Unshielded	-
2	AC Cable	2.0	Unshielded	Unshielded	-

#### [Radiated emission test]



* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


## **Description of EUT and Support Equipment**

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Bluetooth Dual Module	HRM1086	11	Hosiden Corporation	EUT
В	Evaluation Board	11	-	Hosiden Corporation	-

#### List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-

## [Antenna Terminal Conducted tests]



* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

	cription of EOT and Support Equipment							
No.	Item	Model number	Serial Number	Manufacturer	Remarks			
А	Bluetooth Dual Module	HRM1086	11	Hosiden Corporation	EUT			
В	Evaluation Board	11	-	Hosiden Corporation	-			
С	Laptop PC	CF-MX4	5FKSA17992	Panasonic	-			
D	AC Adapter	CF-AA62J2C	62J2CM2152251438SB	Panasonic	-			
Е	Jig	DK-TRBI200	N176240	Qualcomm	-			

## **Description of EUT and Support Equipment**

## List of Cables Used

No.	Name	L	ength (m)	Shield	Remarks	
				Cable	Connector	
1	DC Cable	2.	.0	Unshielded	Unshielded	-
2	Signal Cable	0.	.3	Unshielded	Unshielded	-
3	DC Cable	1.	.6	Unshielded	Unshielded	-
4	AC Cable	0.	.8	Unshielded	Unshielded	-

## SECTION 5: Conducted Emission

#### **Test Procedure and Conditions**

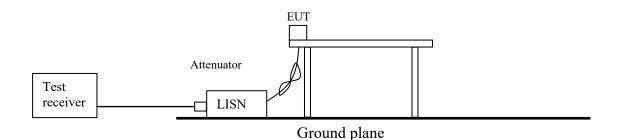
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

**Figure 1: Test Setup** 



UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan / +81-596-24-8999

## SECTION 6: Radiated Spurious Emission

#### **Test Procedure**

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

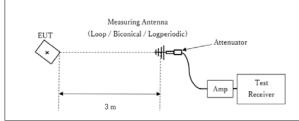
When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

#### Test Antennas are used as below;

1 000 TIMO MIC M			
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

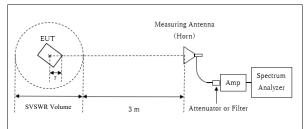
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

## 20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).


Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyzer		Spectrum Analyzer
Detector	QP	РК	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	VBW: 3 MHz	VBW: 300 kHz
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			Duty factor was added to	
			the results.	

*1) Average Power Measurement was performed based on KDB 558074 D01 15.247 Meas Guidance v05r02.

Test Distance: 3 m


## Figure 2: Test Setup

#### Below 1 GHz

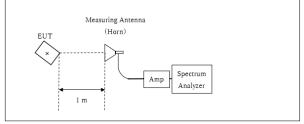


× : Center of turn table

## 1 GHz to 10 GHz



SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR


Distance Factor:  $20 \times \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.95 m

r = 0.05 m

16-1-4.)

r : Radius of an outer periphery of EUT × : Center of turn table

#### 10 GHz to 26.5 GHz



Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

## SECTION 7: Antenna Terminal Conducted Tests

## **Test Procedure**

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
20dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak	-	-	-	Auto	Peak	-	Power Meter
Output Power					Average *2)		(Sensor: 50MHz BW)
Carrier Frequency Separation	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	30 MHz	200 kHz	620 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz, 1 MHz	300 kHz, 3 MHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	9.1 kHz	27 kHz				
Emission *3) *4)	30 MHz to 25 GHz	100 kHz	300 kHz				
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

*1) Peak hold was applied as Worst-case measurement.

*2) Reference data

*3) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

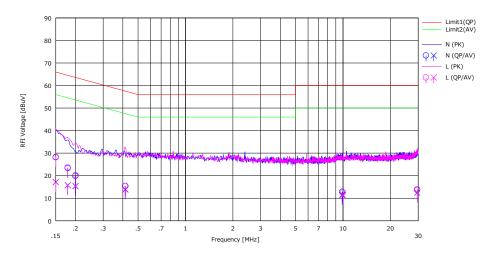
Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz -150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

*4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data Test Result : APPENDIX : Pass


## APPENDIX 1: Test data

## **Conducted Emission**

Test placeIse EMDateOctobeTemperature / Humidity24 deg.EngineerJunya CModeTx 3DF

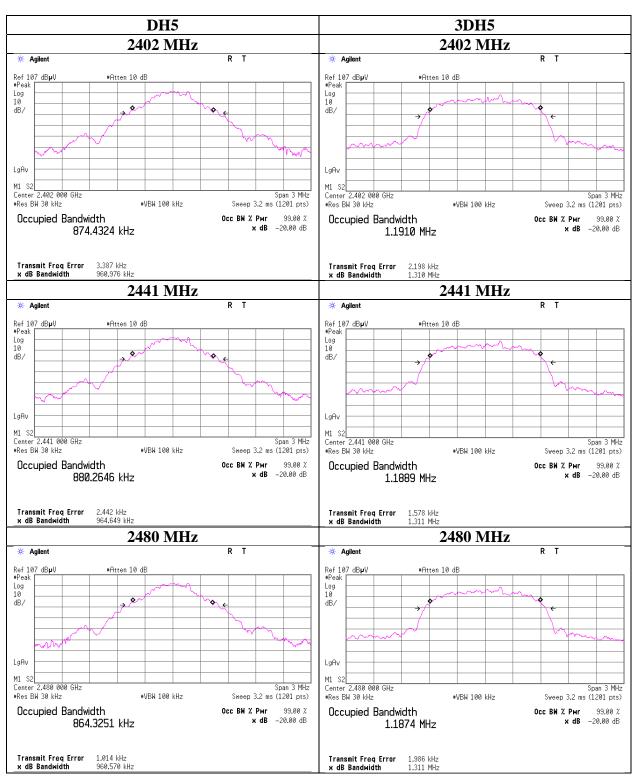
Ise EMC Lab. No.4 Semi Anechoic Chamber October 6, 2022 24 deg. C / 44 % RH Junya Okuno Tx 3DH5 2441 MHz

Limit : FCC_Part 15 Subpart C(15.207)



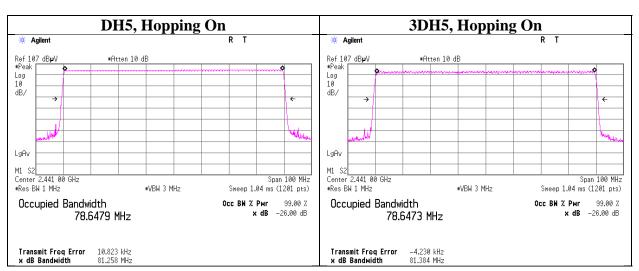
	Frea.	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Ма	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LU55	(QP)	(AV)	(QP)	(AV)	(QP)	<a v=""></a>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	15.00	4.00	0.05	13.11	28.16	17.16	66.00	56.00	37.84	38.84	Ν	
2	0.17890	10.20	2.60	0.05	13.12	23.37	15.77	64.54	54.54	41.17	38.77	Ν	
3	0.20000	6.70	2.20	0.05	13.12	19.87	15.37	63.61	53.61	43.74	38.24	Ν	
4	0.41576	2.20	0.70	0.06	13.14	15.40	13.90	57.53	47.53	42.13	33.63	Ν	
5	9.88332	-1.00	-2.30	0.22	13.60	12.82	11.52	60.00	50.00	47.18	38.48	Ν	
6	29.58000	-0.80	-2.00	0.46	14.03	13.69	12.49	60.00	50.00	46.31	37.51	Ν	
7	0.15000	15.20	4.00	0.02	13.11	28.33	17.13	66.00	56.00	37.67	38.87	L	
8	0.17856	10.50	2.60	0.03	13.12	23.65	15.75	64.55	54.55	40.90	38.80	L	
9	0.20100	7.10	2.20	0.03	13.12	20.25	15.35	63.57	53.57	43.32	38.22	L	
10	0.41333	2.20	0.70	0.05	13.14	15.39	13.89	57.58	47.58	42,19	33.69	L	
11	10.00000	-1.30	-2.40	0.21	13.60	12.51	11.41	60.00	50.00	47.49	38.59	L	
12	29.58000	-0.60	-2.00	0.49	14.03	13.92	12.52	60.00	50.00	46.08	37.48	L	

CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

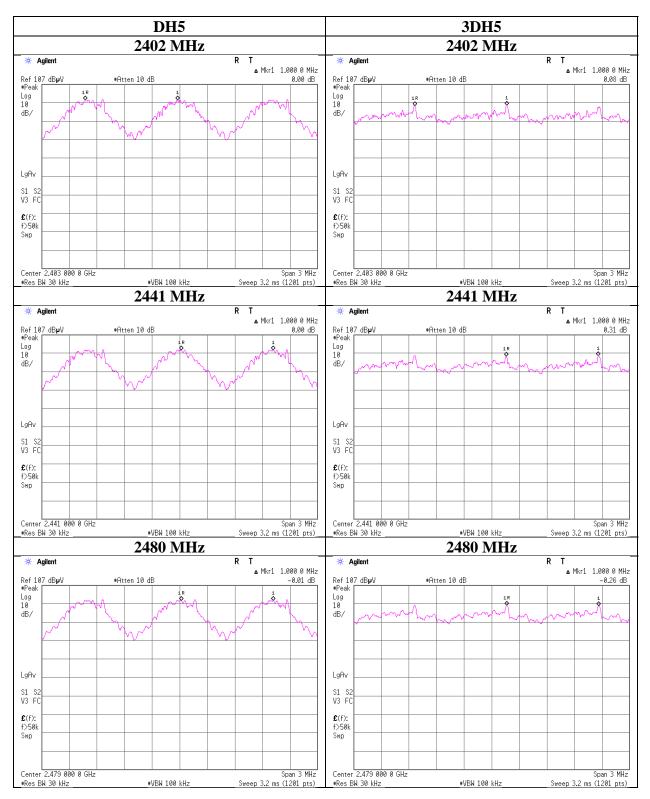

## 20dB Bandwidth, 99% Occupied Bandwidth and Carrier Frequency Separation

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx, Hopping Off, Tx, Hopping On

Mode	Freq.	20 dB Bandwidth	99 % Occupied	Carrier Frequency	Limit for Carrier
			Bandwidth	Separation	Frequency separation
	[MHz]	[MHz]	[kHz]	[MHz]	[MHz]
DH5	2402.0	0.961	874.432	1.000	>= 0.641
DH5	2441.0	0.965	880.265	1.000	>= 0.643
DH5	2480.0	0.961	864.325	1.000	>= 0.640
DH5	Hopping On	-	78647.900	-	-
3DH5	2402.0	1.310	1191.000	1.000	>= 0.873
3DH5	2441.0	1.311	1188.900	1.000	>= 0.874
3DH5	2480.0	1.311	1187.400	1.000	>= 0.874
3DH5	Hopping On	-	78647.300	-	_


Limit: Two-thirds of 20 dB Bandwidth or 25 kHz (whichever is greater).

No limit applies to 20 dB Bandwidth.




## 20dB Bandwidth and 99% Occupied Bandwidth

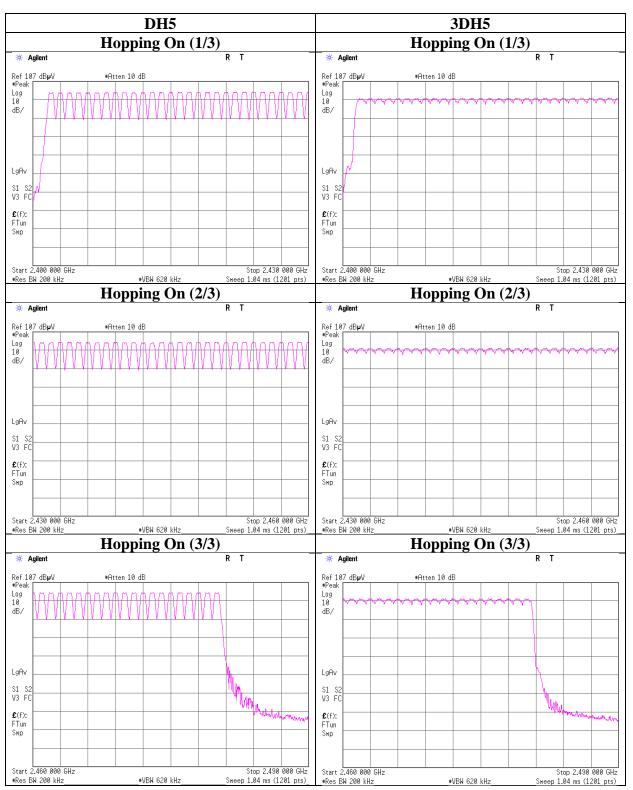
: 14500810H-B-R1 : 20 of 54



## 20dB Bandwidth and 99% Occupied Bandwidth



## **Carrier Frequency Separation**


: 14500810H-B-R1 : 22 of 54

## **Number of Hopping Frequency**

Test place	Ise EMC Lab. No.8 Measurement Room
Date	October 3, 2022
Temperature / Humidity	23 deg. C / 51 % RH
Engineer	Hiroyuki Furutaka
Mode	Tx, Hopping On

Mode	Number of channel	Limit
	[channels]	[channels]
DH5	79	>= 15
3DH5	79	>= 15

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.



## Number of Hopping Frequency

: 14500810H-B-R1 : 24 of 54

## **Dwell time**

Test placeIse EMC Lab. No.8 Measurement RoomDateOctober 3, 2022Temperature / Humidity23 deg. C / 51 % RHEngineerHiroyuki FurutakaModeTx, Hopping On

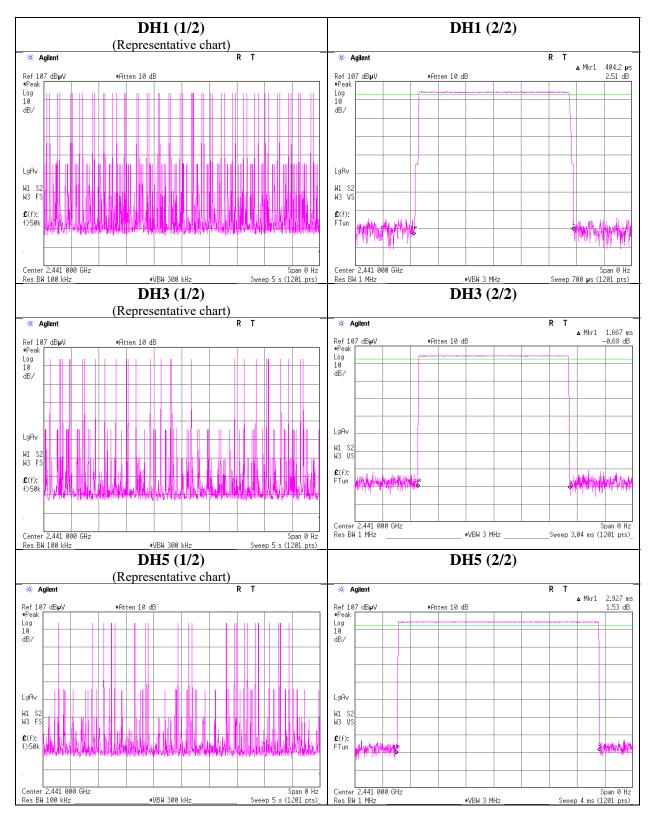
Mode			ansmission opping x 0.4)	Length of transmission	Result	Limit	
			(0.4) second period	[ms]	[ms]	[ms]	
DUI1					LJ	L 3	
DH1	50.0 times / 5 s	Х	31.6 s =	316 times	0.404	128	400
DH3	28.8 times / 5 s	х	31.6 s =	183 times	1.667	305	400
DH5	19.4 times / 5 s	Х	31.6 s =	123 times	2.927	360	400
3DH1	50.2 times / 5 s	Х	31.6 s =	318 times	0.406	129	400
3DH3	28.2 times / 5 s	Х	31.6 s =	179 times	1.677	300	400
3DH5	21.2 times / 5 s	Х	31.6 s =	134 times	2.920	391	400

Sample Calculation

Result = Number of transmission x Length of transmission

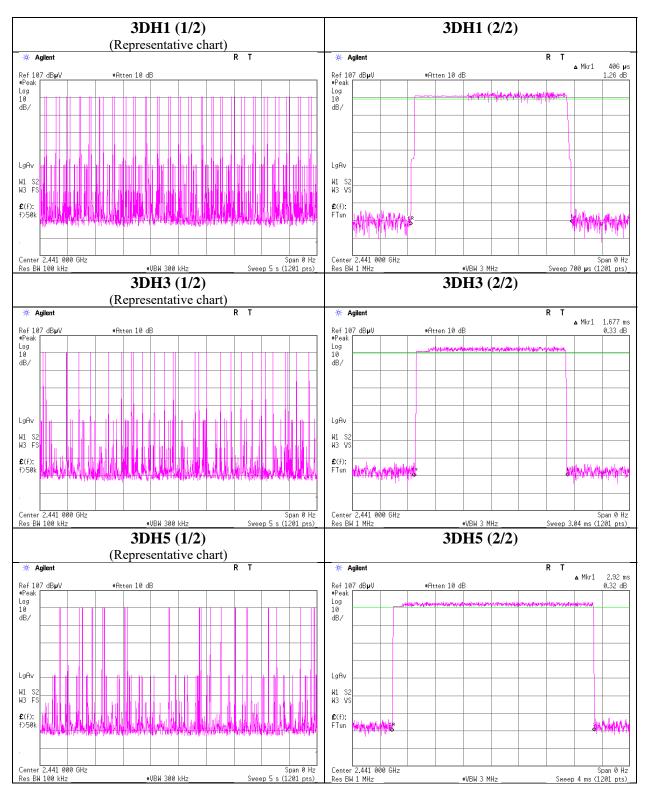
*Average data of 5 tests.(except Inquiry)

Mode		Sampling [times]									
	1	2	3	4	5	[times]					
DH1	50	50	50	50	50	50					
DH3	26	30	30	31	27	28.8					
DH5	22	17	19	20	19	19.4					
3DH1	50	51	48	51	51	50.2					
3DH3	28	28	30	29	26	28.2					
3DH5	21	22	22	21	20	21.2					


Sample Calculation

Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4 s, where N is the number of channels being used in the hopping sequence ( $20 \le N \le 79$ ), is always less than 0.4 s regardless of packet size. This is confirmed in the test report for N = 79.


: 14500810H-B-R1 : 25 of 54

## **Dwell time**



: 14500810H-B-R1 : 26 of 54





## Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room October 3, 2022 23 deg. C / 51 % RH Date Temperature / Humidity Engineer Hiroyuki Furutaka Mode Tx, Hopping Off

					Conducted Power					e.i.r.p. for RSS-247						
Mode	Freq.	Reading	Cable	Atten.	Re	Result		Limit Margin		Antenna	Antenna Result		Limit		Margin	
			Loss	Loss						Gain						
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
DH5	2402.0	-0.50	1.05	10.04	10.59	11.46	20.96	125	10.37	0.90	11.49	14.09	36.02	4000	24.53	
DH5	2441.0	-0.08	1.06	10.04	11.02	12.65	20.96	125	9.94	0.90	11.92	15.56	36.02	4000	24.10	
DH5	2480.0	-0.04	1.07	10.04	11.07	12.79	20.96	125	9.89	0.90	11.97	15.74	36.02	4000	24.05	
2DH5	2402.0	-0.78	1.05	10.04	10.31	10.74	20.96	125	10.65	0.90	11.21	13.21	36.02	4000	24.81	
2DH5	2441.0	-0.41	1.06	10.04	10.69	11.72	20.96	125	10.27	0.90	11.59	14.42	36.02	4000	24.43	
2DH5	2480.0	-0.53	1.07	10.04	10.58	11.43	20.96	125	10.38	0.90	11.48	14.06	36.02	4000	24.54	
3DH5	2402.0	-0.32	1.05	10.04	10.77	11.94	20.96	125	10.19	0.90	11.67	14.69	36.02	4000	24.35	
3DH5	2441.0	-0.02	1.06	10.04	11.08	12.82	20.96	125	9.88	0.90	11.98	15.78	36.02	4000	24.04	
3DH5	2480.0	-0.08	1.07	10.04	11.03	12.68	20.96	125	9.93	0.90	11.93	15.60	36.02	4000	24.09	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test was not performed at AFH mode, because the decrease of number of channel (min: 20 ch) at AFH mode does not influence on the output

power and bandwidth of the EUT. As this device had AFH mode and frequency separation could not meet the requirement of over 20 dB BW without 2/3 relaxation, 125 mW power limit was applied to it.

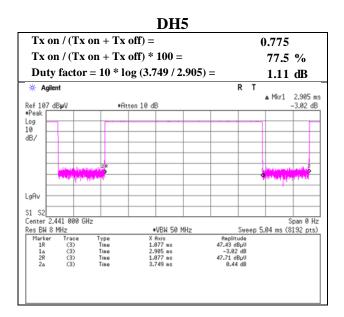
: 14500810H-B-R1 : 28 of 54

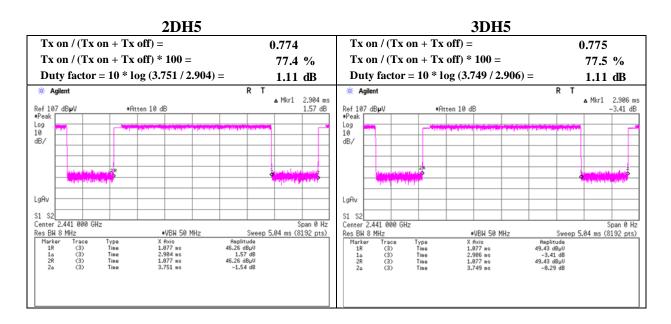
## <u>Average Output Power</u> (Reference data for RF Exposure)

Test placeIse EMC Lab. No.8 Measurement RoomDateOctober 3, 2022Temperature / Humidity23 deg. C / 51 % RHEngineerHiroyuki FurutakaModeTx, Hopping Off

Mode	Freq.	Reading	Cable	Atten.	Result		Duty	Re	sult	
			Loss	Loss	(Time average)		factor	(Burst pow	er average)	
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
DH5	2402.0	-1.82	1.05	10.04	9.27	8.45	1.11	10.38	10.91	
DH5	2441.0	-1.36	1.06	10.04	9.74	9.42	1.11	10.85	12.16	
DH5	2480.0	-1.34	1.07	10.04	9.77	9.48	1.11	10.88	12.25	
2DH5	2402.0	-4.76	1.05	10.04	6.33	4.30	1.11	7.44	5.55	
2DH5	2441.0	-4.38	1.06	10.04	6.72	4.70	1.11	7.83	6.07	
2DH5	2480.0	-4.46	1.07	10.04	6.65	4.62	1.11	7.76	5.97	
3DH5	2402.0	-4.68	1.05	10.04	6.41	4.38	1.11	7.52	5.65	
3DH5	2441.0	-4.37	1.06	10.04	6.73	4.71	1.11	7.84	6.08	
3DH5	2480.0	-4.40	1.07	10.04	6.71	4.69	1.11	7.82	6.05	

Sample Calculation:


Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor


*The equipment and cables were not used for factor 0 dB of the data sheets.

: 14500810H-B-R1 : 29 of 54

## **Burst Rate Confirmation**

Test placeIse EMC Lab. No.2 Semi Anechoic ChamberDateSeptember 26, 2022Temperature / Humidity22 deg. C / 69 % RHEngineerSayaka HaraModeTx, Hopping Off





:14500810H-B-R1 : 30 of 54

## **Radiated Spurious Emission**

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	October 2, 2022	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx, Hopping Off, DH5	2402 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	46.0	34.7	27.6	5.6	32.9	1.1	46.3	36.1	73.9	53.9	27.6	17.8	*1)
Hori.	4804.0	40.5	32.7	31.5	7.8	32.0	-	47.9	40.0	73.9	53.9	26.0	13.9	Floor noise
Hori.	7206.0	41.8	33.6	35.7	9.1	32.8	-	53.8	45.6	73.9	53.9	20.1	8.3	Floor noise
Hori.	9608.0	40.9	32.7	38.7	9.7	33.5	-	55.8	47.6	73.9	53.9	18.1	6.4	Floor noise
Vert.	2390.0	48.2	36.0	27.6	5.6	32.9	1.1	48.5	37.4	73.9	53.9	25.4	16.5	*1)
Vert.	4804.0	41.9	32.5	31.5	7.8	32.0	-	49.3	39.8	73.9	53.9	24.6	14.1	Floor noise
Vert.	7206.0	42.3	33.4	35.7	9.1	32.8	-	54.3	45.4	73.9	53.9	19.7	8.5	Floor noise
Vert.	9608.0	42.1	32.5	38.7	9.7	33.5	-	57.0	47.4	73.9	53.9	16.9	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result (AV) = Reading + Ant \ Factor + Loss (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + Loss (Cable + Attenuator + Filter + Distance \ factor + D$ 

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

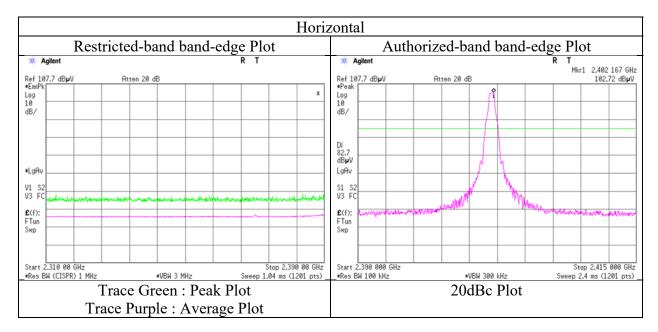
1 GHz - 10 GHz

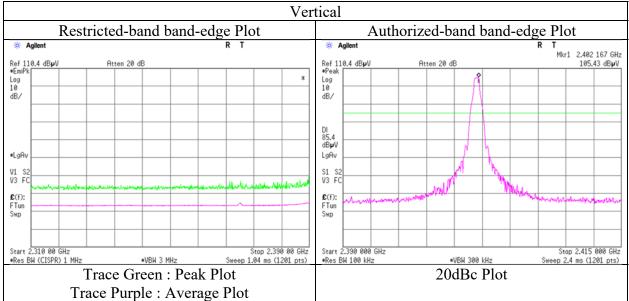
#### 20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	102.7	27.8	5.2	34.9	100.8	-	-	Carrier
Hori.	2400.0	49.6	27.5	5.6	32.9	49.8	80.8	31.0	
Vert.	2402.0	105.4	27.8	5.2	34.9	103.5	-	-	Carrier
Vert.	2400.0	52.0	27.5	5.6	32.9	52.2	83.5	31.3	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:


20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log(1.0 m / 3.0 m) = -9.5 dB


*These results have sufficient margin without taking account Duty cycle correction factor.

: 14500810H-B-R1 : 31 of 54

## **<u>Radiated Spurious Emission</u>** (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateOctober 2, 2022Temperature / Humidity22 deg. C / 55 % RHEngineerKiyoshiro Okazaki<br/>(1 GHz - 10 GHz)ModeTx, Hopping Off, DH5 2402 MHz





* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-B-R1 : 32 of 54

## **Radiated Spurious Emission**

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	October 2, 2022	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx, Hopping Off, DH5	2441 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	41.3	31.9	31.6	7.8	32.0	1.1	48.7	40.4	73.9	53.9	25.2	13.5	
Hori.	7323.0	42.2	33.4	35.9	9.1	32.8	-	54.3	45.6	73.9	53.9	19.6	8.3	Floor noise
Hori.	9764.0	41.6	32.2	39.2	9.7	33.6	-	56.9	47.5	73.9	53.9	17.0	6.4	Floor noise
Vert.	4882.0	41.3	32.3	31.6	7.8	32.0	1.1	48.7	40.8	73.9	53.9	25.2	13.1	
Vert.	7323.0	42.2	33.2	35.9	9.1	32.8	-	54.4	45.3	73.9	53.9	19.6	8.6	Floor noise
Vert.	9764.0	41.8	32.2	39.2	9.7	33.6	-	57.1	47.5	73.9	53.9	16.8	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ (above \ 1 \ GHz)) - Duty \$ 

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-B-R1 : 33 of 54

## **Radiated Spurious Emission**

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	October 2, 2022	October 2, 2022
Temperature / Humidity	22 deg. C / 55 % RH	23 deg. C / 58 % RH
Engineer	Kiyoshiro Okazaki	Tetsuro Yoshida
-	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx, Hopping Off, DH5	2480 MHz

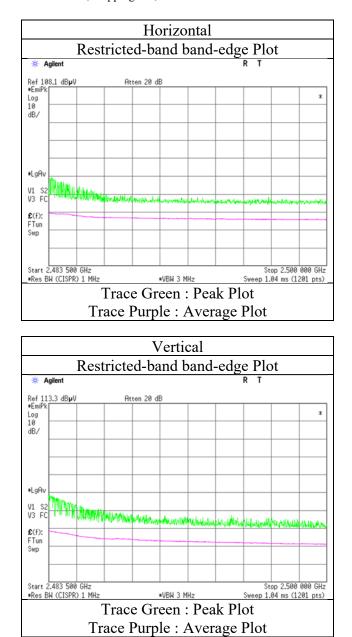
		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.5	42.5	27.4	5.7	32.9	1.1	57.7	43.9	73.9	53.9	16.2	10.0	*1)
Hori.	4960.0	41.5	33.5	31.7	7.8	31.9	1.1	49.1	42.2	73.9	53.9	24.8	11.7	
Hori.	7440.0	42.1	33.4	36.1	9.1	32.9	-	54.4	45.7	73.9	53.9	19.5	8.2	Floor noise
Hori.	9920.0	41.6	32.3	39.1	9.8	33.7	-	56.8	47.5	73.9	53.9	17.1	6.4	Floor noise
Vert.	2483.5	62.9	47.8	27.4	5.7	32.9	1.1	63.2	49.2	73.9	53.9	10.7	4.7	*1)
Vert.	4960.0	41.7	33.3	31.7	7.8	31.9	1.1	49.3	42.0	73.9	53.9	24.7	11.9	
Vert.	7440.0	42.5	33.2	36.1	9.1	32.9	-	54.8	45.5	73.9	53.9	19.1	8.4	Floor noise
Vert.	9920.0	41.5	32.3	39.1	9.8	33.7	-	56.7	47.5	73.9	53.9	17.2	6.4	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Cable +

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.


*1) Not Out of Band emission(Leakage Power)

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-B-R1 : 34 of 54

## **<u>Radiated Spurious Emission</u>** (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateOctober 2, 2022Temperature / Humidity22 deg. C / 55 % RHEngineerKiyoshiro Okazaki<br/>(1 GHz - 10 GHz)ModeTx, Hopping Off, DH5 2480 MHz



* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-B-R1 : 35 of 54

## **Radiated Spurious Emission**

Test place	Ise EMC Lab.				
Semi Anechoic Chamber	No.3	No.3			
Date	September 29, 2022	October 2, 2022			
Temperature / Humidity	23 deg. C / 53 % RH	23 deg. C / 58 % RH			
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida			
-	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)			
Mode	Tx, Hopping Off, 3DH5 2402 MHz				

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	46.9	35.8	27.6	5.3	32.9	1.1	46.8	36.8	73.9	53.9	27.1	17.1	*1)
Hori.	4804.0	40.6	32.6	31.5	7.6	32.0	-	47.7	39.7	73.9	53.9	26.2	14.2	Floor noise
Hori.	7206.0	43.0	34.1	35.7	8.9	32.8	-	54.9	46.0	73.9	53.9	19.0	7.9	Floor noise
Hori.	9608.0	42.3	32.8	38.7	9.7	33.5	-	57.2	47.7	73.9	53.9	16.7	6.2	Floor noise
Vert.	2390.0	49.2	37.4	27.6	5.3	32.9	1.1	49.1	38.4	73.9	53.9	24.8	15.5	*1)
Vert.	4804.0	47.8	32.5	31.5	7.6	32.0	-	54.9	39.6	73.9	53.9	19.0	14.3	Floor noise
Vert.	7206.0	42.0	34.1	35.7	8.9	32.8	-	53.9	46.0	73.9	53.9	20.0	7.9	Floor noise
Vert.	9608.0	42.7	33.0	38.7	9.7	33.5	-	57.6	47.9	73.9	53.9	16.3	6.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

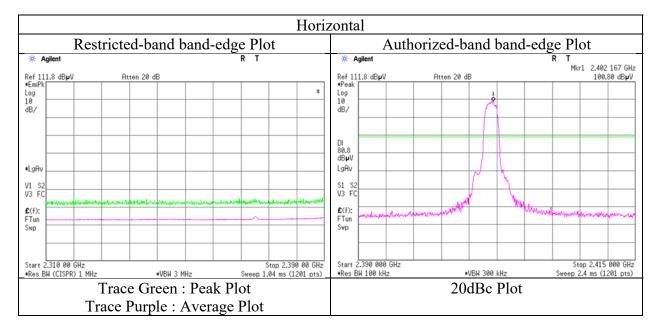
*QP detector was used up to 1GHz.

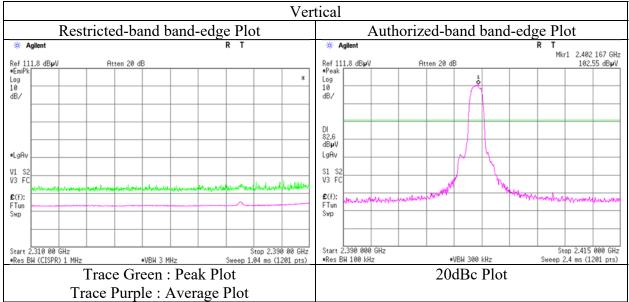
*1) Not Out of Band emission(Leakage Power)

#### 20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	100.8	27.5	5.3	32.9	100.7	-	-	Carrier
Hori.	2400.0	48.3	27.5	5.3	32.9	48.2	80.7	32.5	
Vert.	2402.0	102.6	27.5	5.3	32.9	102.5	-	-	Carrier
Vert.	2400.0	51.2	27.5	5.3	32.9	51.1	82.5	31.4	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$ 


Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB


 $^{10 \}text{ GHz} - 26.5 \text{ GHz}$   $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ 

: 14500810H-B-R1 : 36 of 54

## **<u>Radiated Spurious Emission</u>** (Reference Plot for band-edge)

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	September 29, 2022
Temperature / Humidity	23 deg. C / 53 % RH
Engineer	Hiroyuki Furutaka
	(1 GHz - 10 GHz)
Mode	Tx, Hopping Off, 3DH5 2402 MHz





* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14500810H-B-R1 : 37 of 54

## **Radiated Spurious Emission**

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.3	No.4
Date	September 29, 2022	October 2, 2022	October 6, 2022
Temperature / Humidity	23 deg. C / 53 % RH	23 deg. C / 58 % RH	24 deg. C / 44 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)	(Below 1 GHz)
Mode	Tx, Hopping Off, 3DH	5 2441 MHz	

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]		[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	39.8	21.6	-	14.8	7.2	32.1	-	11.5	-	40.0	-	28.5	-	
Hori.	58.6	21.7	-	8.2	7.4	32.1	-	5.2	-	40.0	-	34.8	-	
Hori.	90.0	24.2	-	8.5	7.8	32.1	-	8.4	-	43.5	-	35.2	-	
Hori.	236.0	33.3	-	11.5	9.0	32.0	-	21.8	-	46.0	-	24.2	-	
Hori.	266.0	33.4	-	12.4	9.2	32.0	-	23.0	-	46.0	-	23.1	-	
Hori.	511.9	20.4	-	17.7	10.8	32.3	-	16.6	-	46.0	-	29.4	-	
Hori.	4882.0	40.4	32.7	31.6	7.6	32.0	-	47.6	39.9	73.9	53.9	26.3	14.0	Floor noise
Hori.	7323.0	43.6	34.2	35.9	8.9	32.8	-	55.6	46.2	73.9	53.9	18.3	7.7	Floor noise
Hori.	9764.0	42.5	32.5	39.2	9.7	33.6	-	57.8	47.8	73.9	53.9	16.1	6.1	Floor noise
Vert.	39.8	21.6	-	14.8	7.2	32.1	-	11.5	-	40.0	-	28.5	-	
Vert.	58.6	22.0	-	8.2	7.4	32.1	-	5.5	-	40.0	-	34.5	-	
Vert.	90.0	28.4	-	8.5	7.8	32.1	-	12.6	-	43.5	-	31.0	-	
Vert.	236.0	30.7	-	11.5	9.0	32.0	-	19.2	-	46.0	-	26.8	-	
Vert.	265.6	29.7	-	12.4	9.2	32.0	-	19.2	-	46.0	-	26.8	-	
Vert.	511.9	20.3	-	17.7	10.8	32.3	-	16.5	-	46.0	-	29.5	-	
Vert.	4882.0	41.0	32.4	31.6	7.6	32.0	-	48.2	39.6	73.9	53.9	25.7	14.3	Floor noise
Vert.	7323.0	42.3	33.7	35.9	8.9	32.8	-	54.3	45.7	73.9	53.9	19.6	8.2	Floor noise
Vert.	9764.0	42.7	32.5	39.2	9.7	33.6	-	58.0	47.8	73.9	53.9	15.9	6.1	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) + Cable + Attenuator + Cable + Att

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor \ Attenuator + Filter + Distance \ factor \ Attenuator \ Attenuator + Filter + Distance \ factor \ Attenuator \ Atte$ 

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:

1 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 20log (1.0 m / 3.0 m) = -9.5 dB

: 14500810H-B-R1 : 38 of 54

# **Radiated Spurious Emission**

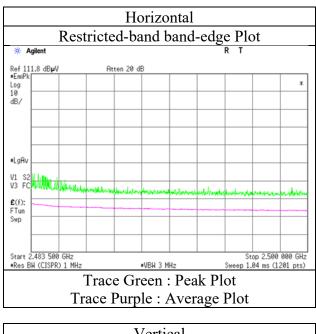
Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.3	No.3
Date	September 29, 2022	October 2, 2022
Temperature / Humidity	23 deg. C / 53 % RH	23 deg. C / 58 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida
_	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)
Mode	Tx, Hopping Off, 3DH	5 2480 MHz

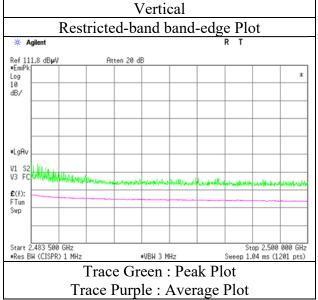
		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	57.6	42.4	27.4	5.3	32.9	1.1	57.5	43.4	73.9	53.9	16.4	10.5	*1)
Hori.	4960.0	42.5	35.3	31.7	7.6	31.9	-	49.9	42.7	73.9	53.9	24.1	11.3	Floor noise
Hori.	7440.0	43.4	34.5	36.1	9.0	32.9	-	55.6	46.7	73.9	53.9	18.3	7.2	Floor noise
Hori.	9920.0	42.6	32.6	39.1	9.8	33.7	-	57.8	47.8	73.9	53.9	16.1	6.1	Floor noise
Vert.	2483.5	59.1	43.5	27.4	5.3	32.9	1.1	59.0	44.5	73.9	53.9	14.9	9.4	*1)
Vert.	4960.0	41.7	33.0	31.7	7.6	31.9	-	49.1	40.4	73.9	53.9	24.9	13.6	Floor noise
Vert.	7440.0	43.2	34.8	36.1	9.0	32.9	-	55.4	47.0	73.9	53.9	18.5	6.9	Floor noise
Vert.	9920.0	42.3	32.6	39.1	9.8	33.7	-	57.5	47.8	73.9	53.9	16.4	6.1	Floor noise

 $Result \; (QP \, / \, PK) = Reading + \; Ant \; Factor + \; Loss \; (Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \; Gain(Amplifier) + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor(above \; 1 \; GHz)) - \\ Gain(Amplifier) + \\ Cable + \\ Ca$ 

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


*QP detector was used up to 1GHz.

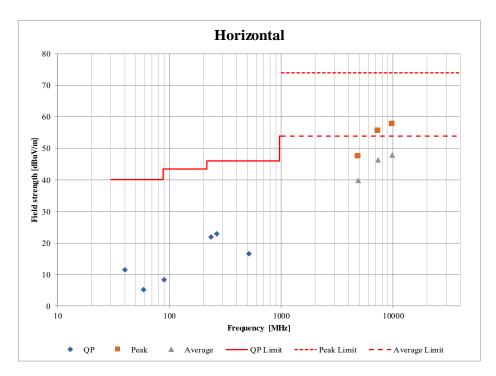

*1) Not Out of Band emission(Leakage Power)

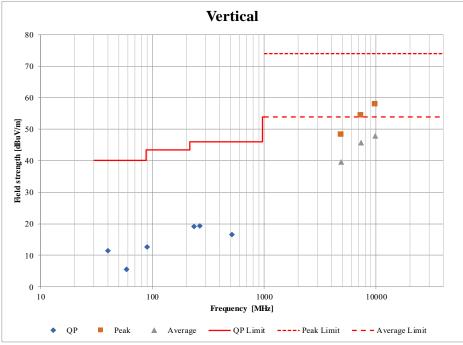
: 14500810H-B-R1 : 39 of 54

#### **<u>Radiated Spurious Emission</u>** (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateSeptember 29, 2022Temperature / Humidity23 deg. C / 53 % RHEngineerHiroyuki Furutaka<br/>(1 GHz - 10 GHz)ModeTx, Hopping Off, 3DH5 2480 MHz





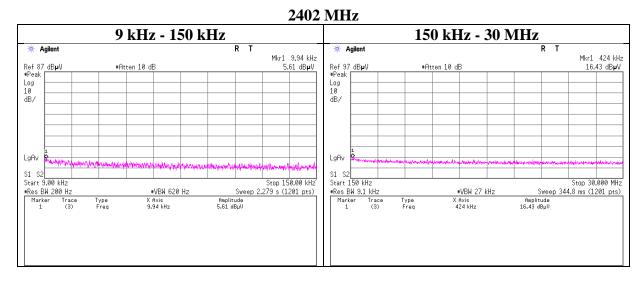


* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

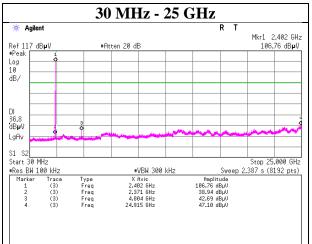
: 14500810H-B-R1 : 40 of 54

## <u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.3	No.4
Date	September 29, 2022	October 2, 2022	October 6, 2022
Temperature / Humidity	23 deg. C / 53 % RH	23 deg. C / 58 % RH	24 deg. C / 44 % RH
Engineer	Hiroyuki Furutaka	Tetsuro Yoshida	Junya Okuno
	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)	(Below 1 GHz)
Mode	Tx, Hopping Off, 3DH5	5 2441 MHz	



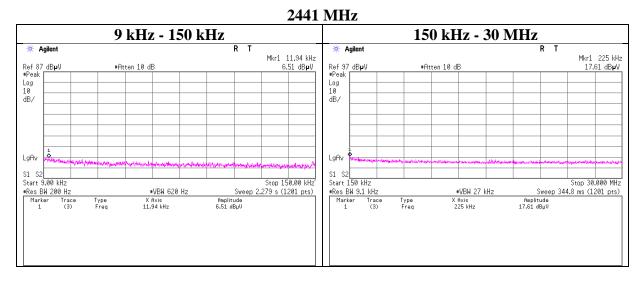


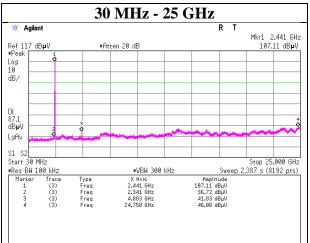


*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14500810H-B-R1 : 41 of 54

#### **Conducted Spurious Emission**

Ise EMC Lab. No.8 Measurement Room
November 2, 2022
22 deg. C / 48 % RH
Hiroyuki Furutaka
Tx, Hopping Off, DH5

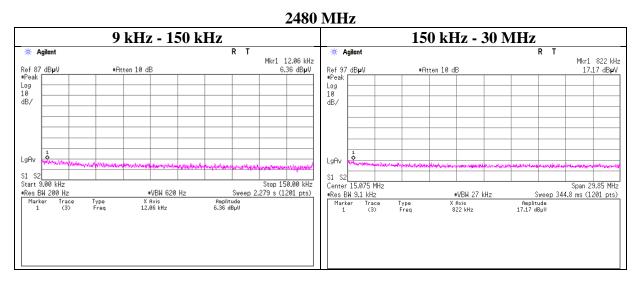


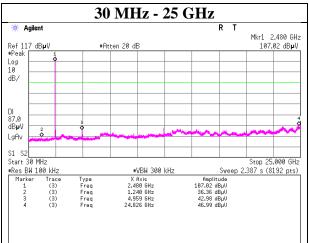




: 14500810H-B-R1 : 42 of 54

#### **Conducted Spurious Emission**

Ise EMC Lab. No.8 Measurement Room
November 2, 2022
22 deg. C / 48 % RH
Hiroyuki Furutaka
Tx, Hopping Off, DH5

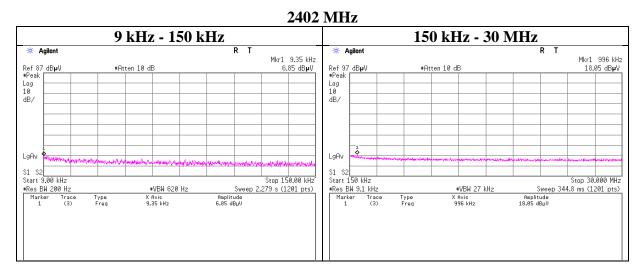


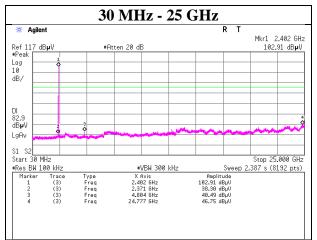




: 14500810H-B-R1 : 43 of 54

## **Conducted Spurious Emission**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx, Hopping Off, DH5

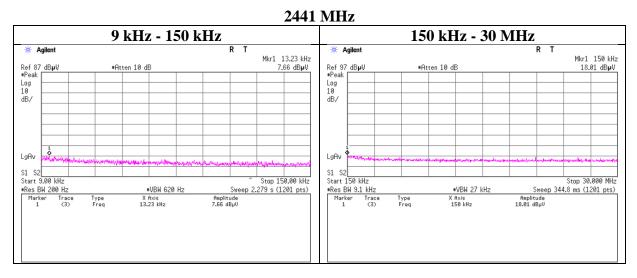


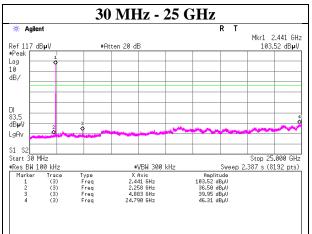




: 14500810H-B-R1 : 44 of 54

#### **Conducted Spurious Emission**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx, Hopping Off, 3DH5

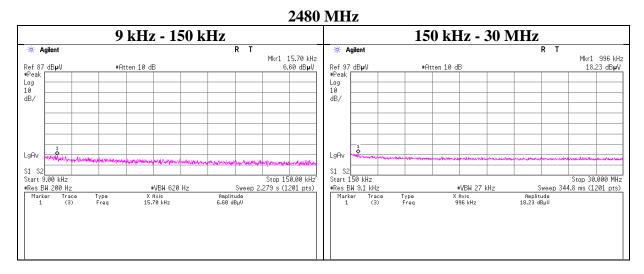


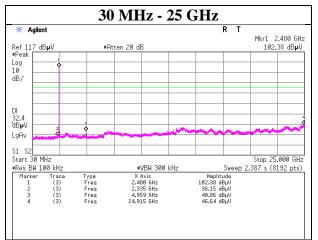




: 14500810H-B-R1 : 45 of 54

## **Conducted Spurious Emission**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx, Hopping Off, 3DH5

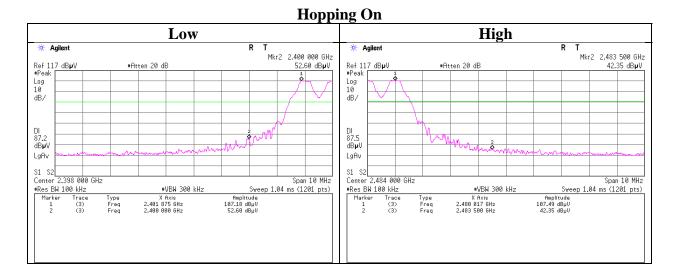


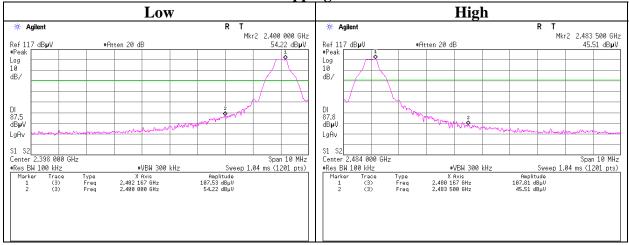

: 14500810H-B-R1 : 46 of 54

## **Conducted Spurious Emission**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx, Hopping Off, 3DH5



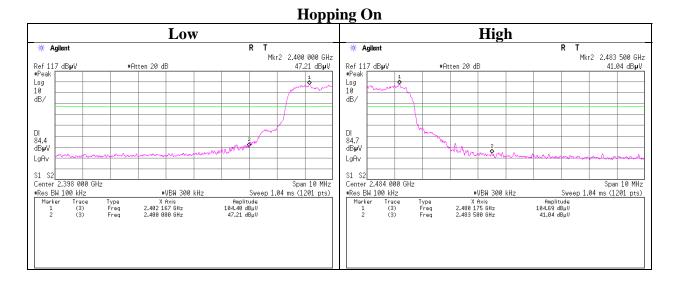




: 14500810H-B-R1 : 47 of 54

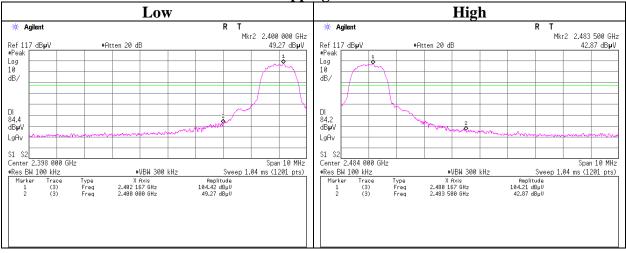
#### **Conducted Emission Band Edge compliance**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx DH5




#### **Hopping Off**




: 14500810H-B-R1 : 48 of 54

#### **Conducted Emission Band Edge compliance**

Test placeIse EMC Lab. No.8 Measurement RoomDateNovember 2, 2022Temperature / Humidity22 deg. C / 48 % RHEngineerHiroyuki FurutakaModeTx 3DH5



#### **Hopping Off**



# **APPENDIX 2:** Test Instruments

#### Test Equipment (1/2)

	Equipmen Local ID		Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	COTS-ME	178648	EMI measurement	TSJ	TEPTO-DV	-	-	-
CE	MI-02 MAEC-04	142011	program AC4_Semi Anechoic	(Techno Science Japan) TDK	Semi Anechoic	DA-10005	05/22/2022	24
			Chamber(NSA)		Chamber 3m			
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/17/2021	12
CE	MCC-113	141217	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM141/ 421-010/ sucoform141-PE/ RFM-E121(SW)	-/04178	06/11/2022	12
CE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess-Elektronik OHG	NSLK8127	8127-729	07/28/2022	12
CE	MMM-10			01/16/2022	12			
CE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/10/2022	12
CE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12
RE	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	KBA-05	141198	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA910 6	2513	05/14/2022	12
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2022	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01		02/25/2022	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/12/2022	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/15/2022	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/03/2021	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	11/09/2021	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	557	05/20/2022	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MHF-26	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/08/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	MJM-27	142228	Measure	KOMELON	KMC-36	-	-	-
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	LA-17	160924	Logperiodic Antenna	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	225	2021/11/13	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/16/2022	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/16/2022	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/10/2022	12
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/10/2022	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/19/2021	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/22/2022	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/17/2022	12

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/04/2022	12
RE	MRENT-1 30	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	11/28/2021	12
RE	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	02/18/2022	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/07/2022	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	07/25/2022	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12
AT	MAT-19	141172	Attenuator(6dB) (above1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-106	-	12/08/2021	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/08/2021	12
AT	MCC-176	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	15028303	03/15/2022	12
AT	MCC-64	141327	Coaxial Cable	UL Japan	-	-	02/28/2022	12
AT	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/16/2022	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/10/2022	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/05/2022	12
AT	MPSE-22	141842	Power sensor	Keysight Technologies Inc	N1923A	MY54070003	08/05/2022	12
AT	MSA-10	141899	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY46180655	02/18/2022	12

# *Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: CE: Conducted Emission RE: Radiated Emission AT: Antenna Terminal Conducted