

Page 1 of 74 JQA File No. : KL80160139 Issue Date : June 27, 2016

TEST REPORT

Applicant Address	:	Hosiden Corporation 4-33, Kitakyuhoji 1-Choda, Yao-City, Osaka 581-0071, Japan
Products Model No.	:	Bluetooth Low Energy Module HRM1062
Serial No.	:	16 18
FCC ID	:	VIYHRM1062
Test Standard	:	CFR 47 FCC Rules and Regulations Part 15
Test Results	:	Passed
Date of Test	:	May 30 ~ June 10, 2016

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Page 2 of 74

TABLE OF CONTENTS

Page

1	Description of the Equipment Under Test	.3
2	Summary of Test Results	.4
3	Test Procedure	.5
4	Test Location	.5
5	Recognition of Test Laboratory	.5
6	Description of Test Setup	.6
7	Test Requirements	.9
	•	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

- $\textbf{EUT} \quad : \textbf{Equipment Under Test}$
- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- **EMC** : Electromagnetic Compatibility
- **EMI** : Electromagnetic Interference
- **EMS** : Electromagnetic Susceptibility
- $\ensuremath{\boxtimes}$ $\ensuremath{$ indicates that the listed condition, standard or equipment is applicable for this report.
- \Box $\:$ indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 74

1 Description of the Equipment Under Test

1.	Manufacturer	:	Hosiden Corporation 4-33, Kitakyuhoji 1-Choda, Yao-City, Osaka 581-0071, Japan
2.	Products	:	Bluetooth Low Energy Module
3.	Model No.	:	HRM1062
4.	Serial No.	:	16
			18
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	April, 2016
7.	Power Rating	:	3.0VDC
8.	Grounding	:	None
9. 10.	Transmitting Frequency :	: : :	Bluetooth Low Energy: 2402.0 MHz(00CH) – 2480.0MHz(39CH) non-BLE 1Mbps: 2402.0 MHz(00CH) – 2480.0MHz(78CH) non-BLE 2Mbps: 2402.0 MHz(00CH) – 2480.0MHz(39CH)
11.	Receiving Frequency	: : :	Bluetooth Low Energy: 2402.0 MHz(00CH) – 2480.0MHz(39CH) non-BLE 1Mbps: 2402.0 MHz(00CH) – 2480.0MHz(78CH) non-BLE 2Mbps: 2402.0 MHz(00CH) – 2480.0MHz(39CH)
12.	Max. RF Output Power	: : :	3.67 dBm (Measure Value of Bluetooth Low Energy) 3.64 dBm (Measure Value of non-BLE 1Mbps) 3.66 dBm(Measure Value of non-BLE 2Mbps)
13.	Antenna Type	:	Printed Pattern Antenna (Integral)
14.	Antenna Gain	:	2.0 dBi
15.	Category	:	DTS
16.	EUT Authorization	:	Certification
17.	Received Date of EUT	:	May 30, 2016
18.	Channel Plan		
	Bluetooth Low Energy and n The carrier spacing is 2 MHz The carrier frequency is desi The carrier frequency is expr	on- z. gna ress	BLE 2Mbps Mode: ated by the absolute frequency channel number (ARFCN). ared in the equation shown as follows:
	Receiving Frequency (in MH	z)	$= 2402.0 + 2^{n}$

non-BLE 1Mbps Mode: The carrier spacing is 1 MHz. The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = 2402.0 + 2*nReceiving Frequency (in MHz) = 2402.0 + 2*nwhere, n : channel number ($0 \le n \le 78$)

where, n : channel number ($0 \le n \le 39$)

Page 4 of 74

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C - Intentional Radiators

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \Box - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

hada

Takeshi Choda Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 74

3 Test Procedure

Test Requirements	:	§15.247, §15.207 and §15.209
Test Procedure	:	ANSI C63.10–2013 Testing unlicensed wireless devices.
		KDB 558074 D01 DTS Meas Guidance v03r05: April 18, 2016.
		KDB937606 (Publication Date: October 10, 2014) Test Site Requirements for Part 15 and 18 Devices Operating Below 30MHz.
		KDB 447498 RF exposure and equipment authorization requirements

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2018)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2018)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2019)

Page 6 of 74

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Bluetooth Low Energy Module	Hosiden	HRM1062	16 *1) 18 *2)	VIYHRM1062

*1) Used for Antenna Conducted Emission.

*2) Used for AC Powerline Conducted Emission and Field Strength of Spurious Emission.

	Item	Manufacturer	Model No.	Serial No.	FCC ID
В	Jig BoardBluetooth Low Energy Module	Hosiden	HRM1067		N/A
С	DC Power Source	KIKUSUI	PBZ40-10	QB001180	N/A
D	Note PC	lenovo	L530		DoC
Е	AC Adaptor	lenovo	ADLX65NLT2A		DoC

The auxiliary equipment used for testing :

Type of Cable:

No	Description	Identification	Connector	Cable	Ferrite	Length
10.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	DC Cable			NO	NO	2.0
2	USB-Serial Cable		Yes	Yes	NO	2.0
3	AC Cable			NO	NO	0.5
4	DC Cable			Yes	NO	1.6
5	AC Cable			NO	NO	0.8

Page 7 of 74

6.2 Test Arrangement (Drawings)

Page 8 of 74

6.3 Operating Condition

Power Supply Voltage	: 3.0 VDC (for Jig Board)
	120 VAC, 60 Hz (For DC Power Supply)
Transmitting/Receiving	
Bluetooth Low Energy a	nd non-BLE 2Mbps Mode :
Transmitting frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(39CH)
Receiver frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(39CH)
non-BLE 1Mbps Mode :	
Transmitting frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(78CH)
Receiver frequency	: 2402.0 MHz(0CH) – 2480.0 MHz(78CH)
Modulation Type	
1. Bluetooth Low Energy	y : GFSK
2. non-BLE 1Mbps : GFS	SK

3. non-BLE 2Mbps : GFSK

The tests were performed in the following worst condition.

Mode	Condition
Bluetooth Low Energy	1 Mbps
non-BLE 1Mbps	1 Mbps
non-BLE 2Mbps	2 Mbps

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

The test were carried out using the following test program supplied by applicant;

- Software Name: radio_test_SDK11v0r0_hosi_custom_for_HRM1062
- Software Version: Version 1.0
- Storage Location: Controller PC

Page 9 of 74

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the	Results	Remarks
		Test Report		
Antenna Requirement	Section 15.203	Section 1.12	Passed	-
Channel Separation	Section 15.247(a)(1)	-		-
Minimum Hopping Channel	Section 15.247(a)(1)(iii)	-	-	-
Occupied Bandwidth	Section 15.247(a)(2)	Section 7.3	Passed	-
Dwell Time	Section 15.247(a)(1)(iii)	-	-	-
Peak Output Power	Section 15.247(b)(3)	Section 7.5	Passed	-
(Conduction)				
Peak Power Density	Section 15.247(e)	Section 7.6	Passed	-
(Conduction)				
Spurious Emissions	Section 15.247(d)	Section 7.7	Passed	-
(Conduction)				
AC Powerline Conducted	Section 15.207	Section 7.8	Passed	-
Emission				
Radiated Emission	Section 15.247(d)	Section 7.9	Passed	-
SAR Test Exclusion	Section 15.247(i)	Section 7.10	Passed	-

Page 10 of 74

7.1 Channel Separation

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks:

7.2 Minimum Hopping Channel

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks :

7.3 Occupied Bandwidth

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.3.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
The 99% Bandwidth of The 99% Bandwidth of The 99% Bandwidth of	f Bluetooth Low f non-BLE 1Mbp f non-BLE 2Mbp	Energy is s is s is	$\frac{1.0809}{0.989}$ 1.8759	MHz MHz MHz	at at at	$\begin{array}{r} \underline{2480.0} \\ \underline{2480.0} \\ \underline{2480.0} \end{array}$	MHz MHz MHz
The -6dBc Bandwidth The -6dBc Bandwidth The -6dBc Bandwidth	of Bluetooth Low of non-BLE 1Mb of non-BLE 2Mb	v Energy is ops is ops is	723.2 507.7 892.5	kHz kHz kHz	at at at	$ \underbrace{\begin{array}{c} 2440.0 \\ 2402.0 \\ 2440.0 \end{array} $	MHz MHz MHz
Uncertainty of Measur	ement Results					± 0.9	%(2o)

Remarks:

Page 11 of 74

7.3.2 Test Instruments

Shielded Room S4						
TypeModelSerial No. (ID)Manufacturer						
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11		
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16		
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16		

NOTE : The calibration interval of the above test instruments is 12 months.

7.3.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

	BLE, non-BLE 1Mbps	non-BLE 2Mbps		
Res. Bandwidth	100 kHz	100 kHz		
Video Bandwidth	300 kHz	300 kHz		
Span	3 MHz	6 MHz		
Sweep Time	AUTO	AUTO		
Trace	Maxhold	Maxhold		

Page 12 of 74

7.3.4 Test Data

<u>Test Date :May 30, 2016</u> <u>Temp.:22°C, Humi:57%</u>

The resolution bandwidth was set to 100 kHz, -6dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

A)	Bl	uetooth	Low	Energy	

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	1.0783	706.4	500
19	2440.0	1.0780	723.2	500
39	2480.0	1.0809	700.7	500

Low Channel

Transmit Freq Error1.020 kHzOccupied Bandwidth706.359 kHz

Page 13 of 74

Transmit Freq Error 1.274 kHz Occupied Bandwidth 723.200 kHz

Transmit Freq Error1.385 kHzOccupied Bandwidth700.669 kHz

Page 14 of 74

B) non-BLE 1Mbps

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	0.982	507.7	500
39	2441.0	0.987	504.5	500
78	2480.0	0.989	504.6	500

Transmit Freq Error	1.847 kHz
Occupied Bandwidth	507.707 kHz

. 1

Low Channel

Page 15 of 74

Page 16 of 74

C) non-BLE 2Mbps

Transmit Freq Error

Occupied Bandwidth

1.446 kHz

820.409 kHz

Channel	Frequency (MHz)	99% Bandwidth (MHz)	-6dBc Bandwidth (kHz)	Minimum -6dBc Bandwidth Limit (kHz)
00	2402.0	1.8476	820.4	500
19	2440.0	1.8594	892.5	500
39	2480.0	1.8759	810.2	500

Low Channel

Page 17 of 74

Transmit Freq Error-1.830 kHzOccupied Bandwidth892.489 kHz

Transmit Freq Error	-431.725 Hz
Occupied Bandwidth	810.235 kHz

Page 18 of 74

7.4 Dwell Time

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

Remarks :

7.5 Peak Output Power(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.5.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not	judged			
Peak Output Power of Peak Output Power of Peak Output Power of	[°] BLE is [°] non-BLE 1Mbps [°] non-BLE 2Mbps	is is	$ 3.67 \\ 3.64 \\ 3.66 $	_ dBm _ dBm _ dBm	at at at	$ \begin{array}{r} 2480.0 \\ 2480.0 \\ 2480.0 \\ 2480.0 \\ \end{array} $	MHz MHz MHz
Uncertainty of Measu	rement Results					± 0.9	_ dB(2σ)

Remarks :

7.5.2 Test Instruments

Shielded Room S4						
TypeModelSerial No. (ID)Manufacturer						
Power Meter	ML2495A	1423001 (B-16)	Anritsu	2016/07/16		
Power Sensor	MA2411B	1339136 (B-18)	Anritsu	2016/07/16		
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16		
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16		

NOTE : The calibration interval of the above test instruments is 12 months.

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Page 19 of 74

Test Date: May 30, 2016

7.5.4 Test Data

1) Bluetooth Lov	v Energy
------------------	----------

						Temp.:	<u>22 °C, Humi 57 %</u>
Transmi	tting Frequency	Correction Factor	Meter Reading	Cond Peak Out	lucted put Power	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.07	-6.47	3.60	2.29	30.00	+26.40
19	2440	10.07	-6.43	3.64	2.31	30.00	+26.36
39	2480	10.07	-6.40	3.67	2.33	30.00	+26.33

Correction Factor	=	10.07 dB	
+) Meter Reading	=	-6.40 dBm	
Result	=	3.67 dBm = 2.33 mW	

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Peak	Off

** Although the DC power suplly voltage was varied between 85% and 115% of the nominal rated voltage, the Peak Output Power did not change.

2) non-BLE 1Mbps

Page 20 of 74

Test Date: M	Iay 30,	20	16
Гетр.: 22 °С,	Humi:	57	%

Transmitting Frequency		Correction Factor	Meter Reading	ading Conducted Peak Output Power		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.07	-6.48	3.59	2.29	30.00	+26.41
39	2441	10.07	-6.44	3.63	2.31	30.00	+26.37
78	2480	10.07	-6.43	3.64	2.31	30.00	+26.36

Correction Factor = 10.07 dB						
+) Meter Reading = -6.43 dBm						
Result = 3.64 dBm = 2.31 mW						
Minimum Margin: 30.00 - 3.64 = 26.36 (dB)						

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off
Peak	Off

** Although the DC power suplly voltage was varied between 85% and 115% of the nominal rated voltage, the Peak Output Power did not change.

3) non-BLE 2Mbps

Page 21 of 74

Test Date: M	Iay 30,	20	16
Гетр.: 22 °С,	Humi:	57	%

Transmitting Frequency		Correction Factor	Meter Reading	ing Conducted Peak Output Power		Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.07	-6.46	3.61	2.30	30.00	+26.39
19	2440	10.07	-6.44	3.63	2.31	30.00	+26.37
39	2480	10.07	-6.41	3.66	2.32	30.00	+26.34

Calculated result at 2480.000 Correction Factor	MHz, as the worst =	10.07 dB				
+) Meter Reading	=	-6.41 dBm				
Result	=	3.66 dBm = 2.32 mW				
Minimum Margin: 30.00 - 3.66 = 26.34 (dB)						
Minimum Margin 50.00 5.00	20.04 (ub)					

NOTES

1. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

2. Setting of measuring instrument(s) :

Detector Function	Video B.W.
Peak	Off

** Although the DC power suplly voltage was varied between 85% and 115% of the nominal rated voltage, the Peak Output Power did not change.

Page 22 of 74

7.6 Peak Power Density(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.6.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not	judged			
Peak Power Density o Peak Power Density o Peak Power Density o	f BLE is f non-BLE 1Mbp f non-BLE 2Mbp	s is s is	$\frac{2.03}{2.28}\\1.13$	_ dBm _ dBm _ dBm	at at at	$\begin{array}{r} \underline{2402.0} \\ \underline{2402.0} \\ \underline{2480.0} \end{array}$	MHz MHz MHz
Uncertainty of Measu	rement Results					± 1.7	_ dB(2o)

Remarks :

7.6.2 Test Instruments

Shielded Room S4								
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11				
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16				
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16				

NOTE : The calibration interval of the above test instruments is 12 months.

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

Test Data 7.6.4

Page 23 of 74

													<u>Te</u> Tem	st Dat p.: 22 ′	e∷May °C, H	y 30, 2 umi: 5	$\frac{016}{57\%}$
	Tran	smitting Freq	uency	Corre Fact	ction tor	Met	er Readir	ıg	C Peak I	onduct Power 1	ted Densit	v	Limit	s	Ma	rgin	
	СН	[MH	[z]	[d]	B]		[dBm]		[dBm]		[mV	V]	[dBm	1]	[d	B]	
	00	240	2	10.	07		-8.04		2.03		1.5	9	8.00	C	+ 5	5.97	
	19	244	0	10.	07		-8.65		1.42		1.3	9	8.00	C	+ 6	5.58	
	39	248	80	10.	07		-8.66		1.41		1.3	8	8.00	C	+ 6	5.59	
	Calcula	ted result at	2402.000 N	IHz, as	the wor	st poin	t shown	on unde	erline:								
		Correction	Factor	=		-	10.	.07 dB									
	+)	Meter Read	ing	=	:		-8.	.04 dBr	n				_				
	Minimu	Result ım Margin [:] 8	.00 - 2.03 =	= 5.97 (d I	3)		2.	.03 dBr	n = 1.	59 mV	V						
	NOTES 1. The p 2. The c 3. Setti	beak power d correction fac ng of measur	lensity com ctor shows t ing instrun	plied w the atte nent(s) :	ith the nuation	limit us 1 pad lo	sing 30 kl ss includ	Hz reso ling the	lution short,	bandw low lo	ridth o ss cab	of Spec le or a	etrum A Idapter	Analyz	er.		
		De	etector Fun	ction		RI	ES B.W.		Vi	deo B	.W.						
			Peak			e e	30kHz			100kH	z						
🔆 Agilen	ıt				R L Mkr:	1 2.402 0	₩ 15 GHz	Agilent							RL	kr1 2.44	0 000 GHz
Ref 0 dBm		Atten 10 d	B			-8.0	04 dBm Ref	0 dBm		At	ten 10 c	ЯB				-	-8.65 dBm
Log							Log						1				
10 dB/			mount				10 dB/					www	~ www.				
			r i	N.			`					/					
		<i>[</i>		<u> </u>								/		<u> </u>			
		A		$ \rangle$													
10		$ \Lambda^{n} \vee $		- V.	h I					- 1	γ			V	Ν.		
LgHV				_			LgHv	′ <u> </u>			- 1			· ·			
M1 S2		award			here	moth	M1 :	\$2 FS	M	ow.					- June	M	_
AA	whyper					and here	<u>i j</u>		and and the							Sold and a state of the state o	Mary and
£(†): f>50k							f>50	ik l									
Swp							Swp										
-																	
C	00.000.CU-						E MUE Com		100 CU-								
#Res BW 30	02 000 GHZ 0 kHz	#	VBW 100 kHz		#Sweep 10	5pan 10 ms (100	5 MHZ Cent 1 pts) #Res	er 2.440 e BW 30 kH:	2 GHZ		4	⊭VBW 100) kHz		#Sweep	د) 100 ms	pan 5 MHZ 1001 pts)
🔆 Agilen	ıt				RL	1 0 400 0											
Ref Ø dBm		Atten 10 d	В		MKL.	1 2.400 6 -8.6	6 dBm										
#Peak			1														
10			~~~~~~														
dB/			~~ ·	\sim													
				N.													
		a fort		+													
LgAv				V	$\left \right\rangle$												
M1 S2		m/			June												
S3 FS AAL	Man Marine Marine Star					Warry Mar	mon										
£(f):																	
Swp																	

Center 2.480 000 GHz #Res BW 30 kHz____

Span 5 MHz _#Sweep 100 ms (1001 pts)_

_#VBW 100 kHz

2) non-BLE 1Mbps

Page 24 of 74

						<u>Test Da</u> <u>Temp.: 22</u>	ate: May 30, 2016 2 °C, Humi: 57 %
Transm	itting Frequency	Correction Factor	Meter Reading	Cond Peak Pow	ucted er Density	Limits	Margin
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]
00	2402	10.07	-7.79	2.28	1.69	8.00	+ 5.72
39	2441	10.07	-8.86	1.21	1.32	8.00	+ 6.79
78	2480	10.07	-8.18	1.89	1.54	8.00	+ 6.11

Calculated result at 2402.000 M	IHz, as the wor	rst point shown on underline:
Correction Factor	=	10.07 dB
+) Meter Reading	=	-7.79 dBm
Result	=	2.28 dBm = 1.69 mW

Minimum Margin: 8.00 - 2.28 = 5.72 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s) :

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

3) non-BLE 2Mbps

Page 25 of 74

						<u>Test Da</u> <u>Temp.: 22</u>	ate: May 30, 203 2 °C, Humi: 57	16 %
Transmi	itting Frequency	Correction Factor	Meter Reading	Cond Peak Pow	lucted er Density	Limits	Margin	
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]	[dBm]	[dB]	
00	2402	10.07	-9.82	0.25	1.06	8.00	+ 7.75	
19	2440	10.07	-9.76	0.31	1.07	8.00	+ 7.69	
39	2480	10.07	-8.94	1.13	1.30	8.00	+ 6.87	

Calculated result at 2480.000 MHz, as the worst point shown on underline:							
Correction Factor	=	10.07 dB					
+) Meter Reading	=	-8.94 dBm					
Result	=	1.13 dBm = 1.30 mW					

Minimum Margin: 8.00 - 1.13 = 6.87 (dB)

NOTES

- 1. The peak power density complied with the limit using 30 kHz resolution bandwidth of Spectrum Analyzer.
- 2. The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.
- 3. Setting of measuring instrument(s) :

Detector Function	RES B.W.	Video B.W.
Peak	30kHz	100kHz

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 26 of 74

7.7 Spurious Emissions(Conduction)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.7.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged		
Uncertainty of Meas	urement Results		9 kHz - 1 GHz 1 GHz - 18 GHz 18 GHz - 40 GHz	$ \pm 1.4 \pm 1.7 \pm 2.3 $	_ dB(2σ) _ dB(2σ) _ dB(2σ)

Remarks :

7.7.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			
Attenuator	54A-10	W5675 (D-28)	Weinschel	2016/08/16			

NOTE : The calibration interval of the above test instruments is 12 months.

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Frequency Range	30 MHz - 25 GHz	Band-Edge
Res. Bandwidth	100 kHz	100 kHz
Video Bandwidth	300 kHz	300 kHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Page 27 of 74

7.7.4 Test Data

<u>Test Date</u> :May 30, 2016 <u>Temp.:22°C, Humi:57%</u>

2) non-BLE 1Mbps

Page 30 of 74

3) non-BLE 2Mbps

Page 33 of 74

🔆 Agilent

Ref0dBm ≢Peak [

Log 10

dB/

DI -26.5 dBm

LgAv

M1 S2 Start 30.0 MHz

> Marker 1

🔆 Agilent

Ref0 dBm ,≢Peak _____

#Res BW 100 kHz

Trace (1) Type Freq

Band-Edge Emission

Page 36 of 74

<u>Test Date :May 30, 2016</u> <u>Temp.:22°C, Humi:57%</u>

1) Bluetooth Low Energy

Low Channel

High Channel

Page 37 of 74

2) non-BLE 1Mbps

Low Channel

High Channel

3) non-BLE 2Mbps

Low Channel

High Channel

Remarks :

7.8.2 Test Instruments

Measurement Room M2								
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27				
AMN (main)	KNW-242	8-431-14 (D-7)	Kyoritsu	2016/10/28				
AMN (sub)	ESH3-Z5	893045/007 (D-12)	Rohde & Schwarz	2016/08/27				
RF Cable	RG223/U	(H-35)	HUBER+SUHNER	2017/05/30				

NOTE : The calibration interval of the above test instruments is 12 months.

Page 40 of 74

7.8.3 Test Method and Test Setup (Diagrammatic illustration)

The preliminary tests were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for final tests.

- Side View -

Page 41 of 74

7.8.4 Test Data

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2480MHz / non-BLE 2Mbps, Bluetooth Low Energy and non-BLE 1Mbps) has been listed.

Test voltage : 120VAC 60Hz

Measured phase : L1

Test Date: June 10, 2016 Temp.: 23 °C, Humi.: 49 %

Frequency	Corr. Factor	Meter R [dB()	eadings µV)]	Limits [dB(µV)]		Results [dB(µV)]		Margin [dB]		Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.217	10.1	28.1		62.9	52.9	38.2		+24.7		-
0.438	10.1	32.3	28.7	57.1	47.1	42.4	38.8	+14.7	+ 8.3	-
0.487	10.1	30.0		56.2	46.2	40.1		+16.1		-
0.538	10.1	28.1		56.0	46.0	38.2		+17.8		-
6.496	10.3	21.8		60.0	50.0	32.1		+27.9		-
8.533	10.4	22.5		60.0	50.0	32.9		+27.1		-

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- The symbol of "<" means "or less".
 The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.438 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (AVE) = $10.1 + 28.7 = 38.8 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 42 of 74

Test voltage : 120VAC 60Hz

Measured phase : L2

<u>Test Date: June 10, 2016</u> <u>Temp.: 23 °C, Humi.: 49 %</u>

Frequency	Corr. Factor	Meter R [dB(eadings µV)]	Lin [dB()	nits µV)]	Res [dB()	ults µV)]	Mar [dB	gin 5]	Remarks
[MHz]	[dB]	QP	AVE	QP	AVE	QP	AVE	QP	AVE	
0.217	10.1	36.1	33.1	62.9	52.9	46.2	43.2	+16.7	+ 9.7	-
0.438	10.1	28.1		57.1	47.1	38.2		+18.9		-
0.487	10.1	29.1	10.2	56.2	46.2	39.2	20.3	+17.0	+25.9	-
0.540	10.1	31.0	25.4	56.0	46.0	41.1	35.5	+14.9	+10.5	-
6.496	10.3	23.1		60.0	50.0	33.4		+26.6		-
8.533	10.3	23.5		60.0	50.0	33.8		+26.2		-

NOTES

- 1. The spectrum was checked from 150 kHz to 30 MHz.
- 2. The correction factor includes the AMN insertion loss and the cable loss.
- 3. The symbol of "<" means "or less".
- 4. The symbol of ">" means "more than".
- 5. The symbol of "--" means "not applicable".
- 6. Calculated result at 0.217 MHz, as the worst point shown on underline: Correction Factor + Meter Reading (AVE) = $10.1 + 33.1 = 43.2 \text{ dB}(\mu \text{V})$
- 7. QP : Quasi-Peak Detector / AVE : Average Detector
- 8. Test receiver setting(s) : CISPR QP 9 kHz / Average 9 kHz

Page 43 of 74

7.9 Radiated Emission

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.9.1 Test Results

For the standard,	\square - Passed	\Box - Failed	\Box - Not judged			
Min. Limit Margin (Q	uasi-Peak)		<u>4.4</u> dB	at _	195.58	MHz
Uncertainty of Measur	rement Results		9 kHz – 30 MHz 30 MHz – 300 MHz 300 MHz – 1000 MHz 1 GHz – 6 GHz 6 GHz – 18 GHz 18 GHz – 40 GHz	z _ z _ z _ z _ z _ z _	$ \begin{array}{r} \pm 3.0 \\ \pm 3.8 \\ \pm 4.8 \\ \pm 4.7 \\ \pm 4.6 \\ \pm 5.5 \\ \end{array} $	_ dB(2o) _ dB(2o) _ dB(2o) _ dB(2o) _ dB(2o) _ dB(2o) _ dB(2o)

Remarks : Y axis position.

Page 44 of 74 $\,$

7.9.2 Test Instruments

Anechoic Chamber A2									
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due					
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27					
AMN (main)	HFH2-Z2	872096/25 (C-2)	Rohde & Schwarz	2016/07/26					
AMN (sub)	RG213/U	(H-28)	HUBER+SUHNER	2016/07/26					
Pre-Amplifier	310N	304573 (A-17)	SONOMA	2017/04/03					
Biconical Antenna	VHA9103/BBA9106	1184 (C-43)	Schwarzbeck	2017/05/18					
Log-periodic Antenna	UHALP9108-A1	0419 (C-28)	Schwarzbeck	2017/05/18					
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2017/04/03					
Site Attenuation		(H-15)		N/A					
Pre-Amplifier	TPA0118-36	1010 (A-37)	ТОҮО	2017/05/17					
Horn Antenna	91888-2	562 (C-41-1)	EATON	2016/06/16					
Horn Antenna	91889-2	568 (C-41-2)	EATON	2016/06/16					
Horn Antenna	3160-04	9903-1053 (C-55)	EMCO	2016/06/29					
Horn Antenna	3160-05	9902-1061 (C-56)	EMCO	2016/06/29					
Horn Antenna	3160-06	9712-1045 (C-57)	EMCO	2016/06/29					
Horn Antenna	3160-07	9902-1113 (C-58)	EMCO	2016/06/29					
Horn Antenna	3160-08	9904-1099 (C-59)	EMCO	2016/06/29					
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2016/06/28					
Attenuator	54A-10	W5713 (D-29)	Weinschel	2016/08/16					
Attenuator	2-10	BA6214 (D-79)	Weinschel	2016/11/19					
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/01/06					
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2017/01/06					
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2017/01/06					
Band Rejection Filter	BRM50701	029 (D-93)	MICRO-TRONICS	2017/02/17					
SVSWR		(H-19)		N/A					
Double-Ridge Guide Horn Antenna	3117	00126730 (C-73)	ETS LINDGREN	2016/11/18					
Pre-Amplifier	WJ-6611-513	0289 (A-23)	Watkins Johnson	2017/01/06					
Pre-Amplifier	WJ-6882-824	0048 (A-21)	Watkins Johnson	2017/01/06					
Pre-Amplifier	DBL-0618N515	001 9830 (A-33)	DBS Microwave	2017/01/06					

NOTE : The calibration interval of the above test instruments is 12 months.

Page 45 of 74

7.9.3 Test Method and Test Setup (Diagrammatic illustration)

7.9.3.1 Radiated Emission 9 kHz – 30 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and ground-parallel).

According to KDB 937606, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for the final tests.

- Side View -

Page 46 of 74

7.9.3.2 Radiated Emission 30 MHz – 1000 MHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions. This configurations was used for the final tests.

8

- Side View -

Page 47 of 74

7.9.3.3 Radiated Emission above 1 GHz

The preliminary tests were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration(in X, Y and Z axis), cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for the final tests.

The setting of the measuring instruments are shown as follows:

Type	Peak	Average
Detector Function	Peak	Peak
Res. Bandwidth	$1 \mathrm{~MHz}$	$1 \mathrm{MHz}$
Video Bandwidth	$3 \mathrm{~MHz}$	≥ 1/T *1)
Video Filtering	Linear Voltage	Linear Voltage
Sweep Time	AUTO	AUTO
Trace	Max Hold	Max Hold

Note: 1. T: Minimum transmission duration

Average (VBW) Setting:

Modo	Interval	Cycle	Duty cycle	Burst on period(T)	Min. VBW(1/T)	VBW Setting
Widde	(msec)	(msec)	(%)	(msec)	(kHz)	(kHz)
BLE	0.11	2.22	94.9%	2.11	0.47	0.50
non-BLE (1Mbps)	0.11	2.22	94.9%	2.11	0.47	0.50
non-BLE (2Mbps)	0.11	1.18	90.3%	1.07	0.94	1.00

NOTE

When the EUT is manipulated through three different orientations, the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.

Page 49 of 74

7.9.4 Test Data

7.9.4.1 Band-edge Compliance

Test Date :June 8, 2016 Temp.:21°C, Humi:56%

Mode of EUT : 0ch: 2402 MHz, (Bluetooth Low Energy) Antenna Polarization : Horizontal

Page 50 of 74

Page 51 of 74

Page 52 of 74

Page 53 of 74

Mode of EUT : 0ch: 2402 MHz, (non-BLE 1Mbps) Antenna Polarization : Horizontal

Page 54 of 74

Page 55 of 74

Page 56 of 74

Page 57 of 74

Mode of EUT : 0ch: 2402 MHz, (non-BLE 2Mbps) Antenna Polarization : Horizontal

Page 58 of 74

Page 59 of 74

Page 60 of 74

Page 61 of 74

7.9.4.2 Other Spurious Emission (9kHz – 30MHz)

<u>Test Date</u> :June 9, 2016 <u>Temp.:23°C</u>, Humi:49%

Mode of EUT : Bluetooth LE / non-BLE 1Mbps / non-BLE 2Mbps Results : No spurious emissions in the range 20dB below the limit.

7.9.4.3 Other Spurious Emission (30MHz – 1000MHz)

Mode of EUT : All modes have been investigated and the worst case mode for channel (39ch: 2480MHz / non-BLE 2Mbps, Bluetooth Low Energy and non-BLE 1Mbps) has been listed.

Test voltage : 1 Antenna pole :	<u>120VAC 60Hz</u> Horizontal					<u>Test Date: .</u> Temp.: 23 °C,	<u>June 9, 2016</u> Humi: 49 %
Frequency [MHz]	Antenna Factor [dB(1/m)]	Corr. Factor [dB]	Meter Readings [dB(µV)]	Limits [dB(µV/m)]	Results [dB(µV/m)]	Margin [dB]	Remarks
95.88	9.4	-26.8	39.7	43.5	22.3	+21.2	-
178.19	15.8	-26.0	39.5	43.5	29.3	+14.2	-
195.58	16.3	-25.9	48.7	43.5	39.1	+ 4.4	-
326.10	14.3	-25.0	47.1	46.0	36.4	+ 9.6	-
528.98	17.9	-24.1	44.9	46.0	38.7	+ 7.3	-
672.14	19.9	-23.6	39.7	46.0	36.0	+10.0	_

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 1000 MHz.
- 3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.
- 4. The symbol of "<" means "or less".
- 5. The symbol of ">" means "more than".
- 6. Calculated result at 195.58 MHz, as the worst point shown on underline:
- Antenna Factor + Correction Factor + Meter Reading = $16.3 + (-25.9) + 48.7 = 39.1 \text{ dB}(\mu\text{V/m})$ Antenna Height : 165 cm, Turntable Angle : $108 \circ$
- 7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 62 of 74

Test voltage : 120VAC 60Hz

Test Date: June 9, 2016 Temp.: 23 °C, Humi: 49 %

Antenna pole : Vertical

Frequency	Antenna Factor	Corr. Factor	Meter Readings	Limits	Results	Margin	Remarks
[MHz]	[dB(1/m)]	[dB]	$[dB(\mu V)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]	
161.44	15.3	-26.2	37.4	43.5	26.5	+17.0	-
 195.61	16.3	-25.9	47.4	43.5	37.8	+ 5.7	-
326.25	14.3	-25.0	44.8	46.0	34.1	+11.9	-
346.42	14.6	-24.9	40.4	46.0	30.1	+15.9	-
586.91	18.9	-24.0	39.9	46.0	34.8	+11.2	-
835.59	21.6	-22.7	< 27.0	46.0	< 25.9	> +20.1	-

NOTES

1. Test Distance : 3 m

2. The spectrum was checked from 30 MHz to 1000 MHz.

3. The correction factor is composed of cable loss, pad attenuation and/or amplifier gain.

4. The symbol of "<" means "or less".5. The symbol of ">" means "more than".

6. Calculated result at 195.61 MHz, as the worst point shown on underline:

Antenna Factor + Correction Factor + Meter Reading = $16.3 + (-25.9) + 47.4 = 37.8 \text{ dB}(\mu \text{V/m})$ Antenna Height: 100 cm, Turntable Angle: 206 °

7. Test receiver setting(s) : CISPR QP 120 kHz [QP : Quasi-Peak]

Page 63 of 74

7.9.4.4 Other Spurious Emission (Above 1000MHz)

Mode of EUT : Bluetooth Low Energy

<u>Test Date</u> :	June 8, 2016
<u>Temp.: 21 °C</u>	, Humi: 56 %

Frequency	Antenna	Corr.		Meter Read	lings [dB(µV	<i>(</i>)]	Lin	nits	Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	V/m)]	[dB (uV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test conditio	on:Tx Low	Ch										
2274.0	21.3	0.8	27.7	20.6	28.0	21.1	74.0	54.0	50.1	43.2	+10.8	
2530.0	21.3	0.9	30.1	22.8	29.1	22.2	74.0	54.0	52.3	45.0	+ 9.0	
4804.0	34.4	-31.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.0	< 41.0	> +13.0	
12010.0	38.9	-35.0	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.9	< 41.9	> +12.1	
19216.0	40.5	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX Midd	lle Ch										
2312.0	21.4	0.8	28.4	21.5	28.6	21.8	74.0	54.0	50.8	44.0	+10.0	
2568.0	21.2	0.9	29.6	21.8	29.0	20.6	74.0	54.0	51.7	43.9	+10.1	
4880.0	34.4	-31.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.2	< 41.2	> +12.8	
7320.0	35.8	-31.0	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.8	< 42.8	> +11.2	
12200.0	39.0	-35.3	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.7	< 41.7	> +12.3	
19520.0	40.4	-42.7	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX High	Ch										
2352.0	21.6	0.8	29.8	23.6	29.9	23.8	74.0	54.0	52.3	46.2	+ 7.8	
2608.0	21.1	0.9	28.9	21.9	27.8	19.1	74.0	54.0	50.9	43.9	+10.1	
4960.0	34.3	-31.3	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.0	< 41.0	> +13.0	
7440.0	35.8	-31.0	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.8	< 42.8	> +11.2	
12400.0	39.0	-35.8	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.2	< 41.2	> +12.8	
19840.0	40.4	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	

74.0

54.0 < 47.4 < 37.4 > +16.6

Calculated result at 2352.0 MHz, as the worst point shown on underline:							
Antenna Factor	=	21.6 dB(1/m)					
Corr. Factor	=	0.8 dB					
+) Meter Reading	=	23.8 dB(µV)					
Result	=	46.2 $dB(\mu V/m)$					
Minimum Margin: 54.0 - 46.2 = 7.8 (dB)							

NOTES

22320.0

40.6

1. Test Distance : 3 m $\,$

2. The spectrum was checked from 1 GHz to 25 GHz (10th harmonic of the highest fundamental frequency).

-43.2 < 50.0 < 40.0 < 50.0 < 40.0

3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 20dB Pad Att. - Pre-Amp. Gain [dB] (1.0 - 7.6GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. - Pre-Amp. Gain [dB] (7.6 - 18.0GHz)

Corr. Factor [dB] = Cable Loss - Pre-Amp. Gain [dB] (over 18 GHz)

4. The symbol of "<" means "or less".

5. The symbol of ">" means "more than".

6. PK : Peak / AVE : Average

Page 64 of 74

TX Low/Middle/High ch (Vertical)

Page 65 of 74

Mode of EUT : non-BLE 1Mbps

	Test	Da	ite: .	June	8,	20	16
Те	mp.:	21	°C.	Hur	ni:	56	%

Frequency	Antenna	Antenna Corr.	Meter Readings [dB(µV)]				Limits		Re	sults	Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[dB(µ	V/m)]	[dB (uV/m)]	[dB]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test conditio	on:Tx Low	Ch										
2274.0	21.3	0.8	27.8	21.0	27.7	21.5	74.0	54.0	49.9	43.6	+10.4	
2530.0	21.3	0.9	30.2	23.3	29.3	22.4	74.0	54.0	52.4	45.5	+ 8.5	
4804.0	34.4	-31.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.0	< 41.0	> +13.0	
12010.0	38.9	-34.8	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.1	< 42.1	> +11.9	
19216.0	40.5	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX Midd	lle Ch										
2313.0	21.4	0.8	29.0	21.9	28.2	22.0	74.0	54.0	51.2	44.2	+ 9.8	
2569.0	21.2	0.9	29.9	22.3	28.0	20.8	74.0	54.0	52.0	44.4	+ 9.6	
4882.0	34.4	-31.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.2	< 41.2	> +12.8	
7323.0	35.7	-30.9	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.8	< 42.8	> +11.2	
12205.0	39.0	-35.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.9	< 41.9	> +12.1	
19528.0	40.4	-42.7	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX High	Ch										
2352.0	21.6	0.8	29.7	24.1	29.6	24.1	74.0	54.0	52.1	46.5	+ 7.5	
2608.0	21.1	0.9	29.6	22.3	28.3	19.5	74.0	54.0	51.6	44.3	+ 9.7	
4960.0	34.3	-31.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.1	< 41.1	> +12.9	
7440.0	35.8	-30.9	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.9	< 42.9	> +11.1	
12400.0	39.0	-35.6	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.4	< 41.4	> +12.6	
19840.0	40.4	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22320.0	40.6	-43.2	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	

Calculated result at 2352.0 MHz, as the worst point shown on underline: Antenna Factor = 21.6 dB(1/m) Come Factor = 0.8 dB

Corr. Factor	=	0.8	dB						
+) Meter Reading	=	24.1	dB(µV)						
Result	=	46.5	$dB(\mu V/m)$						
Minimum Margin: 54.0 - 46.5 = 7.5 (dB)									

NOTES

1. Test Distance : 3 m $\,$

2. The spectrum was checked from 1 GHz to $25~\mathrm{GHz}$ (10th harmonic of the highest fundamental frequency).

3. The correction factor is shown as follows:

- Corr. Factor [dB] = Cable Loss + 20dB Pad Att. Pre-Amp. Gain [dB] (1.0 7.6GHz)
- Corr. Factor [dB] = Cable Loss + 10dB Pad Att. Pre-Amp. Gain [dB] (7.6 18.0GHz)
- Corr. Factor [dB] = Cable Loss Pre-Amp. Gain [dB] (over 18 GHz)

4. The symbol of "<" means "or less".

- 5. The symbol of ">" means "more than".
- 6. PK : Peak / AVE : Average

Page 66 of 74

TX Low/Middle/High ch (Vertical)

Page 67 of 74

Mode of EUT : non-BLE 2Mbps

	Test	Da	ite: .	June	8,	20	16
Те	mp.:	21	°C.	Hum	i:	56	%

Frequency	Antenna	Antenna Corr.	Meter Readings [dB(µV)]				Limits		Results		Margin	Remarks
	Factor	Factor	Hor	izontal	Ve	rtical	[qR(h	(V/m)]	[qR(u V/m)]	[qR]	
[MHz]	[dB(1/m)]	[dB]	РК	AVE	РК	AVE	РК	AVE	РК	AVE		
Test conditio	on:Tx Low	Ch										
2274.0	21.3	0.8	28.5	20.5	28.1	21.0	74.0	54.0	50.6	43.1	+10.9	
2530.0	21.3	0.9	29.5	22.9	29.2	22.0	74.0	54.0	51.7	45.1	+ 8.9	
4804.0	34.4	-31.4	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.0	< 41.0	> +13.0	
12010.0	38.9	-34.8	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.1	< 42.1	> +11.9	
19216.0	40.5	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX Midd	lle Ch										
2312.0	21.4	0.8	28.1	21.6	28.4	21.6	74.0	54.0	50.6	43.8	+10.2	
2568.0	21.2	0.9	29.4	22.0	28.8	20.5	74.0	54.0	51.5	44.1	+ 9.9	
4880.0	34.4	-31.3	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.1	< 41.1	> +12.9	
7320.0	35.8	-30.9	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.9	< 42.9	> +11.1	
12200.0	39.0	-35.1	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.9	< 41.9	> +12.1	
19520.0	40.4	-42.7	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.7	< 37.7	> +16.3	
Test conditio	on : TX High	Ch										
2352.0	21.6	0.8	30.0	23.6	29.8	23.6	74.0	54.0	52.4	46.0	+ 8.0	
2608.0	21.1	0.9	28.8	21.9	28.3	19.2	74.0	54.0	50.8	43.9	+10.1	
4960.0	34.3	-31.2	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.1	< 41.1	> +12.9	
7440.0	35.8	-30.9	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 52.9	< 42.9	> +11.1	
12400.0	39.0	-36.0	< 48.0	< 38.0	< 48.0	< 38.0	74.0	54.0	< 51.0	< 41.0	> +13.0	
19840.0	40.4	-42.8	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.6	< 37.6	> +16.4	
22320.0	40.6	-43.2	< 50.0	< 40.0	< 50.0	< 40.0	74.0	54.0	< 47.4	< 37.4	> +16.6	

Calculated result at 2352.0 MHz, as the worst point shown on underline: Antenna Factor = 21.6 dB(1/m)

Corr. Factor	=	0.8	dB
+) Meter Reading	=	23.6	dB(µV)
Result	=	46.0	$dB(\mu V/m)$
Minimum Margin: 54.0 - 46.0 =	8.0 (dB)		

NOTES

1. Test Distance : 3 m $\,$

2. The spectrum was checked from 1 GHz to $25~\mathrm{GHz}$ (10th harmonic of the highest fundamental frequency).

3. The correction factor is shown as follows:

- Corr. Factor [dB] = Cable Loss + 20dB Pad Att. Pre-Amp. Gain [dB] (1.0 7.6GHz)
- Corr. Factor [dB] = Cable Loss + 10dB Pad Att. Pre-Amp. Gain [dB] (7.6 18.0GHz)
- Corr. Factor [dB] = Cable Loss Pre-Amp. Gain [dB] (over 18 GHz)

4. The symbol of "<" means "or less".

- 5. The symbol of ">" means "more than".
- 6. PK : Peak / AVE : Average

Page 68 of 74

Mode of EUT : non-BLE 2Mbps TX Low/Middle/High ch (Horizontal)

TX Low/Middle/High ch (Vertical)

Page 69 of 74

7.10 SAR Test Exclusion

7.10.1 Maximum Output Power (Average)

		Data	01 //	Frequency	Average Power (dBm)			
Band	Mode	Rate	Ch#	(MHz)	Measured	Spec. Max.		
			0	2402	3.39			
	BLE	1 Mbps	19	2440	3.44	4.0		
2.4 GHz (DTS)			39	2480	3.39			
	non-BLE	1 Mbps	0	2402	3.39			
			39	2441	3.44	4.0		
			78	2480	3.40			
		2 Mbps	0	2402	3.38			
			19	2440	3.42	4.0		
			39	2480	3.38			

Note(s):

Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units. (BLE GFSK and non-BLE 1Mpbs/2Mbps GFSK configurations are considered separately.)

- When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.15 configurations with the same maximum output power.

7.10.2 Standalone SAR Test Exclusion Considerations (KDB 447498 D01)

The 1 g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by;

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [\sqrt{f} (GHz)] ≤ 3.0 , where

- f (GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

SAR exclusion calculations for antenna \leq 50 mm from the user

D 1	Freq.	Max. Power		Distance	/TT11.1.1	Test
Band	(MHz)	(dBm)	(mW)	(mm)	Inreshold	Exclusion
BLE	2440	4.0	2.5	< 5	0.9	YES

The minimum user separation distance was assumed to be 0 mm for the purpose of the SAR exclusion calculations.

Conclusion:

The device qualifies for the Standalone SAR test exclusion because the computed value is < 3.

Page 70 of 74

7.11 Test Setup (Photographs)

7.11.1 AC Powerline Conducted Emission

-Front View-

-Side View-

Photograph present configuration with maximum emission

Page 71 of 74 $\,$

7.11.2 Radiated Emission(9kHz - 1000MHz)

-Front View-

 $-\mbox{Rear}\,\mbox{View}\,-$ Photograph present configuration with maximum emission

Page 72 of 74 $\,$

-Xaxis-

-Yaxis-

Page 73 of 74 $\,$

-Zaxis-

Page 74 of 74 $\,$

7.11.3 Radiated Emission(Above 1GHz)

-Front View-

 $-\mbox{Rear View}-$ Photograph present configuration with maximum emission