

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180700696303 Page: 1 of 27

TEST REPORT

Application No.:	SZEM1807006963CR				
Applicant:	Voxx Accessories Corp.				
Address of Applicant:	3502 Woodview Trace suite 220 Indianapolis Indiana 46268 United States				
Manufacturer:	Shenzhen Gospell Smarthome Electronic Co., Ltd				
Address of Manufacturer:	East of 01st-04th Floor, Block A, No.1 Industrial park, Fenghuanggang, South of No.1 Baotian Road, Xixiang street, Bao'an District, Shenzhen, Guangdong, China				
Factory:	Shenzhen Gospell Smarthome Electronic Co., Ltd				
Address of Factory:	East of 01st-04th Floor, Block A, No.1 Industrial park, Fenghuanggang, South of No.1 Baotian Road, Xixiang street, Bao'an District, Shenzhen, Guangdong, China				
Equipment Under Test (EUT):				
EUT Name:	915MHz RF Remote Control				
Model No.:	HSCARE2FOB				
Trade mark:	RCA				
FCC ID:	VIXHSCARE2FOB				
Standard(s) :	47 CFR Part 15, Subpart C 15.249				
Date of Receipt:	2018-09-03				
Date of Test:	2018-09-06 to 2018-11-16				
Date of Issue:	2018-11-19				
Test Result:	Pass*				

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180700696303 Page: 2 of 27

	Revision Record						
Version	Chapter	Date	Modifier	Remark			
01		2018-11-19		Original			

Authorized for issue by:		
	Bin chen	
	Bill Chen /Project Engineer	-
	Evic Fu	
	Eric Fu /Reviewer	-

Report No.: SZEM180700696303 Page: 3 of 27

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass	

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass		
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass		
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass		
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass		

Report No.: SZEM180700696303 Page: 4 of 27

3 Contents

		Page
1	1 COVER PAGE	1
2	2 TEST SUMMARY	3
3	3 CONTENTS	4
-		
4	4 GENERAL INFORMATION	5
	4.1 DETAILS OF E.U.T.	
	4.2 DESCRIPTION OF SUPPORT UNITS	-
	4.3 MEASUREMENT UNCERTAINTY	-
	4.4 TEST LOCATION	
	4.5 TEST FACILITY	
	4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	6
5	5 EQUIPMENT LIST	7
6	6 RADIO SPECTRUM TECHNICAL REQUIREMENT	9
	6.1 ANTENNA REQUIREMENT	9
	6.1.1 Test Requirement:	
	6.1.2 Conclusion	9
7	7 RADIO SPECTRUM MATTER TEST RESULTS	
	7.1 20DB BANDWIDTH	10
	7.1.1 E.U.T. Operation	
	7.1.2 Test Setup Diagram	
	7.1.3 Measurement Procedure and Data	
	7.2 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A))	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Setup Diagram	
	7.2.3 Measurement Procedure and Data	
	7.3 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.3.1 E.U.T. Operation	
	7.3.2 Test Setup Diagram	
	7.3.3 Measurement Procedure and Data	
	7.4 RADIATED EMISSIONS	
	7.4.1 E.U.T. Operation	
	7.4.2 Test Setup Diagram	
	7.4.3 Measurement Procedure and Data	
8	8 PHOTOGRAPHS	27
	8.1 Test Setup	
	8.2 EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	

Report No.: SZEM180700696303 Page: 5 of 27

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.0V by 3.0V x 1"CR2023" battery
Operation Frequency	915MHz
Modulation Type	ООК
Number of Channels	1
Antenna Type	PCB
Antenna Gain	-3dBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power	± 0.75dB
5	RF power density	± 2.84dB
6	Conducted Spurious emissions	± 0.75dB
7	PE Dedicted newer	± 4.5dB (below 1GHz)
/	RF Radiated power	± 4.8dB (above 1GHz)
8	Dedicted Courieus emission test	± 4.5dB (Below 1GHz)
0	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Report No.: SZEM180700696303 Page: 6 of 27

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180700696303 Page: 7 of 27

5 Equipment List

20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2018-09-25	2019-09-24
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2018-09-27	2019-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018-09-27	2019-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018-09-25	2019-09-24

RE in Chamber					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26
Pre-amplifier (18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Report No.: SZEM180700696303 Page: 8 of 27

RE in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018-09-25	2019-09-24
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM025-01	2018-07-12	2019-07-11

Restricted Band Around Fundamental Frequency						
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04	
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018-09-25	2019-09-24	
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26	
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01	
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM025-01	2018-07-12	2019-07-11	

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2018-09-27	2019-09-26
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2018-09-27	2019-09-26
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2018-09-27	2019-09-26
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07

Report No.: SZEM180700696303 Page: 9 of 27

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

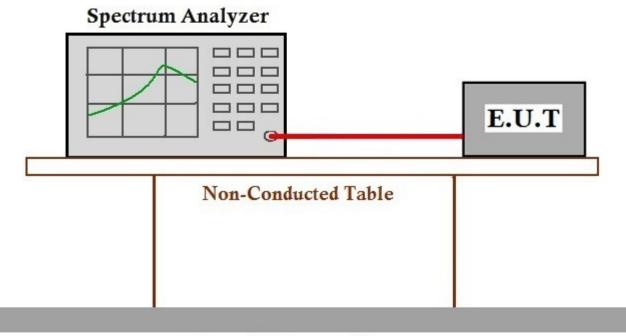
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -3dBi.

Antenna location: Refer to Appendix(Internal photos)

Report No.: SZEM180700696303 Page: 10 of 27

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

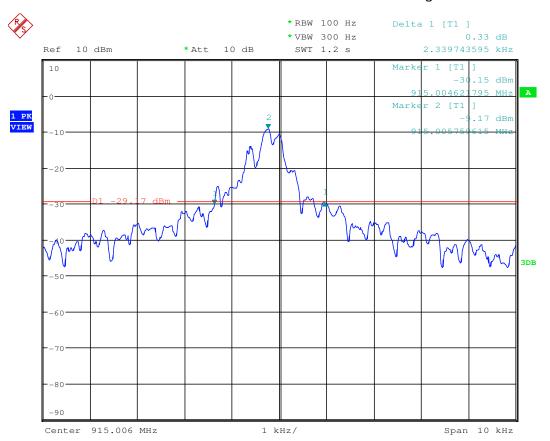

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:24.8 °CHumidity:46.9 % RHAtmospheric Pressure:1010mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram


Ground Reference Plane

7.1.3 Measurement Procedure and Data

Test channel	20dB bandwidth (kHz)	Results
915MHz	2.34	Pass

Report No.: SZEM180700696303 Page: 11 of 27

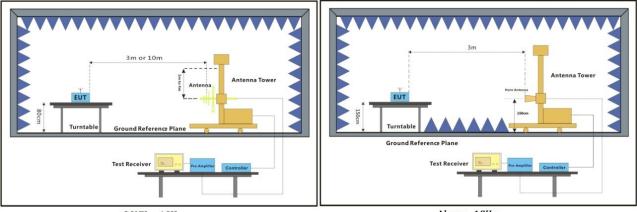
Date: 24.0CT.2018 15:47:11

Report No.: SZEM180700696303 Page: 12 of 27

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement47 CFR Part 15, Subpart C 15.249(a)Test Method:ANSI C63.10 (2013) Section 6.5&6.6Measurement Distance:3mLimit:

Frequency	Limit (dBuV/m @3m)	Remark
	94.0	Average Value
2400MHz-2483.5MHz	114.0	Peak Value


Report No.: SZEM180700696303 Page: 13 of 27

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.1 °CHumidity:39.2 % RHAtmospheric Pressure:1010mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.2.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180700696303 Page: 14 of 27

Peak value:

Mode: a Polarization: Horizontal;

Freq (MHz)	Cable_ Loss (dB)	Antenna_ Factor (dB/m)	Preamp_ Gain (dB)	Read_ Level (dBuV)	Level (dBuV/m)	Limit_ Line (dBuV/m)	Over_ Limit (dB)
915	3.62	29.88	26.97	84.36	90.89	114	-23.11
Mode :a P	olarization: V	ertical					
Freq (MHz)	Cable_ Loss (dB)	Antenna_ Factor (dB/m)	Preamp_ Gain (dB)	Read_ Level (dBuV)	Level (dBuV/m)	Limit_ Line (dBuV/m)	Over_ Limit (dB)
914.997	3.62	29.88	26.97	77.22	83.75	114	-30.25

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

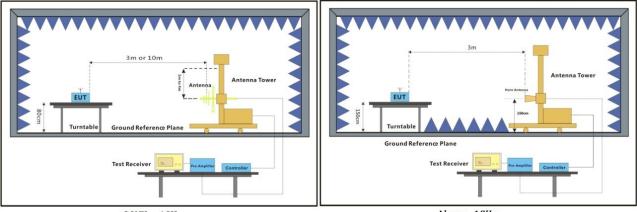
Report No.: SZEM180700696303 Page: 15 of 27

7.3 Restricted Band Around Fundamental Frequency

Test Requirement47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209Test Method:ANSI C63.10 (2013) Section 6.4&6.5&6.6Measurement Distance:3mLimit:

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


Report No.: SZEM180700696303 Page: 16 of 27

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:20.8 °CHumidity:52.5 % RHAtmospheric Pressure:1010mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

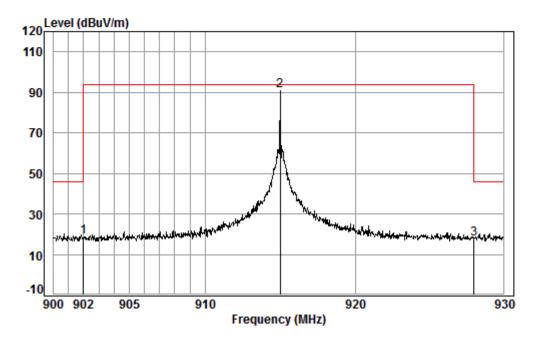
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

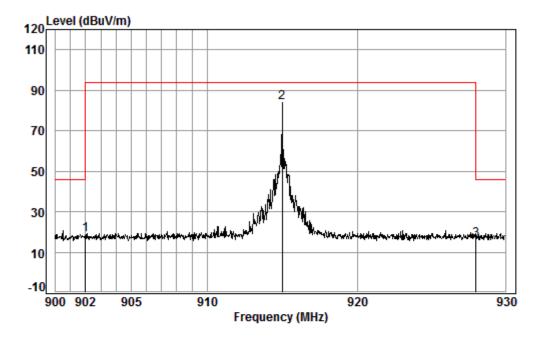
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180700696303 Page: 17 of 27

Mode:a; Polarization:Horizontal;


Condition: 3m HORIZONTAL Job No. : 06962CR&06963CR Test mode: a

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp 3	902.00 915.00 928.00	3.62	29.88		84.36	90.89	94.00	-3.11

Report No.: SZEM180700696303 Page: 18 of 27

Mode:a; Polarization:Vertical;

Condition: 3m VERTICAL Job No. : 06962CR&06963CR

Test mode: a

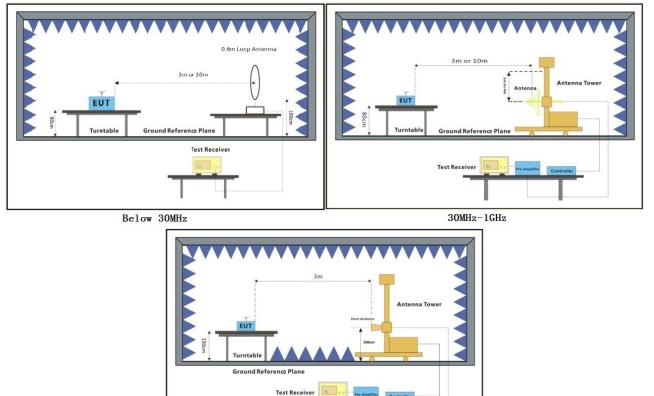
	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp 3	915.00	3.62	29.88	27.04 26.97 26.90	77.22	83.75	94.00	-10.25

Report No.: SZEM180700696303 Page: 19 of 27

7.4 Radiated Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3


Report No.: SZEM180700696303 Page: 20 of 27

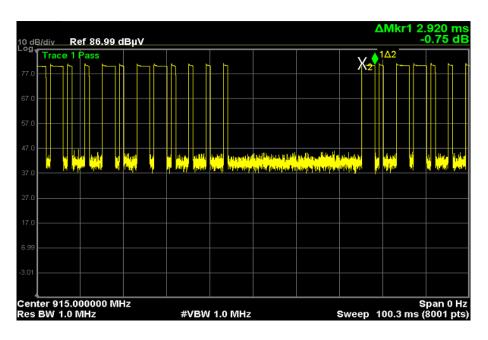
7.4.1 E.U.T. Operation

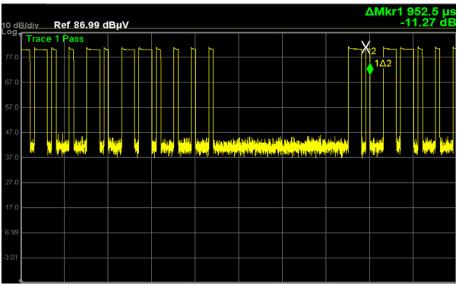
Operating Environment:

Temperature:25.6 °CHumidity:59.3 % RHAtmospheric Pressure:1010mbarTest modea:TX mode_Keep the EUT in transmitting with modulation mode.

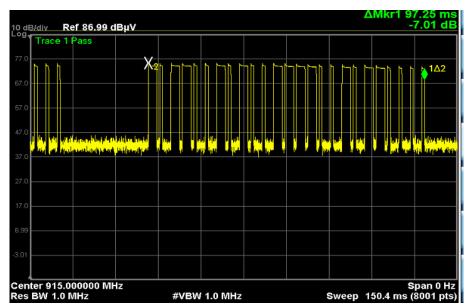
7.4.2 Test Setup Diagram

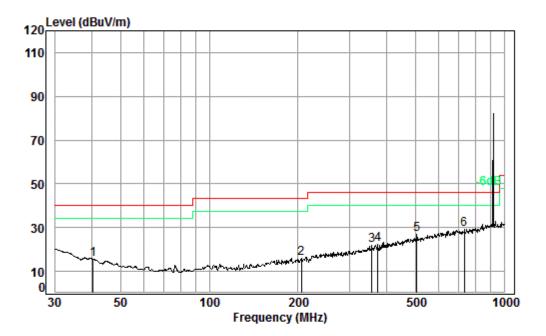
Above 1GHz


7.4.3 Measurement Procedure and Data


For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

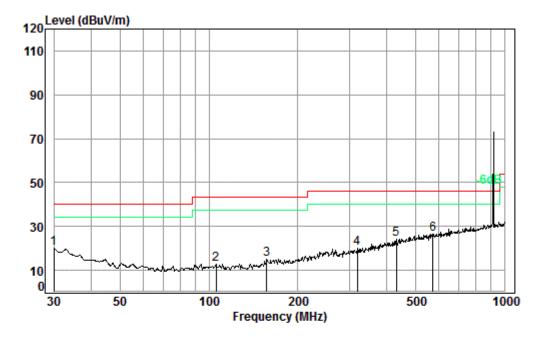
Report No.: SZEM180700696303 Page: 21 of 27


Measurement Data	
Average value:	
	Average value=Peak value + PDCF
Calculate Formula:	PDCF=20 log(Duty cycle)
	Duty cycle= T on time / T period
	Ton time =46.47ms
Test data:	T period =100ms
	Average value= -6.66dB


Report No.: SZEM180700696303 Page: 22 of 27

Report No.: SZEM180700696303 Page: 23 of 27

30MHz~1GHz QP value: Mode: a; Polarization: Horizontal


Condition: 3m VERTICAL Job No. : 06962CR&06963CR Test mode: a

		Cable Ant						0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	40.42	0.61	17.35	27.43	25.02	15.55	40.00	-24.45
2	204.96	1.43	16.68	26.89	24.69	15.91	43.50	-27.59
3	355.43	2.08	21.25	26.96	25.54	21.91	46.00	-24.09
4	372.00	2.12	21.69	27.05	25.47	22.23	46.00	-23.77
5	504.71	2.61	24.70	27.62	27.46	27.15	46.00	-18.85
6 p	p 731.92	3.00	28.10	27.74	25.80	29.16	46.00	-16.84

Report No.: SZEM180700696303 Page: 24 of 27

Mode: a; Polarization: Vertical

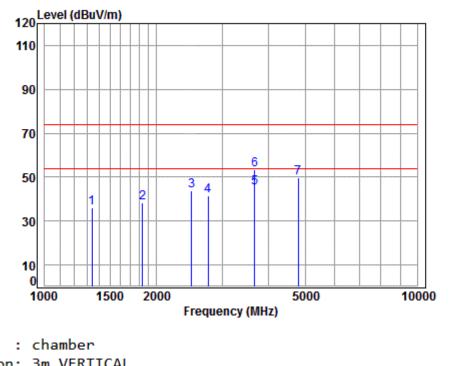
Condition: 3m VERTICAL Job No. : 06962CR&06963CR Test mode: a

	-		Cable Ant Loss Factor		Read Level		Limit Line	Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4	30.00 105.64 157.01 317.70	1.22 1.33 1.96	13.73 15.25 20.16	27.45 27.31 27.06 26.75	25.08 25.56 24.68	12.72 15.08 20.05	43.50 43.50 46.00	-28.42 -25.95
5 6 pp	429.52 572.61	2.33 2.67		27.32 27.86				-22.04 -19.36

Report No.: SZEM180700696303 Page: 25 of 27

Above 1GHz

Mode:a; Polarization:Horizontal;



Site : chamber									
Condition: 3m VERTICAL									
Job No : 06962CR/06963CR									
Mode : 915 TX SE									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	⁻³ dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1339.677	4.94	25.19	41.29	47.36	36.20	74.00	-37.80	Peak
2	1830.000	5.08	27.18	41.61	47.66	38.31	74.00	-35.69	Peak
3	2483.133	5.60	28.67	41.91	51.41	43.77	74.00	-30.23	Peak
4	2745.000	5.80	29.83	42.01	47.69	41.31	74.00	-32.69	Peak
5	3664.376	6.64	32.04	42.26	50.37	46.79	54.00	-13.89	Average
6	3664.376	6.64	32.04	42.26	57.03	53.45	74.00	-20.55	Peak
7	4797.334	7.88	33.96	42.47	50.19	49.56	74.00	-24.44	Peak

Report No.: SZEM180700696303 Page: 26 of 27

Condition: 3m VERTICAL Job No : 06962CR/06963CR										
Mode : 915 TX SE										
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	-3 dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1339.677	4.94	25.19	41.29	47.36	36.20	74.00	-37.80	Peak	
2	1830.000	5.08	27.18	41.61	47.66	38.31	74.00	-35.69	Peak	
3	2483.133	5.60	28.67	41.91	51.41	43.77	74.00	-30.23	Peak	
4	2745.000	5.80	29.83	42.01	47.69	41.31	74.00	-32.69	Peak	
5	3664.376	6.64	32.04	42.26	50.37	46.79	54.00	-7.21	Average	
6	3664.376	6.64	32.04	42.26	57.03	53.45	74.00	-20.55	Peak	
7	4797.334	7.88	33.96	42.47	50.19	49.56	74.00	-24.44	Peak	

Remark:

Site

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM180700696303 Page: 27 of 27

8 Photographs

8.1 Test Setup Refer to Setup Photos

8.2 EUT Constructional Details (EUT Photos) Refer to EUT external and internal photos

- End of the Report -