INDUSTRY CANADA RSS-210

Report No.: C130315Z05-RC1

TEST REPORT

for

912MHz+Bluetooth Wireless Outdoor Speaker Model: AWS5B3S

Brand: Acoustic Research

Test Report Number:

C130315Z05-RC1

Issued for:

AUDIOVOX CANADA LIMITED 1900 Derry Road East .Mississanga ontario L5S 1Y6 Canada

Issued by:

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC.

No.10-1, Mingkeda Logistics Park, NO.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen China

TEL: 86-755-28055000 FAX: 86-755-28055221

Issued Date: April 9, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

IC: 342H-AWS5B3S

Page 1

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No.: C130315Z05-RC1

Revision History

	Issue		Effect	
Rev.	No.	Revisions	Page	Revised By
00	C130315Z05-RC1	Initial Issue	ALL	Sunny Wang

TABLE OF CONTENTS

Report No.: C130315Z05-RC1

1	TEST CERTIFICATION	4
2	PEUT DESCRIPTION	5
	TEST METHODOLO1GY	
	3.1. RSS-210 RESTRICTED BANDS OF OPERATIONS	
	3.2. DESCRIPTION OF TEST MODES	7
4	FACILITIES AND ACCREDITATIONS	
	4.1. FACILITIES	
	4.2. ACCREDITATIONS	
	4.3. MEASUREMENT UNCERTAINTY	8
5	SETUP OF EQUIPMENT UNDER TEST	9
	5.1. DESCRIPTION OF SUPPORT UNITS	9
	5.2. SUPPORT EQUIPMENT	9
6	6 RSS 210 REQUIREMENTS	10
	6.1. 99% BANDWIDTH	10
	6.2. 20dB BANDWIDTH	14
	6.3. PEAK POWER	18
	6.4. FREQUENCY SEPARATION	
	6.5. NUMBER OF HOPPING FREQUENCY	
	6.6. TIME OF OCCUPANCY (DWELL TIME)	
	6.7. BAND EDGES MEASUREMENT	
	6.8. SPURIOUS EMISSIONS MEASUREMENT	
	6 0 DOMED LINE CONDITCTED EMISSIONS MEASIDEMENT	70

TEST CERTIFICATION

Product:	912MHz+Bluetooth Wireless Outdoor Speaker
Model:	AWS5B3S
Brand:	Acoustic Research
Tested:	March 15~April 8, 2013
Applicant:	AUDIOVOX CANADA LIMITED
	1900 Derry Road East .Mississanga ontario L5S 1Y6 Canada
Manufacturer:	Uni-Art Precise Products Ltd
	11-12/F, Yue Xiu Industrial Building, 87 Hung To Road, Kowloon, Hong Kong

APPLICABLE STANDARDS					
STANDARD	TEST RESULT				
IC RSS-210 ISSUE 8 with amendment December 2010	No non-compliance noted				

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Reviewed by:

Tom Gan

Supervisor of EMC Dept.

Compliance Certification Service Inc.

Ruby Zhang

Supervisor of Report Dept.

Compliance Certification Service Inc.

Report No.: C130315Z05-RC1

Report No.: C130315Z05-RC1

2 EUT DESCRIPTION

Product	912MHz+Bluetooth Wireless Outdoor Speaker			
Model	AWS5B3S			
Brand	Acoustic Research			
Model Discrepancy	N/A			
Identify Number	C130315Z05-RC1			
Received Date	March 15, 2013			
Power Supply	TX: Adapter1# manufacturer/model name SIL switching adapter / SSA-5W-12 US 120020F Input: 100-240V, 50/60Hz, 0.2A Output: DC12V, 200mA DC output cable: Unshielded, 1.7m Adapter2# manufacturer/model name SUV-005-120-020-A2 AC input: 100-240V,50/60Hz 150mA DC output: DC12.0V 200mA DC output cable: Un-shielded, 1.80m RX: Adapter 3# manufacturer/model name Dongguan Yinli Electronics Co., Ltd. / YLS0151-T100150 Input: AC100-240V, 50/60Hz, 0.6A Output: DC10.0V, 1.5A DC output cable: Unshielded, 1.5m			
Audio In Cable(TX)	Unshielded, 2.0m			
Audio In Cable(RX)	Unshielded, 1.13m			
Frequency Range	2402 ~ 2480 MHz			
Transmit Power	GFSK: 4.49dBm 8DPSK: 2.61dBm			
Modulation Technique	FHSS (GFSK for 1Mbps, π /4-DQPSK for 2Mbps, 8DPSK for 3Mbps)			
Number of Channels	79 Channels			
Antenna Specification	2.4G ISM SMD Chip Antenna with 2dBi gain(Max)			
Temperature Range	-10°C ~ +55°C			

3 TEST METHODOLOGY

The tests documented in this report were performed in accordance with IC RSS-210, IC RSS-212, and ANSI C63.4:2003.

Report No.: C130315Z05-RC1

This submittal(s) (test report) is intended for IC Certification No: <u>342H-AWS5B3S</u> filing to comply with Industry CANADA RSS210.

3.1. RSS-210 RESTRICTED BANDS OF OPERATIONS

This section includes the tables referenced within this Standard (i.e. Tables 1 to 5).

Table 1: Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	960-1427	9.0-9.2
2.1735-2.1905	13.36-13.41	1435-1626.5	9.3-9.5
3.020-3.026	16.42-16.423	1645.5-1646.5	10.6-12.7
4.125-4.128	16.69475-16.69525	1660-1710	13.25-13.4
4.17725-4.17775	16.80425-16.80475	1718.8-1722.2	14.47-14.5
4.20725-4.20775	25.5-25.67	2200-2300	15.35-16.2
5.677-5.683	37.5-38.25	2310-2390	17.7-21.4
6.215-6.218	73-74.6	2655-2900	22.01-23.12
6.26775-6.26825	74.8-75.2	3260-3267	23.6-24.0
6.31175-6.31225	108-138	3332-3339	31.2-31.8
8.291-8.294	156.52475-156.52525	3345.8-3358	36.43-36.5
8.362-8.366	156.7-156.9	3500-4400	Above 38.6
8.37625-8.38675	240-285	4500-5150	
8.41425-8.41475	322-335.4	5350-5460	
12.29-12.293	399.9-410	7250-7750	
12.51975-12.52025	608-614	8025-8500	

Note: Certain frequency bands listed in Table 1 and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard as well as in RSS-310.

3.2. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

The following test mode(s) were scanned during the preliminary test below 1G and above 1G:

Test Item	Test mode	Worse mode	
Conducted	Mode 1: 900MHz Link with adapter		
Emission	Mode 2: Audio In with adapter	Mode 3	
Emission	Mode 3: Play Audio Bluetooth with adapter		
Radiated Emission	Mode 1: TX + RX	Mode 1	

Report No.: C130315Z05-RC1

Above 1G, Channel Low (2402MHz) · Mid (2441MHz) and High (2480MHz) were chosen for full testing for GFSK and 8DPSK.

4 FACILITIES AND ACCREDITATIONS

4.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Report No.: C130315Z05-RC1

4.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC

Japan VCCI (C-3478, R-3135, T-652, G-624)

Canada INDUSTRY CANADA

Taiwan BSMI Norway Nemko

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

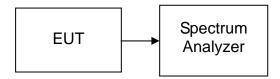
Measurement	Frequency	Uncertainty		
Conducted emissions	9kHz~30MHz	+/- 3.18dB		
	30MHz ~ 200MHz	+/- 3.79dB		
Radiated emissions	200MHz ~1000MHz	+/- 3.62dB		
	Above 1000MHz +/- 5.04dE			
Band Edges	+/-0.182 dB	dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance)

6. FCC PART 15.247 REQUIREMENTS

6.1 20DB BANDWIDTH


None; for reporting purpose only.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT, then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30kHz, VBW=100kHz, Span=3MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the test channels are investigated.

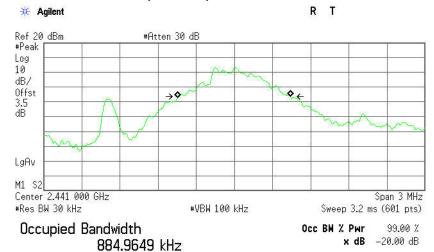
TEST RESULTS

No non-compliance noted

Report No: C130315Z05-RP1

Test plot (GFSK)

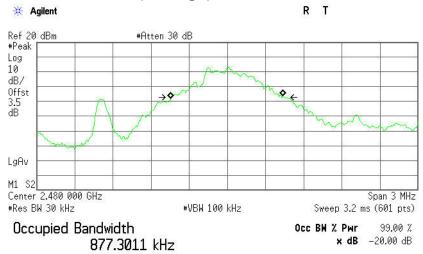
20dB Bandwidth (CH Low)



891.9564 kHz

x dB -20.00 dB

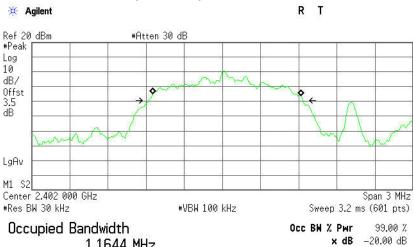
Transmit Freq Error 33.581 kHz x dB Bandwidth 868.596 kHz


20dB Bandwidth (CH Mid)

Transmit Freq Error x dB Bandwidth

-4.535 kHz 873.538 kHz

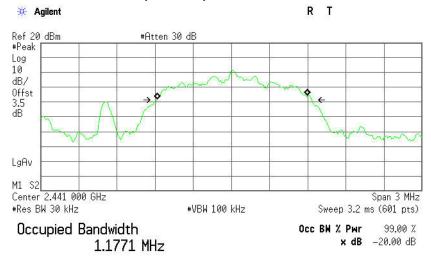
20dB Bandwidth (CH High)



Transmit Freq Error -- x dB Bandwidth 83

-4.295 kHz 879.169 kHz

Test plot (8DPSK)


20dB Bandwidth (CH Low)

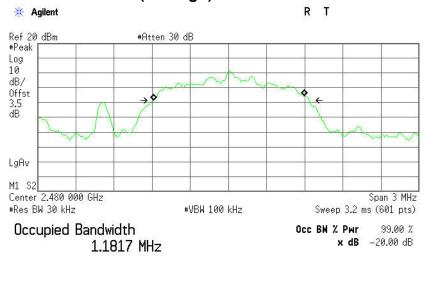
1.1644 MHz

38.196 kHz Transmit Freq Error x dB Bandwidth 1.214 MHz

20dB Bandwidth (CH Mid)

Transmit Freq Error x dB Bandwidth

7.428 kHz 1.221 MHz


20dB Bandwidth (CH High)

Transmit Freq Error

х dB Bandwidth

6.828 kHz

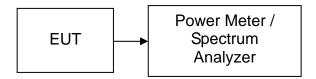
1.224 MHz

6.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

Report No: C130315Z05-RP1


- 1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Power Meter	Anritsu	ML2495A	1204003	03/09/2013	03/08/2014
Power Sensor	Anritsu	MA2411B	1126150	03/09/2013	03/08/2014
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

Report No: C130315Z05-RP1

TEST RESULTS

No non-compliance noted

Test Data

GFSK

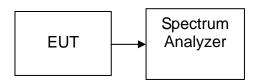
Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	0.36	3.50	3.86	0.00243		PASS
Mid	2441	0.99	3.50	4.49	0.00281	1	PASS
High	2480	0.71	3.50	4.21	0.00264		PASS

8DPSK

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	-1.39	3.50	2.11	0.00163		PASS
Mid	2441	-0.89	3.50	2.61	0.00182	1	PASS
High	2480	-0.90	3.50	2.60	0.00182		PASS

6.3 PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5MHz, Sweep=500s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

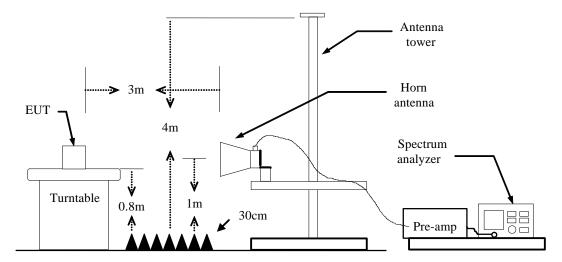
TEST RESULTS

Not applicable. Since EUT is the Bluetooth device.

Report No: C130315Z05-RP1

6.4 BAND EDGES MEASUREMENT

LIMIT


According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

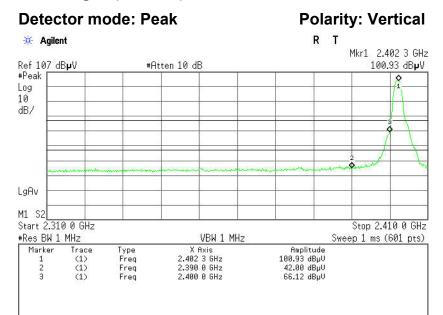
MEASUREMENT EQUIPMENT USED

Radiated Emission Test Site 966 (2)							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014		
ESCI EMI TEST RECEIVER.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014		
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2013	03/18/2014		
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2013	03/18/2014		
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	06/21/2012	06/21/2013		
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/02/2013	03/01/2014		
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/02/2013	03/01/2014		
Loop Antenna	A、R、A	PLA-1030/B	1029	03/23/2013	03/23/2014		
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R		
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R		
Controller	СТ	N/A	N/A	N.C.R	N.C.R		
Temp. / Humidity Meter	Anymetre	JR913	N/A	03/04/2013	03/03/2014		
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R		
966(2)	中宇电子	N/A	N/A	03/10/2013	03/09/2014		
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2			

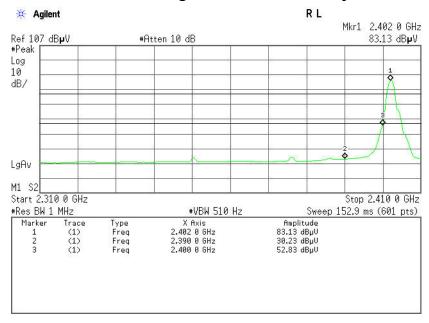
Report No: C130315Z05-RP1

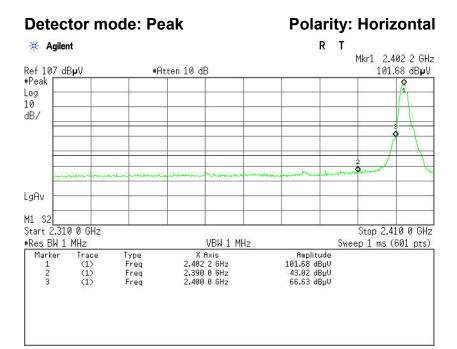
Test Configuration

TEST PROCEDURE

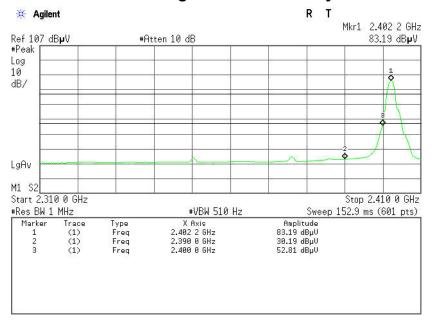

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=510Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

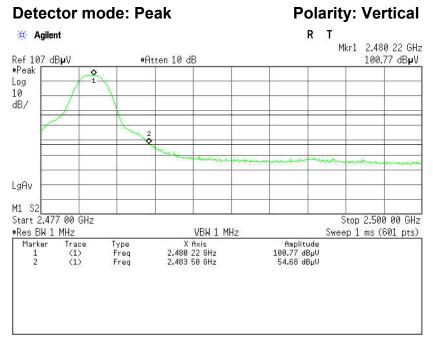

Refer to attach spectrum analyzer data chart.

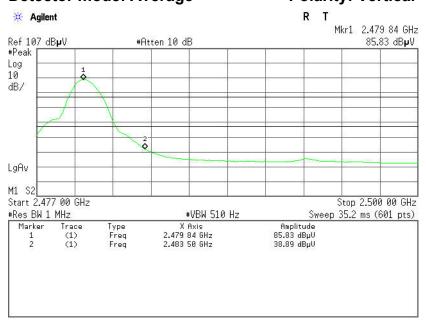

Test Data (GFSK)

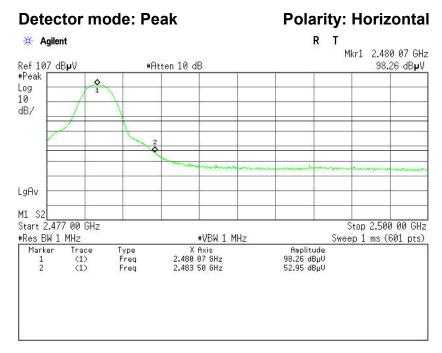
Band Edges (CH-Low)



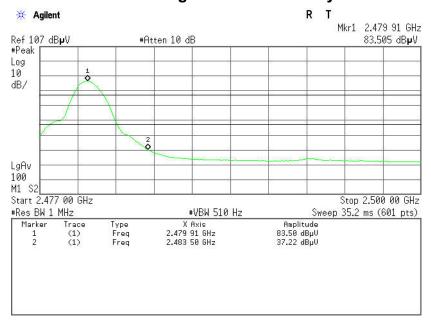
Detector mode: Average Polarity: Vertical



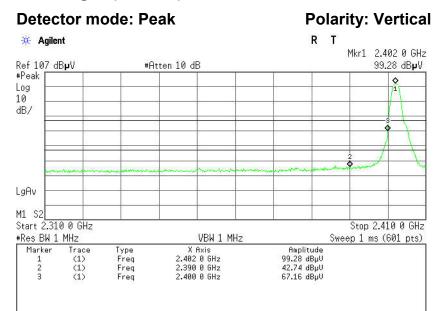

Detector mode: Average Polarity: Horizontal



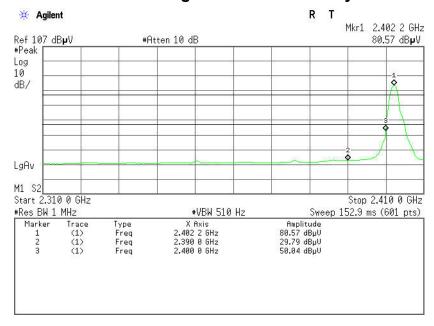
Band Edges (CH-High)

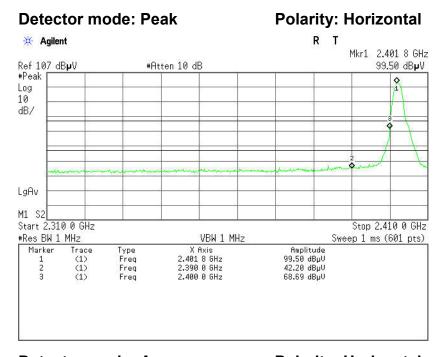


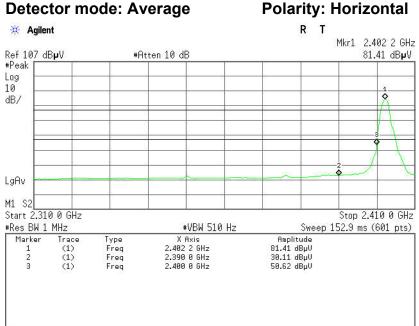
Polarity: Vertical Detector mode: Average



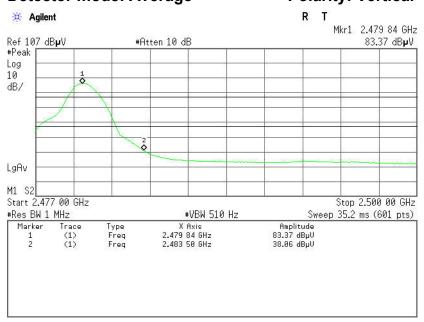
Polarity: Horizontal Detector mode: Average

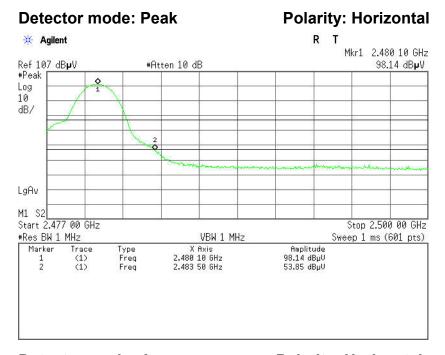


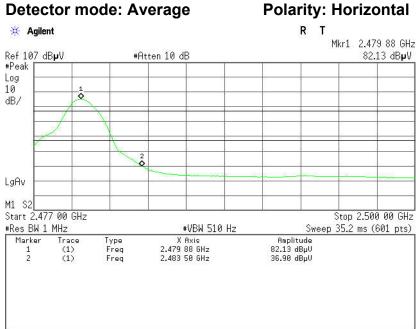

Test Data (8DPSK)


Band Edges (CH-Low)

Polarity: Vertical Detector mode: Average



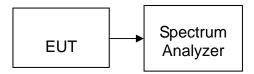



Band Edges (CH-High)

Polarity: Vertical Detector mode: Average

6.5 FREQUENCY SEPARATION

LIMIT


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 4 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

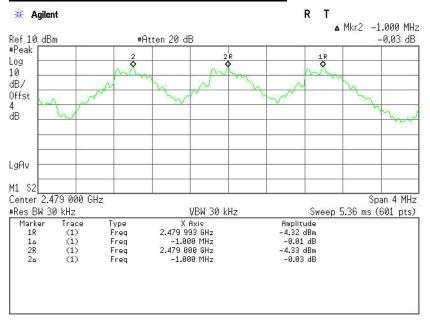
No non-compliance noted

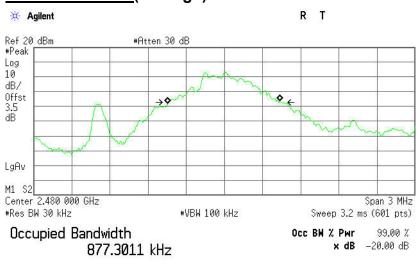
Test Data

GFSK

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	586.113	> Two-thirds of the 20 dB Bandwidth	Pass

8DPSK

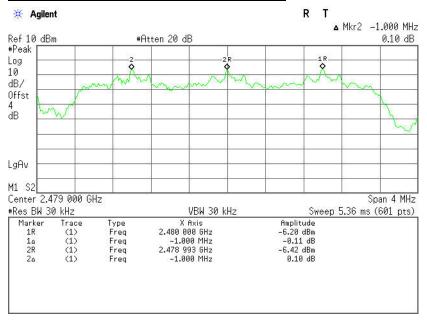

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (kHz)	Channel Separation Limit	Result
1.000	816.000	> Two-thirds of the 20 dB Bandwidth	Pass

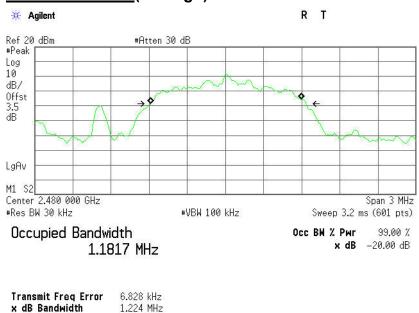

GFSK

Test Plot

Measurement of Channel Separation

20 dB bandwidth(CH High)


Transmit Freq Error -4.295 kHz x dB Bandwidth 879.169 kHz


8DPSK

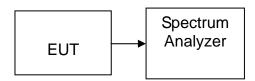
Test Plot

Measurement of Channel Separation

20 dB bandwidth(CH High)

6.6 NUMBER OF HOPPING FREQUENCY

LIMIT


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

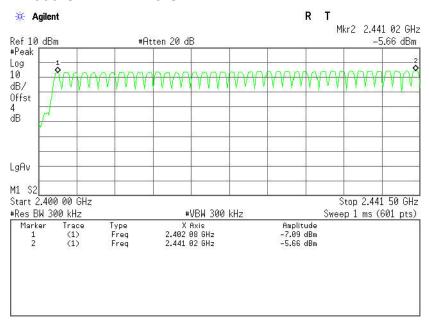
TEST PROCEDURE

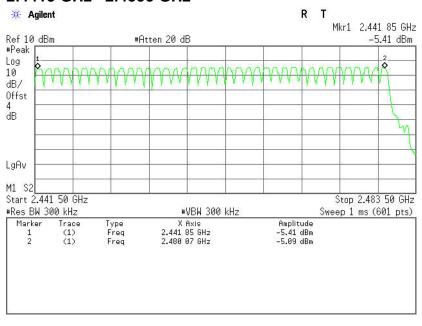
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = 1ms and Start=2441.5MHz, Stop = 24835MHz, Sweep = 1ms.
- 4. Set the spectrum analyzer as RBW, VBW=300kHz,
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted

Test Data

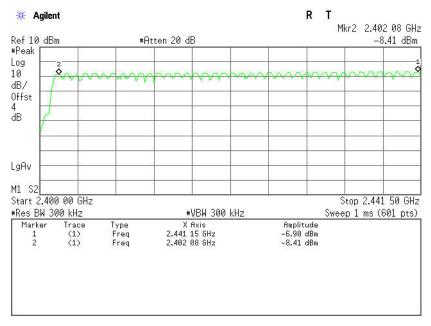

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

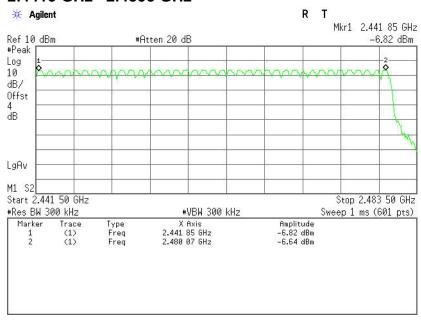

Test Plot (GFSK)

Channel Number

2.4000 GHz - 2.4415 GHz

2.4415 GHz -2.4835 GHz




Test Plot (8DPSK)

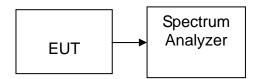
Channel Number

2.4000 GHz - 2.4415 GHz

2.4415 GHz -2.4835 GHz

6.7 TIME OF OCCUPANCY (DWELL TIME)

LIMIT


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

Test Data

GFSK

DH 1

CH Mid: 0.508* (1600/2)/79*31.6 = 162.560 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.508	162.560	31.60	400.00	PASS

DH 3

CH Mid: $1.760^* (1600/4)/79 * 31.6 = 281.600 (ms)$

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.760	281.600	31.60	400.00	PASS

<u>DH 5</u>

CH Mid: 3.008* (1600/6)/79* 31.6 = 320.853 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	3.008	320.853	31.60	400.00	PASS

Test Data

8DPSK

DH 1

CH Mid: $0.520^* (1600/2)/79 * 31.6 = 166.400 (ms)$

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.520	166.400	31.60	400.00	PASS

<u>DH 3</u>

CH Mid: 1.765* (1600/4)/79* 31.6 = 282.400 (ms)

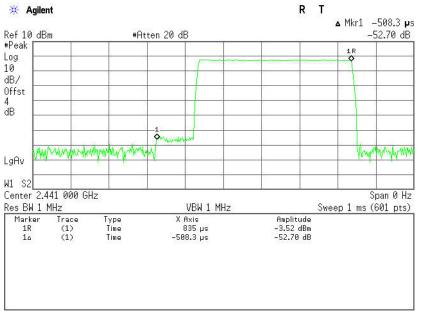
СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.765	282.400	31.60	400.00	PASS

<u>DH 5</u>

CH Mid: 3.008* (1600/6)/79* 31.6 = 320.853 (ms)

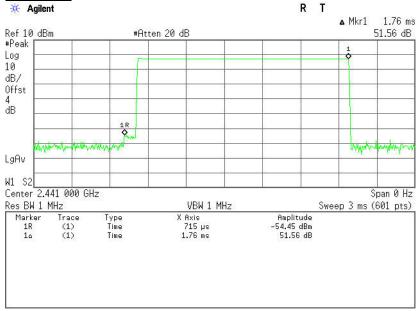
СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	3.008	320.853	31.60	400.00	PASS

Compliance Certification Services Inc.

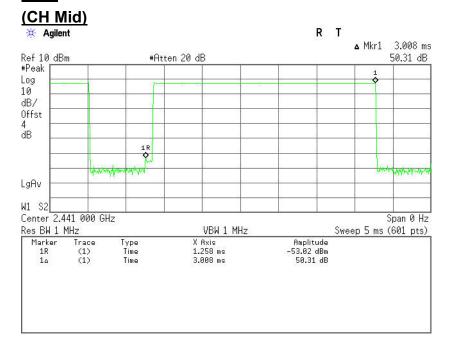

Report No: C130315Z05-RP1

Test Plot

GFSK

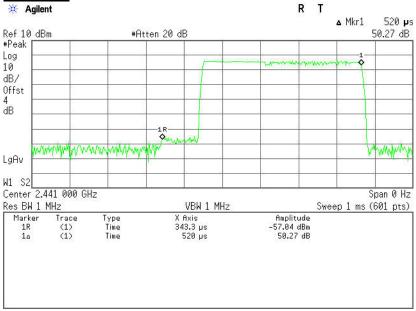

DH 1

(CH Mid)

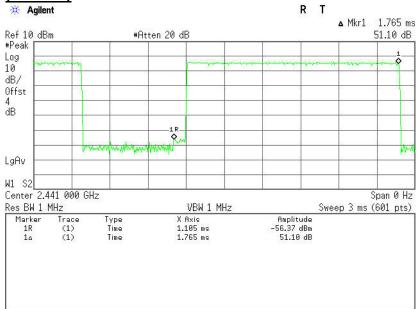


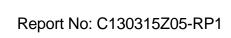
DH 3

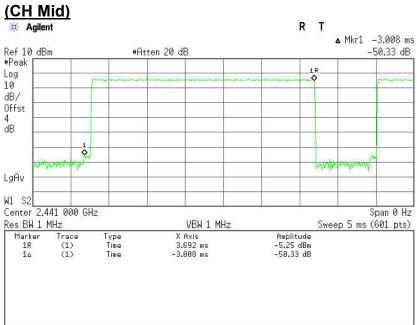
(CH Mid)



8DPSK **Test Plot**


DH 1


(CH Mid)

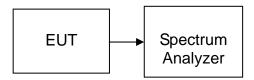

DH 3

DH 5

6.8 SPURIOUS EMISSIONS

6.8.1. Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

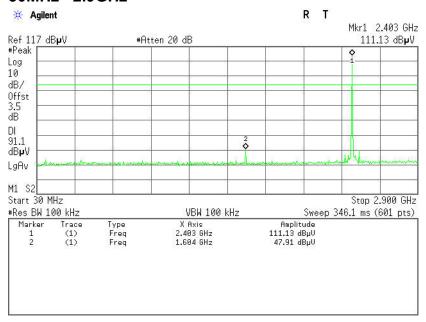
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

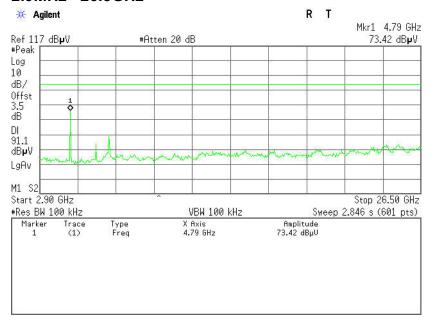
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

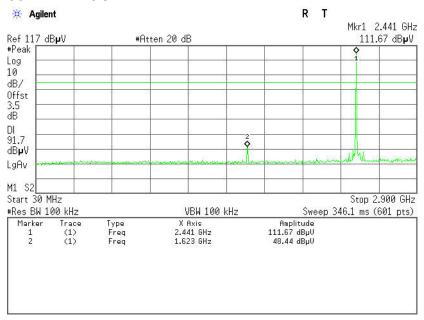

No non-compliance noted

Report No: C130315Z05-RP1

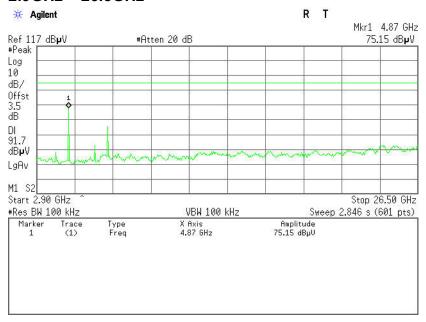

Test Plot (GFSK)

CH Low

30MHz ~2.9GHz

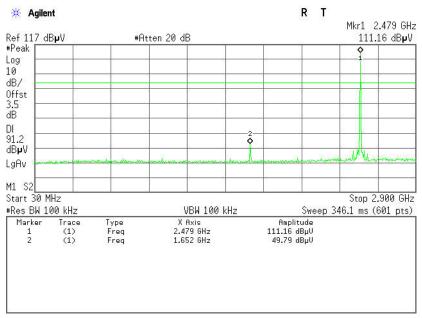


2.9MHz ~26.5GHz

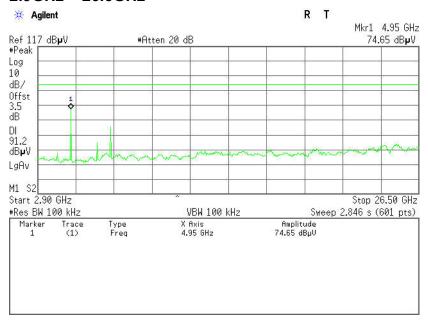


CH Mid

30MHz ~ 2.9GHz

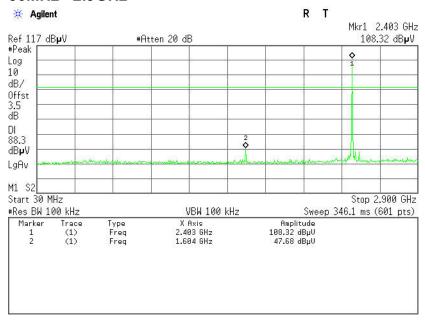


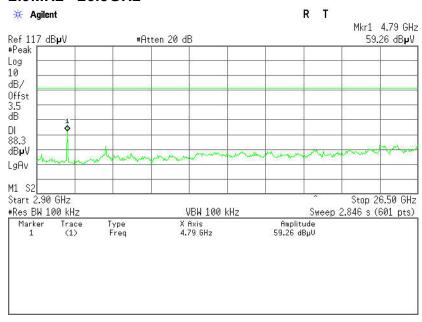
2.9GHz ~ 26.5GHz



CH High

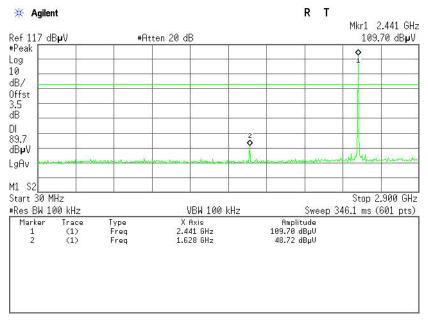
30MHz ~ 2.9GHz


2.9GHz ~ 26.5GHz

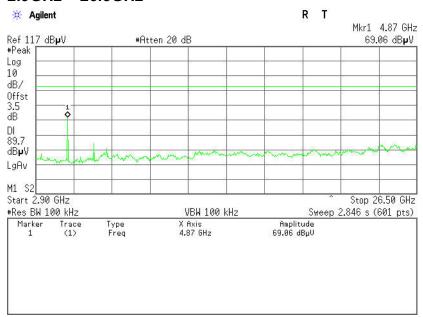

Test Plot (8DPSK)

CH Low

30MHz ~2.9GHz

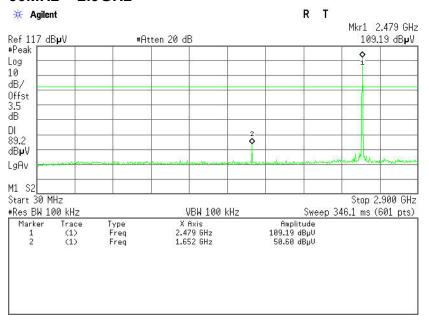


2.9MHz ~26.5GHz

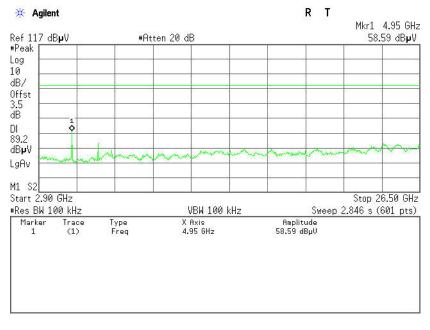


CH Mid

30MHz ~ 2.9GHz



2.9GHz ~ 26.5GHz



CH High

30MHz ~ 2.9GHz

2.9GHz ~ 26.5GHz

Report No: C130315Z05-RP1

6.8.2. Radiated Emissions

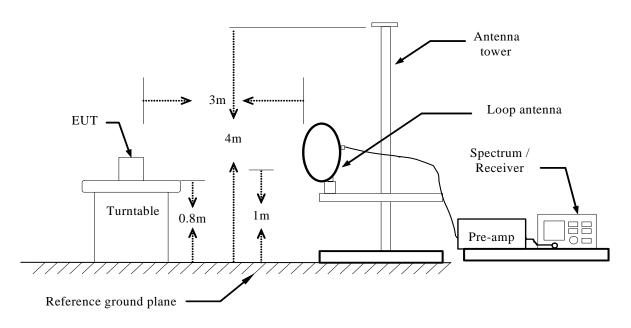
LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

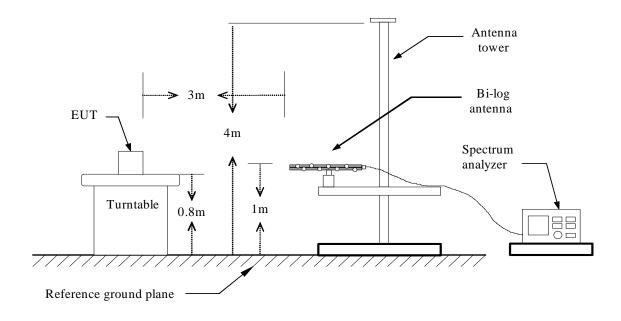
2. In the above emission table, the tighter limit applies at the band edges.

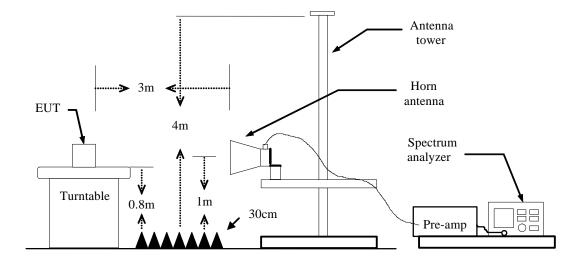

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

MEASUREMENT EQUIPMENT USED

	Radiated Er	mission Test S	ite 966 (2)		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/09/2013	03/08/2014
ESCI EMI TEST RECEIVER.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2013	03/18/2014
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2013	03/18/2014
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	06/21/2012	06/21/2013
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/02/2013	03/01/2014
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/02/2013	03/01/2014
Loop Antenna	A、R、A	PLA-1030/B	1029	03/23/2013	03/23/2014
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R
Controller	СТ	N/A	N/A	N.C.R	N.C.R
Temp. / Humidity Meter	Anymetre	JR913	N/A	03/04/2013	03/03/2014
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R
966(2)	中宇电子	N/A	N/A	03/10/2013	03/09/2014
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2	

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration Below 30MHz


Report No: C130315Z05-RP1

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Report No: C130315Z05-RP1

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Report No: C130315Z05-RP1

TEST RESULTS

Below 1 GHz

Operation Mode:TXTest Date:April 2, 2013Temperature:24°CTested by:Viking YuanHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
44.5500	47.97	-15.19	32.78	40.00	-7.22	٧	QP
80.1167	52.91	-24.26	28.65	40.00	-11.35	V	QP
146.4000	44.28	-18.98	25.30	43.50	-18.20	V	QP
354.9500	40.03	-16.73	23.30	46.00	-22.70	V	QP
421.2333	41.69	-15.17	26.52	46.00	-19.48	V	QP
461.6500	44.40	-15.02	29.38	46.00	-16.62	V	QP
122.1500	42.19	-20.19	22.00	43.50	-21.50	Н	QP
152.8667	51.16	-18.75	32.41	43.50	-11.09	Н	QP
335.5500	39.89	-17.51	22.38	46.00	-23.62	Н	QP
461.6500	42.19	-15.02	27.17	46.00	-18.83	Н	QP
709.0000	37.68	-11.09	26.59	46.00	-19.41	Н	QP
922.4000	34.87	-9.17	25.70	46.00	-20.30	Н	QP

^{**}Remark: No emission found between lowest internal used/generated frequency to 30MHz. **Notes:**

- 1. Measuring frequencies from 9kHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

5. Frequency (MHz). = Emission frequency in MHz

Reading (dBuV) = Receiver reading

Correction Factor(dB/m) = Antenna factor + Cable loss – Amplifier gain Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin(dB) = Measured (dBuV/m) - Limits (dBuV/m)Antenna Pole(V/H) = $Current \ carrying \ line \ of \ reading$

Report No: C130315Z05-RP1

Above 1 GHz

<u>GFSK</u>

Operation TX(CH Low) Test Date: April 1, 2013

Temperature: 24°C **Tested by:** Viking Yuan

Humidity: 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1195.0000	52.25	-8.77	43.48	74.00	-30.52	V	Peak
1600.0000	53.45	-8.68	44.77	74.00	-29.23	V	Peak
1795.0000	53.41	-9.42	43.99	74.00	-30.01	V	Peak
3715.0000	46.15	-2.71	43.44	74.00	-30.56	V	Peak
4330.0000	46.52	-1.09	45.43	74.00	-28.57	V	Peak
4810.0000	62.42	0.46	62.88	74.00	-11.12	V	Peak
4810.0000	39.12	0.46	39.58	54.00	-14.42	V	AVG
		•					
1195.0000	51.68	-8.77	42.91	74.00	-31.09	Н	Peak
1600.0000	50.37	-8.68	41.69	74.00	-32.31	Н	Peak
2830.0000	47.72	-4.92	42.80	74.00	-31.20	Н	Peak
4015.0000	45.93	-2.46	43.47	74.00	-30.53	Н	Peak
4810.0000	64.66	0.46	65.12	74.00	-8.88	Н	Peak
4810.0000	42.22	0.46	42.68	54.00	-11.32	Н	AVG
5230.0000	44.83	1.55	46.38	74.00	-27.62	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Limit ($dB\mu V/m$) = Limit stated in standard

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading AV. = Average Reading

Report No: C130315Z05-RP1

Operation Mode:TX(CH Mid)Test Date:April 1, 2013Temperature:24°CTested by:Viking YuanHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1195.0000	52.52	-8.77	43.75	74.00	-30.25	V	Peak
1630.0000	53.37	-8.79	44.58	74.00	-29.42	V	Peak
3805.0000	45.27	-2.49	42.78	74.00	-31.22	V	Peak
4885.0000	66.50	0.80	67.30	74.00	-6.70	V	Peak
4885.0000	46.19	0.80	46.99	54.00	-7.01	V	AVG
5845.0000	44.46	2.85	47.31	74.00	-26.69	V	Peak
6580.0000	44.22	4.76	48.98	74.00	-25.02	V	Peak
1195.0000	50.04	-8.77	41.27	74.00	-32.73	Н	Peak
1630.0000	50.63	-8.79	41.84	74.00	-32.16	Н	Peak
3760.0000	45.41	-2.59	42.82	74.00	-31.18	Н	Peak
4300.0000	45.82	-1.20	44.62	74.00	-29.38	Н	Peak
4885.0000	67.96	0.80	68.76	74.00	-5.24	Н	Peak
4885.0000	44.84	0.80	45.64	54.00	-8.36	Н	AVG
7330.0000	44.98	7.50	52.48	74.00	-21.52	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. $Peak\ Setting\ 1GHz$ 26GHz, RBW = 1MHz, VBW = 1MHz, $Sweep\ time$ = $200\ ms$.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Report No: C130315Z05-RP1

Operation Mode:TX(CH High)Test Date:April 1, 2013Temperature:24 °CTested by:Viking YuanHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1060.0000	56.29	-9.85	46.44	74.00	-27.56	V	Peak
1660.0000	53.73	-8.91	44.82	74.00	-29.18	V	Peak
4375.0000	45.24	-0.91	44.33	74.00	-29.67	V	Peak
4555.0000	46.87	-0.54	46.33	74.00	-27.67	V	Peak
4960.0000	63.79	1.14	64.93	74.00	-9.07	V	Peak
4960.0000	40.13	1.14	41.27	54.00	-12.73	V	AVG
5755.0000	44.50	2.59	47.09	74.00	-26.91	V	Peak
1195.0000	51.60	-8.77	42.83	74.00	-31.17	Н	Peak
4120.0000	45.10	-1.96	43.14	74.00	-30.86	Н	Peak
4960.0000	67.45	1.14	68.59	74.00	-5.41	Н	Peak
4960.0000	42.99	1.14	44.13	54.00	-9.87	Н	AVG
5890.0000	43.77	2.92	46.69	74.00	-27.31	Н	Peak
6265.0000	44.30	3.88	48.18	74.00	-25.82	Н	Peak
7435.0000	45.21	7.61	52.82	74.00	-21.18	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

8DPSK

Operation Mode: TX(CH Low) Test Date: April 1, 2013

Temperature: 24°C **Tested by:** Viking Yuan

Humidity: 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1195.0000	52.92	-8.77	44.15	74.00	-29.85	V	Peak
1600.0000	52.28	-8.68	43.60	74.00	-30.40	V	Peak
3385.0000	46.72	-4.01	42.71	74.00	-31.29	V	Peak
3775.0000	46.21	-2.55	43.66	74.00	-30.34	V	Peak
4810.0000	55.74	0.46	56.20	74.00	-17.80	V	Peak
4810.0000	34.12	0.46	34.58	54.00	-19.42	V	AVG
5590.0000	45.11	1.91	47.02	74.00	-26.98	V	Peak
1195.0000	53.93	-8.77	45.16	74.00	-28.84	Н	Peak
2860.0000	48.03	-4.80	43.23	74.00	-30.77	Н	Peak
4420.0000	45.00	-0.78	44.22	74.00	-29.78	Н	Peak
4810.0000	55.31	0.46	55.77	74.00	-18.23	Н	Peak
4810.0000	32.82	0.46	33.28	54.00	-20.72	Н	AVG
5875.0000	44.35	2.90	47.25	74.00	-26.75	Н	Peak
6250.0000	45.54	3.83	49.37	74.00	-24.63	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. $Peak\ Setting\ 1GHz$ 26GHz, RBW = 1MHz, VBW = 1MHz, $Sweep\ time$ = $200\ ms$.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Report No: C130315Z05-RP1

Operation Mode:TX(CH Mid)Test Date:April 1, 2013Temperature:24°CTested by:Viking YuanHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1600.0000	52.74	-8.68	44.06	74.00	-29.94	V	Peak
3790.0000	46.30	-2.52	43.78	74.00	-30.22	V	Peak
4300.0000	46.20	-1.20	45.00	74.00	-29.00	V	Peak
4885.0000	61.66	0.80	62.46	74.00	-11.54	V	Peak
4885.0000	38.61	0.80	39.41	54.00	-14.59	V	AVG
6220.0000	44.98	3.74	48.72	74.00	-25.28	V	Peak
6430.0000	44.42	4.34	48.76	74.00	-25.24	V	Peak
1195.0000	52.01	-8.77	43.24	74.00	-30.76	Н	Peak
1630.0000	49.99	-8.79	41.20	74.00	-32.80	Н	Peak
3580.0000	45.83	-3.11	42.72	74.00	-31.28	Н	Peak
4090.0000	44.91	-2.10	42.81	74.00	-31.19	Н	Peak
4885.0000	60.49	0.80	61.29	74.00	-12.71	Н	Peak
4885.0000	37.47	0.80	38.27	54.00	-15.73	Н	AVG
6265.0000	45.01	3.88	48.89	74.00	-25.11	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Operation Mode:TX(CH High)Test Date:April 1, 2013Temperature:24 °CTested by:Viking Yuan

Humidity: 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1195.0000	52.46	-8.77	43.69	74.00	-30.31	V	Peak
1660.0000	51.33	-8.91	42.42	74.00	-31.58	V	Peak
3655.0000	46.13	-2.87	43.26	74.00	-30.74	V	Peak
4270.0000	45.69	-1.31	44.38	74.00	-29.62	V	Peak
4960.0000	53.64	1.14	54.78	74.00	-19.22	V	Peak
4960.0000	31.04	1.14	32.18	54.00	-21.82	V	AVG
6070.0000	44.89	3.30	48.19	74.00	-25.81	V	Peak
1195.0000	52.94	-8.77	44.17	74.00	-29.83	Н	Peak
3205.0000	46.68	-4.09	42.59	74.00	-31.41	Н	Peak
3895.0000	46.39	-2.51	43.88	74.00	-30.12	Н	Peak
4090.0000	45.93	-2.10	43.83	74.00	-30.17	Н	Peak
4960.0000	47.75	1.14	48.89	74.00	-25.11	Н	Peak
5815.0000	44.02	2.80	46.82	74.00	-27.18	Н	Peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

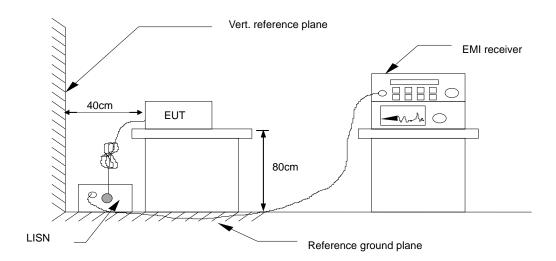
Pk = Peak Reading
AV. = Average Reading

6.9 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBμV)				
Frequency Kange (MIDZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			


Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
ESCI EMI TEST RECEIVER.ESCI	ROHDE&SCHWARZ	ESCI	100783	03/09/2013	03/08/2014			
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	09/20/2012	09/20/2013			
LISN	EMCO	3825/2	8901-1459	03/09/2013	03/08/2014			
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	03/04/2013	03/03/2014			
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE						

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Compliance Certification Services Inc. Report No: C130315Z05-RP1

Test Data

Model No.	AWS5B3S	RBW,VBW	9 kHz
Environmental Conditions	26°C, 60% RH	LIAST WINDA	Mode 3: Play Audio Bluetooth with adapter
Tested by	Eve Wang		

(The chart below shows the highest readings taken from the final data.)

Frequency (MHz)	QuasiPeak		Correction Factor (dB)	QuasiPeak Result (dBuV)		QuasiPeak Limit (dBuV)		QuasiPeak Margin (dB)	Average Margin (dB)	Line (L1/L2I)
0.1620	39.88	27.29	9.74	49.62	37.03	65.36	55.36	-15.74	-18.33	L1
0.1860	36.92	24.31	9.65	46.57	33.96	64.21	54.21	-17.64	-20.25	L1
0.3700	25.34	20.65	9.65	34.99	30.30	58.50	48.50	-23.51	-18.20	L1
0.5299	22.56	13.01	9.70	32.26	22.71	56.00	46.00	-23.74	-23.29	L1
2.6460	17.95	9.22	9.69	27.64	18.91	56.00	46.00	-28.36	-27.09	L1
15.7300	21.84	14.53	9.92	31.76	24.45	60.00	50.00	-28.24	-25.55	L1
0.1620	41.21	27.38	9.74	50.95	37.12	65.36	55.36	-14.41	-18.24	L2
0.1860	38.30	24.25	9.65	47.95	33.90	64.21	54.21	-16.26	-20.31	L2
0.3460	26.60	23.22	9.64	36.24	32.86	59.06	49.06	-22.82	-16.20	L2
0.5340	22.26	16.83	9.70	31.96	26.53	56.00	46.00	-24.04	-19.47	L2
7.1340	19.67	12.64	9.78	29.45	22.42	60.00	50.00	-30.55	-27.58	L2
15.7180	23.05	16.41	9.92	32.97	26.33	60.00	50.00	-27.03	-23.67	L2

NOTE: 1. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

^{2.} Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.