FCC TEST REPORT

FCC ID	: VIX-ARS50A			
Applicant	: Audiovox Accessories Corp.			
Address	: 701 Congressional Blvd. suite 200, Carmel, Indiana, United States			
Equipmont Under Tes				
Equipment Under Test				
Product Name	: AUDIO SYSTEM WITH BLUETOOTH			
Model No.	: ARS50-A			
Standards	: FCC CFR47 Part 15 Section 15.247:2010			
Date of Test	: May 16 ~ May 25, 2012			
Date of Issue	: June 1, 2012			
Test Engineer	: Zero Zhou / Engineer			
Reviewed By	: Philo zhong / Manager Thhlo zhon g			

Prepared By: Waltek Services (Shenzhen) Co., Ltd.

12B, West Tower, Aidi Building, No.5003, Binhe Road, Futian District, Shenzhen, Guangdong, China

Tel :+86-755-83551033

Fax:+86-755-83552400

☆ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

FCC ID: VIX-ARS50A

2 Test Summary

Test Items	Test Requirement	Result
Dedicted Courieurs Emissions	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
(26MHz to 25GHz)	15.247(d)	
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	1.1207(h)(1)	PASS
(Exposure of Humans to RF Fields)	1.1307(b)(1)	r ASS

3 Contents

		Page
1	1 COVER PAGE	
2	2 TEST SUMMARY	2
3	3 CONTENTS	
4	4 GENERAL INFORMATION	
	4.1 Client Information	
	4.2 GENERAL DESCRIPTION OF E.U.T.	
	4.3 DETAILS OF E.U.T.	
	4.4 DESCRIPTION OF SUPPORT UNITS	
	4.5 STANDARDS APPLICABLE FOR TESTING4.6 TEST FACILITY	
	4.6 TEST FACILITY4.7 TEST LOCATION	
5		
6	6 CONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	6.3 CONDUCTED EMISSION TEST RESULT	
	6.4 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP	
7	7 RADIATED SPURIOUS EMISSIONS	
	7.1 EUT OPERATION :	
	7.2 Measurement Uncertainty	
	7.3 TEST SETUP	
	7.4 SPECTRUM ANALYZER SETUP	
	 7.5 TEST PROCEDURE 7.6 CORRECTED AMPLITUDE & MARGIN CALCULATION 	
	 7.6 CORRECTED AMPLITUDE & MARGIN CALCULATION 7.7 SUMMARY OF TEST RESULTS 	
	 7.7 SUMMART OF TEST RESULTS 7.8 PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP 	
8		
9	9 20 DB BANDWIDTH MEASUREMENT	
	9.1 Test Procedure:	
	9.2 Test Result:	
1(10 MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure:	
	10.2 TEST RESULT:	
11	11 HOPPING CHANNEL SEPARATION	
	11.1 Test Procedure:	
	11.2 Test Result:	
12	12 NUMBER OF HOPPING FREQUENCY	
	12.1 TEST PROCEDURE:	
	12.2 TEST RESULT: TOTAL CHANNELS ARE 79 CHANNELS	
13	13 DWELL TIME	
	13.1 Test Procedure:	
	13.2 Test Result:	
14	14 ANTENNA REQUIREMENT	
15	15 RF EXPOSURE	
	15.1 REQUIMENTS:	
	The results shown in this test report refer only to the sample(s) tested, This Test rep full, without prior written permission of the Company.	port cannot be reproduced, except in
		Reference No.: WT12052841-S-S-F

FCC ID: VIX-ARS50A

	•	
15.2	The procedures / limit	
15.3	MPE CALCULATION METHOD	
16 PHC	OTOGRAPHS - CONSTRUCTIONAL DETAILS	
16.1	PRODUCT VIEW	
16.2	EUT – Appearance View	
16.3	EUT – Open View	
16.4	EUT – PCB1 VIEW	
16.5	EUT – PCB2 VIEW	
17 FCC	C LABEL	

4 General Information

4.1 Client Information

4.2

4.3

Applicant Address of Applicant	: Audiovox Accessories Corp. : 701 Congressional Blvd. suite 200, Carmel, Indiana, United States		
Manufacturer	: SHENZHEN DEHUIDA TECHNOLOGY CO., LTD		
Address of Manufacturer			
General Description of	E.U.T.		
Product Name	: AUDIO SYSTEM WITH BLUETOOTH		
Model No.	: ARS50-A		
Details of E.U.T.			
Technical Data	: Adapter Input: 100-240VAC, 50/60Hz, 0.5A MAX		
	Adapter Output: 5.0VDC, 1.5A		
Operation Frequency	: 2402MHz ~ 2480MHz		
Antenna Gain	: 0 dBi		

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a AUDIO SYSTEM WITH BLUETOOTH. The rules used were FCC CFR47 Part 15 Section 15.203, Section 15.207, Section 15.209 and Section 15.247.

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, August 3, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

		_					
Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Broad-band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	$\begin{array}{c} f < 10 \; GHz: \\ \pm 1 dB \\ 10 GHz < f < \\ 18 \; GHz: \\ \pm 1.5 dB \end{array}$
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	±1dB
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	±10%
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range : 9K-1GHz RF voltage : - 60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1B
Active Loop Antenna	Beijing Dazhi / ZN30900A	-	-	-	Aug. 2, 2011	Aug. 1, 2012	±1Db
MP3 Player	Ipod Player/A1285	5K85004U 3R0	-	-	Aug. 2, 2011	Aug. 1, 2012	±0.5dB

FCC ID: VIX-ARS50A

Audiovox Accessories Corp.

6 Conducted Emission

Test Requirement:	FCC CFR 47 Part 15 Section 15.207
Test Method:	ANSI C63.4:2003
Test Result:	PASS
Frequency Range:	150kHz to 30MHz
Class:	Class B
Limit:	66-56 dBµV between 0.15MHz & 0.5MHz
	56 dBµV between 0.5MHz & 5MHz
	60 dBµV between 5MHz & 30MHz
Detector:	Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-
	Peak & Average if maximised peak within 6dB of Average
	Limit

6.1 E.U.T. Operation

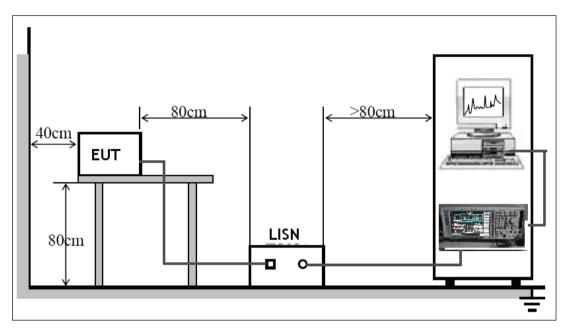
Operating Environment:

Temperature: 25.5 °C

Humidity: 51 % RH

Atmospheric Pressure: 1012 mbar

EUT Operation:

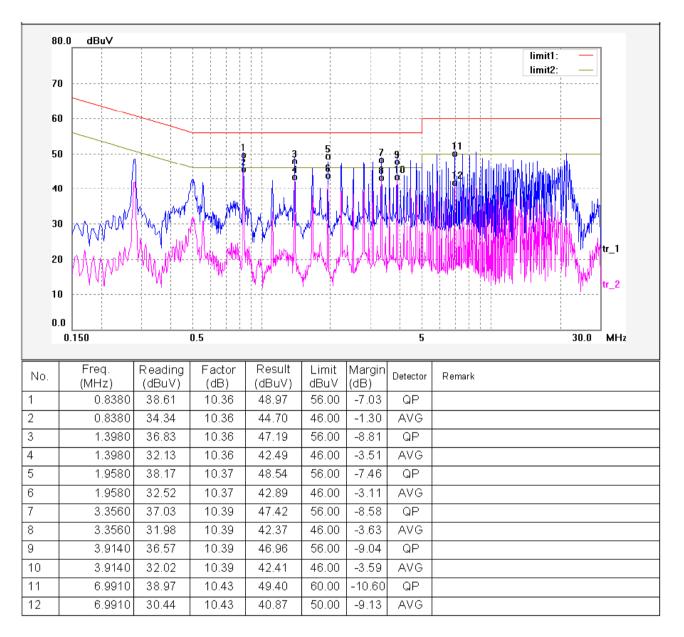

The pre-test was performed in AUX IN mode, normal link mode and continuously transmit mode, the worse mode is normal link mode, so the data show is that mode's only.

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

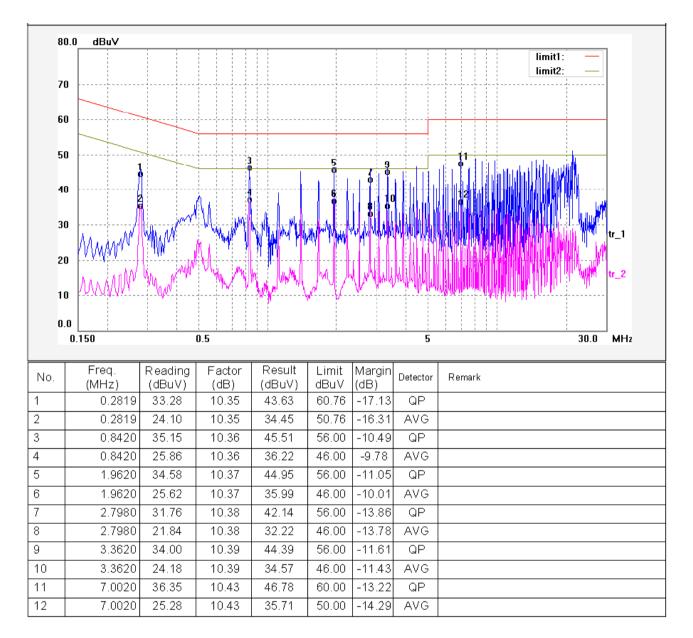
The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15.207 limits.



The EUT was placed on the test table in shielding room


6.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Neutral line:

6.4 Photograph – Conducted Emission Test Setup

7 Radiated Spurious Emissions

Test Requirement:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method:	DA 00-705
Test Result:	PASS
Frequency Range:	26MHz to 25GHz
Measurement Distance:	3m
15.209 Limit:	40.0 dBuV/m between 30MHz & 88MHz
	43.5 dBuV/m between 88MHz & 216MHz
	46.0 dBuV/m between 216MHz & 960MHz
	54.0 dBuV/m above 960MHz
15.247 (d) Limit:	(d) In any 100 kHz bandwidth outside the frequency
	band in which the spread spectrum or digitally
	modulated intentional radiator is operating. The
	radio frequency power that is produced by the
	intentional radiator shall be at least 20 dB below that
	in the 100 kHz bandwidth within the band that
	Contains the highest level of the desired power,
	based on either an RF conducted or a radiated
	measurement, provided the transmitter demonstrates
	compliance with the peak conducted power limits.
Test mode:	The EUT was tested in continuously Transmit mode.

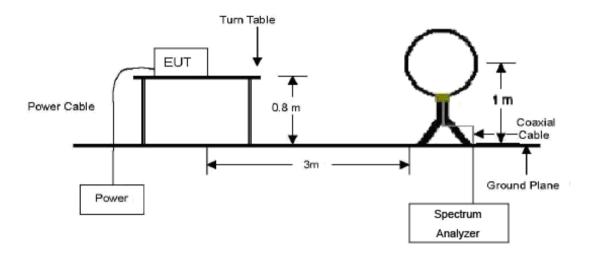
7.1 EUT Operation :

Operating Environment:

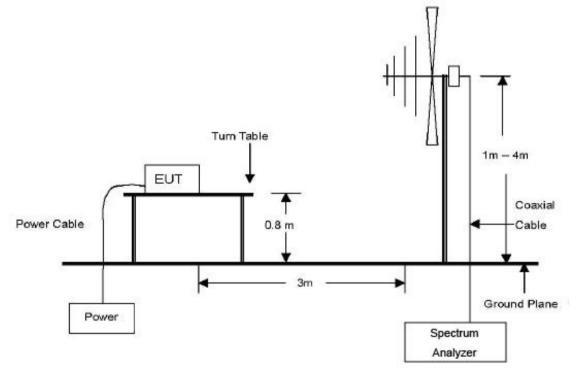
Temperature:	25.5 °	°C
Humidity:	51 %	RH
Atmospheric Press	ure:	1012 mbar

7.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

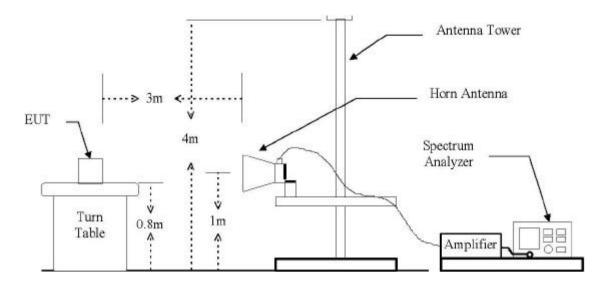

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

7.3 Test Setup


The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site,

using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 26MHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

FCC ID: VIX-ARS50A

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 25 GHz Emissions.

7.4 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 25MHz to 25000MHz.

$26 \mathrm{MHz} \sim 30 \mathrm{MHz}$

Start Frequency	.26MHz
Stop Frequency	.30MHz
Sweep Speed	. Auto
IF Bandwidth	.10KHz
Video Bandwidth	.10KHz
Resolution Bandwidth	.10KHz

$30MHz \sim 1GHz$

Start Frequency	.30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Start Frequency	. 1000 MHz
Stop Frequency	.25000MHz
Sweep Speed	. Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.3MHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	.Normal
Resolution Bandwidth	.1MHz

7.5 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.

7.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

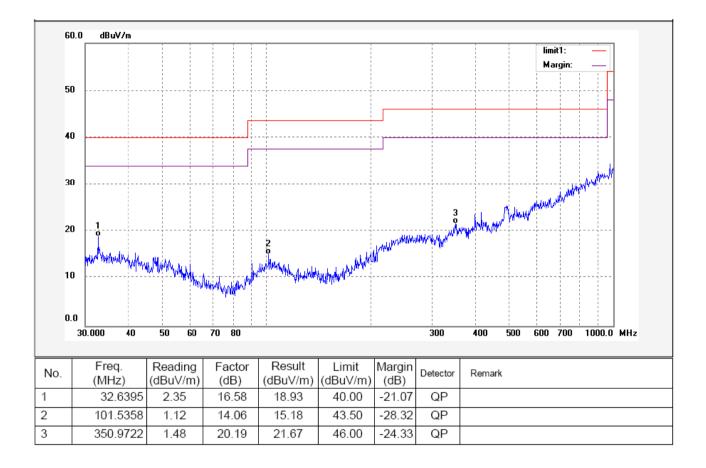
Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.7 Summary of Test Results

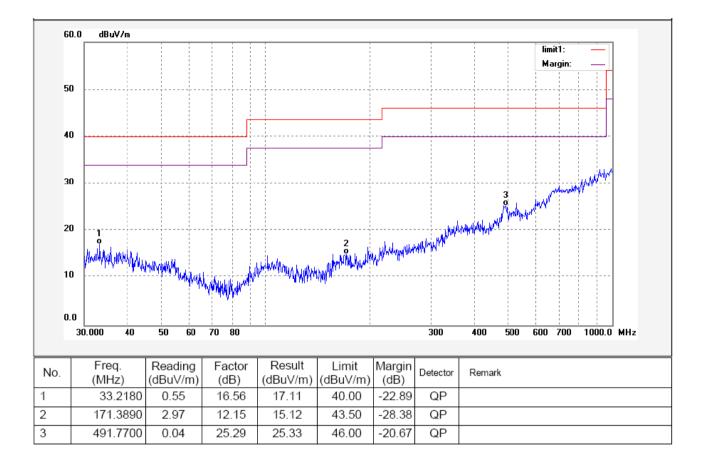
According to the data in this section, the EUT complied with the FCC CFR47 Part 15 Section 15.209 & 15.247 standards.


Test mode: continuously recevie mode

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the middle Channel, so the data show was the low channel only.

Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.

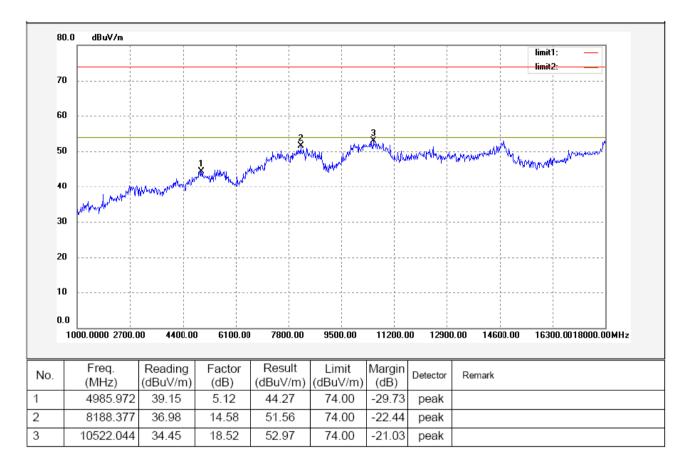
Test Frequency : 30MHz ~ 1000MHz


Antenna polarization: Vertical

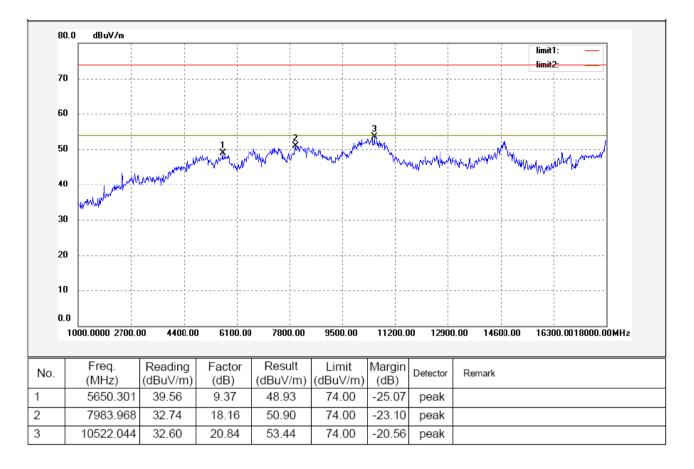
FCC ID: VIX-ARS50A

Audiovox Accessories Corp.

Antenna polarization: Horizontal


FCC ID: VIX-ARS50A

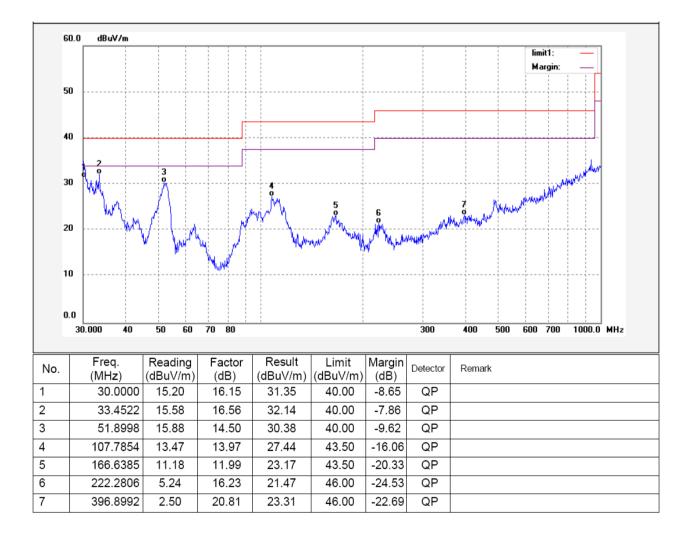
Audiovox Accessories Corp.


Test Frequency: Above 1GHz radiation test data:

Remark: No any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Antenna polarization: Vertical

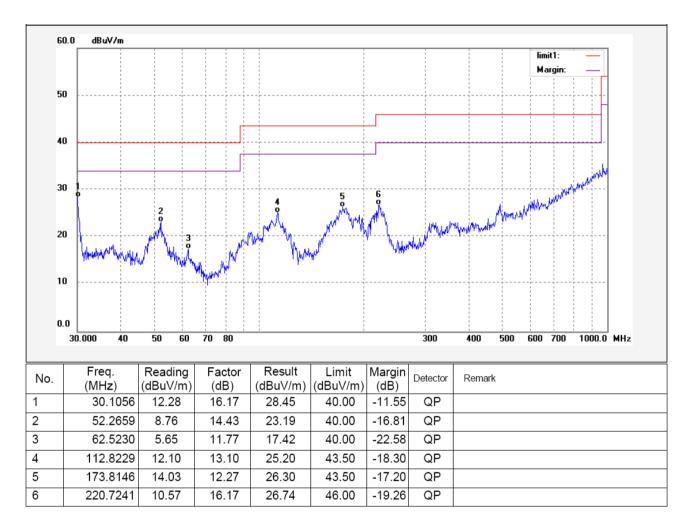
Antenna polarization: Horizontal



Test mode: continuously transmit mode

Remark: The pre-test was performaned in AUX IN mode, continuously transmit mode and normal link mode, and the continuously transmit mode was pretested at the high, middle and low channel. The worst mode is normal link mode, so the data show was that mode's only.

Because the emissions below 30MHz are more than 20dB below the limit, the data is not show in the report.


Test Frequency : 30MHz ~ 1000MHz Antenna polarization: Vertical

FCC ID: VIX-ARS50A

Audiovox Accessories Corp.

Antenna polarization: Horizontal

Test Frequency: 1GHz ~ 25GHz

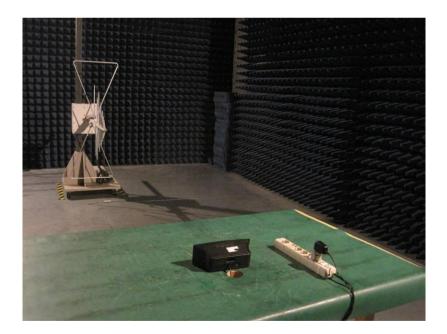
And the below is the Fundamental and Harmonic

Frequency (MHz)	Detector	Antenna Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle
	Low frequency						
2402.00	AV	Vertical	95.20		(Fund.)	1.3	50
4804.00	AV	Vertical	38.59	54.00	-15.41	1.1	105
7206.00	AV	Vertical	39.38	54.00	-14.62	1.6	160
9608.00	AV	Vertical	35.80	54.00	-18.20	1.7	110
12010.00	AV	Vertical	33.39	54.00	-20.61	1.7	195
14412.00	AV	Vertical	35.40	54.00	-18.60	1.3	160
16814.00	AV	Vertical	34.65	54.00	-19.35	1.8	150
19216.00	AV	Vertical	29.57	54.00	-24.43	1.4	120
21618.00	AV	Vertical	26.81	54.00	-27.19	1.7	40
24020.00	AV	Vertical	29.89	54.00	-24.11	1.1	110
2402.00	AV	Horizontal	88.93		(Fund.)	1.3	60
4804.00	AV	Horizontal	35.48	54.00	-18.52	1.1	160
7206.00	AV	Horizontal	33.81	54.00	-20.19	1.6	110
9608.00	AV	Horizontal	36.36	54.00	-17.64	1.1	160
12010.00	AV	Horizontal	34.60	54.00	-19.40	1.6	100
14412.00	AV	Horizonta	31.45	54.00	-22.55	1.1	170
16814.00	AV	Horizontal	34.26	54.00	-19.74	1.6	160
19216.00	AV	Horizontal	26.77	54.00	-27.23	1.7	140
21618.00	AV	Horizontal	27.71	54.00	-26.29	1.3	150
24020.00	AV	Horizontal	26.33	54.00	-27.67	1.4	70
2402.00	РК	Vertical	103.08		(Fund.)	1.6	40
4804.00	PK	Vertical	57.44	74.00	-16.56	1.7	110
7206.00	PK	Vertical	58.38	74.00	-15.62	1.7	150
9608.00	PK	Vertical	55.11	74.00	-18.89	1.3	220
12010.00	PK	Vertical	51.47	74.00	-22.53	1.3	110
14412.00	PK	Vertical	52.76	74.00	-21.24	1.1	120
16814.00	PK	Vertical	49.57	74.00	-24.43	1.5	175
19216.00	PK	Vertical	47.85	74.00	-26.15	1.1	170
21618.00	PK	Vertical	45.63	74.00	-28.37	1.8	120
24020.00	РК	Vertical	46.78	74.00	-27.22	1.3	130
2402.00	PK	Horizontal	97.43		(Fund.)	1.9	110
4804.00	PK	Horizontal	55.75	74.00	-18.25	1.7	150
7206.00	РК	Horizontal	53.50	74.00	-20.50	1.9	100
9608.00	PK	Horizontal	50.61	74.00	-23.39	1.1	50
12010.00	РК	Horizontal	52.59	74.00	-21.41	1.3	195
14412.00	РК	Horizontal	47.50	74.00	-26.50	1.4	40
16814.00	PK	Horizontal	53.60	74.00	-20.40	1.9	230
19216.00	PK	Horizontal	45.45	74.00	-28.55	1.4	120
21618.00	PK	Horizontal	46.78	74.00	-27.22	1.3	160

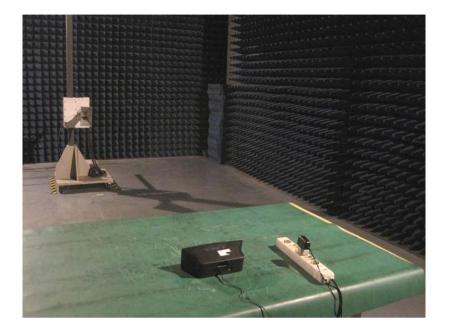
FCC ID: VIX-ARS50A


NUX ACCES		·P·					
24020.00	РК	Horizontal	48.55	74.00	-25.45	1.8	120
			Middle fre	quency			
2441.00	AV	Vertical	94.55		(Fund.)	1.6	80
4882.00	AV	Vertical	41.11	54.00	-12.89	1.5	150
7323.00	AV	Vertical	39.32	54.00	-14.68	1.2	130
9764.00	AV	Vertical	35.23	54.00	-18.77	1.1	50
12205.00	AV	Vertical	39.82	54.00	-14.18	1.3	60
14646.00	AV	Vertical	33.64	54.00	-20.36	1.1	190
17087.00	AV	Vertical	35.44	54.00	-18.56	1.6	50
19528.00	AV	Vertical	32.23	54.00	-21.77	1.4	60
21969.00	AV	Vertical	30.36	54.00	-23.64	1.9	220
24410.00	AV	Vertical	34.45	54.00	-19.55	1.1	140
2441.00	AV	Horizontal	90.60		(Fund.)	1.2	180
4882.00	AV	Horizontal	37.58	54.00	-16.42	1.5	130
7323.00	AV	Horizontal	38.79	54.00	-15.21	1.6	320
9764.00	AV	Horizontal	33.70	54.00	-20.30	1.1	180
12205.00	AV	Horizontal	31.39	54.00	-22.61	1.3	190
14646.00	AV	Horizontal	35.29	54.00	-18.71	1.3	230
17087.00	AV	Horizontal	34.52	54.00	-19.48	1.7	195
19528.00	AV	Horizontal	29.20	54.00	-24.80	1.3	130
21969.00	AV	Horizontal	30.25	54.00	-23.75	1.3	200
24410.00	AV	Horizontal	28.43	54.00	-25.57	1.6	180
2441.00	РК	Vertical	102.81		(Fund.)	1.3	40
4882.00	РК	Vertical	62.34	74.00	-11.66	1.0	140
7323.00	РК	Vertical	60.45	74.00	-13.55	1.5	160
9764.00	РК	Vertical	56.31	74.00	-17.69	1.2	160
12205.00	PK	Vertical	59.55	74.00	-14.45	1.8	230
14646.00	РК	Vertical	52.22	74.00	-21.78	1.1	60
17087.00	РК	Vertical	55.47	74.00	-18.53	1.5	40
19528.00	РК	Vertical	50.28	74.00	-23.72	1.4	170
21969.00	PK	Vertical	54.27	74.00	-19.73	1.6	195
24410.00	РК	Vertical	47.33	74.00	-26.67	1.3	160
2441.00	РК	Horizontal	99.80		(Fund.)	1.7	50
4882.00	РК	Horizontal	57.41	74.00	-16.59	1.6	105
7323.00	РК	Horizontal	59.14	74.00	-14.86	1.7	130
9764.00	РК	Horizontal	53.25	74.00	-20.75	1.4	110
12205.00	РК	Horizontal	56.00	74.00	-18.00	1.5	210
14646.00	РК	Horizontal	51.40	74.00	-22.60	1.4	190
17087.00	PK	Horizontal	48.59	74.00	-25.41	1.2	170
19528.00	PK	Horizontal	51.28	74.00	-22.72	1.4	210
21969.00	PK	Horizontal	52.51	74.00	-21.49	1.2	40
24410.00	PK	Horizontal	47.19	74.00	-26.81	1.5	195
High frequency							
2480.00	AV	Vertical	95.54		(Fund.)	1.1	230
4960.00	AV	Vertical	41.38	54.00	-12.62	1.5	60
.,	,	· • • • • • • • •		2 1100	12.02		50

FCC ID: VIX-ARS50A


						-	
7440.00	AV	Vertical	40.34	54.00	-13.66	1.4	160
9920.00	AV	Vertical	38.82	54.00	-15.18	1.3	110
12400.00	AV	Vertical	37.38	54.00	-16.62	1.6	150
14880.00	AV	Vertical	40.92	54.00	-13.08	1.7	160
17360.00	AV	Vertical	34.31	54.00	-19.69	1.2	150
19840.00	AV	Vertical	31.60	54.00	-22.40	1.0	240
22320.00	AV	Vertical	38.37	54.00	-15.63	1.5	160
24800.00	AV	Vertical	30.33	54.00	-23.67	1.4	185
2480.00	AV	Horizontal	91.69		(Fund.)	1.2	180
4960.00	AV	Horizontal	39.67	54.00	-14.33	2.1	190
7440.00	AV	Horizontal	35.04	54.00	-18.96	1.3	170
9920.00	AV	Horizontal	35.61	54.00	-18.39	1.4	240
12400.00	AV	Horizontal	36.88	54.00	-17.12	1.3	175
14880.00	AV	Horizontal	33.43	54.00	-20.57	1.1	170
17360.00	AV	Horizontal	30.59	54.00	-23.41	1.5	240
19840.00	AV	Horizontal	33.22	54.00	-20.78	2.0	100
22320.00	AV	Horizontal	28.48	54.00	-25.52	1.4	140
24800.00	AV	Horizontal	29.33	54.00	-24.67	2.3	150
2480.00	РК	Vertical	103.51		(Fund.)	1.3	220
4960.00	РК	Vertical	60.91	74.00	-13.09	1.1	80
7440.00	РК	Vertical	57.34	74.00	-16.66	2.2	170
9920.00	РК	Vertical	59.80	74.00	-14.20	1.4	140
12400.00	РК	Vertical	54.90	74.00	-19.10	1.5	140
14880.00	РК	Vertical	61.45	74.00	-12.55	1.1	120
17360.00	РК	Vertical	55.48	74.00	-18.52	1.3	130
19840.00	РК	Vertical	56.35	74.00	-17.65	1.1	170
22320.00	РК	Vertical	54.67	74.00	-19.33	1.7	180
24800.00	РК	Vertical	48.29	74.00	-25.71	1.5	175
2480.00	РК	Horizontal	98.71		(Fund.)	1.8	230
4960.00	РК	Horizontal	57.30	74.00	-16.70	1.3	120
7440.00	РК	Horizontal	55.61	74.00	-18.39	1.6	160
9920.00	РК	Horizontal	56.43	74.00	-17.57	1.2	230
12400.00	РК	Horizontal	54.29	74.00	-19.71	1.3	150
14880.00	РК	Horizontal	48.48	74.00	-25.52	1.9	130
17360.00	РК	Horizontal	52.69	74.00	-21.31	2.0	200
19840.00	РК	Horizontal	47.36	74.00	-26.64	1.4	210
22320.00	РК	Horizontal	50.19	74.00	-23.81	2.4	160
24800.00	РК	Horizontal	45.57	74.00	-28.43	1.8	240

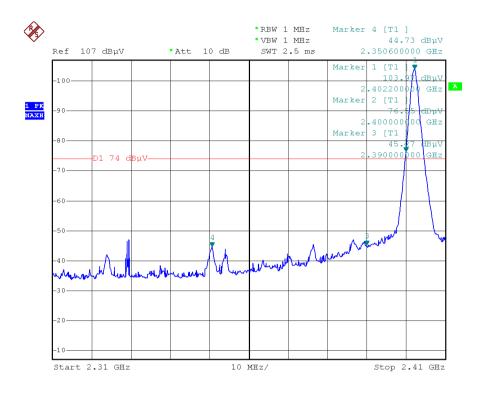
7.8 Photograph – Radiation Spurious Emission Test Setup


Below 30MHz

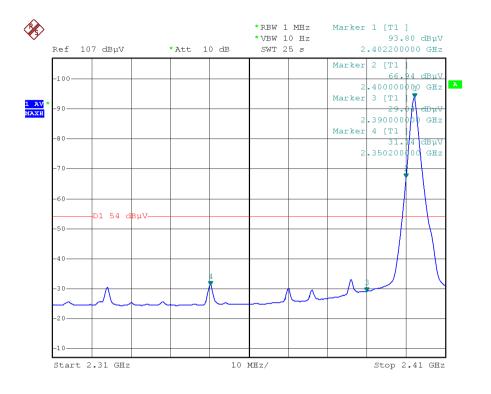
30M - 1GHz

Above 1GHz

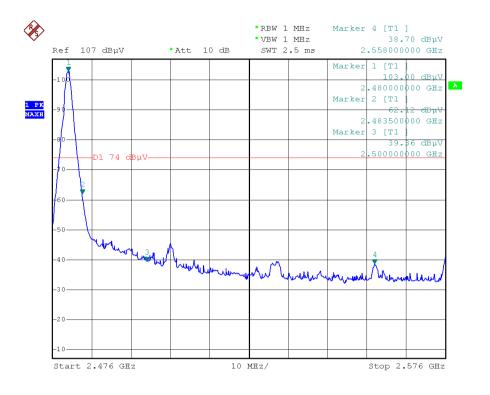
8

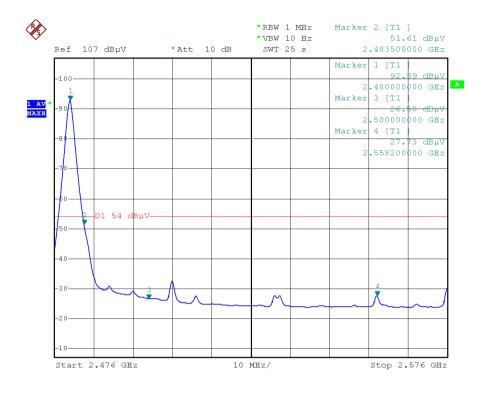

Band Edge Measurements

FCC ID: VIX-ARS50A


Test Requirement:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits
	specified in Section 15.209(a) (see Section 15.205(c)).
Test Method:	DA 00-705
Measurement Distance:	3m
Limit:	40.0 dBuV/m between 30MHz & 88MHz;
	43.5 dBuV/m between 88MHz & 216MHz;
	46.0 dBuV/m between 216MHz & 960MHz;
	54.0 dBuV/m above 960MHz.
	74.0 dBuV/m for peak above 1GHz
	54.0 dBuV/m for AVG above 1GHz
Detector:	For Peak value:
	$RBW = 1 MHz$ for $f \ge 1 GHz$
	VBW \geq RBW; Sweep = auto
	Detector function = peak
	Trace = max hold
	For AVG value:
	$RBW = 1 MHz$ for $f \ge 1 GHz$
	VBW = 10Hz; Sweep = auto
	Detector function = AVG
	Trace = max hold

Test Result:


Low Channel – Peak


Low Channel – AV

High Channel – Peak

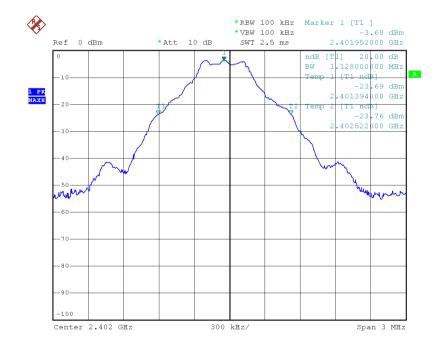
High Channel – AV

9 20 dB Bandwidth Measurement

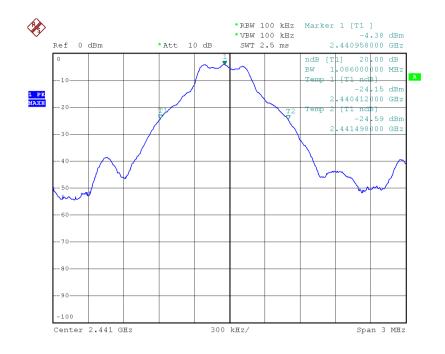
Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Mode:	Test in fixing operating frequency at low, Middle, high
	channel.

9.1 Test Procedure:

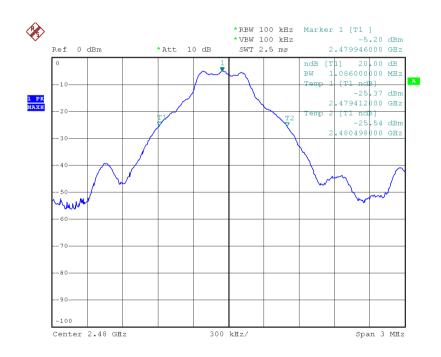
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: Span = 3MHz, RBW = 100kHz, VBW = 100kHz

9.2 Test Result:


Test Channel	Bandwidth
Low	1.128MHz
Middle	1.086MHz
High	1.086MHz

Test result plot as follows:


Low Channel

Middle Channel

High Channel

10 Maximum Peak Output Power

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	ANSI C63.4:2003
Test Limit:	Regulation 15.247 (b)(1)For frequency hopping systems
	operating in the 2400-2483.5 MHz band employing at least
	75 non-overlapping hopping channels, and all frequency
	hopping systems in the 5725-5850 MHz band: 1 watt. For
	all other frequency hopping systems in the 2400-2483.5
	MHz band: 0.125 watts.
	Refer to the result "Number of Hopping Frequency" of this
	document. The 1watts (30 dBm) limit applies.
Test mode:	Test in fixing frequency transmitting mode.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 10 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

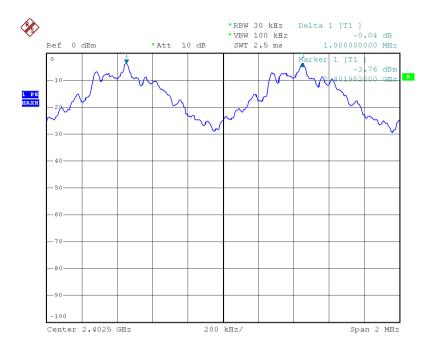
Test Channel	Output Power (dBm)	Limit (dBm)
Low	-3.27	30
Middle	-4.08	30
High	-4.92	30

11 Hopping Channel Separation

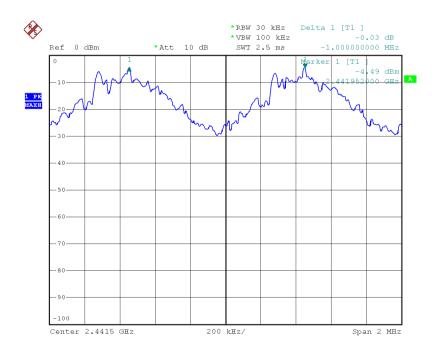
FCC CFR47 Part 15 Section 15.247 DA 00-705
Regulation 15.247(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an
output power no greater than 125 mW. Test in hopping transmitting operating mode.

11.1 Test Procedure:

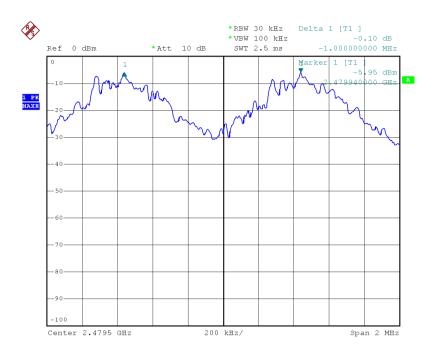
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.


11.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	1.000	PASS
Middle	1.000	PASS
High	1.000	PASS


Test result plot as follows: Low Channel:

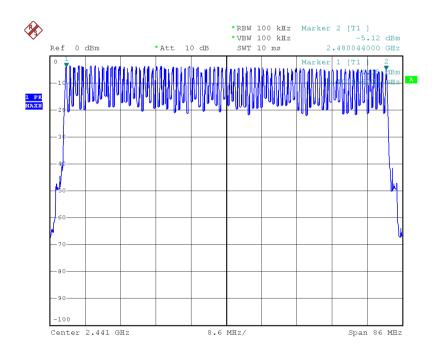
Middle Channel

High Channel

12 Number of Hopping Frequency

Test Requirement:	FCC CFR47 Part 15 Section 15.247			
Test Method:	DA 00-705			
Test Limit:	Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Mode:	Test in hopping transmitting operating mode.			
Test Mode.	Test in hopping transmitting operating mode.			

12.1 Test Procedure:


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 100 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Center Frequency = 2441MHz, Span = 86MHz. Submit the test result graph.

12.2 Test Result: Total Channels are 79 Channels.

13 Dwell Time

Test Requirement:	FCC CFR47 Part 15 Section 15.247
Test Method:	DA 00-705
Test Limit:	Regulation 15.247(a)(1)(iii) Frequency hopping systems in
	the 2400-2483.5 MHz band shall use at least 15 channels.
	The average time of occupancy on any channel shall not be
	greater than 0.4 seconds within a period of 0.4 seconds
	multiplied by the number of hopping channels employed.
Test Mode:	Test in hopping transmitting operating mode.

13.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result:

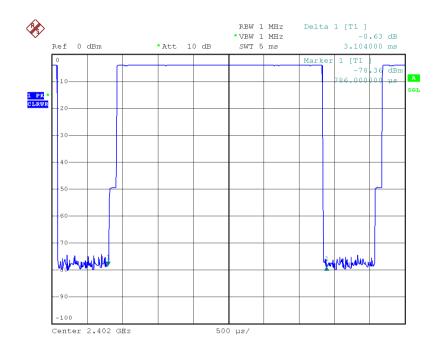
Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

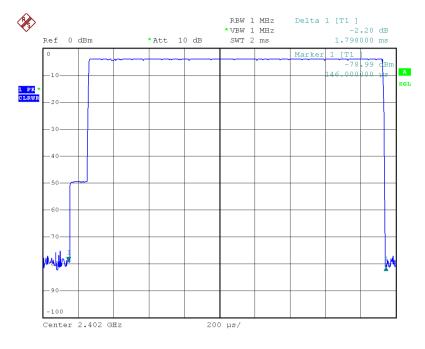
DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So,the Dwell Time can be calculated as follows:

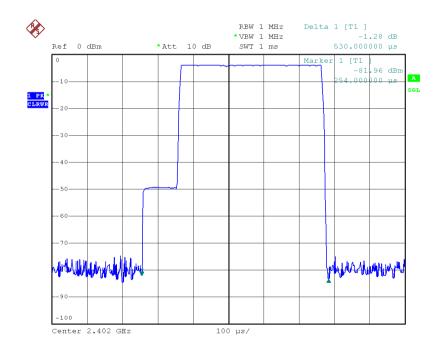

Data Packet	Dwell Time(s)
DH5	1600/79/6*31.6*(MkrDelta)/1000
DH3	1600/79/4*31.6*(MkrDelta)/1000
DH1	1600/79/2*31.6*(MkrDelta)/1000

Note : Mkr Delta is once pulse time .

Low Channel: 2402MHz

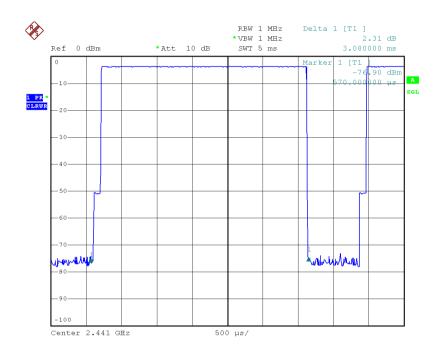

Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2402 MHz	3.104	0.331	0.400	Pass
DH3	2402 MHz	1.798	0.288	0.400	Pass
DH1	2402 MHz	0.530	0.170	0.400	Pass

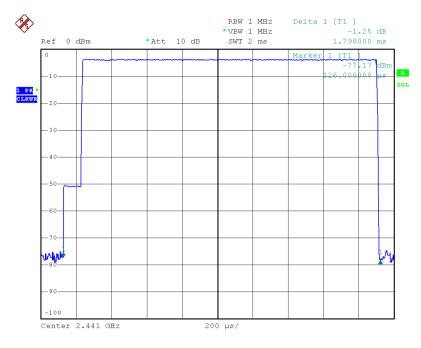


(DH5)

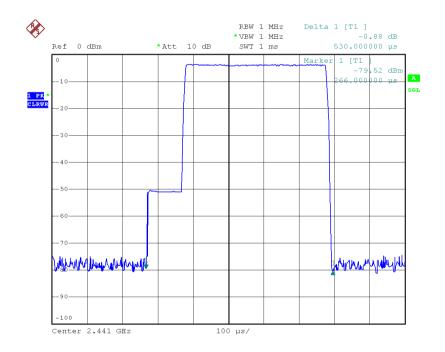
FCC ID: VIX-ARS50A



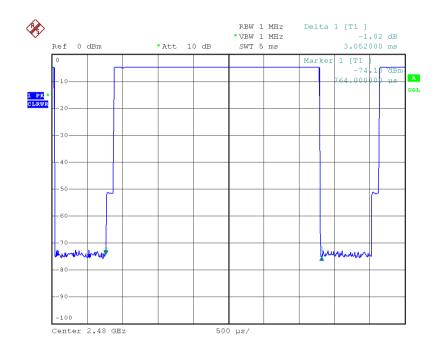
(DH1)


Middle Channel: 2441MHz

Dwell time of each occupation in this channel as follows:

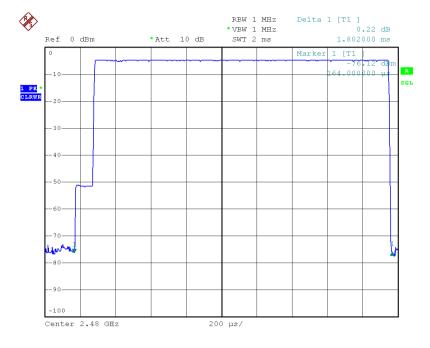

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2441 MHz	3.080	0.329	0.400	Pass
DH3	2441 MHz	1.798	0.288	0.400	Pass
DH1	2441 MHz	0.530	0.170	0.400	Pass

(DH5)

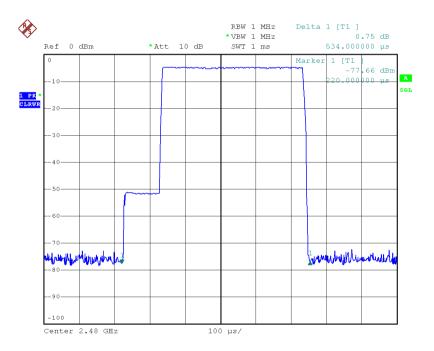


(DH1)

High Channel: 2480MHz


Dwell time of each occupation in this channel as follows:

Data Packet	Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
DH5	2480 MHz	3.052	0.326	DH5	Pass
DH3	2480 MHz	1.802	0.288	DH3	Pass
DH1	2480 MHz	0.534	0.171	DH1	Pass



(DH5)

FCC ID: VIX-ARS50A

(DH1)

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product has a permanent PCB antenna, fulfill the requirement of this section.

15 RF Exposure

Test Requirement:	FCC Part 1.1307
Test Mode:	The EUT work in test mode(Tx).

15.1 Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1093 this device has been defined as a mobile device.

15.2 The procedures / limit

Frequency Range (MHz)	Électric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

15.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m) = \frac{E^2}{377}$

$$E = \text{Electric field (V/m)}$$

$$P = \text{Peak RF output power (W)}$$

$$G = \text{EUT Antenna numeric gain (numeric)}$$

$$d = \text{Separation distance between radiator and human body (m)}$$

The formula can be changed to

$$M = \frac{30 \times P \times G}{d}$$

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
0	1	-3.27	0.4709	0.000094	1	Complies
0	1	-4.08	0.3908	0.000074	1	Complies
0	1	-4.92	0.3221	0.000064	1	Complies

16 Photographs - Constructional Details

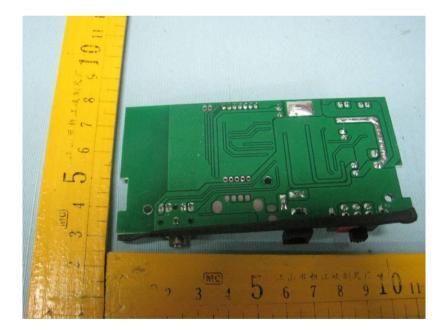
16.1 Product View

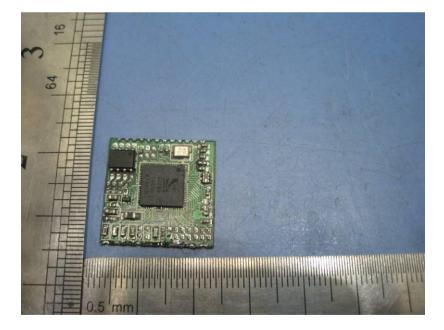
16.2 EUT – Appearance View

FCC ID: VIX-ARS50A

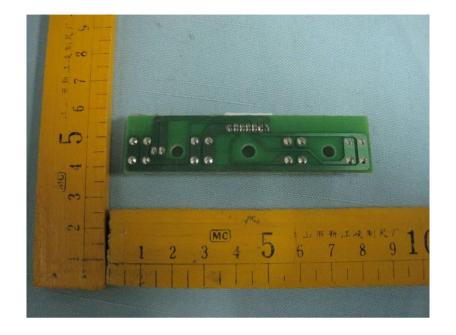
FCC ID: VIX-ARS50A




16.3 EUT – Open View


FCC ID: VIX-ARS50A

16.4 EUT – PCB1 View



16.5 EUT – PCB2 View

17 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Proposed Label Location on EUT EUT Bottom View/ proposed FCC Label Location