

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191102801

FCC REPORT

Applicant:	AlSolution Co., Ltd.		
Address of Applicant:	28-4, Samyang-ro 29-gil, Gangbuk-gu, Seoul, South Korea		
Equipment Under Test (E	EUT)		
Product Name:	KDC180U Bluetooth Barcode Scanner and UHF reader		
Model No.:	KDC180U		
Trade mark:	ΚΟΛΜΤΛΟ		
FCC ID:	VH9KDC180U		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	19 Dec., 2019		
Date of Test:	20 Dec., 2019 to 16 Mar., 2020		
Date of report issued:	23 Mar., 2020		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	23 Mar., 2020	Original

Tested by:

Janet Wei Test Engineer

Date: 23 Mar., 2020

Reviewed by: Winner Thang

Project Engineer

Date:

23 Mar., 2020

CCIS

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	
3			
			-
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 5.8	LABORATORY FACILITY	
	5.8 5.9	Test Instruments list	
6	TES	T RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	-
	6.6	BAND EDGE	
	6.6.1		
	6.6.2 6.7	2 Radiated Emission Method	-
	6.7.1		
	6.7.2		
-	0		
7	IES	Т SETUP PHOTO	32
8	EUT	CONSTRUCTIONAL DETAILS	

Test Summary 4

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (b)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: Not Applicable 				

N/A: Not Applicable. 2.

З. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	AlSolution Co., Ltd.
Address:	28-4, Samyang-ro 29-gil, Gangbuk-gu, Seoul, South Korea
Manufacturer/ Factory:	AlSolution Co., Ltd.
Address:	28-4, Samyang-ro 29-gil, Gangbuk-gu, Seoul, South Korea

5.2 General Description of E.U.T.

Product Name:	KDC180U Bluetooth Barcode Scanner and UHF reader
Model No.:	KDC180U
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-2.19 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1010mAh
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Noto:				•			

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:

Operating Linvironment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:	Radiated Emission:				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Test Equipment Manufacturer Model No. Serial No.		Serial No.	Serial No. Cal. Date	Cal. Due date
rest Equipment	Manadatarei	model No.	Ocharito.	(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
-----------------------	--------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2.19 dBi. The detailed ANT photo please refers to the external photo.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (dBuV)				
	Quasi-peak Aver						
	0.15-0.5		56 to 46*				
	0.5-5 5-30	56 60	46 50				
	* Decreases with the logarithn		50				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 						
Test setup:	Reference	80cm Filter EMI Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details	;					
Test mode:	Refer to section 5.3 for details	;					
Test results:	Passed						

Maaguramant Data

roduct name:	KDC180U Bluetooth Barcode Scanner and UHF reader	Product model:	KDC180U		
est by:	Janet	Test mode:	BLE Tx mode		
est frequency:	150 kHz ~ 30 MHz	Phase:	Line		
est voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55		
80 Level (dBuV 70 60 50 40 30 20		11 Marine	FCC PART 15.407 QP FCC PART 15.407 AV		
10 0.15 .2 Trace: 13		2 5 ency (MHz)	10 20 30		

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

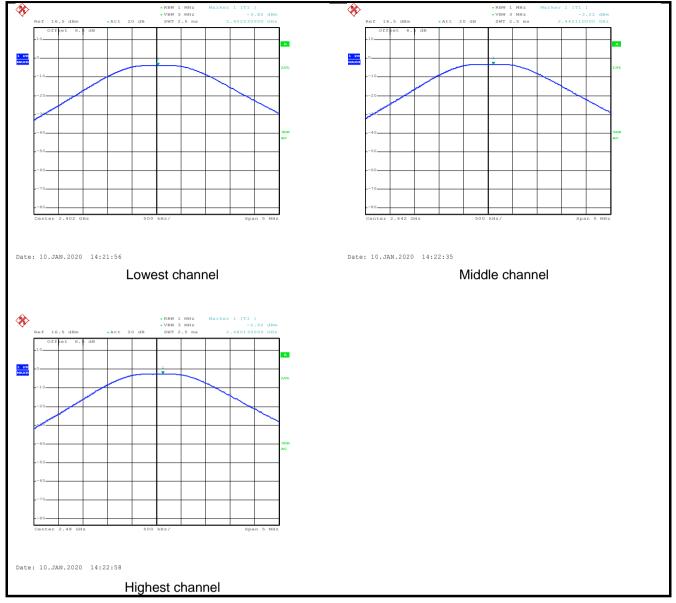
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

Final Level =Receiver Read level + LISN Factor + Cable Loss. 3.

Product name:	-	KDC180U Bluetooth Barcode Scanner and UHF reader		Pr	Product model:		KDC180U			
Test by:	Jane	Janet			Те	st mode:		BLE Tx n	node	
Test frequency:	150 l	Hz ~ 3	30 MHz		Ph	Phase:		Neutral		
Test voltage:	AC 1	20 V/6	60 Hz		En	vironmen	it:	Temp: 22	2.5℃ H	uni: 55%
80 Level (dB 70 60 50 40 30 20	MMMM	13 14 14 14 14 14 14 14 14 14 14 14 14 14	568	Manna	V	Amilia	Mar Marine		RT 15.407 QP	
10 0.15 .2 Trace: 15		.5		1 Free	2 quency (MH	States -	5	10	20	30
0.15 .2 Trace: 15		Read		•	-	States -	5 Limit Line	Over	20 Remark	30
0 <mark>.15 .2</mark> Trace: 15	req L	Read		Free	quency (MH Cable	lz)	Limit	Over		30

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power


Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

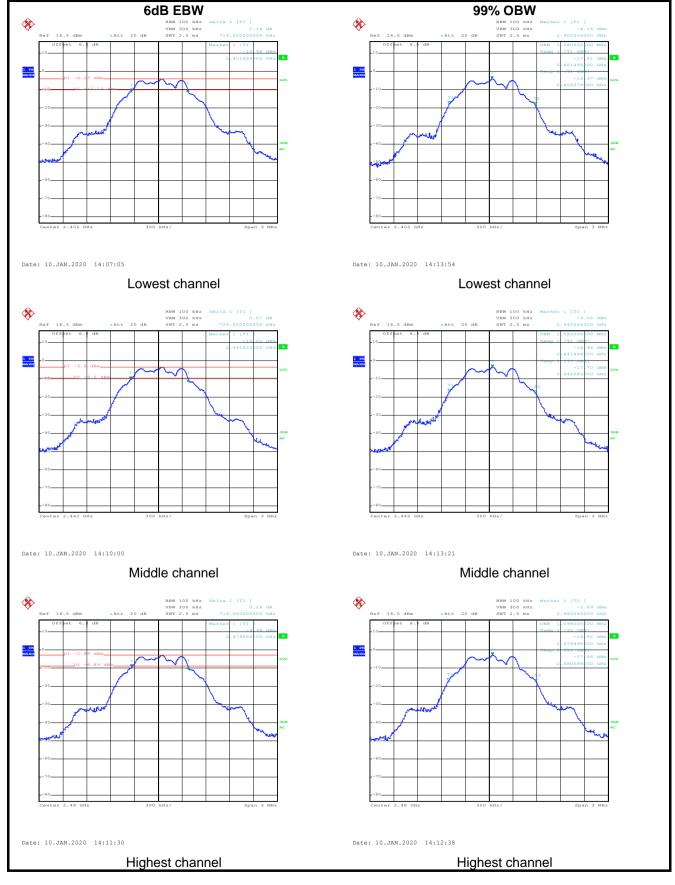
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-3.82		
Middle	-3.22	30.00	Pass
Highest	-2.52		

<u>CCIS</u>

Test plot as follows:

6.4 Occupy Bandwidth


Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
To at la atauna antai	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

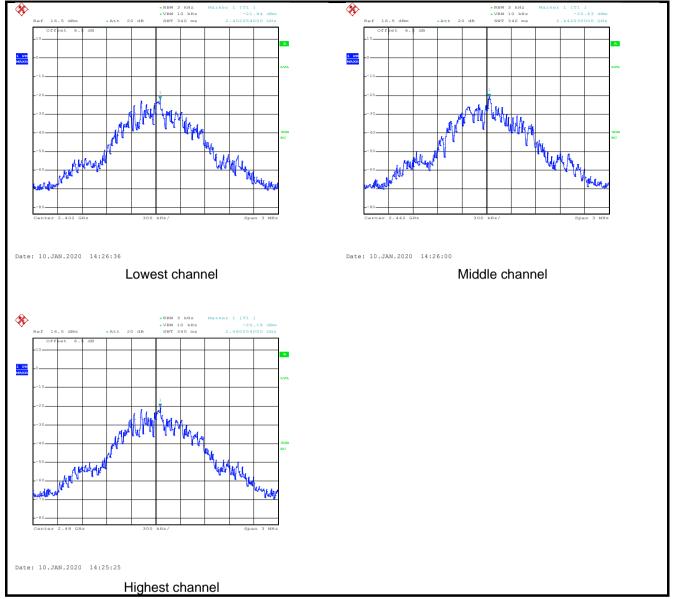
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.714		
Middle	0.726	>500	Pass
Highest	0.714		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.080		
Middle	1.086	N/A	N/A
Highest	1.098		

<u>CCIS</u>

Test plot as follows:

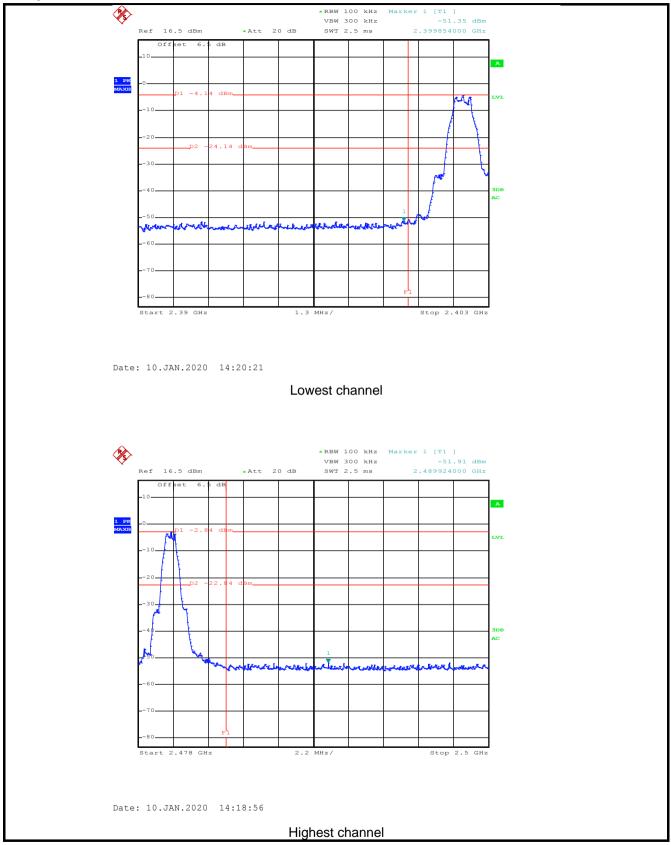
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-21.84		
Middle	-20.63	8.00	Pass
Highest	-20.18		

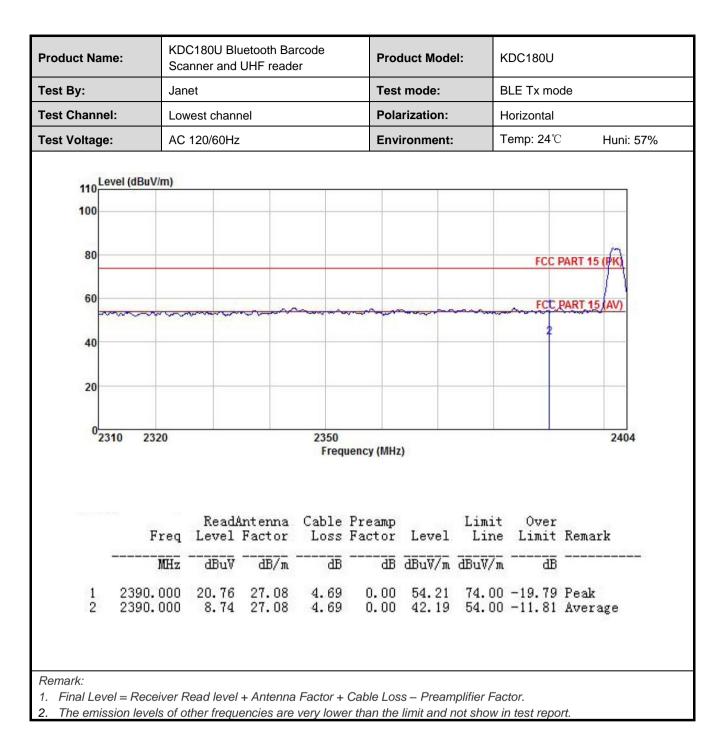
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

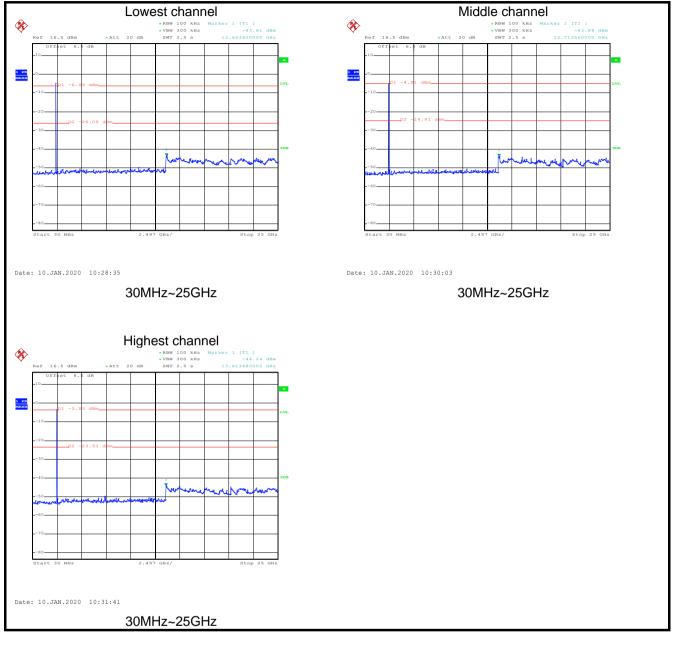

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	C Section 15.	205 and 15.209		
Test Frequency Range:	2.3GHz to 2.5	GHz			
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	
	Above 1GHz	Peak	1MHz	3MH	
L insta	Frequer		_1MHz _imit (dBuV/m @	3MH	Iz Average Value Remark
Limit:		Average Value			
	Above 10	GHz —	54.00 74.00		Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-rec antenna, which was mounted on the top of a variable-heig tower. The antenna height is varied from one meter to four meter the ground to determine the maximum value of the field st Both horizontal and vertical polarizations of the antenna an make the measurement. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 m meters and the rota table was turned from 0 degrees to 36 to find the maximum reading. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB I the limit specified, then testing could be stopped and the p of the EUT would be reported. Otherwise the emissions th have 10 dB margin would be re-tested one by one using p 				rotated 360 degrees n. erence-receiving riable-height antenna four meters above the field strength. antenna are set to anged to its worst s from 1 meter to 4 grees to 360 degrees et Function and ras 10 dB lower than d and the peak values nissions that did not
Test setup:	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver				
Test Instruments:	Refer to section	on 5.9 for det	ails		
Test mode:	Refer to section	on 5.3 for det	ails		
Test results:	Passed				

Product Name	<u><u></u></u>	KDC180U Bluetooth Barcode Scanner and UHF reader				Product Model:		KDC1	KDC180U	
Test By:		Janet			٦	Test mode: BLE		BLE T	Tx mode	
Test Channel	:	Lowest channel		F	Polarizatio	on:	Vertica	al		
Test Voltage:		AC 120/60H	łz		E	Environme	ent:	Temp	: 24℃ Huni: 57%	
110 Lev 100	vel (dBuV/m)									
80			2					FCC I	PART 15 (PK)	
60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~	~~~~~		FCC I	PART 15 AV)	
40								2		
20										
0231	10 2320			2350 Freq	uency (MHz	:)			2404	
	Free	Read Level	Antenna Factor				Limit Line	Over Limit	Remark	
÷	MHz	dBuV			<u>a</u> B	dBuV/m	dBuV/m	āB		
1 2	2390.000 2390.000		27.07 27.07	4.69 4.69		53.62 42.15			Peak Average	

roduct Nam	ie:	KDC180U B Scanner and			F	Product Me	odel:	KDC18	KDC180U		
est By:		Janet				Test mode:		BLE T	BLE Tx mode		
Fest Channel	l:	Highest cha	nnel		F	olarizatio	n:	Vertica	al		
Fest Voltage:	:	AC 120/60H	Iz		E	invironme	ent:	Temp:	24 ℃	Huni: 57%	
110 Lev	vel (dBuV/m)										
100 80	\frown							FCC	: PART 15 ((PK)	
60		2	~~~		~~			FCC	<u>PART 15</u>	<u>(AV)</u> _	
40											
20	+										
0 <mark></mark> 247	78			Freq	uency (MH	z)				2500	
	Fre	Read# q Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MH	z dBuV			₫₿	dBuV/m	dBuV/m	dB			
1	2483.50 2483.50	0 21.41 0 8.93	27.36 27.36	4.81 4.81	0.00 0.00	55.28 42.80	74.00 54.00	-18.72 -11.20	Peak Averag	e	

	uct Name: KDC180U Bluetooth Barcode Scanner and UHF reader				Pro	duct Mode	el: k	KDC180U			
t By:	Jan	Janet				t mode:	E	BLE Tx mode			
t Channel:	Channel: Highest channel				Pola	arization:	ŀ	Horizontal			
st Voltage: AC 120/60Hz						ironment:	Г	emp: 24℃	C Huni:		
110 Level (100 80 60 40 20	dBuV/m)	2							<u>C PART 15 (PK)</u> <u>C PART 15 (AV)</u>		
0				Free	quency (MI	Hz)			25		
2478											
2478	Freq	ReadA Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	Freq MHz	Level	ntenna Factor dB/m	Cable Loss dB	Factor	Level dBuV/m	Line	Limit	Remark		


6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreat spectrum intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

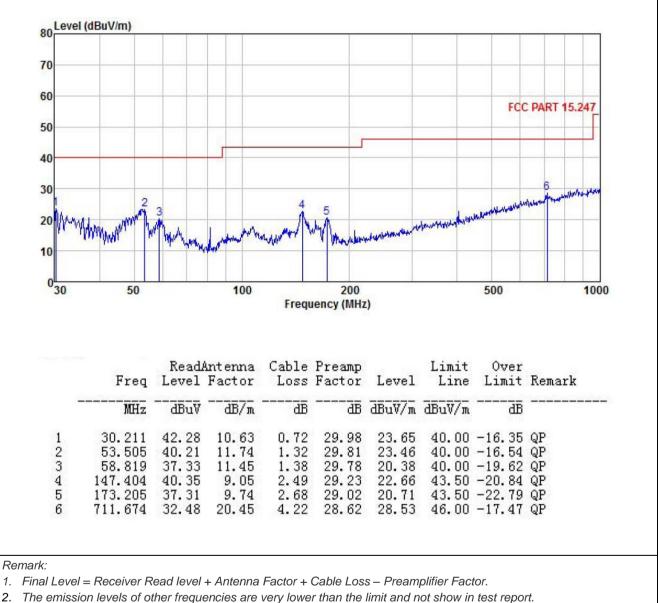
<u>CCIS</u>

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209									
Test Frequency Range:	9kHz to 25GHz									
Test Distance:	3m									
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark				
	30MHz-1GHz	Quasi-peak	120KHz	300	КНz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	ЗM	Hz	Peak Value				
	Above IGHZ	RMS	1MHz	ЗM	3MHz Average Va					
Limit:	Frequency	/	_imit (dBuV/m @	23m)		Remark				
	30MHz-88M		40.0			Quasi-peak Value				
	88MHz-216M		43.5			Quasi-peak Value				
	216MHz-960		46.0			Quasi-peak Value				
	960MHz-1G	Hz	54.0			Quasi-peak Value				
	Above 1GF	lz 📃	54.0			Average Value				
Test Procedure:	1. The EUT		74.0	of a ra	toting	Peak Value table 0.8m(below				
	 The table of highest rad The EUT antenna, we tower. The antenna the ground Both horizon make the n For each so case and the meters and to find the n The test-rest specified E If the emission the limit sp of the EUT have 10 dE 	was rotated liation. was set 3 hich was mo ha height is to determine ontal and ver heasurement suspected e hen the ant the rota tak maximum re eceiver system and width with sion level of ecified, then would be r	360 degrees to meters away punted on the varied from on the the maxim entical polarizant. mission, the E enna was turned ading. em was set th Maximum H the EUT in per testing could le ported. Other uld be re-tested	to deter from the top of a ne met um value tions of EUT wate from 0 to Pea lold Mo eak mode be stop wise the d one b	mine ne inte varial er to f ue of the a as arra eights degre k Def de. de was ped ar e emis y one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data				
Test setup:		3m <			Antenna Search Antenn Test eiver –	1				

<u>CCIS</u>


	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Tx mode
cal
o: 24℃ Huni: 57%
0

Sest Frequency: 30 MHz ~ 1 GHz Polarization: Horizontal	Product Name	-	KDC180U Bluetooth Barcode Scanner and UHF reader				oduct Mo	del:	KDC18	KDC180U		
Test Voltage: AC 120/60Hz Environment: Temp: 24°C Huni: 57 30 40 60	est By:		Janet				Test mode:		BLE T	BLE Tx mode		
ReadAntenna Cable Preamp Loss Factor Limit Limit Limit Remark Over Limit Remark 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -18.87 QP	est Frequenc	y: 3	30 MHz ~ 1 GHz				olarization	1:	Horizo	ntal		
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	est Voltage:	A	C 120/60H	lz		Er	nvironmer	nt:	Temp:	24℃ Huni: 57'		
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	1											
$\frac{60}{40} + \frac{1}{40} + \frac{1}{40}$	80 Leve	(aBuv/m)										
$\frac{1}{10000000000000000000000000000000000$	70								_			
$ \frac{1}{100} + 1$	60								_			
$ \frac{1}{1} 1$									FCC	PART 15.247		
$\frac{30}{20} \underbrace{1}_{0} $	50											
10 10 200 500 1000 30 50 100 200 500 1000 Frequency (MHz) 1000 Frequency (MHz) 1000 1000 MHz ReadAntenna Cable Preamp Limit Over 1000 MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP	40											
10 10 200 500 1000 30 50 100 200 500 1000 Frequency (MHz) 1000 Frequency (MHz) 1000 1000 MHz ReadAntenna Cable Preamp Limit Over 1000 MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP	30					2			4	5 dutingum		
10 10 200 500 1000 30 50 100 200 500 1000 Frequency (MHz) 1000 Frequency (MHz) 1000 1000 ReadAntenna Cable Preamp Limit Over Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP	20				Å	Ā	3	and the second	american	whenter		
Image: Constraint of the second se	20	human	Amount	and the set of the	100	and have	- you when	W. Wards. And Str.	5			
Frequency (MHz) ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Limit Over Freq Level Factor Loss Factor Level Lime Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP	10		- Markand	happy								
Frequency (MHz) ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Limit Over Freq Level Factor Loss Factor Level Lime Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP	030	50		100		200			500	1000		
Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP					Freq	uency (MHz	<u>z)</u>					
Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP												
MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dB 1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP		100								22		
1 146.374 42.49 9.12 2.47 29.24 24.84 43.50 -18.66 QP 2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP		Freq	Level	Factor	Loss					Kemark		
2 173.814 42.41 9.76 2.68 29.02 25.83 43.50 -17.67 QP 3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP		MHz	dBu∛	dB/m	dB	dB	dBuV/m	dBuV/m	dB			
3 255.623 33.69 12.80 2.82 28.53 20.78 46.00 -25.22 QP 4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 -19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 -18.87 QP					2.47							
4 584.790 32.03 19.17 3.92 28.99 26.13 46.00 −19.87 QP 5 651.942 32.29 19.74 3.87 28.77 27.13 46.00 −18.87 QP	2											
		584.790	32.03	19.17	3.92	28.99	26.13	46.00	-19.87	QP		
Remark:												

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

			Test ch	annel: Lowe	est channel			
			De	tector: Peak	<pre>< Value</pre>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.09	31.02	6.80	41.81	43.10	74.00	-30.90	Vertical
4804.00	47.11	31.02	6.80	41.81	43.12	74.00	-30.88	Horizontal
		1		ector: Avera	ge Value			1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.85	31.02	6.80	41.81	34.86	54.00	-19.14	Vertical
4804.00	38.85	31.02	6.80	41.81	34.86	54.00	-19.14	Horizontal
			Taatak					
				nannel: Mido tector: Peal				
	Read	Antenna	Cable	Preamp			Over	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polarization
4882.00	48.13	31.17	6.86	41.84	44.32	74.00	-29.68	Vertical
4882.00	47.96	31.17	6.86	41.84	44.15	74.00	-29.85	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	39.42	31.17	6.86	41.84	35.61	54.00	-18.39	Vertical
4882.00	39.50	31.17	6.86	41.84	35.69	54.00	-18.31	Horizontal
			Test ch	annel: High	est channel			
				tector: Peal				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.94	31.32	6.91	41.87	45.30	74.00	-28.70	Vertical
4960.00	48.65	31.32	6.91	41.87	45.01	74.00	-28.99	Horizontal
			Dete	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.73	31.32	6.91	41.87	36.09	54.00	-17.91	Vertical
4960.00	39.22	31.32	6.91	41.87	35.58	54.00	-18.42	Horizontal
Remark: 1. Final Lev	vel = Receive	r Read level +	- Antenna Fa	nctor + Cable	Loss – Pream	nplifier Factor.		

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.